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We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the
DNMR equations for a 0þ 1d conformal system using kinetic theory in the relaxation time approximation.
We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0þ 1d
conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart
theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse
Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse
pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized
hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number)
but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better
approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we
introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion
in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these
third-order results to the exact kinetic theory solution.
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I. INTRODUCTION

Relativistic hydrodynamics is currently the main theo-
retical approach used to describe the time evolution of the
rapidly expanding quark-gluon plasma (QGP) produced in
ultrarelativistic heavy-ion collisions [1]. However, despite
its success, understanding how hydrodynamics can provide
a reasonable description of the rapidly expanding matter
formed in these collisions is not an easy task. Traditionally,
hydrodynamics has been understood as a truncation of a
gradient expansion [2], and thus its domain of validity
could only be justified when gradients were sufficiently
smooth compared to the inverse microscopic scales of the
problem. In fact, the gradient expansion itself was pre-
viously understood as a universal macroscopic limit dis-
played by microscopic theories, reached at sufficiently late
times. However, it has been recently shown [3–6] that the
gradient expansion has a zero radius of convergence for
flow configurations that are relevant for the QGP (both at
strong coupling and also in kinetic theory) and, in this
sense, one cannot construct or improve a hydrodynamic
theory by systematically taking into account higher-order
terms in this series. Therefore, the concept that relativistic
hydrodynamics is only applicable when gradients of

macroscopic quantities are small, derived from the gradient
expansion, no longer seems to be well justified (or even
needed). In the end, these findings led one to revisit the very
definition of viscous hydrodynamics in order to assess its
domain of applicability in heavy-ion collisions.
As a matter of fact, though the early success of fluid-

dynamical models was initially interpreted as a signature of
rapid thermalization of the quark-gluon plasma [7], model
calculations [8–25] have suggested that such an interpre-
tation was premature given that systems far from equilib-
rium may already display hydrodynamic behavior via a
process known as hydrodynamization, a novel feature of
rapidly expanding fluids such as the QGP. Naturally, the
validity of hydrodynamics is not without bounds: it will
eventually fail when the values of viscosity become
sufficiently large or when it is applied at sufficiently early
times. Nevertheless, even in such extreme cases, it is
possible to devise effective theories that are capable of
describing the quark-gluon plasma, the most notable being
anisotropic hydrodynamics (aHydro) [26–44].
In general, hydrodynamization is now expected to occur at

a time scale τhydro shorter than the corresponding time scales
for isotropization and thermalization, driven by a novel
dynamical attractor solution which has been studied in
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kinetic theory, hydrodynamics, and holography [18,45–49].
Such attractor solutions show that hydrodynamics displays a
new degree of universality far from equilibrium regardless of
the details of the initial state of the system. In fact, in the
context of Bjorken flow [50], one observes that after being
initialized with several different initial conditions, the sys-
tem’s evolution approximately converges onto a single curve
that still describes out-of-equilibrium behavior before the
true equilibrium state, and consequently thermalization, is
(asymptotically) reached.
In the context of kinetic theory and standard statistical

mechanics, thermalization is understood as the development
of isotropic thermal one-particle distribution functions for the
partonswhich comprise theQGP. In a high-energy heavy-ion
collision, the large longitudinal expansion rate causes the
center of the QGP fireball to only slowly relax to an
approximately isotropic state with τiso ≳ 3–4 fm/c [51]1;
however, the time scale for hydrodynamization of the fireball
appears to bemuch shorter (for a review see [25]). The catch,
however, is that in practice one finds that the relevant quantity
for judging whether one is close to attractor behavior is the
dimensionless variable w≡ τT [45], which, in conformal
fluids undergoing Bjorken expansion [50], is proportional to
the inverse of the Knudsen number KN with 1/T being the
microscopic time scale. For small gradientswherew > 1, the
system follows the dynamics consistent with the dynamical
attractor. However, in the large gradient regime where
w ≪ 1, the dynamics of the system is dominated by non-
hydrodynamicmodes (i.e., modes in the linearized dynamics
whose frequency remains nonzero even for a spatially
homogeneous system [53]) whose evolution depends on
the precise initial condition assumed. If we consider a fixed
proper time after the collision, this implies that as we move
closer to the edge of the QGP, one will be more sensitive to
the truly nonequilibrium dynamics associated with non-
hydrodynamicmodes.As a consequence, some nonuniversal
aspects of the underlying theory, be they, e.g., kinetic theory
or holographically inspired, will start to affect the spatio-
temporal evolution of the QGP. In this case, one must make a
choice as to which underlying microscropic theory best
reflects the relevant physics. Since, as one moves close to the
QGP edge, the system is much more dilute, a kinetic theory
approach would seem to be preferred in this spatial region.
For this reason, in this paper we investigate the dynamical

attractors of different approximations to the relativistic
Boltzmann equation. We determine the dynamical attractors
associated with aHydro and the Denicol-Niemi-Molnar-
Rischke (DNMR) effective theory [54] for 0þ 1d conformal
kinetic theory in the relaxation-time approximation (RTA)
[55].We compare our results for the nonequilibrium attractor

in these theories with the corresponding results obtained
from the exact solution of the 0þ 1d conformal Boltzmann
equation and also the second-order Mueller-Israel-Stewart
(MIS) theory [56–58]. In this paper,we show for the first time
that the aHydro formalism has an attractor solution which,
surprisingly, is in very good agreement with the attractor
solution of corresponding microscopic theory. We further
demonstrate that, in the aHydro formalism, the equation of
motion for the shear stress tensor involves a resummation of
an infinite number of terms in the inverse Reynolds number
[54]. Such terms are not present in traditional hydrodynamic
theories, and we consider that this novel feature is the main
reason behind the optimal agreement between the attractors
of aHydro and those of the Boltzmann equation (in the
relaxation-time approximation).
This suggests that an optimized hydrodynamic treatment

of kinetic theory involves not only a resummation in
gradients (Knudsen number) but also a resummation in
the inverse Reynolds number. Correspondingly, we also
demonstrate that the DNMR result provides a better
approximation of the exact kinetic theory attractor than
the MIS theory. Finally, we introduce a new method for
obtaining approximate aHydro equations which relies
solely on an expansion in inverse Reynolds number. We
then carry this expansion out to the third order, and
compare the third-order results to the exact solution.
This paper is structured as follows. In the next section we

define the kinetic theory model used and the corresponding
second-order hydrodynamic theories we consider in this
work. Anisotropic hydrodynamics is discussed in Sec. III.
We investigate the attractor behavior of the different models
in Sec. IV, while numerical results can be found in Sec. V.
We finish with our conclusions and outlook in Sec. VI.
Appendixes A and B are included to further investigate
different approximations and prescriptions within aniso-
tropic hydrodynamics.

II. KINETIC THEORY AND SECOND-ORDER
HYDRODYNAMICS

We assume that the system is 0þ 1d, i.e., transversally
homogeneous and boost invariant [50]. As a result all
variables will only depend on the longitudinal proper time,
τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
. The metric is taken to be “mostly minus,”

with xμ ¼ ðt; x; y; zÞ, where the line element is
ds2 ¼ gμνdxμdxν ¼ dt2 − dx2 − dy2 − dz2, with gμν being
the metric tensor in Minkowski space. The longitudinal
spacetime rapidity is ς ¼ tanh−1ðz/tÞ. We assume that the
system is conformal [59] with an equation of state
corresponding to Nd.o.f. massless degrees of freedom which
is Landau-matched [60] to the general nonequilibrium
energy density, i.e., ϵ0ðTÞ ¼ ϵ. In this case, one has ϵ ¼
ϵ0ðTÞ ¼ 3P0ðTÞ and T ¼ γϵ1/4, where γ is proportional to
N−1/4

d.o.f.. Also, for a (Bjorken) longitudinally boost-invariant
system the flow velocity is uμ ¼ ðcosh ς; 0; 0; sinh ςÞ.

1We note also that studies of nonequilibrium QGP dynamics
using either the 2PI formalism or holography indicate that, in the
highest temperatures probed during heavy-ion collisions, an
equation of state may be established well before pressure
isotropization occurs [22,24,52].
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We will use kinetic theory to obtain the aHydro and
second-order viscous hydrodynamics dynamical attractors.
For this purpose we start from the Boltzmann equation in
the RTA [55]

pμ∂μf ¼ −
pμuμ

τeq
ðf − feqÞ; ð1Þ

where τeq ¼ 5η/ðsTÞ [61,62] is the relaxation time, with η
being the shear viscosity, T is the local effective temper-
ature obtained via Landau matching, and s is the entropy
density. For this massless gas, the Boltzmann RTA equation
changes covariantly under conformal transformations
[63,64] and η/s is constant. We will assume classical
Boltzmann distributions throughout; i.e., the equilibrium
distribution function is feqðxÞ ¼ expð−xÞ.
In kinetic theory the covariantly conserved energy-

momentum tensor is given by

Tμν ¼ Nd.o.f.

Z
dPpμpνf; ð2Þ

with
R
dP being the appropriate Lorentz invariant measure

[55]. The local energy density is obtained via ϵ ¼ uμuνTμν,
whereas the shear stress tensor is

Πμν ¼ Δμν
αβT

αβ; ð3Þ

where Δμν
αβ ¼ ðΔμ

αΔν
β þ Δμ

βΔν
αÞ/2 − ΔμνΔαβ/3 is the tensor

projector orthogonal to the flow constructed using Δμν ¼
gμν − uμuν.
Bjorken symmetry and conformal invariance may be

used to show that the energy-momentum conservation
laws, obtained from the first moment of the Boltzmann
equation, can be reduced to a single equation

τ
d log ϵ
dτ

¼ −
4

3
þ Π

ϵ
ð4Þ

involving the energy density and Π ¼ Πς
ς. In second-order

hydrodynamic theories, such as MIS [56–58] and DNMR
[54,65], one uses the 14-moment approximation for the
single-particle distribution function to obtain the most
simple form of a differential equation for Π, which can
be written in the form

̇Π ¼ 4η

3ττπ
− βππ

Π
τ
−
Π
τπ

; ð5Þ

where ̇ ¼ d/dτ and for RTA βππ ¼ 38/21 and τπ ¼ τeq in
the complete second-order calculation (which is the case
for DNMR) [54,61,65–67], while in MIS βππ ¼ 4/3 and
τπ ¼ 6τeq/5 [68]. By solving Eqs. (4) and (5) one can
determine the dynamical evolution of this viscous fluid
described by second-order hydrodynamics and investigate

the emergence of hydrodynamic attractor behavior, as done
in [45].

III. ANISOTROPIC HYDRODYNAMICS

The formalism behind anisotropic hydrodynamics has
been explored in a series of papers (see, e.g., [26,27,
31–35,37–39]), and we refer the reader to those references
for details. Here we only present the main points needed in
this paper to make the discussion self-consistent.
In the 0þ 1d case aHydro requires only one anisotropy

direction and one parameter, n̂ and ξ. This leads to a
distribution function Ansatz of the form [69,70]

fðτ;x;pÞ ¼ feq

�
1

Λðτ;xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ ½1þ ξðτ;xÞ�p2

L

q �
; ð6Þ

where Λ can be interpreted as the local “transverse temper-
ature.” For a conformal system, using this form, one finds
that the energy density, transverse pressure, and longi-
tudinal pressure factorize, resulting in

ϵ ¼ RðξÞϵ0ðΛÞ;
PT ¼ RTðξÞP0ðΛÞ;
PL ¼ RLðξÞP0ðΛÞ;

with [27,71]

RðξÞ ¼ 1

2

�
1

1þ ξ
þ arctan

ffiffiffi
ξ

p
ffiffiffi
ξ

p
�
; ð7Þ

RTðξÞ ¼
3

2ξ

�
1þ ðξ2 − 1ÞRðξÞ

ξþ 1

�
; ð8Þ

RLðξÞ ¼
3

ξ

�ðξþ 1ÞRðξÞ − 1

ξþ 1

�
; ð9Þ

which satisfy 3R ¼ 2RT þRL (the isotropic pressure is
P0 ¼ ϵ/3). In all the expressions above, L and T correspond
to the directions parallel and perpendicular to n̂, respectively.
Conventionally, the anisotropy direction is taken to a point in
the beam line direction in heavy-ion applications (n̂ ¼ ẑ).
Using Landau matching, one has ϵ ¼ RðξÞϵ0ðΛÞ ¼
ϵ0ðTÞ, which results in

T ¼ R1/4ðξÞΛ: ð10Þ

Now we need an equation of motion for ξ since Λ is already
connected to the temperature via the equation above.
We also employ the following moment of the Boltzmann

distribution [33]:

Iμνλ ¼ Nd.o.f.

Z
dPpμpνpλf; ð11Þ

ANISOTROPIC NONEQUILIBRIUM HYDRODYNAMIC ATTRACTOR PHYS. REV. D 97, 036020 (2018)

036020-3



which will be important for the aHydro approach. Using the
Boltzmann equation in the RTA (1), the equation of motion
for this moment is

∂αIαμν ¼
1

τeq
ðuαIαμνeq − uαIαμνÞ: ð12Þ

We note that Iμνλ is symmetric with respect to interchanges
of μ, ν, and λ and traceless in any pair of indices (massless
particles/conformal invariance). In an isotropic system, one
finds Iuxx ¼ Iuyy ¼ Iuzz ¼ I0 with

I0ðΛÞ ¼
4Nd.o.f.

π2
Λ5: ð13Þ

Using the aHydro form one finds

Iuuu ¼
3þ 2ξ

ð1þ ξÞ3/2 I0ðΛÞ;

Iuxx ¼ Iuyy ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p I0ðΛÞ;

Iuzz ¼
1

ð1þ ξÞ3/2 I0ðΛÞ; ð14Þ

with, e.g., Iuuu ≡ uμuνuλIμνλ, etc.
Taking the zz projection of Eq. (12) minus one-third of

the sum of its xx, yy, and zz projections gives our second
equation of motion

1

1þ ξ
̇ξ −

2

τ
þR5/4ðξÞ

τeq
ξ

ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
¼ 0; ð15Þ

which can be used to define the evolution of the anisotropy
parameter.

A. Connection with the shear stress tensor
and the inverse Reynolds number

In order to proceed in a manner that will allow a more
transparent comparison between the aHydro equations of
motion and those of standard viscous hydrodynamics, we
will rewrite Eq. (15) in terms of the shear stress tensor
component Π. Using that Π ¼ P0 − PL one obtains

Π̄ðξÞ≡ Π
ϵ
¼ 1

3

�
1 −

RLðξÞ
RðξÞ

�
: ð16Þ

In the left panel of Fig. 1 we plot Π̄ as a function of ξ
determined via Eq. (16) and, in the right panel, we plot ξ as
a function of Π̄ determined via numerical inversion of
Eq. (16). We note, importantly, that in aHydro Π̄ is
bounded, with −2/3 < Π̄ < 1/3. This is related to the
positivity of the longitudinal and transverse pressures
which naturally emerges in this framework. Furthermore,
Π̄ is related to the inverse Reynolds number [54] via

R−1
π ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΠμνΠμν

p
P0

¼ 3

ffiffiffi
3

2

r
jΠ̄j: ð17Þ

As a consequence, a series in Π̄ can be roughly understood
as an expansion in R−1

π .
We will also need the relation between the time deriv-

atives of Π and ξ, which can be obtained from Eq. (16),

̇Π
ϵ
¼ Π̄0 ̇ξþ Π̄∂τ log ϵ; ð18Þ

which upon using Eqs. (16) and (4) gives

̇ξ ¼ 1

Π̄0

�̇
Π
ϵ
þ Π
ϵτ

�
4

3
−
Π
ϵ

��
; ð19Þ

where Π̄0 ≡ dΠ̄/dξ.

FIG. 1. The left panel shows Π̄ as a function of ξ determined via Eq. (16). The right panel shows ξ as a function of Π̄ determined via
numerical inversion of Eq. (16).
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Plugging (19) into (15), one obtains

̇Π
ϵ
þ Π
ϵτ

�
4

3
−
Π
ϵ

�
−
�
2ð1þ ξÞ

τ
−
HðξÞ
τeq

�
Π̄0ðξÞ ¼ 0; ð20Þ

with

HðξÞ≡ ξð1þ ξÞ3/2R5/4ðξÞ; ð21Þ

and the understanding that ξ ¼ ξðΠ̄Þ, with ξðΠ̄Þ being the
inverse function of Π̄ðξÞ (shown in the right panel of
Fig. 1). Written in this form, we can see explicitly that the
aHydro second-moment equation sums an infinite number
of terms in the expansion in the inverse Reynolds number
(17). This follows because the quantity in square brackets
in Eq. (20) is a function that contains all orders in ξ and,
hence, Π̄. As we will see subsequently, this is extremely
important because the exact attractor possesses a large
Reynolds number in the limit τT → 0. In the next section
we will expand this equation in powers of the inverse
Reynolds number through second order in order to compare
it to standard viscous hydrodynamics.

1. Small ξ expansion

In order to make the final connection to standard viscous
hydrodynamics, one can expand Eq. (20) in ξ around
ξ ¼ 0.2 For this purpose we need the ξ expansions of the
various functions that appear in this formalism to construct
an explicit inversion and rewrite the equations solely in
terms of Π̄. At second order in ξ, one finds

Π̄ ¼ 8

45
ξ

�
1 −

13

21
ξþOðξ2Þ

�
;

Π̄0 ¼ 8

45

�
1 −

26

21
ξþ 131

105
ξ2 þOðξ3Þ

�
;

ð1þ ξÞΠ̄0 ¼ 8

45

�
1 −

5

21
ξþ 1

105
ξ2 þOðξ3Þ

�
;

H ¼ ξþ 2

3
ξ2 þOðξ3Þ: ð22Þ

Inverting the relationship between Π̄ and ξ to second order
in Π̄ gives

ξ ¼ 45

8
Π̄
�
1þ 195

56
Π̄þOðΠ2Þ

�
; ð23Þ

which results in

Π̄0 ¼ 8

45
−
26

21
Π̄þ 1061

392
Π̄2 þOðΠ̄3Þ;

ð1þ ξÞΠ̄0 ¼ 8

45
−

5

21
Π̄ −

38

49
Π̄2 þOðΠ̄3Þ;

H ¼ 45

8
Π̄
�
1þ 405

56
Π̄þOðΠ̄3Þ

�
;

HΠ̄0 ¼ Π̄þ 15

56
Π̄2 þOðΠ̄3Þ: ð24Þ

Applying this to the equation of motion (20) and keeping
only terms through Π2 gives

̇Π −
4η

3τπτ
þ 38

21

Π
τ
−
36τπ
245η

Π2

τ
¼ −

Π
τπ

−
15

56

Π2

τπϵ
; ð25Þ

where, on the left-hand side, we have used the fact that one
can eliminate the energy density by expressing it in terms of
the transport coefficients

ϵ ¼ 15

4

η

τeq
; ð26Þ

and relabeled τeq → τπ in order to cast the equations in
“standard” second-order hydrodynamics form. Note that, to
linear order in Π, Eq. (25) agrees with previously obtained
RTA second-order viscous hydrodynamics results
[54,61,65–67]. However, at order Π2, the value of λ1
implied is λ1 ¼ ητπ/7, which is different by a factor of 5
compared with prior reported values [72,73], which
obtained λ1 ¼ 5ητπ/7.

3 In addition, compared to the stan-
dard second-order hydro result, at second order in the ξ
expansion we find the appearance of an additional term in
the form of the last term on the left-hand side of (25). Such
a term goes beyond the standard truncation order used in
the derivation of the DNMR equations [54] since it is
formally of OðKNR−2

π Þ.

IV. ATTRACTOR DYNAMICS IN
DIFFERENT MODELS

In this section we investigate the hydrodynamic attractor
behavior of aHydro and compare it with the corresponding
results in MIS and DNMR theories. In all three cases, the
system’s dynamics is determined by solving the differential
equations for ϵ and Π. To make contact with previous
studies, however, we follow [45] and introduce the dimen-
sionless “time” variable

w≡ τTðτÞ; ð27Þ

with which one may define the amplitude

2The Taylor series around ξ ¼ 0 has a finite radius of
convergence and converges for jξj < 1 due to the cut in the H
function at ξ ¼ −1.

3The coefficient λ1 emerges in the literature because the Π2

term appearing on the RHS is traditionally written in the form
λ1Π2/ð2τπη2Þ.
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φðwÞ≡ τ
̇w
w
¼ 1þ τ

4
∂τ log ϵ; ð28Þ

which is related to Π as follows:

Π
ϵ
¼ 4

�
φ −

2

3

�
: ð29Þ

From this we see that a solution for the proper-time
evolution of the energy density uniquely specifies the
w-dependence of the amplitude φ as it should. Also, we
note that the positive energy condition [74] imposes that φ
is bounded in the region 0 ≤ φ ≤ 1. We also note that
the equation above implies that there is a relationship
between the inverse Reynolds number (17) and φ, i.e.,
φ ¼ 2/3þ Π̄/4.
The change of variables from fϵ;Πg → fw;φg is con-

venient because it allows one to express the coupled set of
first-order ODEs for fϵ;Πg in terms of a single first-order
ODE for φðwÞ [45]. In the case of MIS and DNMR, this
procedure gives

cπwφφ0 þ 4cπφ2 þ
�
wþ

�
βππ −

20

3

�
cπ

�
φ −

4cη
9

−
2cπ
3

ðβππ − 4Þ − 2w
3

¼ 0; ð30Þ

where φ0 ¼ dφðwÞ/dw, cπ ≡ τπT, and cη ¼ η/s (with
cπ ¼ 5cη in the cases considered here). After defining
the rescaled variable w̄ ¼ w/cπ one can see that the
equation above becomes

w̄φφ0 þ 4φ2 þ
�
w̄þ

�
βππ −

20

3

��
φ −

4cη/π
9

−
2

3
ðβππ − 4Þ − 2w̄

3
¼ 0; ð31Þ

which makes it clear that the solution only depends on the
ratio cη/π ≡ cη/cπ ¼ ðη/sÞ/ðτπTÞ and the value chosen for
βππ . To connect these equations with the RTA Boltzmann
one must set cη/π ¼ 1/5. Also, we note in passing that cη/π is
the relevant quantity needed in a linearized analysis of the
causality and stability properties of MIS-like equa-
tions [75,76]. Using the MIS value βππ ¼ 4/3 one obtains

w̄φφ0 þ 4φ2 þ
�
w̄ −

16

3

�
φ −

4cη/π
9

þ 16

9
−
2w̄
3

¼ 0; ð32Þ

which agrees precisely with Eq. (9) of Ref. [45]; however,
for RTA this value for βππ is incorrect. Using the correct
value for βππ ¼ 38/21, one obtains the DNMR RTA
equation (again neglecting quadratic terms in Π)

w̄φφ0 þ 4φ2 þ
�
w̄ −

34

7

�
φ −

4cη/π
9

þ 92

63
−
2w̄
3

¼ 0: ð33Þ

Also, we note that, as demonstrated in Eq. (25), aHydro
naturally reproduces this equation when truncated at lead-
ing order in ξ (linear order in the inverse Reynolds number).
Following [45], attractor behavior can be inferred from

Eq. (30) using a procedure equivalent to the “slow-roll”
expansion in cosmology [77], which in this context may be
described as follows. First, one formally introduces a small
parameter δ as a prefactor in the term w̄φφ0 in (31) and
assumes that the solution of the differential equation
φðw̄; δÞ can be written as a power-series expansion
φðw̄; δÞ ¼ φ0ðw̄Þ þ φ1ðw̄ÞδþOðδ2Þ. After taking into
account all orders, one may take the limit δ → 1. The
0th-order truncation is obtained by solving the simple
quadratic equation

4φ2
0þ

�
w̄þ

�
βππ −

20

3

��
φ0−

4cη/π
9

−
2

3
ðβππ −4Þ−2w̄

3
¼ 0

ð34Þ

and, out of the two possible solutions, one is stable and
remains finite in the large “time” (large w̄) limit,

φ0ðw̄Þ ¼
1

24

�
−3βππ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64cη/π þ ð3βππ þ 3w̄ − 4Þ2

q

− 3w̄þ 20
�
; ð35Þ

and the other is unstable [45]. Though one may easily
compute the higher-order corrections, in practice one finds
that the 0th-order solution already represents a good
approximation to the exact solution of the differential
equation for w̄ > 4 and cη/π ¼ 1/5. In practice, in the
results section we will solve the attractor differential
equation (31). In this context, the slow-roll approximation
allows us to compare to prior results in the literature and to
also identify analytically the boundary condition which
should be used when solving Eq. (30).
Herein, we define the attractor solution using the

boundary condition limw̄→0 w̄φφ0 ¼ 0 [45], which then
implies that

lim
w̄→0

φðw̄Þ¼ 1

24
ð−3βππþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64cη/πþð3βππ −4Þ2

q
þ20Þ:

ð36Þ

This gives a smooth curve that necessarily agrees with the
0th-order solution at w̄ ¼ 0 and also at late times. In the
next section we generalize the analysis performed here to
determine the attractor dynamics of aHydro.
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A. aHydro attractor

In this section we present our final dynamical equation
for aHydro after recasting the two first-order differential
equations as a single second-order differential equation
written in terms of φ and w. In order to obtain the aHydro
dynamical equation, we must combine the identity

wφφ0 ¼ −
8

3
þ 20

3
φ − 4φ2 þ τ

4

̇Π
ϵ

ð37Þ

and Eq. (20). To do this we should first express Eq. (20) in
terms of φ and w. Using that τ∂τ log ϵ ¼ 4ðφ − 1Þ ¼
−4/3þ Π/ϵ, one finds from Eq. (20)

τ

4

̇Π
ϵ
¼ 8

3
−
20

3
φþ 4φ2 þ

�
1

2
ð1þ ξÞ − w

4cπ
H
�
Π̄0: ð38Þ

Plugging this into Eq. (37) gives our final result for the
aHydro attractor equation:

w̄φ
∂φ
∂w̄ ¼

�
1

2
ð1þ ξÞ − w̄

4
H
�
Π̄0: ð39Þ

Note that above ξ ¼ ξðΠ̄Þ ¼ ξð4φ − 8/3Þ and likewise for
Π̄0. We remark that the aHydro equation derived above does
not depend explicitly on cη/π; the aHydro attractor solution
is universal if plotted as a function of w̄. Since we work in a
relaxation-time approximation, this is true for the other
second-order hydrodynamic approximations (i.e., cη/π must
be set to 1/5 for RTA dynamics) presented above as well.
In the aHydro equation (39), the gradient expansion

series solution in powers of 1/w̄ has a zero radius of
convergence [78]. Thus, the solution of the differential
equation (39) may also be considered to be a resummation
of the gradient series, as in MIS theory [45]. However, we
emphasize that the right-hand side of Eq. (39) also includes
a sum of an infinite number of terms in the inverse
Reynolds number, which is conceptually different than
DNMR, which derived the equations of motion assuming a
perturbative series in R−1

π .
In the case of aHydro, even the 0th-order approximation

in the slow-roll expansion must be solved numerically, so
we skip directly to the solution of the differential equation.
Again, for this purpose, the attractor solution is obtained by
imposing the same boundary condition as before at w̄ ¼ 0.
Using the numerical solution of the approximate equation,
one finds

lim
w̄→0

φðw̄Þ ¼ 3

4
: ð40Þ

With this we simply numerically solve Eq. (39). Note that
the limit above guarantees the positivity of the longitudinal
pressure of the attractor solution at all points in the plasma
as w̄ → 0.

B. Exact RTA attractor solution

In addition to comparing the attractors emerging from
different hydrodynamic theories, we will also determine the
attractor which emerges from the exact solution of the RTA
Boltzmann equation. For this case, one can write down an
integral equation which can be numerically solved to
arbitrary accuracy [79,80]:

ĒðτÞ ¼ Dðτ; τ0Þ
RðξFSðτÞÞ
Rðξ0Þ

þ
Z

τ

τ0

dτ0

τeqðτ0Þ
Dðτ; τ0ÞĒðτ0ÞR

��
τ

τ0

�
2

− 1

�
; ð41Þ

where τeq ¼ cπ/Teff , Ē ¼ E/E0 is the energy density
scaled by the initial energy density, R is defined in
Eq. (7), ξ0 is the initial momentum-space anisotropy
ξFSðτÞ ¼ ð1þ ξ0Þðτ/τ0Þ2 − 1, and

Dðτ2; τ1Þ ¼ exp

�
−
Z

τ2

τ1

dτ00τ−1eq ðτ00Þ
�

ð42Þ

is the damping function. A procedure for obtaining the
attractor from this integral equation is explained in
Ref. [46].4 However, in practice it amounts to using an
infinitely oblate anisotropic initial condition ξ0 → ∞ in the
solution to this integral equation and taking the initial
proper time to be arbitrarily small. A C-code for solving
this integral equation can be downloaded using the URL
specified in Ref. [81].

V. RESULTS AND DISCUSSION

In Fig. 2 we compare the attractors for φðwÞ determined
using the solution of the differential equation in each case
in the left panel, i.e., Eqs. (32), (33), and (39), subject to
their corresponding boundary conditions at w̄ ¼ 0 men-
tioned in the last section. In the right panel we show the
corresponding longitudinal-to-transverse pressure ratio
which can be computed using

PL

PT
¼ 3 − 4φ

2φ − 1
: ð43Þ

Using the criteria that PL/PT > 0.9, we observe that
approximate isotropization only occurs for w̄ > 15. Also,
we note that, depending on the differential equation used to
determine the attractor solution, φ might exceed 3/4, which
will cause this ratio to go negative due to a negative

4The value for cπ used in Ref. [46] was cπ ¼ 0.4, correspond-
ing to an assumed shear viscosity–to–entropy density ratio of
η/s ¼ 0.08. In our case, we solved the integral equation for a
variety of different values of η/s and found that when plotted
versus w̄ ¼ w/cπ all results collapsed onto one universal curve, as
they must in RTA.
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longitudinal pressure. As can be seen from the right panel,
both the MIS and DNMR attractors “pull” the system
towards negative longitudinal pressures since φ > 3/4 at
early times corresponds to small w̄. This behavior does not
occur in aHydro since, in this case, 1/2 < φ < 3/4.
Next we turn to Fig. 3 where we compare the aHydro,

MIS, and DNMR attractors to the corresponding quantity
obtained from the exact solution to the 0þ 1d RTA
Boltzmann equation (41). Additionally, in Fig. 3 we
include a curve showing the Navier-Stokes (NS) result [45]

φNS ¼
2

3
þ 4

9

cη/π
w̄

; ð44Þ

which can be obtained by taking the w → ∞ limit of (35)
and truncating at the first nontrivial order. As Fig. 3

demonstrates, the aHydro attractor solution is virtually
indistinguishable from the exact RTA attractor. In fact, it is
unclear to us whether the remaining differences, being a
maximum of 0.04% in the range shown, might be purely
numerical in origin. Since aHydro involves not only a
resummation in Knudsen number but also in the inverse
Reynolds number, the excellent agreement found between
the aHydro solution and the exact kinetic theory result sug-
gests that the inverse Reynolds number resummation may
also be a property of the latter. This may serve as a guide to
derive other new approaches to far-from-equilibrium hydro-
dynamics that do not rely on a perturbative treatment of both
the Knudsen and the inverse Reynolds number series, which
may be particularly useful in the search for a novel (causal
and stable) hydrodynamic theory that incorporates the
quasinormal oscillatory behavior found at strong coupling
using holography [62,82,83].
Turning to the second-order approaches, we see that the

DNMR attractor is in significantly better agreement with
the exact RTA attractor solution than MIS, as one might
expect since the MIS equations have the incorrect value of
βππ within RTA. In this plot, the NS solution is included to
emphasize that this approximation, although previously
thought of as the late-time attractor, does not coincide with
the attractor solution until one reaches very large values of
w̄ (i.e., sufficiently close to local equilibrium).
Finally, we turn to Figs. 4 and 5. In these figures we

compare the numerical solution of the aHydro and DNMR
dynamical equations along with their respective attractors
and the NS solution. For the numerical solutions (grey
dashed), we fixed an initial energy density ϵ0 at proper time
τ0 and then varied the initial condition for Π0 over a given
range. For the case of aHydro, we varied Π̄0 in the range
−2/3 ≤ Π̄0 ≤ 1/3, which is the full range of variation
allowed in aHydro corresponding to −1 < ξ0 < ∞. This
maps to initial conditions which have inverse Reynolds
numbers in the range 0 < R−1

π ≲ 2.45 and covers an

FIG. 2. The left panel shows the solution for φ, and the right panel shows the solution for the corresponding pressure ratio PL/PT .

FIG. 3. The aHydro, MIS, and DNMR attractors compared to
the attractor obtained from the exact solution to the RTA
Boltzmann equation. Note that the MIS attractor, which has
the slowest approach to the exact solution, eventually converges
to the exact attractor from above, but at larger w̄ than shown.
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infinitely prolate to infinitely oblate initial momentum-
space anisotropy. For the case of the DNMR equations,
there is, in principle, no bound on Π̄0 since, in this
framework, one can have negative longitudinal or trans-
verse pressures. For the purposes of Fig. 5 we used
−2/3 ≤ Π̄0 ≤ 1/2.
For both aHydro and DNMR, the numerical solutions

shown in Figs. 4 and 5 converge to the attractor solution
after approximately w̄attractor ∼ 2. In the context of heavy-
ion phenomenology, for LHC initial conditions with a
central temperature of T0 ∼ 500 MeV at τ0 ¼ 0.25 fm/c
and η/s ∼ 0.2, this translates into τattractor ∼ 1.3 fm/c in the
center of the fireball. Prior to this time, the system is subject
to the evolution of nonhydrodynamic modes, and the
precise evolution of these modes depends on the micro-
scopic theory under consideration. Comparing this finding
to the NS solution, one reaches the remarkable conclusion

that the NS solution is a good approximation quickly after
that. In aHydro and the exact RTA solution, NS starts to be
an accurate approximation at w̄NS ∼ 3, and for DNMR
already at w̄NS ∼ 2. In these examples, we are led to
conclude that w̄attractor ≲ w̄NS. For the example at hand
onewould find τNS ∼ 2.3 fm/c, which is quite soon after the
attractor-driven dynamics kicks in. However, as we
approach the transverse edge of the fireball, the corre-
sponding time scales grow, as does their absolute separa-
tion; e.g., in a region with T0 ∼ 250 MeV, we find
τattractor ∼ 3.4 fm/c and τNS ∼ 6 fm/c, assuming again that
η/s ¼ 0.2 and is constant. If η/s increases at low temper-
atures, these time scales would increase proportionally.
Applying this as a rough guide for full 3+1d simulations,
one would conclude that low-temperature regions of the
plasma (e.g., the edges) would still be particularly sensitive
to nonhydrodynamic modes.

FIG. 4. The aHydro attractor (solid black line) and numerical solutions (grey dashed lines) corresponding to a variety of initial conditions
for Π. The left panel shows the solution for φ, and the right panel shows the solution for the corresponding pressure ratio PL/PT .

FIG. 5. DNMR attractor (solid black line) and numerical solutions (grey dashed lines) corresponding to a variety of initial conditions
for Π. The left panel shows the solution for φ, and the right panel shows the solution for the corresponding pressure ratio PL/PT .
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VI. CONCLUSIONS AND OUTLOOK

In this paper we obtained the dynamical attractors
associated with the aHydro and DNMR versions of viscous
hydrodynamics. Along the way we demonstrated that the
aHydro dynamical equations resum an infinite number of
terms in the inverse Reynolds number, which does not
occur in other approaches. As a direct consequence of this
all-order resummation, we found that (a) the resulting
aHydro attractor was naturally restricted to 1/2<φ<3/4,
which guarantees the positivity of both the longitudinal and
transverse pressures, and (b) the resulting aHydro attractor
was virtually indistinguishable from the attractor emerging
from the exact solution of the RTA Boltzmann equation. On
the DNMR front, we demonstrated that it provides a
significant improvement over the MIS attractor when
compared to the exact RTA solution due to the systematic
inclusion of all second-order contributions (taken into
account in the coefficient βππ). We also showed that, when
truncated at leading order in the inverse Reynolds number,
the aHydro dynamical equations identically reduce to the
DNMR equations.
Aspart of the results presentedwecompared thenumerical

solution of the aHydro and DNMR equations with their
respective attractor solutions and found that, similar to
other frameworks, the numerical solutions for a variety of
different initial conditions approach the attractor solution
within a time τattractor. In LHC heavy-ion collisions, one
expects initial temperatures T0≲500MeV at τ0¼ 0.25 fm/c
and η/s ∼ 0.2, which translate into τattractor ≳ 1.3 fm/c with
the lower bound holding in the hot center of the fireball on
average. Prior to τ ∼ τattractor, each local region of the system
is subject to the evolution of nonhydrodynamic modes
[25,82–84] whose precise evolution depends on the micro-
scopic theory being considered and whose “lifetime”
increases as one approaches the low-temperature edge of
the plasma. As such, the dynamics of the system prior
to τattractor is nonuniversal. In fact, at early times, the whole
set of nonhydrodynamic modes should contribute to the
evolution of the system. In this case, in the context of
kinetic theory, the dynamics cannot be solely described by
the lowest moments of the distribution function, and the
coupling to higher-order moments (which do not possess
hydrodynamic interpretation) becomes relevant.
Faced with such a situation it becomes critically impor-

tant to identify the appropriate microscopic theory to
describe the dynamics of the system. In the center of the
fireball, where the energy densities are the largest at early
times, one would expect approaches that interpolate
between perturbative QCD and holography to be the most
appropriate. However, as one approaches the dilute edges,
a formulation in terms of hadronic kinetic theory would
seem to be the most appropriate. Since some of these
regions could, in principle, be described in terms of the
Boltzmann or Boltzmann-Vlasov equations and the same
theories match smoothly onto the late-time hydrodynamical

attractor, this motivates the ongoing study of hydrodynamic
theories that can be obtained from relativistic kinetic
theory. Further progress may be obtained once more
realistic nonlinear collision kernels are included to inves-
tigate the properties of the kinetic theory attractor, such as
in [20] and [85,86], where the microscopic dynamics is
much more complex than the single relaxation time
scale used in the relaxation-time approximation of the
Boltzmann equation. It is important to remind the reader
that several results obtained in this paper relied on the
relaxation-time approximation of the collision kernel in the
Boltzmann equation. So far, this approximation has been
widely employed in all calculations of the hydrodynamic
attractor in kinetic theory. However, it is still unclear how
reliable this assumption is when describing the physics of
hydrodynamic attractors. For this reason, it is important to
check in future calculations how or if these results change
qualitatively when they are realized with a more realistic
collision term. In this context, going beyond the RTA
approximation will be crucial to investigate the possible
connections between the late-time attractor behavior found
here for the shear stress tensor in hydrodynamic theories
and the universal out-of-equilibrium behavior found at the
level of the distribution function in [87–89].
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APPENDIX A: AN ALTERNATIVE
EXPANSION BASED ON THE aHYDRO

SECOND-MOMENT METHOD

In this appendix we consider what happens if we expand
Eq. (39) to higher order in Π̄ (inverse Reynolds number).
Through order Π̄3, in RTA, one obtains

w̄φ
∂φ
∂w̄þ 20352cη/π

3773
−
81w̄
49

þ
�
603w̄
98

−
39070cη/π
3773

�
φ

−
�
44960cη/π
3773

þ 1725w̄
196

�
φ2 þ

�
81000cη
3773

þ 1935w
392

�
φ3;

ðA1Þ

with cη/π ¼ 1/5. The boundary condition necessary is
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lim
w→0

φðwÞ ¼ 1124

6075
þ 7

12150

X
σ¼�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−390484556 þ 13365i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
281726265

p
σ

3

q
≃ 0.752251: ðA2Þ

In Fig. 6 we plot the solution to the differential equation (A1)
subject to the above boundary condition. As can be seen from
this figure, the third-orderexpansion in Π̄providesaverygood
approximation of the aHydro attractor. This expansion can
naturally be systematically extended to higher orders.

APPENDIX B: THE aHYDRO ATTRACTOR
USING THE ANISOTROPIC MATCHING

PRINCIPLE

Recently, Tinti introduced an alternative method for
obtaining the aHydro evolution equations which is based
on the so-called “anisotropic matching principle” [34]. In
practice, in addition to the equations resulting from the first
moment of the Boltzmann equation, following [61] one
computes the exact equation obeyed by the viscous tensor,
plugging in the anisotropic distribution form on the right-
hand side. The resulting equation for the pressure differ-
ence for a 0þ 1d conformal system is [25]

̇Δ ¼ −
Δ
τeq

þ 2ð1þ ξÞ ∂Δ∂ξ ; ðB1Þ

where

Δ≡ PL − PT ¼ RΔðξÞϵ0ðλÞ ¼ −
3

2
Π; ðB2Þ

and RΔ ≡ ½RLðξÞ −RTðξÞ�/3.
Using the last equality in Eq. (B2), we can write this as

an equation for Π:

̇Π
ϵ
¼ −

Π̄
τeq

−
4

3

1þ ξ

τ

R0
ΔðξÞ

RðξÞ : ðB3Þ

Combining this with Eq. (37), one obtains

w̄φ
∂φ
∂w̄ ¼ −

8

3
þ 20

3
φ − 4φ2 þ w̄

�
2

3
− φ

�

−
1þ ξ

3

R0
ΔðξÞ

RðξÞ : ðB4Þ

The solution of this differential equation, subject to the
boundary condition φð0Þ ¼ 3/4, is shown in Fig. 7. As
this figure shows, the moment method seems to reproduce
the exact RTA attractor better than the Tinti matching
principle.

FIG. 6. Third-order aHydro attractor (green dot-dashed) compared to the other solutions obtained and presented in the main body of
the paper. The left panel shows the solution for φ, and the right panel shows the solution for the corresponding pressure ratio PL/PT .

FIG. 7. The aHydro second-moment based and Tinti’s “aniso-
tropic matching principle” attractors compared to the attractor
obtained from the exact solution to the RTA Boltzmann equation.
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