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We study all-optical signatures of the effective nonlinear couplings among electromagnetic fields in the
quantum vacuum, using the collision of two focused high-intensity laser pulses as an example. The
experimental signatures of quantum vacuum nonlinearities are encoded in signal photons, whose kinematic
and polarization properties differ from the photons constituting the macroscopic laser fields. We implement
an efficient numerical algorithm allowing for the theoretical investigation of such signatures in realistic
field configurations accessible in experiment. This algorithm is based on a vacuum emission scheme and
can readily be adapted to the collision of more laser beams or further involved field configurations. We
solve the case of two colliding pulses in full 3þ 1-dimensional spacetime and identify experimental
geometries and parameter regimes with improved signal-to-noise ratios.
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I. INTRODUCTION

The fluctuations of virtual particles in the quantum
vacuum give rise to effective interactions among electro-
magnetic fields, supplementing Maxwell’s linear theory
of vacuum electrodynamics with effective nonlinearities
[1–3]; for reviews, see Refs. [4–13]. Prominent signatures
of quantum vacuum nonlinearities are vacuum magnetic
birefringence (VMB) [14,15] and direct light-by-light
scattering [16,17].
Being of quantum nature, the latter are typically tiny and

rather elusive in experiment. In quantum electrodynamics
(QED), they are suppressed parametrically with inverse
powers of the electron mass me. This mass scale serves as
the typical energy to be compared with the scales of the

applied fields, and defines the critical field strengths Ecr ≔
c3
ℏ
m2

e
e ≈ 1.3 × 1016 V

cm and Bcr ≔
Ecr
c ≈ 4 × 109 T.

In the laboratory, field strengths of this order are only
reached in strong Coulomb fields of highly charged ions.
Hence, experimental verifications of QED vacuum non-
linearities have so far been limited to high-energy experi-
ments with highly charged ions [18–22]. Note that VMB is
potentially also relevant for the optical polarimetry of
neutron stars [23–25]. Even though QED vacuum non-
linearities in macroscopic electromagnetic fields have not
been directly verified yet, laboratory searches of VMB in
macroscopic magnetic fields [26–28] have already dem-
onstrated the need for high field strengths and, at the same
time, a high signal detection sensitivity; see also [29,30].

The demand for strong fields together with the recent
technological advances in the development of high-
intensity laser systems have opened up an alternative route
to access the extreme-field territory in the laboratory. The
overarching key idea is to combine high-intensity lasers with
polarization sensitive single photon detection schemes.
State-of-the-art high-intensity lasers reach peak field

strengths of the order of 106 T and 1012 V/cm in micron
sized focal spots. Laser pulses achieving these field strengths
are typically made up of Oð1020Þ photons, constituting a
challenging background for the detection of the generically
tiny signals of QED vacuum nonlinearities in experiment. In
this context, theoretical proposals specifically focused on
VMB [31–38], photon-photon scattering in the formof laser-
pulse collisions [39–41], quantum reflection [42,43], photon
merging [44–47] and splitting [48–52], and optical signa-
tures of QED vacuum nonlinearities based on interference
effects [53–55].
In this article, we introduce and benchmark an efficient

numerical algorithm tailored to the study of all-optical
signatures of QED vacuum nonlinearities. Reformulating
the signatures in terms of vacuum emission processes [56],
the effects of quantum vacuum nonlinearities are encoded in
signal photons emitted from the strong-field region. As no
signal photons are induced in the absence of vacuum
nonlinearities, these photons generically constitute a distinct
signal. However, in order to allow for their detection in
experiment, they have to differ from the photons constituting
the high-intensity laser pulses driving the effects, e.g., by
their kinematic and polarization properties. Correspondingly,
one central objective is to identify scenarios where such
effects are most pronounced.
A standard approach of dealing with this challenge is to

solve the nonlinear photon wave equation, i.e., a partial
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differential equation, by suitable numerical techniques.
Successful examples can be found, e.g., in [41], where
the nonlinearities of the field equations have been treated as
source terms and Green’s function methods are used for an
iterative solution strategy; see also [57,58] for an advanced
implementation based on the pseudocharacteristic method
of lines. For large-scale simulation purposes, an implicit
ODE-based solver has been specifically designed in [59],
as well as in [60] using a finite-difference time-domain
solver.
As demonstrated in the following, the vacuum emission

picture advocated in this work is particularly suited for a
numerical implementation. In our formalism, the essential
numerical ingredients are reduced to one standard and easy-
to-use algorithm: fast Fourier transformation. Space- or
time-integrated observables may additionally require sim-
ple low-dimensional integration techniques. This numerical
simplicity parallels the conceptual adaption of the vacuum
emission scheme to the physical situation: In this picture,
all macroscopically controlled fields such as high-intensity
laser pulses are treated as classical fields, whereas the
fluctuation-induced signal photons are dealt with on the
level of the quantum Fock space.
Our article is organized as follows: In Sec. II we outline

the theoretical foundations of our approach. We apply our
methods in Sec. III to the collision of two focused, linearly
polarized high-intensity laser pulses in vacuum [41]. In
Sec. IV we introduce our numerical algorithm in detail.
Section V is devoted to the discussion of explicit results.
Here, we first benchmark our numerical algorithm with
analytical results for the limit of infinite Rayleigh ranges of
the two beams, where analytical results are available.
Subsequently, we use it to obtain new results: In Sec. V
A we study the collision of two petawatt (PW) class laser
pulses of identical frequency, continuing with fundamental
and doubled frequency in Sec. V B. Considering the
fundamental-frequency laser beam as focused down to
the diffraction limit, the latter scenario allows for the study
of two limiting cases of specific interest, differing in the
focusing of the frequency-doubled beam. In the first case, it
is focused to the diffraction limit of the fundamental-
frequency beam, maximizing the beam overlap in the focus,
and in the second case, to its own diffraction limit, resulting
in a narrower beam waist and thus in a considerably smaller
overlap region of the beams but higher intensity in the
focus. Finally, we end with conclusions and an outlook
in Sec. VI.

II. THEORETICAL FOUNDATIONS

In Ref. [56] it has been argued that all-optical signatures
of quantum vacuum nonlinearities can be efficiently ana-
lyzed by reformulating them in terms of vacuum emission
processes. This approach has meanwhile been successfully
employed to obtain experimentally realistic predictions for

the phenomenon of VMB, particularly in the combination
of x-ray free electron and high-intensity lasers [34,36,61].
The central idea is to consider all applied macroscopic

electromagnetic fields as constituting the external back-
ground field; cf. also Ref. [62]. This implies that the
quantum character of the applied fields is not resolved,
and effects like, e.g., QED-induced beam depletion are
neglected. We emphasize that this is typically well justified
for scenarios where the strong electromagnetic fields E and
B are provided by high-intensity lasers and fulfill E ≪ Ecr
and B ≪ Bcr. Due to the parametric suppression of QED
vacuum nonlinearities by powers of the electron mass, the
pulses delivered by such lasers can be considered as
traversing each other in vacuum essentially unaltered.
At one-loop order, but fully nonperturbative in the

background field Ā, the exact interaction term giving rise
to single signal photon emission is given by [62]

Γð1Þ
int ½ĀðxÞ� ¼

Z
d4x

δΓ1-loop
HE ½A�
δAμ

����
A¼ĀðxÞ

aμðxÞ; ð1Þ

where Γ1-loop
HE ½A� ¼ −i ln detð−i∂ − e=AþmeÞ is the one-

loop Heisenberg-Euler action evaluated in the generic
external field A≡ AðxÞ. Our metric convention is gμν ¼
diagð−1;þ1;þ1;þ1Þ, and we use the Heaviside-Lorentz
system with c ¼ ℏ ¼ 1.
In turn, the amplitude for emission of a single signal

photon with momentum k⃗ from the QED vacuum subject to
the external field Ā is given by [56] (cf. also Fig. 1)

SðpÞðk⃗Þ≡ hγpðk⃗ÞjΓð1Þ
int ½ĀðxÞ�j0i: ð2Þ

Here jγpðk⃗Þi≡ a†
k⃗;p

j0i denotes the single signal photon

state, and p labels the polarization of the emitted photons.
Transition amplitudes to final states with more photons can
be constructed along the same lines, but are typically
suppressed because of a significantly larger phase space for
the signal photons; cf. the photon splitting process in
Ref. [47]. The differential number of signal photons with
polarization p to be measured far outside the interaction
region is then given by

FIG. 1. Diagrammatic representation of the single photon
vacuum emission process (2). The double line denotes the dressed
fermion propagator accounting for arbitrarily many couplings to
the external field Ā, represented by the wiggly lines ending at
crosses.
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d3NðpÞðk⃗Þ ¼
d3k
ð2πÞ3 jSðpÞðk⃗Þj2: ð3Þ

Representing the photon field in Lorenz gauge as

aμðxÞ ¼
X
p

Z
d3k
ð2πÞ3

1ffiffiffiffiffiffiffi
2k0

p

×

�
ϵμðpÞðkÞe−ikxak⃗;p þ ϵ�μðpÞðkÞeikxa†k⃗;p

�
; ð4Þ

where k0 ≡ jk⃗j, kx ≔ kμxμ and the sum is over the two
physical (transverse) photon polarizations, Eq. (2) can be
expressed as

SðpÞðk⃗Þ ¼
ϵ�μðpÞðkÞffiffiffiffiffiffiffi

2k0
p

Z
d4xeikx

δΓ1-loop
HE ½A�
δAμ

����
A¼ĀðxÞ

: ð5Þ

No closed-form expressions of Eq. (5) for generic
background field profiles are available. For the field
configurations generated by high-intensity lasers, which
vary on length (time) scales much larger than the Compton
wavelength (time) of the electron ƛC ≈ 3.86 × 10−13 m
(τC ≈ 1.29 × 10−21 s), analytical insights are nevertheless
possible by means of a locally constant field approxima-
tion (LCFA).
The LCFA amounts to first obtaining the Heisenberg-

Euler action in constant electromagnetic fields, F̄μν ¼
∂μĀν − ∂νĀμ ¼ const, resulting in a closed-form expres-
sion ΓHEðF̄Þ. As already determined in the original works
[1,3], ΓHEðF̄Þ is a function of the two field invariants F ¼
1
4
F̄μνF̄μν ¼ 1

2
ðB⃗2 − E⃗2Þ and G¼ 1

4
F̄μν

�F̄μν ¼−B⃗ · E⃗, where
�F̄μν ¼ 1

2
ϵμναβF̄αβ. Adopting this result for inhomogeneous

fields yields the LCFA approximation for the action
functional,

ΓHEðF̄Þ ¼
Z

d4xLHEðF̄Þ

⟶
F̄→F̄ðxÞ

ΓHE½F̄ðxÞ� ¼
Z

d4xLHEðF̄ðxÞÞ: ð6Þ

Due to parity invariance of QED, the dependency of the
Heisenberg-Euler Lagrangian is actually even in G, such
that LHEðF̄Þ ¼ LHEðF ;G2Þ for constant fields as well as for
the LCFA. As has been argued, e.g., in Refs. [62–64], the
deviations of the LCFA result from the corresponding exact
expression for ΓHE are of order Oðð υ

me
Þ2Þ, where υ delimits

the moduli of the frequency and momentum components of
the considered inhomogeneous field from above.

Within the LCFA, we obtain [56,62,63]

SðpÞðk⃗Þ ¼ i
ϵ�μðpÞðkÞffiffiffiffiffiffiffi

2k0
p

Z
d4xeikx

×

�
ðkF̄Þμ

∂L1-loop
HE

∂F þ ðk�F̄Þμ
∂L1-loop

HE

∂G
�
; ð7Þ

where ðkF̄Þμ ≔ kνF̄νμðxÞ, ðk�F̄Þμ ≔ kν�F̄νμðxÞ and

∂L1-loop
HE

∂F ¼ α

2π

Z
∞

0

ds
s
e−i

m2
e
e s

×

�
ab

a2 þ b2
as cotðbsÞ
sinh2ðasÞ þ ða ↔ ibÞ þ 2

3

�
; ð8Þ

∂L1-loop
HE

∂G ¼ α

2π

Z
∞

0

ds
s
e−i

m2
e
e sG cothðasÞ cotðbsÞ

×

�
1

2ab
−

1

a2 þ b2
bs

sinhðasÞ coshðasÞ

þ ða ↔ ibÞ
�
; ð9Þ

with a ≔ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2ðxÞ þ G2ðxÞ

p
− F ðxÞÞ1/2 and b ≔

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2ðxÞ þ G2ðxÞ

p
þ F ðxÞÞ1/2.

Using spherical momentum coordinates k⃗ ¼ kˆk⃗, where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
and ˆ⃗k¼ðcosφsinϑ;sinφsinϑ;cosϑÞ,

the vectors perpendicular to k⃗ can be parametrized by a
single angle β,

ˆe⃗β ¼

0
B@

cosφ cosϑ cos β − sinφ sin β

sinφ cos ϑ cos β þ cosφ sin β

− sinϑ cos β

1
CA: ð10Þ

Correspondingly, the transverse polarization modes of
photons with wave vector k⃗ can be spanned by two
orthonormalized four-vectors, e.g.,

ϵμð1Þðk⃗Þ ≔ ð0; ˆe⃗βÞ and ϵμð2Þðk⃗Þ ≔ ð0; ˆe⃗βþπ
2
Þ; ð11Þ

for a suitable choice of β. With these definitions, we
obtain

Sð1Þðk⃗Þ ¼
1

i

ffiffiffiffiffi
k0

2

r Z
d4xeikx

×

�
½ˆe⃗β · E⃗ðxÞ − ˆe⃗βþπ

2
· B⃗ðxÞ� ∂L

1-loop
HE

∂F
þ ½ˆe⃗β · B⃗ðxÞ þ ˆe⃗βþπ

2
· E⃗ðxÞ� ∂L

1-loop
HE

∂G
	

ð12Þ

ALL-OPTICAL SIGNATURES OF STRONG-FIELD QED IN … PHYS. REV. D 97, 036022 (2018)

036022-3



and Sð2Þðk⃗Þ ¼ Sð1Þðk⃗Þjβ→βþπ
2
, using ˆe⃗βþπ ¼ −ˆe⃗β. In the

limit of weak electromagnetic fields, eF̄μν ≪ m2
e, Eq. (9)

results in

8<
:

∂L1-loop
HE∂F

∂L1-loop
HE∂G

9=
; ¼ α

π

1

45

�
e
m2

e

�
2
�
4F ðxÞ
7GðxÞ

	
þO

��
eF̄
m2

e

�
4
�
;

ð13Þ

such that Eq. (12) becomes

Sð1Þðk⃗Þ ¼
1

i
e
4π2

m2
e

45

ffiffiffiffiffi
k0

2

r �
e
m2

e

�
3
Z

d4xeikx

× f4½ˆe⃗β · E⃗ðxÞ − ˆe⃗βþπ
2
· B⃗ðxÞ�F ðxÞ

þ 7½ˆe⃗β · B⃗ðxÞ þ ˆe⃗βþπ
2
· E⃗ðxÞ�GðxÞg; ð14Þ

where we neglected higher-order terms of OððeF̄m2
e
Þ5Þ. The

corresponding Feynman diagram is depicted in Fig. 2.
Because of Furry’s theorem, in QED the total number of
couplings of fermion loops to electromagnetic fields (i.e.,
including the signal photon) is always even. For single
signal photon emission, the number of couplings to the
external field is odd.
In spherical coordinates, the differential number of signal

photons of Eq. (3) can finally be expressed as

d3NðpÞðk⃗Þ ¼ dkdφd cosϑ
1

ð2πÞ3 jkSðpÞðk⃗Þj2: ð15Þ

Moreover, it is convenient to introduce the total number
density of induced signal photons polarized in mode p and
emitted in the direction (φ, ϑ) as follows [56],

ρðpÞðφ; ϑÞ ≔
1

ð2πÞ3
Z

∞

0

dkjkSðpÞðk⃗Þj2: ð16Þ

The total number of signal photons of polarization p is then
obtained as NðpÞ≔

R
2π
0 dφ

R
1
−1dcosϑρðpÞðφ;ϑÞ. Accordingly,

the total number of signal photons of any polarization is
given by N ≔

P
2
p¼1NðpÞ, and the associated number

density by ρ ≔
P

2
p¼1 ρðpÞ.

III. COLLISION OF TWO HIGH-INTENSITY
LASER PULSES

In the present work, we consider the collision of two
high-intensity laser pulses as a concrete example for our
computational scheme. On the one hand, this configuration
already features a high degree of complexity due to a
substantial set of experimentally tunable laser and geom-
etry parameters. On the other hand, this case is sufficiently
simple to allow for analytical or semianalytical insights
which are essential for reliably benchmarking our numeri-
cal procedure.
Let us thus assume the background electric and magnetic

fields to be generated by the superposition of two linearly
polarized laser beams. In leading-order paraxial approxi-
mation, each of these laser beams is characterized by a
single, globally fixed wave vector and its electric and
magnetic fields. We define the normalized wave vectors of
the two laser beams b ∈ f1; 2g as κ̂μb ¼ ð1; ˆe⃗κbÞ. The
associated electric and magnetic fields are characterized
by an overall amplitude profile Eb and point in ˆe⃗Eb

and ˆe⃗Bb

directions. These unit vectors are independent of x for
linear polarization. They fulfill ˆe⃗Eb

· ˆe⃗Bb
¼ ˆe⃗Eb

· ˆe⃗κb ¼ ˆe⃗Bb
·

ˆe⃗κb ¼ 0 and ˆe⃗Eb
× ˆe⃗Bb

¼ ˆe⃗κb . Hence, in this case Eq. (14)
can be expressed as

Sð1Þðk⃗Þ ¼
1

i
e
4π2

m2
e

45

ffiffiffiffiffi
k0

2

r �
e
m2

e

�
3
Z

d4xeikxE2
1ðxÞE2ðxÞ

× ½4ðˆe⃗β · ˆe⃗E1
− ˆe⃗βþπ

2
· ˆe⃗B1

Þðˆe⃗B1
· ˆe⃗B2

− ˆe⃗E1
· ˆe⃗E2

Þ
− 7ðˆe⃗β · ˆe⃗B1

þ ˆe⃗βþπ
2
· ˆe⃗E1

Þðˆe⃗B1
· ˆe⃗E2

þ ˆe⃗E1
· ˆe⃗B2

Þ�
þ ðE1 ↔ E2; ˆe⃗B1

↔ ˆe⃗B2
; ˆe⃗E1

↔ ˆe⃗E2
Þ: ð17Þ

The generalization of Eq. (17) to background fields
generated by more laser beams is straightforward.
Without loss of generality we assume the beam axes of
the two lasers to be confined to the xz-plane and para-
metrize the unit wave and field vectors as

ˆe⃗κb ¼

0
B@

sinϑb
0

cos ϑb

1
CA;

ˆe⃗Eb
¼

0
B@

cosϑb cos βb
sin βb

− sin ϑb cos βb

1
CA; ð18Þ

and ˆe⃗Bb
¼ ˆe⃗Eb

jβb→βbþπ
2
, where the choice of βb fixes the

polarization of the beam. Throughout this article, we
assume ϑ1 ¼ 0, such that the first laser beam propagates
along the positive z axis. In turn, the angle ϑ2 parametrizes
the tilt of the beam axis of the second laser beam with
respect to the first. With these definitions, the terms written
explicitly in Eq. (17) can be expressed as

FIG. 2. Leading contribution to the single photon vacuum
emission process in the limit of weak external fields.
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Sð1Þðk⃗Þ ¼ i
ffiffiffi
α

p
ð2πÞ3/2

m2
e

45

�
e
m2

e

�
3

ð1 − cos ϑ2Þ
ffiffiffi
k

p

× fI21ðkÞð1 − cosϑÞfðβ1 þ β2; β þ β1 − φÞ
þ I12ðkÞ½½ð1 − cosϑ cosϑ2Þ cosφ − sin ϑ sinϑ2�
× fðβ1 þ β2; β þ β2Þ
− sinφðcos ϑ − cosϑ2Þgðβ1 þ β2; β þ β2Þ�g;

ð19Þ
where we have made use of the shorthand notations

fðμ; νÞ ≔ 4 cos μ cos νþ 7 sin μ sin ν;

gðμ; νÞ ≔ 4 cos μ sin ν − 7 sin μ cos ν; ð20Þ
and

ImnðkÞ ≔
Z

d4xeikð
ˆ
k⃗·x⃗−tÞEm

1 ðxÞEn
2ðxÞ: ð21Þ

Hence, the only remaining nontrivial task in determining
the single photon emission amplitude is to compute the
Fourier transforms (21). As it is linear in E1 (E2), the
contribution ∼I12 (∼I21) in Eq. (19) can, for instance, be
interpreted as signal photons originating from the laser
beam characterized by the field profile E1 (E2), which are
scattered into a different kinematic and polarization mode
due to interactions with the other laser beam described by
E2 (E1).
In a next step we specify the amplitude profiles Eb of the

two laser beams, which we assume to be well described by
pulsed Gaussian laser beams of the following amplitude
profile (cf., e.g., Refs. [63,65]):

EbðxÞ ¼ E0;be
−ðzb−tbÞ2

ðτb /2Þ2
w0;b

wbðzbÞ
e
−

r2
b

w2
b
ðzÞ

× cos

�
ωbðzb − tbÞ þ

zb
zR;b

r2b
w2
bðzbÞ

− arctan
zb
zR;b

þ φ0;b

�
; ð22Þ

with zb ≔ ˆe⃗κb · ðx⃗ − x⃗0;bÞ, tb ≔ t − t0;b and rb ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx⃗ − x⃗0;bÞ2 − z2b

q
. Here, E0;b is the peak field strength,

ωb ¼ 2π
λb
the photon energy and τb the pulse duration. The

beam is focused at x⃗ ¼ x⃗0;b, where the peak field is reached
for t ¼ t0;b. Its waist size is w0;b and its Rayleigh range is
zR;b ¼ πw2

0;b/λb. The widening of the beam’s transverse
extent as a function of zb is encoded in the function

wbðzbÞ ¼ w0;b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðzb/zR;bÞ2

q
, arctanð zb

zR;b
Þ is the Gouy

phase of the beam and φ0;b determines its phase in the
focus. The total angular spread Θb and the radial beam

divergence θb far from the beam waist are given by Θb ¼
2θb ≃ 2

w0;b

zR;b
.

Without loss of generality, in the remainder of this article
we will assume xμ0;1 ¼ ð0; 0⃗Þ, such that the temporal and
spatial offsets of the two beams are fully controlled
by xμ0;2≕ ðt0; x⃗0Þ.
With regard to the Fourier integrals (21), it is particularly

helpful to note that the mth power of the field profile (22)
can be expressed as

Em
b ðxÞ ¼

�
E0;b

2

�
mXm

l¼0

�
m

l

�
cb;lmðzb; rbÞ

× eiðm−2lÞ½ωbðzb−tbÞþφ0;b�e−4mðzb−tbÞ2/τ2b ; ð23Þ
where

cb;lmðzb; rbÞ ¼
e
−ðrb/w0;bÞ2½ m−l

1þi
zb
zR;b

þ l

1−i
zb
zR;b

�

ð1þ i zb
zR;b

Þm−lð1 − i zb
zR;b

Þl ; ð24Þ

which can be derived straightforwardly from Eq. (22) of
Ref. [63] by employing the binomial theorem. Note that the
entire dependence of Eq. (23) on the Rayleigh range zR;b
and the transverse structure of the laser fields is encoded in
the function cb;lmðzb; rbÞ.
The integration over time in Eq. (21) can be easily

performed analytically for generic values of zR;b, resulting in

ImnðkÞ ¼
�
E0;1

2

�
m
�
E0;2

2

�
n

ffiffiffi
π

p
2

τ1τ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mτ22 þ nτ21

p

×
Xm
l¼0

Xn
j¼0

�
m

l

��
n

j

�Z
d3xeikð

ˆ
k⃗·x⃗Þ

× c1;lmðz1; r1Þc2;jnðz2; r2Þe−4½mðz1τ1Þ
2þnðz2þt0

τ2
Þ2�

× e
−
fkþðm−2lÞω1þðn−2jÞω2þ8i½mz1 /τ

2
1
þnðz2þt0Þ/τ22 �g

2

16ðm/τ2
1
þn/τ2

2
Þ

× eifðm−2lÞðω1z1þφ0;1Þþðn−2jÞ½ω2ðz2þt0Þþφ0;2�g: ð25Þ
Let us now briefly focus on the limit of infinitely long pulse
durations,fτ1; τ2g → ∞. To this end,we first set τ2 ¼ τ1 and
subsequently send τ1 → ∞. This results in the following
expression,

lim
fτ1;τ2g→∞

ImnðkÞ

¼ δðkþ ðm − 2lÞω1 þ ðn − 2jÞω2Þ

× 2π

�
E0;1

2

�
m
�
E0;2

2

�
nXm

l¼0

Xn
j¼0

�
m

l

��
n

j

�

×
Z

d3xeikð
ˆ
k⃗·x⃗Þc1;lmðz1; r1Þc2;jnðz2; r2Þ

× eifðm−2lÞðω1z1þφ0;1Þþðn−2jÞ½ω2ðz2þt0Þþφ0;2�g

× e−i
½ðm−2lÞω1þðn−2jÞω2þk�½mz1þnðz2þt0Þ�

mþn ; ð26Þ
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where we have employed the identity limτ→∞τe−
τ2

2
χ2 ¼ffiffiffiffiffiffi

2π
p

δðχÞ. The argument of the Dirac delta function in
Eq. (26) reflects the various possibilities of energy transfer
from the laser beams to the signal photons. Due to the
strictly harmonic time dependences of the beams in the limit
fτ1; τ2g → ∞, implying sharp laser photon energies
fω1;ω2g, only signal photons with sharp energies k are
induced; recall that fω1;ω2; kg ≥ 0. Hence, particularly for
fτ1; τ2g → ∞, the InmðkÞ in Eq. (19) generically give rise to
signal photons of energy

k ¼

8>>>>>>>>><
>>>>>>>>>:

ω1

ω1 þ 2ω2

jω1 − 2ω2j
ω2

ω2 þ 2ω1

jω2 − 2ω1j

: ð27Þ

For finite pulse durations the time dependences of the beams
are no longer purely harmonic, and correspondingly the
signal frequencies, in general, are no longer sharp and
discrete, but rather smeared and continuous. However, for
pulse durations fulfilling fω1τ1;ω2τ2g ≫ 1, the signal
frequencies should still be strongly peaked around the values
listed in Eq. (27).
In the limit of infinite Rayleigh ranges fzR;1; zR;2g → ∞,

also the spatial Fourier integral in Eq. (25) can be performed
analytically; cf. also Ref. [36]. For this, we note that

cb;lmðzb; rbÞ ⟶
zR;b→∞

e−ðrb/w0;bÞ2m: ð28Þ

Physically, the latter limit is only justified for weakly focused
laser beams, as it automatically implies w0;b ≫ λb; see the
definition of zR;b in terms of w0;b and λb given above. In the
following, we use the limit (28) as an estimate also for values
ofw0;b/λb ¼ Oð1Þ, serving below as a toy-model benchmark

test for the numerical method. This ad hoc looking toy-
model approximation can still be justified by the following
observation: The emission of signal photons from the QED
vacuum becomes substantial only in the overlap region of the
focused high-intensity laser pulses where the electromag-
netic fields become maximal. In particular, for collisions
with vanishing offset of the laser foci, the approximation
based on Eq. (28) is expected to reproduce the essential
quantitative features of the experimental signal. For an
illustration of the beam profiles used, see Fig. 3.

IV. NUMERICAL IMPLEMENTATION

The vacuum emission amplitude, carrying all informa-
tion about the asymptotic signal photon, can in principle be
straightforwardly evaluated for any given external field. To
the present one-loop order within the LCFA, we may start
with Eq. (7), or to leading order with Eq. (14), correspond-
ing to a 4-dimensional Fourier transformation from space-
time to energy-momentum space.
In the present work, we continue to use the paraxial laser

beam shapes as an illustration. Generalizations to arbitrary
spacetime-dependent fields are straightforward on the basis
of a 4-dimensional fast Fourier transform (FFT). For the
laser pulses under consideration, we take advantage of the
Gaussian time structure as in Eq. (22). Then, the Fourier
transformation in time can be performed analytically,
leaving us with a 3-dimensional space integration [as,
e.g., in Eq. (25)]. Reducing the integration domain, for
instance, to a cubic box, the control parameters for a
numerical integration are, e.g., the size parameter of the box
Lx; Ly; Lz, and the number of grid points in each direc-
tion Nx; Ny; Nz.
The lengths Li have to be chosen large enough to enclose

the interaction region where the focused fields are strong. A
natural choice is a few times the laser focus size parameters;
see theAppendix for more details. The number of grid points

I I

FIG. 3. Sketch of the transverse field amplitude profile of a generic Gaussian beam (left) and the special case of a Gaussian beam with
infinite Rayleigh range, but finite beam waist (right) as a function of the longitudinal coordinate (measured along the propagation axis).
Here, Θ is the total angular spread, w0 is the beam waist and zR is the Rayleigh range over which the beam diameter increases by a factor
of

ffiffiffi
2

p
.
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is slightly more subtle: First, this number must be high
enough to resolve the pulse structure at a subcycle level.
Second, the grid must also be sufficiently fine to resolve the
momentum structure of the outgoing signal photon. In the
case of sum-frequency generation as in Eq. (27), it is this
momentum scale of the signal photons which governs the
grid resolution parametersNi. Throughout this articlewe use
a grid size of 512 × 256 × 512.
Whereas the 4-dimensional integration in Eq. (7) corre-

sponds to a Fourier transform, the reduced 3-dimensional
case in Eq. (25), strictly speaking, does not from the
viewpoint of a FFTalgorithm, as the integrand also depends

on the signal photon energy k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
. In prac-

tice, this is not problematic, as the integral can still be
treated as a numerical Fourier transform upon insertion of a
set of fiducial energies ku, u ¼ 0; 1;…; NΔðkÞ into the
integrand. For a given ku, the 3-dimensional integral is
again a Fourier transform to kx;y;z space which we perform
via FFT. The physical result then satisfies the constraint

ku¼!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
. In practice, this implies that we also

need to choose a grid in fiducial ku space parametrized by a
size of k-grid intervals ΔðkÞ and the number NΔðkÞ of
intervals. In the present case of colliding laser pulses, this
discretization is straightforward to choose as the peak
locations are known from energy conservation à la
Eq. (27), and the peak width is inversely proportional to
the pulse durations. The necessity of introducing a fiducial
momentum grid ku renders the numerical problem
4-dimensional again. Nevertheless, the advantage is that
the spatial grid requires Nx;y;z ¼ Oð100–1000Þ, whereas
NΔðkÞ ¼ Oð10Þ is sufficient for the present problem.
Concentrating on the case of colliding laser pulses as

outlined above, we observe that the spatial and directional
properties of the laser fields factorize in the general
emission rate (17). Thus, it is beneficial to decompose
the calculation scheme into three individual steps: (i) cal-
culation of the Fourier integrals Imn, (ii) evaluation of the
factors in Eq. (19) encoding the lasers’ polarization and
collision geometry, and (iii) determination of the directional
emission characteristics of the signal photons. This specific
design allows for building highly flexible code enabling,
e.g., efficient parallelization. For the sake of convenience,
we have summarized the scheme in Proc. 1.
As the present collision setup has a well-defined scatter-

ing center, it is useful to characterize the signal photon in
spherical momentum coordinates ðk;φ; ϑÞ rather than in
Cartesian coordinates ðkx; ky; kzÞ. Hence, step (i) does not
only involve the FFT to kx;y;z space, but also a mapping to a
polar and azimuthal angle grid discretized into Nϑ and Nφ

intervals, respectively. The radial momentum is already

fixed by the constraint k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
. This mapping

is sketched in Fig. 4.

Procedure 1: Pseudocode showing the general evalu-
ation routine. The blocks are called consecutively,
taking as input arguments only the results from the
previous task.

Code:
Initialization
for all ku do
for all Imn do

Fourier transform from ðx; y; zÞ to ðkx; ky; kzÞ
Map from ðkx; ky; kzÞ to ðφ; ϑÞ

end for
end for
for all φv; ϑw do
Specify the polarization β of the signal photons
Calculate emission rates Sβ, ρβ

end for
Post processing

Notation:
x; y; z; kx; ky; kz;φ; ϑ discrete variables
ku, φv, ϑw index denotes the loop variable
ð…Þ denotes a domain

FIG. 4. Top: Sketch of the mapping from a regular grid (kx, ky)
to a polar grid with fixed radius (φ). Light gray (dark blue) nodes
represent the discretization in Cartesian coordinates (polar
coordinates) in momentum space. As gray and blue nodes
generally do not overlap, we apply cubic interpolation. Bottom:
Sketch of the coordinate systems used. Spatial as well as
momentum coordinates are originally given in Cartesian coor-
dinate systems. In spherical coordinates the angles φ and ϑ give
the longitude and latitude (ϑ ∈ ½0; π�), respectively. In our
numerical calculation only regular grids were used.
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Upon combination with the functions encoding the
collision geometry and the polarization properties of the
driving laser fields in Eq. (19), it is straightforward to
obtain the discretized version of the differential number of
signal photons with energy ku, emitted in the direction
ðφv; ϑwÞ from Eq. (3), where u¼ 0;…NΔðkÞ;v¼ 1;…;Nφ;
w¼ 1;…;Nϑ. Throughout this article we use NΔðkÞ ¼ 31,
Nφ¼257 and Nϑ¼513. Note, that at this point the polari-
zation properties of the signal photons have to be specified.
The discretized version of the directional emission rate

(16) is obtained by summing over all ku and is given by

ρðpÞðφ; ϑÞ ≈ ρðpÞðφv; ϑwÞ

¼ 1

ð2πÞ3
XNΔðkÞ

u¼0

Wku jkuSðpÞðku; ϑv;φwÞj2; ð29Þ

where Wku denotes a weight function that is specified by
the integration algorithm. Already simple integration
routines give a good rate of convergence. For maximum
simplicity we hence apply the trapezoidal rule, resulting in

ρðpÞðφv; ϑwÞ ¼
1

ð2πÞ3
kNΔðkÞ − k0
2NΔðkÞ

�
jk0SðpÞðk0Þj2

þ 2
XNΔðkÞ−1

u¼1

jkuSðpÞðkuÞj2

þ jkNΔðkÞSðpÞðkNΔðkÞ Þj2
�
: ð30Þ

The total number of signal photons polarized in mode p is
then approximately given by

NðpÞ ≈
XNφ

v¼0

Wφv

XNϑ

w¼0

Wϑw sinðϑwÞρðpÞðφv; ϑwÞ; ð31Þ

with weights Wφv
and Wϑw . Similarly to Eq. (29), even

simple routines provide a good rate of convergence.
Hence, the trapezoidal rule is used again as the simplest
method.

V. RESULTS

In the following we provide explicit results for the
prospective numbers of signal photons attainable in the
collision of two high-intensity laser pulses characterized by
the field profiles introduced in Sec. III. More specifically,
we consider two identical lasers of the one PW class,
delivering pulses of duration τ ¼ 25 fs and energy W ¼
25 J at a wavelength of λ ¼ 800 nm (photon energy
ω ¼ 2π

λ ≈ 1.55 eV). The peak intensity of a given laser
pulse in the focus is then given by [66]

I0;b ¼ E2
0;b ≈ 8

ffiffiffi
2

π

r
W

πw2
0;bτ

: ð32Þ

As the effects of QED vacuum nonlinearities become
more pronounced for higher field strengths, we aim at
minimizing the beam waists w0;b of the driving laser beams
to maximize their peak field strengths. The minimum value
of the beam waist w0;b is obtained when focusing the
Gaussian beam down to the diffraction limit. The actual
limit is given by w0;b ¼ λbf#, where f# is the so-called
f-number, defined as the ratio of the focal length and the
diameter of the focusing aperture [65]; f-numbers as low as
f# ¼ 1 can be realized experimentally. Being particularly
interested in the maximum number of signal photons, we
mainly consider the case of an optimal overlap of the
colliding laser pulses and set the offset parameters xμ0;2 ¼
ðt0; x⃗0Þ to zero. Furthermore, in the remainder of this article
we assume the two lasers to be polarized perpendicularly to
the collision plane, corresponding to the choice of
β1 ¼ β2 ¼ π

2
, and to deliver pulses of the same pulse

duration, τ1 ¼ τ2 ¼ τ.

A. Collision of laser pulses of identical frequency

In a first step we adopt the choice of ω1 ¼ ω2 ¼ 2π
λ and

assume that both lasers are focused down to the diffraction
limit with f# ¼ 1. Correspondingly, we have w0;1 ¼
w0;2 ¼ λ. For a sketch of the considered collision geometry,
see Fig. 5. Note that the specific scenario considered here is
reminiscent of the one studied in Ref. [56]. However, here
we go substantially beyond this initial study, which only
focused on exactly counterpropagating beams and resorted
to various additional simplifications, grasping only the
most elementary features of Gaussian laser beams.

FIG. 5. Sketch of the collision geometry considered in
Sec. VA. Two Gaussian laser pulses collide under an angle ϑ2
with respect to their beam axes; the offset between the beam foci
is x⃗0 ¼ 0. Note that an angle of ϑ2 ¼ 0°ð180Þ° corresponds to co
(counter)propagating laser beams.
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Figure 6 shows the total number of signal photons N as a
function of the collision angle ϑ2. Here, we depict the
results for pulsed Gaussian beams with Rayleigh ranges
zR;b given self-consistently by zR;b ¼ ðπw2

0;bÞ/λ ¼ πλ
(dashed line). We also compare it to the toy-model bench-
mark scenario, where zR;b is treated as an independent
parameter, which is formally sent to infinity; cf. Sec. III
above. This figure also demonstrates that the results
obtained with our numerical algorithm (solid line) for
the toy-model scenario with zR;b → ∞ are in satisfactory
agreement with benchmark data points (cross symbols).
The latter are obtained by performing the Fourier transform
from position to momentum space analytically, and the
integration over the signal photon momenta numerically
using Maple™. We infer that the maximum number of
signal photons is obtained for a head-on collision of the two
high-intensity laser pulses, while no signal photons are
induced for copropagating beams. This fact is well known
from the study of probe photon propagation in constant
crossed and plane wave fields; cf., e.g., Ref. [5]. Even
though for collision angles in the range of 120°…180°
signal photon numbers of N ≈ 100 per shot are attainable,
the detection of these photons in experiment would be
rather difficult. The reason for this is that these signal
photons are predominantly emitted into the forward cones
of the incident high-intensity lasers. The signal is thus
overwhelmed by the background. In Fig. 7 we exemplarily
depict the directional emission characteristics for a collision
angle of ϑ2 ¼ 135°. For comparison, we have depicted

the forward cones of the colliding Gaussian laser beams
focused down to f# ¼ 1 and delimited by the beams’
divergences θb ¼ 1

π.
In order to separate a signal—which is detectable at

least in principle—from background, we turn to a different
observable, namely the fraction of signal photons polar-
ized perpendicularly to the high-intensity laser beams.
Due to their distinct polarization, these photons constitute
a viable signal that could be extracted with high-purity
polarimetry. Recall that both high-intensity laser beams
are polarized perpendicularly to the collision plane
(β1 ¼ β2 ¼ π

2
).

0 60 120 180
0
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200

300
Semianalytical
Toy Model
Gaussian Beams

FIG. 6. Total number of signal photons N attainable per shot in
the collision of two identical high-intensity laser pulses
(w0;1 ¼ w0;2 ¼ λ ¼ 800 nm, W ¼ 25 J, τ ¼ 25 fs) plotted as a
function of the collision angle ϑ2. The dashed line shows the
results for the advanced description of the colliding laser fields in
terms of pulsed Gaussian beams, evaluated numerically with our
algorithm. In addition, we present results for the toy-model
benchmark scenario of keeping w0;1 ¼ w0;2 ¼ λ finite but for-
mally sending zR;b → ∞. The latter scenario is analyzed in two
different ways: by means of a fully numerical calculation with our
algorithm (solid line), and by performing the Fourier transform
from position to momentum space analytically, and numerically
integrating over the outgoing signal photon momenta with
Maple™ (cross symbols).

FIG. 7. Directional emission characteristics of signal photons
for two identical laser pulses colliding under an angle of
ϑ2 ¼ 135°. Top: Three-dimensional plot of the total number
density ρðφ; ϑÞ. For illustration, we also include a projection of
the emission characteristics onto the xy-plane (gray). Bottom:
Projection of the directional emission characteristics (top) onto
the collision plane of the laser pulses (xz-plane). For comparison,
the forward cones of the colliding Gaussian laser beams with
f# ¼ 1 and delimited by the beams’ divergences θb ¼ 1

π repre-
senting the background are highlighted in gray.
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In Fig. 8 we plot the number of signal photons polarized
perpendicularly to the high-intensity laser beams N⊥ as a
function of ϑ2. For the particular collision scenario con-
sidered here, this number follows from the integration of

ρ⊥ðφ;ϑÞ ≔
1

ð2πÞ3
Z

∞

0

dkjkSð1Þðk⃗Þj2
����
β¼− arctanðcos ϑ tanφÞ

ð33Þ

over the spherical angles, i.e., N⊥ ≔
R
2π
0 dφ

R
1
−1 d cosϑρ⊥

ðφ; ϑÞ. Note that the polarization-angle parameter β has to

be adjusted as a function of the emission direction ˆk⃗
parametrized by fφ;ϑg in order to project on the
perpendicular polarization ˆe⃗E1

· ˆe⃗β ¼ ˆe⃗E2
· ˆe⃗β ¼ 0 for all

ˆk⃗ [36]. As in Fig. 6, we present results for the collision of
pulsed Gaussian laser beams, as well as for the toy-model
scenario with zR;b → ∞. Again, the latter scenario is used

to benchmark the performance of our numerical algorithm
by comparing data points obtained for both strategies.
For a more quantitative comparison, we exemplarily list

explicit values for the total numbers of attainable signal
photons N and N⊥ for several collision angles ϑ2 for the
benchmark toy-model scenario in Table I. We find a
relative difference typically on the order of Oð0.01%Þ and
maximally of ∼0.2% between the semianalytical approach
and our numerical algorithm. While the semianalytical
approach involves numerical integrations with Maple™,
we expect these algorithms to have a higher accuracy, also
because the integrations are performed over the full
(infinite) spacetime volume. The remaining difference
hence serves as an error estimate for the numerical
algorithm that works with absolute coordinate and
momentum space cutoffs due to the nature of the fast
Fourier transformation. Concretely, the fast Fourier

0 60 120 180
0

0.2

0.4

0.6
Semianalytical
Toy Model
Gaussian Beams

FIG. 8. Total number of signal photons polarized perpendicu-
larly to the high-intensity laser beams N⊥ plotted as a function of
the collision angle ϑ2. Both laser pulses (w0;1 ¼ w0;2 ¼ λ ¼
800 nm, W ¼ 25 J, τ ¼ 25 fs) are polarized perpendicularly to
the collision plane. The dashed (solid) curve shows the result
obtained from a numerical calculation for pulsed Gaussian beams
(the benchmark scenario with w0;b ¼ λ finite, but zR;b → ∞). The
cross symbols display data for the benchmark scenario obtained
by performing the Fourier transform analytically and evaluating
the momentum integral numerically with Maple™.

 60°
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FIG. 9. Directional emission characteristics of perpendicularly
polarized signal photons for two identical laser pulses colliding
under an angle of ϑ2 ¼ 135°. Top: Three-dimensional plot of the
number density ρ⊥ðφ;ϑÞ. Bottom: Projection of the directional
emission characteristics (top) onto the collision plane of the laser
pulses (xz-plane). For comparison, the forward cones of the
colliding Gaussian laser beams with f# ¼ 1 and delimited by the
beams’ divergences θb ¼ 1

π are highlighted in gray.

TABLE I. Benchmark calculations for the total numbers of
signal photons attainable in the toy-model scenario with w0;1 ¼
w0;2 ¼ λ finite, but zR;b → ∞; see also Figs. 6 and 8. The good
agreement of the results confirms the excellent performance of
our numerical code. We only state the mean relative error for the
total numbers of signal photons MREN , as these numbers
generally show the largest deviation.

(a) Numerical (b) Semianalytical Mean relative error

ϑ2½°� N N⊥ N N⊥ MREN ½%�
90 5.03 0.33 5.04 0.33 0.2
135 69.40 0.59 69.43 0.60 0.04
180 330.19 0.15 330.24 0.15 0.02
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algorithm treats the integration kernels as if they were
periodic functions. We compensate for this by a careful
adaptation of the domain of periodicity, such that all
relevant information is preserved and no artificial frequen-
cies are introduced. Additionally, the transformation to
spherical coordinates as well as the integrations over
momentum space in our algorithm come with their dis-
cretization errors. A convergence test is illustrated in the
Appendix. In summary, we consider a systematic error of

our algorithm below the 1% level and thus possibly below
two-loop corrections [67] as rather satisfactory.
Coming back to the physics results, Fig. 8 clearly

demonstrates that the maximum for perpendicularly polar-
ized signal photons N⊥ is shifted to a collision angle of
ϑ2 ≈ 120°. Moreover, the perpendicularly polarized signal
is significantly smaller than the total one; the maximum
number is N⊥ ≈ 0.6. Analogously to Fig. 7, we also
provide the directional emission characteristics of the
perpendicularly polarized signal for a collision angle of
ϑ2 ¼ 135° in Fig. 9.
In addition, we display the analogous emission char-

acteristics for a collision angle of ϑ2 ¼ 175.8° in
Fig. 10. Here, the formation of additional pronounced
emission peaks opposite to the propagation directions
of the high-intensity laser pulses for collision angles
ϑ2 → 180° is clearly visible. For a counterpropagation
geometry, reflection symmetry with respect to the
xy-plane is restored [63].
Finally, we study the consequences of a spatial dis-

placement x⃗0 of the laser foci. Because of jitter, such
a displacement is generically expected to occur in experi-
ments in a random fashion. For simplicity, we specialize
to the head-on collision of two identical high-intensity
laser pulses with exactly coinciding beam axes, i.e.,

 60°

 30°
  0°

 180°
 150°

 120°

 90°

FIG. 10. Directional emission characteristics of perpendicularly
polarized signal photons for two identical laser pulses colliding
under an angle of ϑ2 ¼ 175.8°. Top: Three-dimensional plot of
the number density ρ⊥ðφ;ϑÞ. For better visibility of the direc-
tional emission characteristics, we adopt a perspective different
from the other plots. Bottom: Projection of the directional
emission characteristics (top) onto the collision plane of the
laser pulses (xz-plane). The forward cones of the colliding
Gaussian laser beams focused down to f# ¼ 1 and delimited
by the beams’ divergences θb ¼ 1

π are highlighted in gray.
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FIG. 11. Impact of a relative shift between the laser foci on the
integrated numbers of signal photonsN (blue solid line, left scale)
and N⊥ (orange dashed line, right scale) for two identical
laser pulses colliding in a counterpropagation geometry, i.e.,
ϑ2 ¼ 180°. Both laser pulses are polarized perpendicularly to the
collision plane. Top: Transverse shift with x⃗0 ¼ ðx0; 0; 0Þ in units
of the waist size w0;1 ¼ w0;2 ¼ λ. Bottom: Longitudinal shift
along the common beam axis with x⃗0 ¼ ð0; 0; z0Þ in units of the
Rayleigh range zR;1 ¼ zR;2 ¼ πλ.
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ϑ2 ¼ 180°, and consider the cases x⃗0 ¼ ðx0; 0; 0Þ and x⃗0 ¼
ð0; 0; z0Þ focused to w0;1 ¼ w0;2 ¼ λ. We demonstrate in
Fig. 11 how the integrated numbers of signal photons N
and N⊥ decrease as a function of the relative displace-
ments x0 and z0 between the laser foci transverse to or
along the common beam axis. For the present case, we
observe that the signal photon number N drops by a factor
of 2 for x0 ≈ 0.76λ and z0 ≈ 1.5πλ.

B. Collision of laser pulses of fundamental
and doubled frequency

Here we go beyond the scenario considered in the
previous section, subsequently referred to as scenario (o).
Differently from Sec. VA, one of the two high-intensity
lasers is now assumed to be frequency doubled, such
that ω2 ¼ 2ω1 ¼ 2 2π

λ . The energy loss for a frequency-
doubling process conserving the pulse duration is esti-
mated conservatively as 50%. Correspondingly, we have τ1 ¼ τ2 ¼ τ, W1 ¼ W and W2 ¼ W/2. Keeping the focus-

ing of the fundamental-frequency laser pulse as in the
previous section, i.e., w0;1 ¼ λ, we now consider two
different scenarios: (i) In order to ensure a maximal spatial
overlap of the two laser pulses in their foci, the frequency-
doubled laser pulse is focused down to the waist size of the
fundamental-frequency laser pulse, i.e., w0;2 ¼ w0;1 ¼ λ.
This scenario is illustrated in Fig. 12. (ii) For maximizing
the peak field strength in the focus, the frequency-doubled
pulse is focused down to its diffraction limit with f# ¼ 1,
resulting in w0;2 ¼ λ/2. This scenario is sketched in
Fig. 13.
As detailed in Sec. III, for Gaussian beams the Rayleigh

range and far-field beam divergence are intimately related
to the wavelength and the waist size. Hence, in case (i) we
have zR;2 ¼ 2zR;1, θ2 ¼ θ1/2, while in case (ii) zR;2 ¼
zR;1/2, θ2 ¼ θ1; cf. also Figs. 12 and 13. All the results
presented in this section are obtained with our algorithm
introduced in Sec. IV. In Fig. 14 we show the total number

I I

I I

FIG. 13. Scenario (ii): The Gaussian beam of fundamental
(doubled) frequency is focused to a waist size of w0;1 ¼ λ
(w0;2 ¼ λ/2). In this scenario the beam divergences fulfill
θ1 ¼ θ2. We depict the case of zero offset, x⃗0 ¼ 0, and
ϑ2 ∈ f0°; 180°g.

II

I I

FIG. 12. Scenario (i): The two Gaussian beams of fundamental
and doubled frequency are focused to a beam waist of
w0;1 ¼ w0;2 ¼ λ. In this scenario the beam divergences fulfill
θ2 ¼ θ1/2. We depict the case of zero offset, x⃗0 ¼ 0, and
ϑ2 ∈ f0°; 180°g.
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FIG. 14. Integrated numbers of signal photons attainable in the
various scenarios (o)-(ii) plotted as a function of the collision
angle ϑ2. We depict results for (o) the collision of two
fundamental-frequency laser pulses focused to w0;1 ¼ w0;2 ¼ λ,
and the collision of fundamental and doubled frequency laser
pulses focused to waist sizes (i) w0;2 ¼ w0;1 ¼ λ and (ii) w0;2 ¼
w0;1/2 ¼ λ/2. Top: Total number of signal photons N. Bottom:
Number of signal photons emitted outside the forward cones of
the colliding Gaussian laser beams N>θ, delimited by the beams’
radial divergences θb.
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of signal photons N as a function of the collision angle ϑ2
for the cases (o)-(ii).
In Sec. III we have argued that the signal photons should

predominantly be emitted at several pronounced frequen-
cies if the criterion fω1τ;ω2τg ≫ 1 holds; cf. Eq. (27). For
the collision of (o) two fundamental-frequency beams, we
haveω1τ ¼ ω2τ ≈ 58.9, while for the cases (i) and (ii), both
involving a frequency-doubled beam, we have fω1τ;ω2τg≈
f58.9;117.7g.
Hence, as the criterion fω1τ;ω2τg ≫ 1 is obviously

fulfilled here, we expect the signal photons to feature
primarily frequencies with (o): k ≈ fω1; 3ω1g and (i), (ii):
k ≈ fω1; 2ω1; 3ω1; 4ω1; 5ω1g, respectively. However,
inelastic signal photon emission processes are generically
suppressed in comparison to the elastic ones. For
instance, in Ref. [56] it was already demonstrated for
a simplified model of the head-on collision of funda-
mental-frequency laser pulses that the 3ω1 signal is
completely negligible in comparison to the ω1 signal.

This fully agrees with the results obtained here: In
scenario (o) essentially all signal photons are emitted
in an energy range Δðω1Þ; here and in the following
ΔðωÞ denotes an interval of photon energies centered
around a frequency ω with an energy width being
inversely proportional to the temporal pulse duration.
For the scenarios (i) and (ii) we encounter sizable
numbers of signal photons in the energy segments
Δðω1Þ and Δð2ω1Þ.
In Fig. 15 we show the partitioning of the emitted

signal photons into the dominant frequency channels
k ≈ fω1; 2ω1g. We present results for the total number
of attainable signal photons N for all the scenarios
(o)-(ii) introduced above. In addition, we provide the
number of signal photons N>θ emitted outside the forward
cones (delimited by the beam divergences θb) of the high-
intensity lasers.
Analogously, Fig. 16 shows results for the number of

signal photons polarized perpendicularly to the high-
intensity laser beams N⊥ and N⊥;>θ. Besides, in Table II
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FIG. 15. Partitioning of the attainable numbers of signal
photons into the energy regimes Δðω1Þ and Δð2ω1Þ for the
various scenarios (o)-(ii). Both high-intensity laser pulses are
polarized perpendicularly to the collision plane. The segment
with center frequency k ¼ ω1 (2ω1) is depicted by • (þ) symbols.
Naturally, there is no k ≈ 2ω1 signal for the collision of two
fundamental-frequency beams. Top: Total number of signal
photons N. Bottom: Integrated number of signal photons emitted
outside the forward cones of the colliding Gaussian laser beams
N>θ.
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FIG. 16. Partitioning of the perpendicularly polarized signal
photons into the frequency regimes Δðω1Þ and Δð2ω1Þ for the
various scenarios (o)-(ii). Both high-intensity laser pulses are
polarized perpendicularly to the collision plane. The segment
with center frequency k ¼ ω1 (2ω1) is depicted by • (þ) symbols.
Naturally, no k ≈ 2ω1 signal is induced in the collision of two
fundamental-frequency beams. Top: Total number of perpen-
dicularly polarized signal photons N⊥. Bottom: Integrated
number of perpendicularly polarized signal photons emitted
outside the forward cones of the colliding Gaussian laser beams
N⊥;>θ.
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we exemplarily stick to a collision angle of θ2 ¼ 135° and
provide explicit numerical values for the numbers of signal
photons with energies in the rangesΔðω1Þ andΔð2ω1Þ. For
a given energy regime Δ, the values for N and N⊥ and
analogously n>θ ¼ N>θ

N and n⊥;>θ ¼ N⊥;>θ

N⊥ exhibit similar

trends.
Let us first detail the behavior ofN andN⊥. In the energy

regime ΔðωÞ, the largest numbers for N and N⊥ are
obtained for scenario (o), followed by (ii) and finally (i).
This is completely consistent with our expectations as the
maximum number of frequency-ω1 signal photons is to be
expected for the collision of two fundamental-frequency
beams. As one can see in Fig. 7, these essentially elastically
scattered signal photons are predominantly emitted in the
forward directions of the high-intensity laser beams. The
finding that the attainable signal photon numbers in
scenario (ii) are larger than for scenario (i) hints at the
fact that the peak field strength is most decisive for the
effect. Recall that for (ii) the frequency-doubled laser beam
is focused down to the diffraction limit with f# ¼ 1,
guaranteeing a maximum peak field, while in (i) it is only
focused with f# ¼ 2; cf. Figs. 12 and 13. In the energy
regimeΔð2ω1Þ, we find similar trends for the behavior ofN
and N⊥. Generically, no frequency-2ω signal is generated
in the collision of (o) two fundamental-frequency laser
beams; see Eq. (27).
Second, we comment on the trends observed for the

relative fractions of signal photons n>θ and n⊥;>θ scattered
outside the beam divergences in the forward direction.
Again, we first discuss the results obtained for the energy
regime Δðω1Þ. This signal is mainly induced in the
propagation direction of the high-intensity laser with
fundamental frequency, which implies that effectively only
the divergence of the fundamental-frequency beam matters.
While the values of n>θ and n⊥;>θ are similar for the cases

(o) and (i), the result for case (ii) is significantly different.
For the cases (o) and (i), the fundamental-frequency beam
collides with a beam of similar transverse focus profile of
width w0;1 ¼ w0;2 ¼ λ. As the signal photons are predomi-
nantly induced in the focus, the similar values obtained for
n>θ and n⊥;>θ are not surprising.1

Conversely, the smaller beam waist of the frequency-
doubled beam in (ii) naturally gives rise to a larger fraction
of photons scattered out of the divergence of the funda-
mental-frequency beam as compared to (o) and (i).
Generically, a tighter scattering center results in a wider
angle distribution of the scattered light in the far field; cf.
Ref. [36] for similar observations in a strong-field QED
context.
In the energy regime Δð2ω1Þ, the ordering is reversed,

such that the fraction of signal photons scattered out of the
divergence of the high-intensity lasers is larger for (i) than
for (ii). This observation can be explained along the same
lines as above. The signal photons with energy in the
regime Δð2ω1Þ are predominantly emitted in the vicinity of
the propagation direction of the frequency-doubled laser
beam, implying that the observed trends can be explained
by considering the divergence of the 2ω1 beam only. Now
the frequency-doubled beam collides with a fundamental-
frequency pulse of the (i) same or (ii) wider width; cf.
Figs. 12 and 13. Following the reasoning given above, this
immediately implies that for (i) more signal photons are
expected to be scattered outside the beam divergence of the
high-intensity beam than for (ii).
In Fig. 17 we depict the differential number of signal

photons d2N
dφd cos ϑ at φ ¼ 0 for all three scenarios (o)-(ii). For

the symmetric configuration with two fundamental-fre-
quency beams (o) both peaks are of the same height,
and exhibit a mirror symmetry with respect to the middle
axis between the two beams at ϑ ¼ 135°/2 ¼ 67.5°; see
Fig. 7. In the scenarios (i) and (ii) the differential photon
numbers are largest in the directions of the frequency-
doubled beam.
For (o) and (ii) both high-intensity laser beams exhibit

the same divergence θ1 ¼ θ2. Conversely, for (i) the
divergence of the frequency-doubled beam is θ2 ¼ θ1/2,
which explains why for (i) also the signal photons are
scattered into a narrower far-field angle.
To allow for a comparison of the angular spread of the

photons constituting the high-intensity laser beam and the
signal photons, we plot the corresponding differential
photon numbers in the far field as a function of the
polar angle ϑ in Fig. 18. The photon distributions of the
high-intensity laser beams in the far field scale as

TABLE II. Prospective numbers of signal photons with ener-
gies in the segments Δðω1Þ and Δð2ω1Þ for the example of a
collision angle of ϑ2 ¼ 135°. Both high-intensity laser pulses are
polarized perpendicularly to the collision plane. Apart from (o)
the collision of two identical beams of frequency ω1 focused to
w0;1 ¼ w0;2 ¼ λ, we consider collisions of fundamental-fre-
quency ω and frequency-doubled ω2 ¼ 2ω1 beams focused to
(i) w0;1 ¼ w0;2 ¼ λ, and (ii) w0;1 ¼ 2w0;2 ¼ λ. We provide values
for the total (perpendicularly polarized) number of signal photons
N (N⊥). Besides, n>θ (n⊥;>θ) denotes the fraction of N (N⊥)
emitted outside the forward divergence of the Gaussian high-
intensity lasers.

Δðω1Þ Δð2ω1Þ
Scenario N n>θ N⊥ n⊥;>θ N n>θ N⊥ n⊥;>θ

(o) 70.53 42% 0.66 74% - - - -
(i) 9.20 44% 0.08 75% 34.24 40% 0.10 75%
(ii) 24.02 66% 0.35 90% 53.67 24% 0.29 54%

1Note that this argument is not invalidated by the fact that in (o)
we consider two frequency-ω1 beams, while there is only a single
frequency-ω1 beam in (i). The reason for this is the fact that the
ratios n are insensitive to the absolute numbers.
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d2N
dφd cos ϑ ∼ e−2ϑ

2/θ21 for the beam propagating along the

z axis and as d2N
dφd cosϑ ∼ e−2ðϑ−ϑ2Þ2/ðθ1/f#Þ2 for the other beam,

where f# ¼ 1 for both (o) and (ii), and f# ¼ 2 for (i).
Obviously, the signal photons are scattered asymmetri-
cally. The different decay of the signal photons and the
photons constituting the high-intensity laser fields leads
to an improved signal to background ratio.

VI. CONCLUSIONS AND OUTLOOK

In this article we have provided further evidence that
all-optical signatures of quantum vacuum nonlinearity can
be analyzed efficiently in terms of vacuum emission
processes. The essence of this concept is that all macro-
scopically sourced fields are treated as classical, whereas
the fields induced by quantum nonlinearities receive a
quantum description in terms of signal photons. This
concept matches ideally with the physical situation and
thus provides direct access to physical observables.
In the present example of colliding laser pulses, this

approach facilitates the direct determination of the direc-
tional emission characteristics and polarization properties
of the signal photons encoding the signature of quantum
vacuum nonlinearities. Our main goal was to demonstrate
that, assisted by a dedicated numerical algorithm, the
vacuum emission approach is particularly suited to tackle
signatures of strong-field QED in experimentally realistic
electromagnetic field configurations generated by state-of-
the-art high-intensity laser systems. To this end, we focused
on a comparatively straightforward scenario, based upon
the collision of two optical high-intensity laser pulses,
which we model as pulsed Gaussian beams. Resorting to a
locally constant field approximation of the Heisenberg-
Euler effective action, our numerical algorithm allows for a
numerically efficient and reliable study of the attainable
numbers of signal photons for arbitrary collision angles and
polarization alignments. Our formalism can be readily
extended to the collision of more laser beams, such as
the study of photon-merging [47], or equivalently four-
wave mixing processes [39,40] induced by QED vacuum
nonlinearities in the collision of three focused high-
intensity laser beams.
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APPENDIX: CONVERGENCE TESTS

As discussed in the main text, semianalytical and
numerical results fit almost perfectly for a suitable choice
of numerical discretization parameters. In the following
we detail this choice of numerical parameters by studying
the convergence of the numerical algorithm in compari-
son to the semianalytical results for the toy-model bench-
mark test. Such an analysis is useful, because it (i) helps
to improve the stability of the numerical results and
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FIG. 18. Comparison of the normalized differential number of
signal photons d2N

dφd cos ϑ for φ ¼ 0 with the far-field photon
distributions of the high-intensity laser beams. Here, we exem-
plarily limit ourselves to scenario (i) and a collision angle of
ϑ2 ¼ 135°. As the frequency-doubled Gaussian beam is only
focused to w0;2 ¼ λ, its divergence fulfills θ2 ¼ θ1/2.

-90 -45 0 45 90 135 180
0

100

200

300

400

500

FIG. 17. Differential number of signal photons d2N
dφd cos ϑ for

φ ¼ 0, i.e., in the collision plane, for a collision angle of
ϑ2 ¼ 135°, plotted as a function of the polar angle ϑ for the
scenarios (o)-(ii). The dashed lines at ϑ ¼ 0° (ϑ ¼ 135°) indicate
the propagation direction of the high-intensity laser beam of
frequency ω1 (ω2). The different peak widths at ϑ ≈ 135° for
scenarios (i) and (ii) can be traced back to the different focusing
of the frequency-doubled laser. Generically, a harder focusing
results in a wider far-field divergence.
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(ii) yields systematic checks enabling us to run simu-
lations in regions of the parameter space, where no
analytical reference values are available. Eventually, it
also helps to minimize the program’s runtime as well as
its memory requirements.
In this work we have in total 10 independent parameters

controlling the numerical calculation. These are Nx, Ny, Nz
specifying the lattice in the Cartesian grid for spatial/
momentum coordinates,Nφ,Nϑ,Nk yielding the number of
grid points in spherical momentum coordinates, and Lx, Ly,
Lz, Lk defining the physical interval of length 2Lx;y;z;k

(sampling regions) of the corresponding variables centered
around the region of interest. For illustration, we focus here
on lower-dimensional subsets. Similar convergence checks
can be performed for each of these parameters.
In the following we discuss the numerical convergence

of our calculations in the context of two parameters, the
radial momentum of the signal photons k and the longi-
tudinal resolution of the pump fields along the z axis. For
this, we first plot the total number of signal photons N as a
function of the number of grid points NΔðkÞ for various
choices of the momentum grid length Lk in Fig. 19. By
comparison with the semianalytical results we observe, that
accuracy of the result increases with the momentum-space
resolution as expected. It is also remarkable that a few grid
points in the total momentum k, Oð10Þ, are sufficient in
order to approximate the analytical solution reasonably
well. The crucial ingredient is, of course, an appropriate
choice for the resolved momentum interval: While the
center of the Lk region can be adapted to the requirements
imposed by energy conservation, cf. Eq. (27), which is
k ≃ ω in the present example, the size of Lk has to cover
the bandwidth of the outgoing pulse. In the present case,

a region with Lk ≥ 0.3 eV is required, corresponding to
≥20% of the central pulse energy. For instance, a region
limited to Lk ¼ 0.1 eV is not sufficient to provide a precise
estimate of the signal photon number; see Fig. 19.
Second, we investigate the spatial resolution needed in

order to satisfactorily resolve the applied laser pulses.
In this case the parameters Lz and Nz have to meet two
different requirements: On the one hand, Lz has to be
chosen large enough to cover the region of interest given
by the focal and collision region of the two pulses, while
Nz has to be sufficiently large to precisely sample the
details of the pulse shape; on the other hand, the nature of
the Fourier transform implies that π/ð2LzÞ defines an
infrared cutoff and πNz/ð2LzÞ an ultraviolet cutoff for the
z component of the momentum of the outgoing signal
photon. Hence, both have to be chosen sufficiently large
also to resolve the sampling region 2Lk centered around
the peak momentum k of the signal photon appropriately.
As a rule of thumb, an increase of the sampling region
should go along with an increase of the number of grid
points in order to keep the momentum-space ultraviolet
resolution (at least) constant.
In the present case the procedure for choosing the

discretization parameters is the following: The parameter
Lz should be chosen large enough in order to resolve the
focal region of the pump fields, i.e., at least one oscillation
of the pump fields in the present case. Signal energy
conservation suggests the signal photons to be located at
around k ≈ ω; the values for Lz and Nz should take on
values such that the momentum region around ω is with
sufficient resolution within the infrared and ultraviolet
cutoffs induced by the Fourier transformation. For defi-
niteness, we have fixed the longitudinal sampling region to
z ∈ 2q½−0.95λ; 0.95λ� and studied the convergence of the
result for increasing q and Nz.
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FIG. 19. Convergence of the total number of signal photons N
as a function of the number of radial momentum grid points in
NΔðkÞ for various sizes of the sampling region. The sampling
interval in k has a total length of 2Lk and is centered around
ω ≈ 1.54 eV. Two identical laser pulses (λ ¼ 800 nm,W ¼ 25 J,
τ ¼ 25 fs) are focused to w0;1 ¼ w0;2 ¼ λ. They are assumed to
be polarized perpendicularly to the collision plane and collide
under an angle of ϑ2 ¼ 135°. The benchmark toy model is used
here to allow for a comparison with the semianalytical result
(black line).
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FIG. 20. Convergence of the total number of signal photons N
as a function of the interval length ½−Lz; Lz� for two sets of grid
points in the z direction. Two identical laser pulses (λ ¼ 800 nm,
W ¼ 25 J, τ ¼ 25 fs) are focused to w0;1 ¼ w0;2 ¼ λ and collide
in a counterpropagation geometry. Both pulses are polarized
perpendicularly to the collision plane. The benchmark toy model
is used here to allow for a comparison with the semianalytical
result (black line).
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The results for the signal photon number as a function of
the size of the sampling region for two different grid
resolutions are shown in Fig. 20 and Table III. As
expected, the spatial sampling region has to be large
enough to cover the focal region of the size of a wave-
length λ in order to approach the correct result. We
observe that even a rather small number of 32 grid points
can give an acceptable result with an error on the percent
level, if the size of the sampling region is chosen
appropriately as to cover the relevant momentum region
of the signal photon upon Fourier transformation. For a
reliable result with an error well below 1%, larger
numbers of grid points and a sufficiently large sampling
region are required—of course, at the expense of comput-
ing time.
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P. Berceau, M. Fouché, R. Battesti, and C. Rizzo, Eur. Phys.
J. D 68, 16 (2014).

[28] X. Fan et al., Eur. Phys. J. D 71, 308 (2017).
[29] G. Zavattini, F. D. Valle, A. Ejlli, and G. Ruoso, Eur. Phys.

J. C 76, 294 (2016); 77, 873(E) (2017).
[30] T. Inada, T. Yamazaki, T. Yamaji, Y. Seino, X. Fan, S.

Kamioka, T. Namba, and S. Asai, Appl. Sci. 7, 671 (2017).
[31] T. Heinzl, B. Liesfeld, K.-U. Amthor, H. Schwoerer, R.

Sauerbrey, and A. Wipf, Opt. Commun. 267, 318 (2006).
[32] A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, Phys.

Rev. Lett. 97, 083603 (2006).
[33] V. Dinu, T. Heinzl, A. Ilderton, M. Marklund, and G.

Torgrimsson, Phys. Rev. D 89, 125003 (2014); 90, 045025
(2014).

[34] F. Karbstein, H. Gies, M. Reuter, and M. Zepf, Phys. Rev. D
92, 071301 (2015).

[35] H.-P. Schlenvoigt, T. Heinzl, U. Schramm, T. Cowan, and R.
Sauerbrey, Phys. Scr. 91, 023010 (2016).

[36] F. Karbstein and C. Sundqvist, Phys. Rev. D 94, 013004
(2016).

TABLE III. Benchmark calculations for the total number of
signal photons attainable in the toy-model scenario. Two identical
laser pulses (λ ¼ 800 nm, W ¼ 25 J, τ ¼ 25 fs), focused to
w0;1 ¼ w0;2 ¼ λ and polarized perpendicularly to the collision
plane, collide under an angle of ϑ2 ¼ 180°. The overall runtime
and the corresponding mean relative error MREN with respect to
the semianalytical result (N ¼ 330.189) are listed as functions of
the grid size Lz and the number of grid points Nz.

Mean relative error MREN ½%�
Grid size Lz [0.95λ]

Nz Runtime [s] 2−1 20 21

32 1120 15.25 2.17 -
128 3105 14.87 2.20 0.22
512 9400 14.86 2.20 0.22

ALL-OPTICAL SIGNATURES OF STRONG-FIELD QED IN … PHYS. REV. D 97, 036022 (2018)

036022-17

https://doi.org/10.1007/BF01343663
http://arXiv.org/abs/physics/0605038
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1007/3-540-15182-6
https://doi.org/10.1007/3-540-45585-X
https://doi.org/10.1007/3-540-45585-X
https://doi.org/10.1140/epjd/e2009-00169-6
https://doi.org/10.1140/epjd/e2009-00022-0
https://doi.org/10.1140/epjd/e2009-00113-x
https://doi.org/10.1103/RevModPhys.84.1177
https://doi.org/10.1142/S0217751X12600044
https://doi.org/10.1142/S2010194512007222
https://doi.org/10.1142/S2010194512007222
https://doi.org/10.1088/0034-4885/76/1/016401
https://doi.org/10.1088/0034-4885/76/1/016401
https://doi.org/10.1017/hpl.2016.1
https://doi.org/10.1017/hpl.2016.1
http://arXiv.org/abs/1611.09883
https://doi.org/10.1007/BF02712312
https://doi.org/10.1007/BF01493898
https://doi.org/10.1103/PhysRev.80.380
https://doi.org/10.1103/PhysRev.83.776
https://doi.org/10.1103/PhysRev.83.776
https://doi.org/10.1103/PhysRevA.57.2325
https://doi.org/10.1103/PhysRevA.57.2325
https://doi.org/10.1103/PhysRevC.58.2844
https://doi.org/10.1103/PhysRevLett.89.061802
https://doi.org/10.1103/PhysRevLett.89.061802
https://doi.org/10.1103/PhysRevLett.111.080405
https://doi.org/10.1103/PhysRevLett.111.080405
https://doi.org/10.1103/PhysRevLett.116.129901
https://doi.org/10.1038/nphys4208
https://doi.org/10.1038/nphys4208
https://doi.org/10.1093/mnras/stw2798
https://doi.org/10.1093/mnras/stw2798
https://doi.org/10.1140/epjc/s10052-017-5342-3
https://doi.org/10.1140/epjc/s10052-017-5342-3
http://arXiv.org/abs/1706.02505
https://doi.org/10.1007/978-3-540-73518-2_9
https://doi.org/10.1007/978-3-540-73518-2_9
https://doi.org/10.1103/PhysRevD.77.032006
https://doi.org/10.1088/1367-2630/15/5/053026
https://doi.org/10.1140/epjc/s10052-015-3869-8
https://doi.org/10.1140/epjc/s10052-015-3869-8
https://doi.org/10.1139/P10-068
https://doi.org/10.1139/P10-068
https://doi.org/10.1103/PhysRevA.85.013837
https://doi.org/10.1140/epjd/e2013-40725-9
https://doi.org/10.1140/epjd/e2013-40725-9
https://doi.org/10.1140/epjd/e2017-80290-7
https://doi.org/10.1140/epjc/s10052-016-4139-0
https://doi.org/10.1140/epjc/s10052-016-4139-0
https://doi.org/10.1140/epjc/s10052-017-5448-7
https://doi.org/10.3390/app7070671
https://doi.org/10.1016/j.optcom.2006.06.053
https://doi.org/10.1103/PhysRevLett.97.083603
https://doi.org/10.1103/PhysRevLett.97.083603
https://doi.org/10.1103/PhysRevD.89.125003
https://doi.org/10.1103/PhysRevD.90.045025
https://doi.org/10.1103/PhysRevD.90.045025
https://doi.org/10.1103/PhysRevD.92.071301
https://doi.org/10.1103/PhysRevD.92.071301
https://doi.org/10.1088/0031-8949/91/2/023010
https://doi.org/10.1103/PhysRevD.94.013004
https://doi.org/10.1103/PhysRevD.94.013004


[37] B. King and N. Elkina, Phys. Rev. A 94, 062102 (2016).
[38] S. Bragin, S. Meuren, C. H. Keitel, and A. Di Piazza, Phys.

Rev. Lett. 119, 250403 (2017).
[39] E. Lundstrom, G. Brodin, J. Lundin, M. Marklund, R.

Bingham, J. Collier, J. T. Mendonca, and P. Norreys, Phys.
Rev. Lett. 96, 083602 (2006).

[40] J. Lundin, M. Marklund, E. Lundstrom, G. Brodin, J.
Collier, R. Bingham, J. T. Mendonca, and P. Norreys, Phys.
Rev. A 74, 043821 (2006).

[41] B. King and C. H. Keitel, New J. Phys. 14, 103002 (2012).
[42] H. Gies, F. Karbstein, and N. Seegert, New J. Phys. 17,

043060 (2015).
[43] H. Gies, F. Karbstein, and N. Seegert, New J. Phys. 15,

083002 (2013).
[44] V. P. Yakovlev, Zh. Eksp. Teor. Fiz. 51, 619 (1966) [Sov.

Phys. JETP 24, 411 (1967)].
[45] A. Di Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, Phys.

Rev. Lett. 100, 010403 (2008); Phys. Rev. A 78, 062109
(2008).

[46] H. Gies, F. Karbstein, and R. Shaisultanov, Phys. Rev. D 90,
033007 (2014).

[47] H. Gies, F. Karbstein, and N. Seegert, Phys. Rev. D 93,
085034 (2016).

[48] S. L. Adler, J. N. Bahcall, C. G. Callan, and M. N.
Rosenbluth, Phys. Rev. Lett. 25, 1061 (1970).

[49] Z. Bialynicka-Birula and I. Bialynicki-Birula, Phys. Rev. D
2, 2341 (1970).

[50] S. L. Adler, Ann. Phys. (N.Y.) 67, 599 (1971).
[51] V. O. Papanyan and V. I. Ritus, Zh. Eksp. Teor. Fiz. 61, 2231

(1971) [Sov. Phys. JETP 34, 1195 (1972)].
[52] A. Di Piazza, A. I. Milstein, and C. H. Keitel, Phys. Rev. A

76, 032103 (2007).

[53] B. King, A. Di Piazza, and C. H. Keitel, Nat. Photonics 4, 92
(2010); Phys. Rev. A 82, 032114 (2010).

[54] D. Tommasini and H. Michinel, Phys. Rev. A 82, 011803
(2010).

[55] G. Y. Kryuchkyan and K. Z. Hatsagortsyan, Phys. Rev. Lett.
107, 053604 (2011).

[56] F. Karbstein and R. Shaisultanov, Phys. Rev. D 91, 113002
(2015).

[57] B. King, P. Böhl, and H. Ruhl, Phys. Rev. D 90, 065018
(2014).

[58] P. Böhl, B. King, and H. Ruhl, Phys. Rev. A 92, 032115
(2015).

[59] A. P. Domenech and H. Ruhl, arXiv:1607.00253.
[60] P. Carneiro, T. Grismayer, R. Fonseca, and L. Silva,

arXiv:1607.04224.
[61] F. Karbstein, arXiv:1510.03178.
[62] H. Gies and F. Karbstein, J. High Energy Phys. 03 (2017)

108.
[63] F. Karbstein and R. Shaisultanov, Phys. Rev. D 91, 085027

(2015).
[64] G. V. Galtsov and N. S. Nikitina, Zh. Eksp. Teor. Fiz. 84,

1217 (1983) [Sov. Phys. JETP 57, 705 (1983)].
[65] A. E. Siegman, Lasers, 1st ed. (University Science Books,

Herndon, 1986); B. E. A. Saleh and M. C. Teich, Fundamen-
tals of Photonics, 1st ed. (John Wiley & Sons, New York,
1991).

[66] F. Karbstein and E. A. Mosman, Phys. Rev. D 96, 116004
(2017).

[67] W. Dittrich and H. Gies, Phys. Rev. D 58, 025004
(1998).

GIES, KARBSTEIN, and KOHLFÜRST PHYS. REV. D 97, 036022 (2018)

036022-18

https://doi.org/10.1103/PhysRevA.94.062102
https://doi.org/10.1103/PhysRevLett.119.250403
https://doi.org/10.1103/PhysRevLett.119.250403
https://doi.org/10.1103/PhysRevLett.96.083602
https://doi.org/10.1103/PhysRevLett.96.083602
https://doi.org/10.1103/PhysRevA.74.043821
https://doi.org/10.1103/PhysRevA.74.043821
https://doi.org/10.1088/1367-2630/14/10/103002
https://doi.org/10.1088/1367-2630/17/4/043060
https://doi.org/10.1088/1367-2630/17/4/043060
https://doi.org/10.1088/1367-2630/15/8/083002
https://doi.org/10.1088/1367-2630/15/8/083002
https://doi.org/10.1103/PhysRevLett.100.010403
https://doi.org/10.1103/PhysRevLett.100.010403
https://doi.org/10.1103/PhysRevA.78.062109
https://doi.org/10.1103/PhysRevA.78.062109
https://doi.org/10.1103/PhysRevD.90.033007
https://doi.org/10.1103/PhysRevD.90.033007
https://doi.org/10.1103/PhysRevD.93.085034
https://doi.org/10.1103/PhysRevD.93.085034
https://doi.org/10.1103/PhysRevLett.25.1061
https://doi.org/10.1103/PhysRevD.2.2341
https://doi.org/10.1103/PhysRevD.2.2341
https://doi.org/10.1016/0003-4916(71)90154-0
https://doi.org/10.1103/PhysRevA.76.032103
https://doi.org/10.1103/PhysRevA.76.032103
https://doi.org/10.1038/nphoton.2009.261
https://doi.org/10.1038/nphoton.2009.261
https://doi.org/10.1103/PhysRevA.82.032114
https://doi.org/10.1103/PhysRevA.82.011803
https://doi.org/10.1103/PhysRevA.82.011803
https://doi.org/10.1103/PhysRevLett.107.053604
https://doi.org/10.1103/PhysRevLett.107.053604
https://doi.org/10.1103/PhysRevD.91.113002
https://doi.org/10.1103/PhysRevD.91.113002
https://doi.org/10.1103/PhysRevD.90.065018
https://doi.org/10.1103/PhysRevD.90.065018
https://doi.org/10.1103/PhysRevA.92.032115
https://doi.org/10.1103/PhysRevA.92.032115
http://arXiv.org/abs/1607.00253
http://arXiv.org/abs/1607.04224
http://arXiv.org/abs/1510.03178
https://doi.org/10.1007/JHEP03(2017)108
https://doi.org/10.1007/JHEP03(2017)108
https://doi.org/10.1103/PhysRevD.91.085027
https://doi.org/10.1103/PhysRevD.91.085027
https://doi.org/10.1103/PhysRevD.96.116004
https://doi.org/10.1103/PhysRevD.96.116004
https://doi.org/10.1103/PhysRevD.58.025004
https://doi.org/10.1103/PhysRevD.58.025004

