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In this paper we perform an amplitude analysis of η0 → πþπ−γ and confront it with the latest BESIII data.
Based on the final-state interaction theorem, we represent the amplitude in terms of an Omnés function
multiplied by a form factor that corresponds to the contributions from left-hand cuts and right-hand cuts in
the inelastic channels. We also take into account the isospin violation effect induced by ρ − ω mixing. Our
results show that the anomaly contribution is mandatory in order to explain the data. Its contribution to the
decay width of Γðη0 → ππγÞ is larger than that induced by isospin violation. Finally we extract the pole
positions of the ρ and ω as well as their corresponding residues.

DOI: 10.1103/PhysRevD.97.036012

I. INTRODUCTION

There has long been an interest in the study of anomalous
decays,which are driven by the chiral anomaly ofQCD.1 The
η0/η → πþπ−γ decays are typical processes for exploring the
box anomaly and investigating theρ − ωmixingmechanism.
They are useful to extract the pion vector form factor [2–5]
and the form factors of η0/η → γγ� transitions [3–5], helping
us to further test, e.g., the Pascalutsa-Vanderhaeghen light-
by-light sum rule [6–8]. The so-obtained knowledge of these
form factors is also crucial in the determination of the
hadronic contribution to the anomalous magnetic moment
of the muon [9–11], as witnessed by the preparation for the
planned experiments at Fermilab [12] and J-PARC [13].
Furthermore, the two processes are helpful for decoding the
information on the resonances (intermediate states) such as ρ

and ω. For instance, the branching ratio of ω → ππ has been
extracted in Ref. [5].
Searching for the box anomaly in the η0/η → πþπ−γ

decays is also an interesting topic on the experimental side.
For a η decay, WASA-at-COSY [14] and KLOE [15] have
determined the relevant parameters using the approach,
proposed in Ref. [2], based on chiral perturbation theory
(χPT) and dispersion theory. For the corresponding η0
decay, JADE [16], CELLO [17], PLUTO [18], TASSO
[19], TPC [20], and ARGUS [21] all observed a peak shift
of about þ20 MeV/c2 in the dipion mass spectrum, with
respect to the expected position of the ρ0. This certainly
indicates that only a contribution from the ρ is not
sufficient. This issue is also discussed in Ref. [22] for
Bl4 decay. In the analysis of Ref. [23], it is shown that the
contribution from the box anomaly could be essential in
η0 → πþπ−γ. Later, the significance of the box anomaly
was found to be 4σ by the Crystal Barrel (CB)
Collaboration [24] with 7400 events, while the L3
Collaboration [25] claimed that the ρ contribution is
sufficient to describe the data with less data (2123� 53
events). Nonetheless, the CB data is not precise enough to
disentangle the effect of the ρ − ω interference from others
in the line shape, as shown, e.g., by Ref. [26]. Recently, the
BESIII Collaboration [27,28] explored the process η0 →
πþπ−γ with very high statistics (of about 9.7 × 105 events),
and the ρ − ω interference is seen for the first time in this
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decay. Therefore, it is timely to make a refined amplitude
analysis of the anomalous decay η0 → πþπ−γ.
In the η0 → πþπ−γ decay, the contribution of the

anomaly is significant and hence can not be simply
determined by a tree-level amplitude from the Wess-
Zumino-Witten (WZW) [29,30] term. In Ref. [31], this
anomalous decay is studied using χPT in combination with
a nonperturbative method based on coupled channels. Here,
by properly taking into account the effects of the final-state
interaction (FSI) and ρ − ω mixing, we aim at obtaining
precise information about the anomaly. On the one hand,
since the effect of three-body rescattering between the
pions and the photon is negligible due to the tiny electro-
magnetic interaction, a purely strong ππ FSI should be
sufficient. The nonperturbative ππ FSI is implemented in a
model-independent way, where the contribution corre-
sponding to the unitary cut is represented by an Omnès
function. On the other hand, our treatment of ρ − ω mixing
is beyond the simplified version employed in Ref. [5]. In
our case, the isospin-violating ρ − ω interference is con-
structed by invoking the resonance chiral theory (RχT)
[32–38] (for earlier attempts using χPT with explicit vector
mesons, see e.g., Refs. [39,40]). The approach we use here
is a combination of the dispersion theory and chiral
effective field theory. Similar prescriptions have been
widely applied to, e.g., γγ → ππ [41,42], η → 3π [43],
ϕ/ω → πγ� [44], Dl3 [45] and Bl4 [22]. With our method,
it is clearly shown that the anomaly is mandatory in order to
describe the experimental data. Besides, it is possible and
also interesting to see how much the leading-order (LO)
result in the 1/NC expansion of RχT is modified by the ππ
rescattering. For a general discussion of the role of vector
mesons in anomalous processes, see e.g. [46,47].
This paper is organized as follows. In Sec. II we discuss

the formalism for the η0 → ππγ decay amplitude. The
inclusion of the FSI effect is discussed in Sec. II A, while
the isospin-violating form factors are calculated within RχT
in Sec. II B. Section II C provides the final form of the
decay amplitude. Section III contains our numerical results.
We fit to the experimental data and pin down all the relevant
unknown parameters in Sec. III A. In Sec. III B, we extract
the poles of the ρ and ω resonances as well as their
couplings to the η0γ states, which are then used to calculate
the decay widths. We also discuss the impact of the isospin-
violating effect on the P-wave phase of πþπ− scattering.
Finally, we summarize and make conclusions in Sec. IV.
The explicit expressions of the isospin-violating form
factors in RχT are relegated to the Appendix.

II. AMPLITUDE FORMALISM

A. Final state interaction

Bose and charge conjugation symmetry guarantee that
η0 → π0π0γ is forbidden, and hencewe only need to consider
the mode η0 → πþπ−γ. As will be explained below, its full
amplitude is composed of partialwaveswith an isospin I ¼ 1
and an odd angular momentum, i.e. P;F;… waves. The

isospin violation part induced mainly by the ρ − ωmixing is
of an isospin I ¼ 0, which will be discussed in the next
section. The Lorentz-invariant decay amplitude for η0ðqÞ →
πþðpþÞπ−ðp−ÞγðkÞ can be written as

Mλ ¼ eϵμναβϵμðk; λÞqνpþ
α p−

βF λðs; cos θÞ; ð1Þ
where ϵμðk; λÞ is the polarization of the outgoing photonwith
anhelicity λ. Thevariables of the form factorF λ are chosen to
be s≡ ðq − kÞ2 and cos θ. Here, θ is the scattering angle in
the ππ center ofmass frame.The partial-wave decomposition
of Mλ reads

Mλ ¼ 16π
ffiffiffiffiffiffiffiffi
Nππ

p X
J

MJλðsÞdJλ0ðθÞð2J þ 1Þ; ð2Þ

where the normalization factor should be set to Nππ ¼ 2,
in accordance with the Bose statistics of identical
particles. The isospin decomposition is given by MJλðsÞ ¼
−M1

JλðsÞ/
ffiffiffi
2

p
, so that

M1
JλðsÞ ¼ −

eðM2
η0 − sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

π

p
F1
JλðsÞ

128
ffiffiffi
2

p
π

; ð3Þ

with

F1
JλðsÞ ¼

Z
1

−1
d cos θF λðs; cos θÞ sin θdJλ0ðθÞ: ð4Þ

From the parity conservation one has F1
JλðsÞ ¼

ð−ÞJF1
Jð−λÞðsÞ. Here we only keep the lowest P-wave and

ignore F- and higher partial waves since their contributions
are relatively small. Following these constraintswehave only
one independent partial wave, M1

1þðsÞ or M1
1−ðsÞ.

Comparing Eqs. (1)–(4) one soon finds Fþðs; cos θÞ ¼
−3/ð2 ffiffiffi

2
p ÞF1

1þðsÞ. Notice that higher order corrections of
QEDare negligible compared to the hadronicFSI; thuswedo
not take them into account. Finally we construct our
amplitude based on Watson’s FSI theorem,

F1
1þðsÞ ¼ PðsÞΩ1

1ðsÞ; ð5Þ
with Ω1

1ðsÞ the so-called Omnès function and PðsÞ a
polynomial. We will discuss PðsÞ in Sec. II C. The Omnès
function satisfies the following dispersion relation:

Ω1
1ðsÞ ¼ exp

�
s
π

Z
∞

4M2
π

ds0
φ1
1ðs0Þ

s0ðs0 − sÞ
�
: ð6Þ

The function φ1
1ðsÞ denotes the phase of a P-wave elastic

ππ → ππ amplitude, which was given in a previous ampli-
tude analysis of ππ scattering [48,49]. In Fig. 1, we show the
phase and modulus of the Omnès function. Up to the K̄K
threshold, it has the same phase as that of the decay
amplitude F1

1þðsÞ.

B. Formalism of RχT

In this section, we will calculate the chiral anomaly
contribution as well as the isospin-violating amplitude for
η0 → πþπ−γ at the LO in the large NC expansion in RχT,
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with NC the number of colors. The ρ − ω mixing is taken
into account following Ref. [38]. The relevant chiral
Lagrangian can be written as [34],

LRχT ¼ LV
kin þ LV

int þ LGB
ð4Þ : ð7Þ

The part LGB
ð4Þ containing the LO operators of the chiral

anomaly is [29,30]

LGB
ð4Þ ¼ i

NC

ffiffiffi
2

p

12π2F3
εμνρσh∂μΦ∂νΦ∂ρΦvσi þ � � � ; ð8Þ

where F ≈ 92.2 MeV is the pion decay constant in the
chiral limit and Φ is a nonet matrix collecting the
pseudoscalar Goldstone bosons,

Φ ¼

0
BB@

π0ffiffi
2

p þ η8ffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ η8ffiffi
6

p K0

K− K̄0 − 2η8ffiffi
6

p

1
CCAþ 1ffiffiffi

3
p η0: ð9Þ

The mixing of the η8 and η0 with an angle θP yields the
physical η and η0 states.2

�
η8

η0

�
¼

�
cos θP sin θP
− sin θP cos θP

��
η

η0

�
: ð10Þ

The kinematic part of the vector resonances reads

LV
kin ¼ −

1

2
h∇λVλμ∇νVνμi þ 1

4
M2

VhVμνVμνi; ð11Þ

whereMV is the mass of the vector resonances in the chiral
limit. The matrix field Vμν, in antisymmetric tensor
representation, incorporates the low-lying vector resonan-
ces in a nonet form

Vμν ¼
X8
i¼1

λiffiffiffi
2

p Vμν
i þ 1ffiffiffi

3
p Vμν

0 ; ð12Þ

with λi (i ¼ 1;…; 8) and 1 the standard Gell-Mann
matrices and the 3 × 3 unit matrix, respectively. The
covariant derivative acting on the vector fields is defined
by [32]

∇αVμν ¼ ∂αVμν þ ½Γα; Vμν�;

Γμ ¼
1

2
ðu†ð∂μ − rμÞuþ uð∂μ − lμÞu†Þ;

lμ ¼ vμ − aμ;

rμ ¼ vμ þ aμ; ð13Þ

where vμ and aμ denote external vector and axial-vector
fields, respectively. It is worth noting that the photon fieldAμ

can be introduced by setting rμ ¼ lμ ¼ eQAμ with Q ¼
diagf2/3;−1/3;−1/3g. Furthermore, u ¼ expfiΦ/ð ffiffiffi

2
p

FÞg.
The interaction between the vector resonances and the

Goldstone bosons is described by

LV
int ¼ LV

ð2Þ þ LV
ð4Þ þ LVV

ð2Þ : ð14Þ

Here, the subscripts denote the chiral orders, the corre-
sponding superscripts imply the numbers of vector reso-
nance. Specifically, the first term reads [32]

LV
ð2Þ ¼

FV

2
ffiffiffi
2

p hVμνf
μν
þ i þ i

GVffiffiffi
2

p hVμνuμuνi: ð15Þ

Here, FV and GV are unknown coupling constants, that can
be fixed from certain resonance decays or from short-
distance QCD constraints, see in the Appendix. The chiral
building blocks, fμνþ and uμ are given explicitly in Ref. [32].
The last two terms in Eq (14) are of an odd-intrinsic parity.
The pieces relevant to our calculation can be expressed as
[34,37]

LV
ð4Þ ¼

X7
i¼1

ci
MV

Oi
VJP þ

X5
j¼1

gj
MV

Oj
VPPP;

LVV
ð2Þ ¼

X4
k¼1

dkOk
VVP: ð16Þ

These couplings are defined to be dimensionless. For the
explicit expressions of the odd-intrinsic chiral operators we
refer the readers to Refs. [34,37]. The values of the
parameters, ci, gj and dk, are taken from Ref. [38] and
are also given in our Appendix.
The fields used in the above-mentioned chiral effective

Lagrangians are convenient for analyzing transformation
properties under the chiral group. Nonetheless, not all of
them directly correspond to physical states. In practice, the
physical ωð782Þ and ϕð1020Þ states are related to the octet
and singlet components by a mixing angle θV through

FIG. 1. Left: Phase of the ππ scattering amplitude in a P-wave
with isospin I ¼ 1. Right: a modulus of the Omnès function.

2We notice that more complicated schemes for η − η0
mixing involving two mixing angles have been studied in e.g.,
Refs. [50–54], which is commonly used to describe the two-
photon decays well [50,51,54].
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�
V8

V0

�
¼

�
cos θV sin θV
− sin θV cos θV

��
ϕ

ω

�
: ð17Þ

In the same manner, the ρ − ω mixing due to isospin
symmetry violation can be parametrized as

�
ρ̄0

ω̄

�
¼

�
cos δ sin δ

− sin δ cos δ

��
ρ0

ω

�
; ð18Þ

with δ the mixing angle. The values of these mixing angles
we used are listed in the Appendix3;.
Eventually, we are in the position to calculate the

amplitudes for η0 → πþπ−γ including explicitly the
WZW term as well as the isospin violation. Throughout,
we assume that the ρ-ω mixing is the dominant isospin
breaking effect. The relevant Feynman diagrams are dis-
played in Fig. 2, and the resulting amplitudes are given in
the Appendix.

C. Isospin-violating form factor

To include the dominant isospin-violating effect, we
utilize the following form for the polynomial in Eq. (5):

PðsÞ ¼ α0 þ α1ðs − 4M2
πÞ þ Pi:v:ðsÞ: ð19Þ

The contributions from left-hand cuts (l.h.c) and inelastic
right-hand cuts (r.h.c) are ascribed to the polynomial in
front, and Pi:v:ðsÞ stands for the contribution from isospin
violation. Following the experimental paper [27], we set

Pi:v:ðsÞ ¼ β0Fi:v:
treeðsÞ;

Fi:v:
1þðsÞ ¼ Pi:v:ðsÞΩ1

1ðsÞ; ð20Þ
with Fi:v:

treeðsÞ the isospin-violating form factor given in
Eq. (A3). The phase of ππ rescattering is included by the
Omnès function, and the l.h.c and inelastic r.h.c contribu-
tions of the isospin violation are absorbed in the parameter
β0. In principle there should be more terms rather than a
single β0, but in practice we find that one parameter is good
enough to describe the data well.
We notice that Fi:v:

treeðsÞ has a sizeable imaginary part
around

ffiffiffi
s

p ¼ Mω. It modifies the πþπ− phase in the
vicinity of

ffiffiffi
s

p ¼ Mω. Nevertheless, this is helpful for us
to obtain ρ − ω mixing exactly in the πþπ− FSI. Previous
dispersive analyses [56,57] and also experiments [58–60]
take only the contribution of ρ in their partial wave
analysis; thus the information of the isospin-violating part,
i.e. the contribution from the ω, is lacking in this region.
This will be discussed with more details in the next section.
For the isospin-violating form factor Fi:v:

treeðsÞ, we only
need to calculate the diagrams, (b), (c) and (d), in Fig. 2.
The results are given in the Appendix. Finally, the total
amplitude is given by

F1
1þðsÞ ¼ ½α0 þ α1ðs − 4M2

πÞ þ β0Fi:v:
treeðsÞ�Ω1

1ðsÞ: ð21Þ

Note that F1
1þðsÞ contains an isospin-violating part (I ¼ 0),

though its superscript is labeled by “1”, corresponding to
I ¼ 1. With this amplitude one can get the formula for the
dipion mass spectrum,

dΓ
d

ffiffiffi
s

p ¼ 3αs3/2ρðsÞ3ðM2
η0 − sÞ3jF1

1þðsÞj2
2048π2M3

η0
; ð22Þ

with ρðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

π/s
p

. When fitting to the invariant
mass spectrum of BESIII [27], we need to multiply it by a
normalization factor N. In Ref. [3], the anomaly is obtained
at the point where s ¼ t ¼ u ¼ 0, in the chiral limit.
Similarly, we define the anomaly as −eFþð0; cos θÞ.
Notice that here θ is a dummy variable in Fþð0; cos θÞ.
We have

A ¼ 3e

2
ffiffiffi
2

p ðα0 − 4M2
πα1 þ β0Fi:v:

treeð0ÞÞ; ð23Þ

where Fi:v:
treeð0Þ ¼ 0.155 GeV−3, see in the Appendix.

III. NUMERICAL RESULTS

A. Fit to experimental data

In this section, we fit to the invariant dipion mass
spectrum by BESIII [27]. The decay width of η0 →
πþπ−γ provided by the Particle Data Group (PDG) [61]
is implemented in our fit to constrain the unknown
normalization factor N. The following fits are performed:

(d)(c)

(b)(a)

FIG. 2. The Feynmann diagrams of the Wess-Zumino-Witten
(WZW) term (a), and the isospin violation amplitudes (b)–(d). The
symbol “V” represents the vector resonances ρ,ω, andϕ. The odd-
intrinsic parity and isospin-violating vertices are denoted by the
circled crosses and black squares, respectively. Note that in (b) the
black square also represents an odd-intrinsic parity vertex.

3We notice that a more complicated scheme for the ρ − ω
mixing with two parameters has been studied in e.g., Refs. [55].
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(1) Fit 1: We ignore the isospin violation (β0 ¼ 0). The
best-fit parameters are collected in the second
column of Table I.

(2) Fit 2: We include the contribution of the isospin
violation, and α0 is fixed by Eq. (24). The results are
shown in the third column in Table I.

(3) Fit 3: As in fit 2 we include the isospin violation, but
set α0 to be a free parameter. The results are shown in
the fourth column in Table I.

In fact, a chiral matching can be imposed to fix α0 [62]. At
low energies, our amplitude is required to coincide with the
one calculated from the LO WZW term [29,30]. The
corresponding Feynman diagram is shown in Fig. 2(a),
and its form factor is given in Eq. (A2). We choose
s ¼ 4M2

π as the matching point to avoid any complication
caused by the α1 term in Eq. (19). After the chiral matching
described above, one obtains

α0 ¼
ffiffiffi
2

p
NC

18
ffiffiffi
3

p
π2F3Ω1

1ð4M2
πÞ
ðsin θP þ

ffiffiffi
2

p
cos θPÞ: ð24Þ

The value of α0 is fixed to be 14.37 GeV−3 provided θP ¼
−21.37°. Note thatΩ1

1ð4M2
πÞ ¼ 1.159 is a real number. This

corresponds to fit 2. In contrast, if we use the double-angles-
mixing scheme (DAMS), we obtain α0 ¼ 15.17, where the
angles and decay constants are taken from “NNLO fit-A”
of Ref. [53]. In this case α0 is fairly increased and still
faraway from that of fit 3. In the absence of the high statics
data of η → πþπ−γ, one can not reach a definite conclusion
on how DAMS will improve the calculation.
Actually, one may treat θP as a free parameter, while α0

is always fixed by using Eq. (24) during the fit procedure.
A good fit can be obtained with θP ≈ −10.9� 0.5°, which
is compatible with the determinations in Refs. [3,63–65].
However, the resulting decay widths involving η0, Γη0→ργ,
Γη0→ωγ and Γϕ→η0γ , are now deviated about 30%–60% from
the previous determinations in Ref. [38]. Thus, we fix θP at
−21.37° [38] and set α0 free. This is fit 3. Note that here
Eq. (24) is not implemented as a constraint. In fit 3 the
BESIII data can be well described and, furthermore, the

previous results in Ref. [38] for the above-mentioned decay
widths are untouched. For comparison, the invariant mass
spectrum, based on the fitted values of the parameters from
fit 1, fit 2 and fit 3, are shown simultaneously in Fig. 3.
Note that the Crystal Ball data points are superimposed on
the plot.
For fit 1, the invariant mass spectrum is represented by

the blue dotted line in Fig. 3. Obviously, there is no ρ-ω
mixing structure appearing in the energy regionffiffiffi
s

p
∈ ½0.76; 0.8� GeV. This is not surprising as we do

not take the isospin violation into account. The resulting
decay width of η0 → πþπ−γ is 57.3� 8.6 keV is absolutely
in agreement with the value given by PDG. For fit 2, the fit

TABLE I. Results for the different fits explained in the text. The
χ2average is the total χ2 of the invariant mass spectrum [27] divided
by the number of data points. The PDG [61] value of Γðη0 →
γπþπ−Þ is 57.3� 1.0 keV. The uncertainty is given from the fit.

Fit 1 Fit 2 Fit 3

α0ðGeV−3Þ 17.91� 0.23 14.37 18.41� 0.19
α1ðGeV−5Þ 11.78� 0.18 10.29� 0.12 12.37� 0.17
β0 � � � 0.132� 0.002 0.150� 0.002
N (×108) 0.852� 0.021 1.25� 0.07 0.788� 0.016
χ2average 12.3 2.66 1.74
Γη0→γπþπ−ðkeVÞ 57.3� 8.6 38.9� 8.2 62.0� 5.9
anomaly (GeV−3) 5.46� 0.42 4.36� 0.50 5.61� 0.29

FIG. 3. The top figure corresponds to the fit to the invariant mass
spectrum of η0 → ππγ. The black solid line is the one of fit 3, the
blue dotted line is of fit 1. As explained in the text, fit 2 is almost
indistinguishable from fit 3 and thus not shown. The BESIII data is
from [27] and Crystal Ball data from [24]. The bottom figure
corresponds to the fit to the experiment data of the ππ → ππP-
wave. The Cern-Munich data are from [58], and the olive and light
grey bands in the low energy region are from Refs. [66–69].
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to the BESIII data is much better. The invariant mass
spectrum of fit 2 is almost indistinguishable from that of fit
3; thus we do not show it in Fig. 3. However, the decay
width of η0 → πþπ−γ, which is 38.9� 8.2 keV now,
deviates from the value of PDG [61] by 32%. The anomaly
is estimated to be 4.36 GeV−3. For fit 3, the fit is rather
good. The fit quality is improved both in the low energy
region and the ρ − ωmixing region, compared to fit 2. This
is reasonable as, by tuning the free parameter α0, the
amplitude at low energies can be adjusted, and the same
holds for the isospin violation part in the high-energy
region. We notice that α0 is shifted by 28% compared to
that of fit 2, which also quantifies how much the anomaly
can affect the fit. Consequently, the anomaly is
5.61� 0.29 GeV−3, shifted by 29% from the one given
by matching to the tree-level amplitude of the WZW term.
Since the tree-level amplitude is calculated in the large NC
expansion, a typical 1/NC correction is reasonable.
Considering also the improved fit quality of fit 3 with
respect to fit 2, the correction of the order 1/NC to the tree-
level amplitude of the WZW term in an anomalous decay
process, is not only reasonable but also necessary. The
normalization factor in fit 3 is similar to the one in fit 1 but
decreases a lot compared to that of fit 2. The reason is that,
when α0 and α1 increase, the normalization factor has to
decrease so as to compensate for the amplitude F1

1þðsÞ.
Comparing the quality of these fits, we consider fit 3 to be
the reference result.
In the next section, in order to extract the couplings of

the resonances, the P-wave ππ scattering amplitude is
needed in addition to the decay amplitude of η0 → πþπ−γ
described above. To get theP-wave ππ scattering amplitude
with isospin I ¼ 1, we adopt the following representation:

T1
PðsÞ ¼ ðs − 4M2

πÞΩ1
1ðsÞ

X6
i¼0

ciðs − 4M2
πÞi; ð25Þ

with the ci unknown constants. The two constants, c0 and
c1, are fixed by the relevant threshold parameters: scatter-
ing length ∼0.0387� 0.0012M−3

π and slope parameter
∼0.0051� 0.0026M−5

π [57]. The Cern-Munich data [58],
CFDIV amplitude [57], and the amplitude from the Roy
equation analysis [56]4 on the complex s-plane are fitted to
pin down the other constants. Finally we have all the values

for the parameters, collected in Table II. The resulting
T1
PðsÞ amplitude on the real axis is shown in the bottom

panel of Fig. 3. Its analytic continuation to the complex
s-plane, confronted with that of the Roy equation analysis
[56], is shown in Fig. 4. We do not plot the amplitude on
the upper half of s-plane, as it is readily obtainable from the
one on the lower half of the s-plane according to the
Schwarz reflection principle. The contribution of the l.h.c
to the shade region of the s-plane, as shown in Fig. 4, is
properly implemented by fitting to the data as well as the
amplitude of the Roy equation in the presence of the
crossing symmetry. We see that our amplitudes are quite
similar to the ones from the Roy equation analysis on the
complex s-plane. The distribution of contours is in good
agreement with each other. Moreover, their gradient var-
iations, the shading of the color from blue to red, are
compatible. Nevertheless, amplitudes on the edge of the
domain, shown in Fig. 4, are less consistent with a
difference ≤ 0.1. This means our T1

PðsÞ amplitude is
constrained rather well on the complex plane, allowing
for a reliable extraction of the poles and residues.

B. Couplings of gη0Vγ
With a specific amplitude, the couplings of a resonance

are defined by the residues of the pole on the complex
s-plane. Based on the results of fit 3, the absolute values of

FIG. 4. Comparison of our amplitudes with the ones from the
Roy equation analysis in the domain where the Roy equations work.
On the left side are real and imaginary parts of our amplitudes, and
on the right side are those from the Roy equation [56].

TABLE II. The parameters of the ππ → ππ P-wave, given in Eq. (25). The uncertainty is from MINUIT. The unit
of cj is GeV−2j.

c0 ¼ 0.4283 c1 ¼ −0.2959 c2 ¼ 0.6173ð16Þ c3 ¼ −0.7092ð11Þ
c4 ¼ 0.3774ð4Þ c5 ¼ −0.0909ð1Þ c6 ¼ 0.0081ð1Þ

4We replace the phase in the energy region of 0.8–1.4 GeV by
more recent analysis [42,57]. The results are in agreement with
that of the original paper [56].
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the couplings gη0Vγ , V ∈ fρ;ωg, extracted on the appro-
priate Riemann sheets are compiled in Table III.
The definition of the couplings on the appropriate

Riemann sheet is given as

M1
1þ

IIðsÞ ¼ egη0VγgVππ
sV − s

; T1
P
IIðsÞ ¼ g2Vππ

sV − s
; ð26Þ

where “II” denotes the second Riemann sheet. M1
1þ is the

η0 → ππγ decay amplitude given in Eq. (2), and T1
PðsÞ

is the P-wave ππ → ππ scattering amplitude from
Eq. (25). What those couplings mean in terms of decay
width is provided as

Γðη0 → VγÞ ¼ 16παðM2
η0 −M2

VÞjgη0Vγj2
M3

η0
; ð27Þ

ΓðV → ππÞ ¼ ρðM2
VÞjgVππj2
MV

; ð28Þ

with α the usual QED fine structure constant.
To obtain the couplings of ω, we adopt the standard

Blatt-Weisskopf barrier factor representation [42]

g2ωππðsÞ ¼
MωΓωBRω→ππQðM2

ωÞ
ρðM2

ωÞQðsÞ ; ð29Þ

with QðsÞ ¼ 1þ q2/ðs − 4M2
πÞ, and q is chosen to be

1 GeV. The mass, width and ππ-mode branching ratio of
the ω are taken from the PDG [61]: Mω ¼ 782.65�
0.12 MeV, Γω¼8.49�0.08MeV and BRω→ππ¼0.0153�
0.0012. Notice that the width is rather small, and thus we
can ignore its energy dependence5 To proceed, we define
the coupling gη0ωγ through

gη0ωγ ¼−β0ðM2
η0 − sωÞ

ffiffiffiffiffiffiffiffi
3sω

p
ρðsωÞðFcþFdÞsωΩ1

1ðsωÞ
256πBW½ω;sω�gωππðsωÞ

;

ð30Þ
where sω ¼ M2

ω − iMωΓω and BW½ω; s� is the Breit-
Wigner representation given in Eq. (A7).
To get the anomaly contribution to the width of Γðη0 →

πþπ−γÞ, for simplicity we use F1
1þð0Þ instead of F1

1þðsÞ,
when integrating over

ffiffiffi
s

p
in Eq. (22). The differential decay

width of the mode η0 → ωγ → πþπ−γ is written as

dΓ
d

ffiffiffi
s

p ¼ 3αs3/2ρðsÞ3ðM2
η0 − sÞ3jβ0ðFc þ FdÞΩ1

1ðsÞj2
2048π2M3

η0
: ð31Þ

The contribution through the intermediate ρ meson is the
same as Γðη0 → ργÞ since ρ decays into ππ to 100%, see also
Eq. (32). Finally, we obtain the poles and couplings, based on
fit 3, and compute the decaywidthswith the help ofEqs. (27),
(28) and (31). The results are shown in Table III. Our
uncertainty is from the fit, combined the error from
MINUIT and the systematic one: the correlation between
the coefficients, see Eqs. (21), (25), and the uncertainty of the
phase in the Omnès function. Our estimation shows that the
systematic error dominates the uncertainty.
We notice that the pole position of ρ is compatible with

the one obtained by Padé approximants in [70]. The ρ pole
position is shifted a bit compared to the Breit-Wigner mass
and width given by PDG [61], while this is not the case for
ω. The reason is that ρ is much wider and the pole is farther
away from the real axis, thus “narrow resonance approxi-
mation” is not good enough to describe the amplitude. With
the pole locations one can extract out the residues and thus
determine the contribution to Γðη0 → πþπ−γÞ from each
resonance, separately.
We obtain Γðη0 → ωγ → πþπ−γÞ ¼ 67.5� 16.0 eV.

Since the ω is rather narrow, we can use the sequential
decay formula [71,72] to do a cross-check. The decay width
in this way is given by

Γðη0 → ωγ → ππγÞ ¼ Γðη0 → ωγÞΓðω → ππÞ
Γω

: ð32Þ

In combination with Eqs. (28) and (29), we obtain
Γðη0→ωγ→πþπ−γÞ¼62.8�19.8eV, which is in good
agreement with the one calculated from Eq. (31). With
Γðη0→ωγ→πþπ−γÞ¼67.5�16.0eV and Γðω→ππÞ¼
0.130�0.010MeV taken from PDG, we obtain

TABLE III. Predictions based on fit 3, as explained in the text. The following PDG [61] values are used: Γðη0 → γπþπ−Þ ¼
57.3� 1.0 keV and Γðη0 → ωγÞ ¼ 5.16� 0.26 keV.

State Pole location MeV jgVππj MeV jgη0Vγj MeV ΓðV → ππÞ MeV Γðη0 → XγÞ keV Γðη0 → πþπ−γÞ keV
ρ 762.7ð23Þ − i 68.3ð55Þ 340.1(60) 20.1(9) 141.2(53) 56.6(53) 56.6(53)
ω 782.56ð12Þ − i4.24ð4Þ 10.4(4) 5.68(74) 0.130(1) 4.10(97) 0.0675(160)
A(anomaly) � � � � � � � � � � � � � � � 3.34(35)
Total � � � – � � � � � � � � � 62.0(59)

5In a more dedicated way, one can use the standard Breit-
Wigner formalism to represent the ππ → ω → ππ amplitude [42],

T1
Pω ¼ g2ðsÞ2

M2 − s − iρ1ðsÞg21ðsÞ − iρ2ðsÞg22ðsÞ − iρ3ðsÞg23ðsÞ
:

Here 1, 2, 3 represents the πγ, ππ and πππ channels, respectively.
Following it one can extract out the pole and residue on the (-; -; -)
plane. As we have checked, the results obtained in this way are
quite the same as what we obtained in Table III.
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Γðη0 → ωγÞ ¼ 4.41� 1.04 keV. This is rather close to the
value of 4.10� 0.97 keV, obtained in the way described by
Eqs. (27) and (30). Comparing these two decay widths, we
notice that the one given by Eqs. (31), (32) contains the
more dedicated energy dependence and is closer to that of
PDG; thus we adopt Γðη0 → ωγÞ ¼ 4.41� 1.04 keV as the
optimal one.
It should be pointed out that gη0ωγ is correlated to

gωππðsωÞ, as can be seen from Eq. (30). Such a correla-
tion is propagated to the decay widths, see Eq. (32).
With Γðη0→ωγ→πþπ−γÞ¼67.5�16.0eV, if we fix
Γðη0 → ωγÞ ¼ 5.16� 0.26 keV instead of Γðω → ππÞ,
we get Γðω → ππÞ ¼ 0.111� 0.026 MeV or BRω→ππ ¼
1.31� 0.31% from Eq. (32). This is compatible with
the previous analysis given by Ref. [5], shown in Table II
therein.
The contributions to the decay width of Γðη0 → πþπ−γÞ,

induced by an intermediate ρ and ω as well as an anomaly
“A”, are given as follows: 56.6� 5.3 keV through ρ,
67.5� 16.0 eV through ω, and 3.34� 0.35 keV through
the anomaly. The contact isospin-violating term, shown in
Fig. 2(b), contributes to the anomaly part too. However, its
contribution is tiny and hence neglected. It is found that the
ρ dominates the contribution, and the anomaly contributes
more than the ω. This is not surprising as the ρ dominates
the P-wave and the anomaly contributes as a background in
the whole energy region, while the ω only acts in a small
region and rarely decays into ππ.
For the decay widths of η0 → Vγ, we obtain Γðη0 → ργÞ ¼

56.6� 5.3 keV, while in LO RχT [38] it is 53.7 keV.
Likewise, Γðη0 → ωγÞ ¼ 4.41� 1.04 keV [or 4.10� 0.97
through residue in Eqs. (27), (30)], while in LO RχT it is
5.12 keV. Since in LO RχT the uncertainty is roughly 1/3
when truncating the large NC expansion, the widths obtained
here and in LORχT are compatible if the errors are taken into

account. This showsushowmuch theππ FSI affects the strong
interaction between the lightest vector and pseudoscalar
mesons. Compared to the predictions given by RχT, the
FSI effect is sizable but still within the uncertainty.
In addition, we find that in the whole kinematical region

the phase of πþπ− based on fit 3 is in good agreement with
the one based on fit 1, i.e., the phase of T1

PðsÞ, except for
the energy region around

ffiffiffi
s

p ¼ Mω, see Fig. 5. Obviously,
there is a bump around the ω mass when taking into
account the ρ − ω mixing. Note that there is no such bump
for π�π0, as the ω is an isospin singlet. It should be noted
that for η0 → πþπ−γ the l.h.c (mainly from the a2) and
inelastic r.h.c (above K̄K threshold) are too far away from
the energy region we are working. Thus the polynomial
PðsÞ, in which the l.h.c and r.h.c are absorbed, should be
smooth in the physical energy region. This suggests that, to
include isospin violation from the ρ − ω mixing in the line
shape of η0 → πþπ−γ, it is more convenient to change the
phase of πþπ− in the Omnés function than to include a
complicated complex form factor in PðsÞ function. We
notice that there is only one data point from [59] located at
around

ffiffiffi
s

p ¼ Mω, but it was obtained with a low reso-
lution. Most experiments only take into account the
isospin-conserved part (the contribution from the ρ)
[58–60]. To reach a more definite conclusion on the phase
caused by the isospin violation, a more accurate exper-
imental measurement in the

ffiffiffi
s

p ¼ Mω region and a more
careful theory analysis are required. Here we just point out
that, through our amplitude analysis of the η0 → πþπ−γ
data provided by Ref. [27], there should be a bump of the
πþπ− P-wave phase around the energy point

ffiffiffi
s

p ¼ Mω.

IV. CONCLUSION

In this paper we have studied the process of η0 → πþπ−γ
by fitting to the latest invariant mass spectrum from BESIII
[27]. The amplitude is constructed according to Watson’s
theorem, and the isospin-violating form factor is calculated
within the framework of RχT at LO in the 1/NC expansion.
We find that the anomaly, defined in Eq. (23), is around
5.61� 0.29 GeV−3. It is shifted by an amount of Oð1/NCÞ
compared to the value calculated using the tree-level
amplitude of the WZW term. The couplings and decay
widths of the ρ, ω resonances are extracted properly, as
shown in Table III. The contributions to Γðη0 → πþπ−γÞ
are quantified as follows: Γðη0 → ργ → πþπ−γÞ ¼
56.6� 5.3 keV, Γðη0 → ωγ → πþπ−γÞ ¼ 67.5� 16.0 eV,
and ΓAðη0 → πþπ−γÞ ¼ 3.34� 0.35 keV. The ρ resonance
dominates the intermediate process, while the anomaly
contributes more than the ω. We obtain Γðη0 → ργÞ ¼
56.6� 5.3 keV, Γðη0 → ωγÞ ¼ 4.41� 1.04 keV, which
are consistent with the determinations from LO RχT within
the uncertainty of around 1/3. Finally we find the phase of
the P-wave πþπ− scattering amplitude should have a bump
around

ffiffiffi
s

p ¼ Mω. This work could be useful for the studies
of strong interaction referring to the ππ final states, such as

FIG. 5. Phase of πþπ− P-wave from our amplitude analysis.
The blue dashed line is from fit 1 and the black solid line from fit
3. The data sets of are from Ref. [58] (red circles), from Ref. [59]
(green triangles) and from Ref. [60] (orange stars), respectively.
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J/ψ → γππ [73], p̄p → Xð3872Þ → J/ψππ in PANDA
[74], and Bþ

c → B0
sπ

þπ0 [75].
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APPENDIX: ISOPIN-VIOLATING FORM
FACTORS

The amplitude of η0 → πþπ−γ is given by

Mλ ¼ eϵμναβϵμðk; λÞqνpþ
α p−

βFðsÞ: ðA1Þ
For the form factor FðsÞ, the tree-level WZWanomaly term
gives

Fa ¼ −
NC

12
ffiffiffi
3

p
π2F3

ðsin θP þ
ffiffiffi
2

p
cos θPÞ: ðA2Þ

The isospin-violating form factor is

Fi:v:
tree ¼ Fb þ Fc þ Fd; ðA3Þ

and

Fb ¼ −
8

ffiffiffi
6

p
FVð1þ 8

ffiffiffi
2

p
αV

m2
π

M2
V
Þ

3MVF3

�
− sin δþ 1ffiffiffi

3
p cos δ sin θV

�
sin δðsin θP þ

ffiffiffi
2

p
cos θPÞGRη0 ð0; sÞBWR½ω; 0�; ðA4Þ

Fc ¼
4

ffiffiffi
2

p
GV

3MVF3
sinδfcosδsinθV ½

ffiffiffi
2

p
cosθP− sinθP�þ

ffiffiffi
2

p
cosδcosθV sinθP−

ffiffiffi
3

p
sinδ½

ffiffiffi
2

p
cosθPþ sinθP�g

×CRη01ð0;s;M2
η0 ÞBWR½ω;s�þ

2
ffiffiffi
2

p
GV

18MVF3
sinδf4cosδ½−3cosðθV −θPÞþ cosðθV þθPÞþ2

ffiffiffi
2

p
sinðθV þθPÞ�m2

K

þ½−6
ffiffiffi
3

p
sinδ½

ffiffiffi
2

p
cosθPþ sinθP�þ cosδ½9cosðθV −θPÞ− cosðθV þθPÞ−2

ffiffiffi
2

p
sinðθV þθPÞ��M2

πgCRη02BWR½ω;s�;
ðA5Þ

Fd¼−
8FVð1þ8

ffiffiffi
2

p
αV

M2
π

M2
V
ÞGVffiffiffi

6
p

F3
sinδ

�
−sinδþ 1ffiffiffi

3
p cosδsinθV

�
ðsin2δð2cosθPþ

ffiffiffi
2

p
sinθPÞþcos2δ½2cosθPþsinθVð4cosθV

−
ffiffiffi
2

p
sinθVÞsinθP�ÞDRη01ð0;s;M2

η0 ÞBWRR½ω;ω;0;s�−
4FVð1þ8

ffiffiffi
2

p
αV

M2
π

M2
V
ÞGV

3
ffiffiffi
6

p
F3

sinδ

�
−sinδþ 1ffiffiffi

3
p cosδsinθV

�

×f4cos2δðcosθP½3−cos2θV−2
ffiffiffi
2

p
sin2θV �þ½3

ffiffiffi
2

p
−

ffiffiffi
2

p
cos2θV−4sin2θV �sinθPÞm2

Kþð6sin2δð2cosθPþ
ffiffiffi
2

p
sinθPÞ

þcos2δð4cosð2θVþθP
�
þ

ffiffiffi
2

p
½8cosθPsin2θVþð9−cos2θVÞsinθP�Þm2

πgDRη02BWRR½ω;ω;0;s�

−
2FVð1þ8

ffiffiffi
2

p
αV

M2
π

M2
V
ÞGVffiffiffi

6
p

F3
sinδ

�
cosδþ 1ffiffiffi

3
p sinδsinθV

�
fsin2δ½−3

ffiffiffi
2

p
þ

ffiffiffi
2

p
cos2θVþ4sin2θV �sinθPg

×DRη01ð0;s;M2
η0 ÞBWRR½ρ;ω;0;s�−

2FVð1þ8
ffiffiffi
2

p
αV

M2
π

M2
V
ÞGV

3
ffiffiffi
6

p
F3

sinδ

�
cosδþ 1ffiffiffi

3
p sinδsinθV

�

×sin2δf−4cosθPð−3þcos2θVþ2
ffiffiffi
2

p
sin2θVÞðm2

K−m2
πÞþð−3

ffiffiffi
2

p
þ

ffiffiffi
2

p
cos2θVþ4sin½2θV �ÞsinθPð4m2

K−m2
πÞg

×DRη02BWRR½ρ;ω;0;s�þ
2FVð1þ8

ffiffiffi
2

p
αV

2m2
K−M

2
π

M2
V

ÞGV

3
ffiffiffi
2

p
F3

sin2δfcosθVð−4cos2θVþ
ffiffiffi
2

p
sin2θVÞsinθPg

×DRη01ð0;s;M2
η0 ÞBWRR½ϕ;ω;0;s�−

2FVð1þ8
ffiffiffi
2

p
αV

2m2
K−M

2
π

M2
V

ÞGV

9
ffiffiffi
2

p
F3

sin2δcosθVf4cosθP½2
ffiffiffi
2

p
cos2θV−sin2θV �ðm2

K−m2
πÞ

−ð4cos2θV−
ffiffiffi
2

p
sin2θVÞsinθPð4m2

K−m2
πÞgDRη02BWRR½ϕ;ω;0;s�; ðA6Þ
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where

CRη01ðQ2;x;m2Þ¼ðc1−c2þc5ÞQ2−ðc1−c2

−c5þ2c6Þxþðc1þc2−c5Þm2;

CRη02¼8c3;

DRη01ðQ2;x;m2Þ¼d3ðQ2þxÞþðd1−d3Þm2;

DRη02¼8d2;

GRη0 ðQ2;sÞ¼ðg1þ2g2−g3Þðs−2m2
πÞ

þg2ð−Q2þ2m2
πþm2

ηÞþð2g4þg5Þm2
π;

BWR½V;x�¼
1

M2
V−iΓVðxÞMV−x

;

BWRR½V1;V2;x;y�¼BWR½V1;x�BWR½V2;y�: ðA7Þ

Notice that ΓVð0Þ ¼ 0. Here θV is the ω − ϕ mixing angle,
δ the ρ − ω mixing angle and θP the η − η0 mixing angle.
We follow the construction of vector resonance off shell
widths in Ref. [76], where the parametrization of Γρðq2Þ is
employed as

Γρðq2Þ ¼
Mρq2

96πF2

��
1 −

4M2
π

q2

�3
2

θðq2 − 4M2
πÞ

þ 1

2

�
1 −

4m2
K

q2

�3
2

θðq2 − 4m2
KÞ
�
; ðA8Þ

with F the pion decay constant. For ω, ϕ width we use
constant decay widths. The resonance parameters are given
by PDG [61], and all other parameters can be found in fit 4
of Ref. [38]. For convenience we compile them in Table IV.
The form factors of Fη0→ργ and Fη0→ωγ can be found in [38],
too. From the matching between RχT and QCD one can
find the constraints on the unknown couplings [34,37]:

FVGV ¼ F2;

d1 þ 8d2 − d3 ¼
F2

8F2
V
;

4c3 þ c1 ¼ 0;

d3 ¼ −
NC

192π2
M2

V

FVGV
;

c1 − c2 þ c5 ¼ 0;

g2 ¼
NC

192
ffiffiffi
2

p
π2

MV

FV
;

c1 þ c2 þ 8c3 − c5 ¼ 0;

g1 − g3 ¼ −
NC

96
ffiffiffi
2

p
π2

MV

FV
;

c1 − c2 − c5 þ 2c6 ¼ −
NC

96
ffiffiffi
2

p
π2

MV

GV
: ðA9Þ

We notice that these constraints are not the same as a more
complicated one [77], where heavier pseudoscalar reso-
nances are included. Since we only focus on the physics
below

ffiffiffi
s

p ¼ Mη0, we do not take the heavier resonances
into consideration. It would be interesting to note that our
FV is closer to FV ¼ ffiffiffi

3
p

F [78,79] rather than FV ¼ ffiffiffi
2

p
F

[33]. The former constraint is from the combined analysis
of an axial-vector current with the contribution from three
pseudoscalars (τ → KKπντ) and τ → γPντ (or hVPPi),
while our constraints are based on the analysis of a vector
current with the contribution from three pseudoscalars
(eþe− → πþπ−π0/η). A more careful study is needed for
a good understanding of the short-distance QCD constraint.
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