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We present a description of electrons propagating in an elliptically polarized, plane wave background
which includes circular and linear polarizations as special cases. We calculate, to all orders in the
background field, the two point function and relate it to various expressions found in the literature. The
background field induced mass shift of the electron is shown to be polarization independent in the full
elliptic class. The matrix nature of this mass shift in the fermionic theory is discussed. The extent to which a
momentum space description is possible for this system is clarified.
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I. INTRODUCTION

High intensity lasers are becoming an attractive testing
ground for exploring new regimes in the standard model
[1,2]. The Volkov description [3] of an electron in a plane
wave background provides the equivalent of the free
solution in quantum electrodynamics. It is an all orders,
exact solution displaying the key new features for this type
of intense interaction. They include a laser induced electron
mass shift and the loss of translational invariance [4–15].
Despite recent progress in modeling more realistic laser
pulses [16–22], the plane wave solution for matter fields in
a laser is still widely used and provides much insight into
the physics of matter in extreme conditions.
The Volkov solution has been studied extensively for

circular and linear laser polarizations in both scalar and
fermionic versions of electrodynamics. These polarizations
can be understood as limiting cases of the wider class of
elliptical polarizations. We note that vacuum birefringence,
through polarization flipping [23,24], is supposed to gen-
erate the wider elliptical class from, say, an initial linear
polarization.
In this paper we will study electrons in an elliptically

polarized plane wave background and through this will
identify which structures in the Volkov solution depend
upon the eccentricity of the polarization. We will also see
that the total averaged electromagnetic energy is indepen-
dent of the eccentricity.
In Sec. II we will introduce the elliptically polarized laser

field and relate our description in terms of the eccentricity
to the Stokes’ parameters. Then, in Sec. III, we will solve

the Dirac equation in a general elliptical background and
show that the mass shift is independent of the eccentricity
of the polarization. We will consider linear and circular
polarizations as limits of our general case. Following this,
in Sec. IV, we will calculate the two point function for the
electron in this general background and show how to make
contact between various formulations in the literature. Two
appendices contain details of the calculations and a new
class of Bessel functions which are required to describe the
full elliptical class of polarizations.

II. THE ELLIPTIC LASER FIELD

An elliptically polarized plane wave with null momen-
tum kμ is described by the classical potential Ac where

AcμðxÞ ¼ aμ1τ
þ cosðk · xÞ þ aμ2τ

− sinðk · xÞ: ð1Þ

The orthogonal amplitudes in this potential are taken to
satisfy the light cone gauge conditions that

k · a1 ¼ k · a2 ¼ 0 ð2Þ

and the spacelike normalization that

a1 · a1 ¼ a2 · a2 ¼ a2 < 0: ð3Þ

The eccentricity parameters in (1) are defined by τ� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� τ2

p
, where τ determines the overall eccentricity of the

laser field. In particular, circular polarization corresponds
to τ ¼ 0 and linear to τ ¼ 1.
The geometric eccentricity of an ellipse is related to the

above eccentricity parameter by identifying the major axis
as pointing along the direction of the vector aμ1, the minor
one is then along the vector aμ2. Using standard properties of
such ellipses, we have
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geometric eccentricity ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 · a1ðτþÞ2 − a2 · a2ðτ−Þ2

a1 · a1ðτþÞ2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2τ2

1þ τ2

s
: ð4Þ

From this we see that the eccentricity parameter τ is less
than the geometric eccentricity for all polarizations between
the circular and linear limits.
One of the key physical consequences of this description

of the full elliptic class of polarizations is that the total
averaged electromagnetic energy is independent of the
eccentricity. This follows directly from the electromagnetic
potential (1) since the electric and magnetic fields can be
easily calculated and squared. Averaging over a laser cycle
will then remove eccentricity dependent cross terms and
result in an expression proportional to ðτþÞ2 þ ðτ−Þ2,
which is independent of τ.
The single, unified framework of (1) describes an

experimental setup with fixed laser energy for any polari-
zation in the elliptic class. Note that, within this approach,
the averaged value of the field amplitude, ðAcÞ2, is
polarization dependent. If we had kept the averaged
amplitude fixed within this class, then the averaged energy
would be polarization dependent.
The expression (1) for the background laser field, given

in terms of the amplitudes a1, a2 and the eccentricity
parameters, can be simplified by introducing the complex
laser amplitude Aμ defined by

eAcμðxÞ ¼ 1

2
eðaμ1τþ þ iaμ2τ

−Þe−ik·xþ 1

2
eðaμ1τþ− iaμ2τ

−Þeik·x

≔Aμe−ik·xþA�μeik·x: ð5Þ

Here we have absorbed the coupling into the complex laser
amplitude to make clear that the relevant expansion
parameter is proportional to ea, and that the size of this
determines whether we are in the weak field, jAj < m, or
strong field, jAj > m, regime wherem is the electron mass.
In terms of this complex amplitude the original real

amplitudes and eccentricity parameters are recovered by
noting that eaμ1τ

þ ¼ A�μ þAμ and eaμ2τ
− ¼ iðA�μ −AμÞ.

The modulus of this amplitude is particularly simple since

2A ·A� ¼ e2a2; ð6Þ

which we note is independent of the polarization. This will
be important below when we look at the mass of the
associated charged particles. We also note that in the limit
of linear polarization Aμ is real while for all other polar-
izations it is complex. In addition, due to the orthogonality
of the real amplitudes in the laser potential,A2 is real for all
polarizations and vanishes for circular polarization.

This description of the laser field directly in terms of the
eccentricity parameter will allow for a direct route to the
quantum theory, but this is not the way such laser
configurations are usually discussed, see for example
[25,26,27]. To translate into the more familiar Stokes’
parameter approach to polarization, we recall that the
amplitudes in the potential (1) satisfy the orthogonality
condition (2). If we take the laser to be pointing in the x3

direction, then we can write

a1 ¼

0
BBB@

0

α

β

0

1
CCCAþ Λ1

0
BBB@

1

0

0

1

1
CCCA and

a2 ¼ �

0
BBB@

0

β

−α
0

1
CCCAþ Λ2

0
BBB@

1

0

0

1

1
CCCA ð7Þ

where Λ1 and Λ2 are undetermined constants. From (3) we
see that α2 þ β2 ¼ −a2.
Inserting these expressions into the description of the

complex laser amplitude (5), allows us to identify the
polarization density tensor for this elliptically polarized
laser as

ρ ≔ −
1

A ·A�

�
A1A1� A1A2�

A2A1� A2A2�

�

¼ 1

2I

�
I þQ U − iV

U þ iV I −Q

�
ð8Þ

where I ¼ α2 þ β2, Q ¼ τ2ðα2 − β2Þ, U ¼ τ22αβ and
V ¼∓ ffiffiffiffiffiffiffiffiffiffiffiffi

1 − τ4
p

I. These parameters, here generalized for
the full elliptic class, are called the Stokes’ parameters.
This polarization tensor is not invariant under rotations in

the transverse plane and under such a transformation
through an angle θ, represented by the matrix RðθÞ, we
have ρ → ρ0 ¼ R†ðθÞρRðθÞ where

ρ0 ¼ 1

2I

�
I þQ0 U0 − iV

U0 þ iV I −Q0

�
ð9Þ

with Q0 ¼ Q cos 2θ þ U sin 2θ and U0 ¼ U cos 2θ −
Q sin 2θ. This rotation of two of the Stokes’ parameters
and the invariance of the third, is best understood by
looking at the circular and linear limits.
For circular polarization, where τ ¼ 0, we have Q ¼

U ¼ 0 and V ¼ �I. The choice in sign of V corresponds to
either left (V ¼ I) or right (V ¼ −I) circular polarization.
Clearly, a rotation will not affect this result, and this is
encoded in the above invariance of V.
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In the linear limit, where τ ¼ 1, we have V ¼ 0 while

Q ¼ α2 − β2

α2 þ β2
; U ¼ 2αβ

α2 þ β2
: ð10Þ

Now through a rotation we can set β ¼ 0, in which case
Q ¼ I and U ¼ 0 giving a horizontal polarization. Or we
can rotate so that α ¼ 0, which does not change U ¼ 0 but
flips Q so that Q ¼ −1, corresponding to a vertical
polarization. Alternatively, we can rotate so that α ¼ �β
so that now Q ¼ 0 while U ¼ �I and this corresponds to a
linear polarization of �45°.
Our expression (8) for the polarization tensor has thus

allowed for a precise identification of the Stokes’ param-
eters for this full elliptic class. We have also seen how to
recover the more familiar circular and linear eccentricity
limits for these parameters. We shall see in the next section
that quantizing in this background is best addressed using
the eccentricity parametrization of the polarization rather
than the Stokes’ description. The dictionary implicit in (8)
allows a simple translation back into the parameters more
familiar to the wider laser community.

III. QUANTIZED MATTER IN A LASER

The interaction of matter with the plane wave back-
ground (1) is achieved through the usual minimal coupling
prescription whereby the derivative ∂μ is replaced by the
covariant derivative ∂μ þ ieAc

μ in the equations of motion
for the matter. The structure of the potential (1) allows for
an exact description of this interacting theory [3], and we
will refer to this as the Volkov solution. The route to the
quantum description of such an interacting theory will now
be based upon this Volkov solution rather than the free
theory.
In Refs. [13,15] the quantization of both scalar and

fermionic matter propagating in circular and linearly
polarized backgrounds were addressed, but the analysis
was restricted to the translationally invariant part of the two
point function. We now extend that analysis to both the full
elliptic class and the complete two point function. Through
this we shall identify the eccentricity dependencies of both
the mass and wave function normalization, and delineate
the impact of the laser background on translational
invariance.
In this paper we consider only the interactions of the

electron with the background field, i.e., we neglect all
photons that are not degenerate with the laser background.
Working in the Heisenberg picture appropriate to these
interactions, the Volkov field ψVðxÞ satisfies the coupled
Dirac equation

ið=∂ þ ie=AcÞψVðxÞ ¼ mψVðxÞ; ð11Þ

where =∂, for example, is the Feynman slash notation,
=∂ ¼ ∂μγ

μ. Recall that in the free theory, the Dirac equation

is solved by Fourier expanding in the on-shell momentum,
pμ
OS, where p

2
OS ¼ m2. The operator content of the field is

then carried by the creation and annihilation operators,
aðαÞðpÞ and b†ðαÞðpÞ, multiplied by appropriate spinorial
terms, UðαÞðpÞ and VðαÞðpÞ. In the Volkov background, the
solution to (11) has a similar structure and we find

ψVðxÞ ¼
Z

đ3p
m
E�
p
ðF ðx; p̄ÞDðx; p̄ÞUðαÞ

V ðpÞaðαÞV ðpÞ

þ F ðx;−p̄ÞDðx;−p̄ÞVðαÞ
V ðpÞb†ðαÞV ðpÞÞ; ð12Þ

where the integration measure notation absorbs factors of
2π so that đ3p ¼ d3p

�ð2πÞ3. The adjoint field is

ψ̄VðyÞ ¼
Z

đ3q
m
E�
q
ðŪðβÞ

V ðqÞF ðy;−q̄ÞDðy; q̄Þa†ðβÞV ðqÞ

þ V̄ðβÞ
V ðqÞF ðy; q̄ÞDðy;−q̄ÞbðβÞV ðqÞÞ: ð13Þ

Wewill now unpick the details of this solution. The Volkov
spinors UV and VV are defined in Appendix A along with
the Volkov creation and annihilation operators.
Before looking at the fermionic pre-factor, F ðx; p̄Þ, and

distorted plane wave term, Dðx; p̄Þ, in (12), we note that in
these expressions the momentum p̄ ¼ ðE�

p; pÞ satisfies the
shifted on-shell condition of the so called quasimomentum:

p̄2 −m2� ¼ E�2
p − p2 −m2� ¼ 0; ð14Þ

where

m2� ¼ m2 þ δm2 ¼ m2 − 2A ·A�: ð15Þ

An important feature, revealed here by studying the full
elliptic class, is that the mass shift seen in (15) is
polarization independent due to (6) so that, for the full
elliptic class,

δm2 ¼ −e2a2: ð16Þ

This result is not evident when the extreme cases of
circular and linearly polarized lasers are considered sepa-
rately. A mass-shift of δm2 ¼ − 1

2
e2a2 is commonly quoted

for linearly polarized lasers, while for circularly polarized
lasers a mass shift of δm2 ¼ −e2a2 is given. This apparent
difference can be traced back to different normalizations of
the two laser fields and hence the total energy being
considered. Within the elliptic class, using a common total
energy, the mass shift is seen to be independent of the
eccentricity.
The fermionic prefactor F ðx; p̄Þ in (12) is found to be

F ðx; p̄Þ ¼ 1þ e
=k=AcðxÞ
2p̄ · k

: ð17Þ
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This can be written as

F ðx; p̄Þ ¼ 1þ =k
2p̄ · k

ð=Ae−ik·x þ =A�eik·xÞ; ð18Þ

where we define =A� ¼ A�μγμ, that is we do not take the
complex conjugate of the Dirac matrices.
In addition, from (12) and (13), we see that the laser

background distorts the plane waves of the free theory
which, in this interacting theory, become

Dðx; p̄Þ ¼ e−ip̄·xeiðω̄1 sinðk·xÞþv̄ sinð2k·xÞþω̄2 cosðk·xÞÞ

¼ e−ip̄·x
X∞
n¼−∞

eink·xJτnðp̄Þ; ð19Þ

where we have introduced Jτnðp̄Þ, an elliptical generaliza-
tion of the Bessel functions, which we call eccentric Bessel
functions. Their properties are discussed in Appendix B.
The variables ω̄1, ω̄2 and v̄ in the upper line of (19) are
given by

ω̄1 ¼ −
�
p̄ ·A�

p̄ · k
þ p̄ ·A

p̄ · k

�
; ω̄2 ¼ i

�
p̄ ·A�

p̄ · k
−
p̄ ·A
p̄ · k

�
ð20Þ

and

v̄ ¼
�

A�2

4p̄ · k
þ A2

4p̄ · k

�
: ð21Þ

The bar over these variables indicates their construction out
of the on-shell momentum p̄, as in (14). Later, when this
momentum p̄ is extended off shell and written as p, all
these variables will also lose their bars.
Note that in the limit of linear polarization, where Aμ is

real, we have

ω̄1jτ¼1 ¼ −2
p̄ ·A
p̄ · k

; ω̄2jτ¼1 ¼ 0; v̄jτ¼1 ¼
A2

2p̄ · k
;

ð22Þ

while for circular polarization we have

ω̄1jτ¼0 ¼ −
�
p̄ ·A�

p̄ · k
þ p̄ ·A

p̄ · k

�
;

ω̄2jτ¼0 ¼ i

�
p̄ ·A�

p̄ · k
−
p̄ ·A
p̄ · k

�
; v̄jτ¼0 ¼ 0: ð23Þ

In terms of the original amplitudes, this circular limit has
the simple form

ω̄1jτ¼0 ¼ −e
p · a1
p · k

; ω̄2jτ¼0 ¼ e
p · a2
p · k

: ð24Þ

It is important to note that there is a residual gauge
freedom present in our description of the background field
(1) given by Ac

μðxÞ → Ac
μðxÞ þ ∂μλðxÞ where

λðxÞ ¼ λ1τ
þ sinðk · xÞ − λ2τ

− cosðk · xÞ: ð25Þ

Transformations of this form preserve the elliptic class and
act on the amplitudes to give

aμ1 → aμ1 þ λ1kμ; aμ2 → aμ2 þ λ2kμ: ð26Þ

Through this the undetermined parameters in (7) can be
eliminated, thus simplifying the route to the Stokes’
parameters.
In terms of the complex amplitude Aμ these gauge

transformations become

Aμ → Aμ þ 1

2
eðλ1τþ þ iλ2τ−Þkμ; ð27Þ

and we see that both A2 andA ·A� are invariant under this
residual gauge freedom. Hence the mass shift (15) is also
gauge invariant. Furthermore, from (20) and (21), we have
ω1 → ω1 − eλ1τþ, ω2 → ω2 þ eλ2τ− and v → v. Tracing
these changes through (19) and (12) then leads to the
expected background field residual gauge transformation
property within this elliptic class:

ψVðxÞ → e−ieλðxÞψVðxÞ: ð28Þ

In this section we have presented the solution to the
Dirac equation in an elliptically polarized plane wave
background, and we have seen the polarization independ-
ence and residual gauge invariance of the various mani-
festations of the fermionic mass shift. Next we will turn to
constructing the propagator and, more generally, the two
point function for an electron in such a background.

IV. THE TWO POINT FUNCTION

The Volkov field for the elliptic class of polarizations can
now be used to construct the two point function through the
(Volkov) vacuum expectation values of the time-ordered
product of such fields. Extending the arguments given in
[15] for the linearly polarized laser, we find for the full two
point function
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Vh0jTψVðxÞψ̄VðyÞj0iV ¼
X∞

n;r¼−∞
eink·xe−irk·y

Z
đ4pe−ip·ðx−yÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2ðn;pÞ

p ið=pþm− δ=mÞ
p2−m2� þ iϵ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z̄2ðr;pÞ

q
; ð29Þ

In this expression we see the expected normalized fer-
mionic propagator with off-shell momentum pμ but with
several additional structures.
The free propagatorlike term in (29) is enclosed between

wave function normalization factors, constructed out of
the eccentric Bessel functions introduced in Appendix B,
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2ðn; pÞ

p
¼ JτnðpÞ þ

=k
2p · k

ð=AJτnþ1ðpÞ þ =A�Jτn−1ðpÞÞ

ð30Þ

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z̄2ðr; pÞ

q
¼ Jτ�r ðpÞ −

=k
2p · k

ð=A�Jτ�rþ1ðpÞ þ =AJτ�r−1ðpÞÞ;

ð31Þ

which is the adjoint normalization factor defined via

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z̄2ðr; pÞ

q
¼ γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2ðr; pÞ

p †γ0: ð32Þ

The next thing to notice is that translational invariance
has been partially lost in (29) due to the phase factors in
front of the integral. This obstructs a fully momentum space
description of the two point function. This is not a surprise
and simply reflects the existence of the fixed laser back-
ground. What is interesting to note, though, is that a fully
momentum space description can be recovered if k · x or
k · y vanishes. Also, the diagonal part of the two point
function, where n ¼ r, is fully translational invariant.
Finally, the two point function (29) contains a matrix

mass shift given by

δ=m ¼ −
A ·A�

p · k
=k ¼ −

e2a2

2p · k
=k: ð33Þ

As well as the unusual feature of this being a matrix [15],
the relative sign in the numerator,m − δ=m, looks surprising.
It can be understood in this fermionic theory by rewriting

ið=pþm − δ=mÞ
p2 −m2�

¼ i
=p − ðmþ δ=mÞ ; ð34Þ

where we have used (15). We emphasize again that this
shows that both manifestations (15) and (33) of the mass

shift in this fermionic theory are gauge invariant and
independent of the polarization within this elliptic class
of backgrounds.
Our expression (29) for the two point function explicitly

brings out the mass shift caused by the laser background.
Other approaches to the Volkov field, for specific polar-
izations, write the two point function in different ways and
we will now see how to make contact with such approaches
for the full elliptic class.
It is possible to rewrite (29) in a more familiar form

where the mass shift is, though, not manifest. To do this,
shift the momentum in (29) by

pμ → pμ −
A� ·A
p · k

kμ:

This leads to the following expression for the two point
function

Vh0jTψVðxÞψ̄VðyÞj0iV
¼

Z
đ4pEðx; pÞ ið=pþmÞ

p2 −m2 þ iϵ
Ēðy; pÞ; ð35Þ

where

Eðx; pÞ ¼ e−ip·x
X∞
n¼−∞

eiðnþ
A� ·A
p·k Þk·x ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z2ðn; pÞ
p

; ð36Þ

and the mass shift has been absorbed into the phase.
The factor, Eðx; pÞ, may also be rewritten by inserting

expressions (30) and (31) for the normalization factors, and
then, through shifts in the sum, extracting an overall
eccentric Bessel function to get

Eðp;xÞ ¼ e−ip·x
X∞
n¼−∞

eink·xJτnðpÞ

×

�
1þ =k

2p · k
ð=Ae−ik·xþ=A�eik·xÞ

�
ei

A� ·A
p·k k·x: ð37Þ

From (17), (18) and our definition (B5) of the eccentric
Bessel functions, this becomes

Eðp; xÞ ¼ e−iðp−
A� ·A
p·k kÞ·x

�
1þ e=k=Acðk · xÞ

2p · k

�
× eiðω1 sinðk·xÞþω2 cosðk·xÞþv sinð2k·xÞÞ: ð38Þ

This then rapidly leads to the expression that

Eðp; xÞ ¼
�
1þ e=k=Acðk · xÞ

2p · k

�
eiSðp;xÞ; ð39Þ

where the phase factor includes integrals over the back-
ground potential
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Sðp; xÞ ¼ −p · x −
Z

k·x
dϕ

�
ep · AcðϕÞ

p · k
−
e2Ac2ðϕÞ
2p · k

�
:

ð40Þ

The formal expression (39) for the Ritus matrices [28]
assumes that there are appropriate boundary conditions
defined so that the lower limit in the integral (40) does not
contribute.
An alternative way to rewrite (29) is to focus on the

factors leading to the break down in translational invari-
ance, and try to minimize their impact on the overall
structure of the two point function. The prefactor in (29)
responsible for this violation can be written in several
equivalent ways. For example, we could have

eink·xe−irk·y ¼ eink·ðx−yÞeiðn−rÞk·y ð41Þ

or

eink·xe−irk·y ¼ eiðn−rÞk·xeirk·ðx−yÞ: ð42Þ

The translation invariant part of either of these can then be
absorbed into the integral by shifting either p → pþ nk or
p → pþ rk and redefining the dummy variables in the
sum. This leads to two alternative but complementary ways
for writing (29) as either

Vh0jTψVðxÞψ̄VðyÞj0iV
¼

X∞
r¼−∞

eirk·y
Z

đ4pe−ip·ðx−yÞ

×
X∞
n¼−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2ðn; pÞ

p ið=pþ n=kþm − δ=mÞ
ðpþ nkÞ2 −m2� þ iϵ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z̄2ðn − r; pÞ

q
ð43Þ

or

Vh0jTψVðxÞψ̄VðyÞj0iV
¼

X∞
r¼−∞

eirk·x
Z

đ4pe−ip·ðx−yÞ

×
X∞
n¼−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2ðnþ r; pÞ

p ið=pþ n=kþm − δ=mÞ
ðpþ nkÞ2 −m2� þ iϵ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z̄2ðn; pÞ

q
: ð44Þ

In contrast to (29), in both of these expressions for the two
point function, the central propagatorlike structure now
depends on one of the momentum summations. This
exposes the sum over sideband poles interpretation of
the two point function seen earlier for specific polarizations
[29]. This description in terms of sidebands naturally
emerges in perturbative calculations in weak laser

background [13,15], and thus offers an attractive route to
the introduction of loop corrections and the associated
renormalization process.

V. CONCLUSIONS

In this paper we have seen how to formulate a description
of a fermion propagating in an elliptical class of laser
backgrounds. This class includes both linear and circular
polarizations as particular limits of the eccentricity param-
eter. Through this we have seen how to identify eccentricity
dependences in the structure of the Volkov field and its two
point function.
An unexpected result that emerges from working in this

full class of polarizations is that the (matrix) mass shift is
independent of the eccentricity of the background field.
Different values of the mass shift in the literature are
understood as arising from different choices of normali-
zation of the background field. We have seen how this
normalization can be motivated physically in terms of the
overall energy of the system, which is conserved within this
elliptic class.
Although the presence of any laser field violates trans-

lational invariance, we have seen that it is still possible to
develop a momentum space description of the two point
function in conjunction with phase factors that contain the
translation noninvariant physics.
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APPENDIX A: VOLKOV FIELD DETAILS

In this Appendix we will sketch how the solution of the
Dirac equation (11) in an elliptically polarized plane wave
background is obtained.
From (12) we see that the derivative acts upon the terms

F ðx; p̄ÞDðx; p̄Þ. Using (18) and (19) we obtain

ið=∂ þ ie=AcðxÞÞF ðx; p̄ÞDðx; p̄Þ ¼ F ðx; p̄ÞDðx; p̄Þ

×

�
=̄pþA ·A�

p̄ · k
=k

�
ðA1Þ

and equivalently

ið=∂ þ ie=AcðxÞÞF ðx;−p̄ÞDðx;−p̄Þ ¼ F ðx;−p̄ÞDðx;−p̄Þ

×

�
−=̄p −

A ·A�

p̄ · k
=k

�
:

ðA2Þ
Note that in both of these equations we see that the action of
the Dirac equation has been pulled through to now act upon
the spinors in (12).
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Then, in order for (11) to be solved, acting on the spinors
we need �

=̄pþA ·A�

p̄ · k
=k

�
UðαÞ
V ðpÞ ¼ mUðαÞ

V ðpÞ; ðA3Þ

and �
=̄pþA ·A�

p̄ · k
=k

�
VðαÞ
V ðpÞ ¼ −mVðαÞ

V ðpÞ: ðA4Þ

From (6) these equations are independent of the eccen-
tricity of the polarization.
We can now construct the Volkov spinors by boosting the

static spinors

Uð1Þð0Þ ¼

0
BBB@

1

0

0

0

1
CCCA; Uð2Þð0Þ ¼

0
BBB@

0

1

0

0

1
CCCA;

Vð1Þð0Þ ¼

0
BBB@

0

0

1

0

1
CCCA; Vð2Þð0Þ ¼

0
BBB@

0

0

0

1

1
CCCA: ðA5Þ

We define

UðαÞ
V ðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðmþ E�
p þ A·A�

p̄·k k0Þ
q
×

�
=̄pþA ·A�

p̄ · k
=kþm

�
UðαÞð0Þ; ðA6Þ

and

VðαÞ
V ðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðmþ E�
p þ A·A�

p̄·k k0Þ
q
×

�
−=̄p −

A ·A�

p̄ · k
=kþm

�
VðαÞð0Þ: ðA7Þ

With these conventions we have the inner products

ŪðαÞ
V ðpÞUðβÞ

V ðpÞ ¼ δαβ; and V̄ðαÞ
V ðpÞVðβÞ

V ðpÞ ¼ −δαβ;

ðA8Þ

as well as the tensor products

UðαÞ
V ðpÞŪðαÞ

V ðpÞ ¼
=̄pþ A·A�

p̄·k =kþm

2m
; ðA9Þ

and

VðαÞ
V ðpÞV̄ðαÞ

V ðpÞ ¼
=̄pþ A·A�

p̄·k =k −m

2m
: ðA10Þ

The Volkov Fock states are then built up in the usual way
from the Volkov vacuum j0iV. Note that with our con-
ventions, the creation-annihilation operators satisfy the
anti-commutation relation

faðαÞV ðpÞ; a†ðβÞV ðqÞg ¼ ð2πÞ3 E
�
p

m
δαβδð3Þðp − qÞ: ðA11Þ

The two point function is the time-ordered product
of the vacuum expectation value of the fields ψVðxÞ and
ψ̄VðyÞ. This means that we first need to evaluate

Vh0jψVðxÞψ̄VðyÞj0iV and Vh0jψ̄VðyÞψVðxÞj0iV, and sec-
ondly to impose the time-ordering. A little algebra shows
that

Vh0jψVðxÞψ̄VðyÞj0i ¼
Z

đ3p
1

2E�
p
F ðx; p̄ÞDðx; p̄Þ

× ð=̄pþm − δ=̄mÞF ðy;−p̄ÞD†ðy; p̄Þ
ðA12Þ

and

Vh0jψ̄VðyÞψVðxÞj0iV ¼
Z

đ3p
1

2E�
p
F ðx;−p̄ÞDðx;−p̄Þ

× ð=̄p −m − δ=̄mÞF ðy; p̄ÞD†ðy;−p̄Þ:
ðA13Þ

We now need to tidy these expressions up prior to inserting
the time-ordering. Working through the definitions we see
that

F ðx;p̄ÞDðx;p̄Þ

¼e−ip̄·x
X
n

eink·x
�
Jτnðp̄Þþ

=k
2p̄ ·k

ð=AJτnþ1ðp̄Þþ=A�Jτn−1ðp̄ÞÞ
�

ðA14Þ

and

F ðy;−p̄ÞD†ðy;p̄Þ

¼eip̄·y
X
r

e−irk·x
�
Jτ�r ðp̄Þ−

=k
2p̄ ·k

ð=AJτ�r−1ðp̄Þþ=A�Jτ�rþ1ðp̄ÞÞ
�
;

ðA15Þ

where we have introduced the elliptic Bessel functions of
Appendix B.
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Hence we find that

Vh0jψVðxÞψ̄VðyÞj0iV ¼
X
n;r

eink·xe−irk·y
Z

đ3p
1

2E�
p
e−ip̄·ðx−yÞ

�
Jτnðp̄Þ þ

=k
2p̄ · k

ð=AJτnþ1ðp̄Þ þ =A�Jτn−1ðp̄ÞÞ
�

× ð=̄pþm − δ=̄mÞ
�
Jτ�r ðp̄Þ −

=k
2p̄ · k

ð=AJτ�r−1ðp̄Þ þ =A�Jτ�rþ1ðp̄ÞÞ
�

ðA16Þ

and

Vh0jψ̄VðyÞψVðxÞj0iV ¼
X
n;r

eink·xe−irk·y
Z

đ3p
1

2E�
p
eip̄·ðx−yÞ

�
Jτnð−p̄Þ −

=k
2p̄ · k

ð=AJτnþ1ð−p̄Þ þ =A�Jτn−1ð−p̄ÞÞ
�

× ð=̄p −m − δ=̄mÞ
�
Jτ�r ð−p̄Þ þ

=k
2p̄ · k

ð=AJτ�r−1ð−p̄Þ þ =A�Jτ�rþ1ð−p̄ÞÞ
�
: ðA17Þ

If we now add the time ordering and follow the same steps as in [15], the momentum is extended off-shell (so p̄ → p) and
we obtain (29).

APPENDIX B: ECCENTRIC BESSEL FUNCTIONS

Recall that the Bessel functions (of the first kind) are defined by

eia sin θ ¼
X∞
n¼−∞

einθJnðaÞ ðB1Þ

A similar expansion with cos θ in the exponential is easy to derive and we get

eic cos θ ¼ eic sinðθþπ
2
Þ ¼

X∞
m¼−∞

eimθimJmðcÞ ðB2Þ

Using these we see that

eia sin θeib sin 2θeic cos θ ¼
X
n

einθ
X
m

imJn−mða; bÞJmðcÞ

where we have introduced the generalized Bessel functions [13,30], familiar from studies of linearly polarized lasers,
defined by

Jnða; bÞ ¼
X
r

Jn−2rðaÞJrðbÞ: ðB3Þ

We now define the eccentric Bessel functions by

Jnða; b; cÞ ¼
X
m

imJn−mða; bÞJmðcÞ; ðB4Þ

then we have

eia sin θeib sin 2θeic cos θ ¼
X
n

einθJnða; b; cÞ ¼
X
n

einθJτnðpÞ; ðB5Þ

where the final expression uses the condensed notation used in the main part of this paper.
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