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We examine how the breaking of shift symmetry affects the formation of caustics for the standard
canonical kinetic theory as well as for the DBI theory. We show, in this case, that the standard canonical
kinetic theory is caustic free but the same does not always apply for the DBI model. We make similar
arguments about the conformal Galileons. Finally, it is shown that the simple wave condition is not
invariant under field redefinitions and the meaning of simple waves after symmetry breaking is
discussed.
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I. INTRODUCTION

The formation of caustics indicates the breakdown of a
low-energy effective field theory (EFT) since the second
derivative of the field blows up. The method of character-
istics is a useful tool in solving partial differential
equations (PDEs) and fully describes the propagation
of a signal given a background. Along a characteristic, a
PDE transforms into an ordinary differential equation
allowing us to identify the existence of caustics for any
scalar field model. In previous studies, the focus was on
generic scalar field models that enjoy a global shift-
symmetry [1,2]. As was pointed out in [1], a generic wave
solution in k-essence models assuming planar symmetry
does not keep its form while propagating, leading to the
formation of caustics unlike in the canonical case where
caustics are not present. In particular, for the canonical
case, the characteristics are always parallel to each other
so intersections do not occur. In k-essence, however, the
characteristics are no longer parallel to each other, leading
to intersections and thus the formation of caustics. It is
worth pointing out that an interesting link between
k-essence and pressureless perfect fluid has been estab-
lished in [3] where a caustic-free completion is achieved
through a complex scalar field.
Later, it was shown that the canonical case is not the

only caustic-free model. The Dirac-Born-Infield (DBI)
model is also caustic free when simple wave solutions in
a Minkowski background are considered [2]. Work has also

been done to go beyond the planar symmetry when
studying the generalized Galileon Lagrangians where a
link has been suggested between the absence of caustics
and the existence of a global symmetry for spherical waves
when the shift-symmetry is preserved [4].
The motivation behind this work is to present a possible

relation between symmetries and caustics in the context of
scalar field theories. Many scalar field models have been
proposed over the years to explain the late-time accelerated
expansion of the Universe. Although these models, exhibit
interesting cosmological features, they may lead to the
formation of caustics. The presence of caustics is very
unappealing and without a possible UV completion of these
models, they indicate the breakdown of particular EFTs.
Caustics have also been studied in a series of modified
theories of gravity like Horava-Lifshitz gravity [5,6] or
TeVes [7]. However the effects of gravity are beyond the
scope of this work and we restrict ourselves to scalar fields
that live on flat spacetime.
The manuscript is organized as follows: In Sec. II, we

provide the results of applying the method of characteristics
to models that break the shift symmetry by introducing an
explicit ϕ dependence in the Lagrangian. We show that by
taking the appropriate limit, we recover the results shown in
[1,2]. Furthermore, we apply the method of characteristics
to the ϕ dependent standard kinetic term and trivially show
that the model is free of caustics. In Sec. III, we show that
breaking the shift symmetry in the DBI model likely leads
to the formation of caustics unlike in the shift symmetric
case. The result applies to the conformal generalized DBI-
Galileon operators also. Finally, in Sec. IV, we discuss what
simple waves mean upon shift symmetry breaking and we
show that the simple wave condition is not invariant under
field redefinitions. After discussing our results in Sec. V we
provide the reader with details of the method of character-
istics in the Appendix.
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II. DEPENDENCE ON THE FIELD

To begin, consider the k-essence Lagrangian which is an
arbitrary function of the standard kinetic term and the field,
thus explicitly breaking the shift symmetry,1

L ¼ Lðϕ; XÞ; ð1Þ

where X ≡ ∂μϕ∂μϕ. The equation of motion for the
k-essence Lagrangian with respect to the field is found
to be

ð2LXX
_ϕ2 − LXÞϕ̈ − 4LXXϕ

0 _ϕ _ϕ0 þð2LXXϕ
02 þ LXÞϕ00

−
1

2
Lϕ þ XLXϕ ¼ 0; ð2Þ

where LX ≡ ∂L
∂X, LXX ≡ ∂2L

∂X2, Lϕ ≡ ∂L
∂ϕ and LXϕ ≡ ∂2L

∂X∂ϕ. From
the method of characteristics (see Appendix for a discus-
sion), we identify the coefficients of the second derivative
terms, A, B, C, and the left over piece, D, as

A ¼ 2LXX
_ϕ2 − LX; B ¼ −2LXXϕ

0 _ϕ;

C ¼ 2LXXϕ
02 þ LX; D ¼ −

1

2
Lϕ þ XLXϕ: ð3Þ

The characteristic curves describe the propagation of a
signal. Their form is determined by the characteristic
equation which gives the following two sets of solutions

ξ� ¼ −2 _ϕϕ0LXX �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2
X þ 2XLXLXX

p

−LX þ 2 _ϕ2LXX

: ð4Þ

For later convenience, we define the following quantities

u≡ −
ϕ0

_ϕ
; c2s ≡

�

1þ 2X
LXX

LX

�
−1
; ð5Þ

ξ� ≡ u� cs
1� ucs

; ð6Þ

where ξ is the wavefront velocity, i.e. the speed which is
relevant for causality [8,9]. In the high frequency and
momentum limit, the wave front velocity is the velocity of
short wavelength perturbations of the field on a Minkowski
background and in this particular limit is equivalent to the
phase velocity. Physically, the speed of sound is the speed
of propagation of information while u is the velocity of the
k-essence field. Using the compatibility relation (A9), we
can bring it to the following form which is more conven-
iently written in terms of the previous definitions,

�
1

cs

dX
dσ∓

1

X
∓ 2

1 − u2
du
dσ∓

�
dσ∓
dt

¼ 2A4τð1� ucsÞ
csX

; ð7Þ

where A4 ¼ D
A and σ� parametrize the characteristic curves.

These equations along with

dx
dσþ

¼ ξþ
dt
dσþ

dx
dσ−

¼ ξ−
dt
dσ−

; ð8Þ

give us the set of the coupled differential equations to be
solved for _ϕ, ϕ0, x and t. This will enable us to determine
the existence of caustics in the models under study.

A. Special cases

To reproduce the results of [1,2], let us examine the case
where only second derivate terms appear in the EOM
(D ¼ 0). For the moment, we ignore the ϕ dependence and
integration of (7) gives us

Z
1

Xcs
dX ∓ ln

�
1þ u
1 − u

�

¼ Γðσ�Þ; ð9Þ

where Γðσ�Þ are called Riemann invariants [10]. For simple
waves, those that satisfy the relation

ϕ̈ϕ00 − _ϕ02 ¼ 0; ð10Þ

one of the Riemann invariants needs to be a constant. If
neither of the Riemann invariants are a constant, then we
are dealing with general wave solutions.

1. Standard canonical kinetic term

For L ¼ − 1
2
X we have ξ� ¼ �1 and the solutions are

simply

_ϕ ¼ ϕ0 þ Cðσ−Þ; _ϕ ¼ −ϕ0 þ CðσþÞ: ð11Þ

Thus, the characteristics are straight lines in phase space
as well as in the x − t plane (since ξ is a constant). The
characteristics that belong in the same family, will not
intersect leaving the model free of caustics. In other words,
the family of curves with constant σþ or σ− are straight
lines, parallel to each other. Further, for this case, we have

ξ ¼ vphjk→∞ ¼ vg ¼ cs: ð12Þ

2. DBI kinetic term

Similarly, for the DBI Lagrangian L ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p
, the

characteristic curves are

ξ� ¼ 1

1þ ϕ02
�

− _ϕϕ0 � ffiffiffiffiffiffiffiffiffiffiffiffi

1þ X
p �

: ð13Þ

1For the rest of the analysis we work in units where Mpl ¼ 1,
the metric is flat ημν ¼ ð−1; 1; 1; 1Þ and we go beyond the shift
symmetry (ϕ → ϕþ c) by keeping the explicit ϕ dependence of
the Lagrangian.
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At first glance, this appears to be worrying since the
characteristic curves depend on the field. However, we
observe that ξ� can be constant only if _ϕ is linear in ϕ0,2

_ϕ ¼∓ aϕ0 þ b; ð14Þ

where a, b are constants and b2 ¼ 1 − a2. We can easily
verify that (14) is the general solution of (9). This leads to
the result ξ� ¼ �a. With this in mind, we can express X in
terms of a and b,

X ¼ − _ϕ2 þ ϕ02 ¼ ð1 − a2Þϕ02 � 2abϕ0 − b2: ð15Þ

Also, the square of the speed of sound is linear in X.
Using (6), we derive

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ αX
p

; ð16Þ

where α≡ 1−a2
b2 . Without loss of generality, we may set

α ¼ 1 and, as a consequence, we obtain 1 − a2 ¼ b2. Note
that the speed of sound can be either subluminal or
superluminal. If we choose α > 0, then for a timelike field,
X < 0, the propagation is subluminal, while for a spacelike
field, X > 0, the propagation is superluminal. Alternatively,
for α < 0, these cases are swapped. Finally, for the DBI
model, we have

ξ ¼ vphjk→∞ ¼ vg ¼
u� cs
1� ucs

: ð17Þ

As was pointed out in [4], the reason that the DBI model
might have such a special place among PðXÞ theories
is that, in addition to the shift symmetry, it enjoys a
global symmetry that is related to invariance under
higher-dimensional rotations and boosts. This might pro-
tect the theory against caustics and, as it was shown,
the same applies for the pure Galileon and the DBI
Galileon which enjoy a global nonrelativistic and relativ-
istic Galilean symmetry, respectively. The question we are
going to explore is what happens when we break the shift
symmetry in these models.

B. Breaking the shift symmetry in the standard
canonical kinetic term

A simple way to break shift symmetry is to introduce a
scaling function. For a general L ¼ − 1

2
fðϕÞX, the equation

of motion is3

−□ϕ −
1

2f
df
dϕ

X ¼ 0: ð18Þ

The solution to the characteristic Eq. (4) remains

ξ� ¼
�
dx
dt

�

�
¼ 1

A

�

B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 − AC
p �

¼ �1; ð19Þ

while the compatibility relation (7) leads to

1

cs

dX
X

∓ 2du
1 − u2

¼ 2

cs

�

−
1

2f
df

�
dt
dϕ

�

∓

�

_ϕð1� ucsÞ;

ð20Þ

where

�
dϕ
dt

�

�
¼ _ϕ

�
1 − u2

1� ucs

�

: ð21Þ

Finally, from (5), since LXX ¼ 0, we see that cs ¼ 1, so
(20) simplifies to

dX
X

∓ 2du
1 − u2

¼ −
1

fðϕÞ dfðϕÞ: ð22Þ

This can be easily integrated to find

_ϕ ¼ �ϕ0 þ Cðσ∓Þ
ffiffiffiffiffiffiffiffiffiffi

fðϕÞp : ð23Þ

Since ξ� are constant, it is clear that the characteristic
curves in the x − t plane are parallel straight lines so they
do not intersect. This means that a model with any scaling
function multiplying the standard kinetic term does not
lead to the formation of caustics. Naturally, this had to
occur since, by a field redefinition, we can always remap
the starting Lagrangian to the standard form, L ¼ − 1

2
X,

reestablishing the shift symmetry.
It is worth pointing out that since in the analysis without

the ϕ dependence the solutions are simple waves (10), they
satisfy

ϕ̈jσ� ¼ dτ
dσ∓

dσ∓
dt

ϕ00jσ� ¼ dχ
dσ∓

dσ∓
dx

_ϕ0jσ� ¼ dχ
dσ∓

dσ∓
dt

¼ dτ
dσ∓

dσ∓
dx

: ð24Þ

We can easily check that solutions of the form (23) do not
satisfy the simple wave condition. We see that the char-
acteristics in the _ϕ − ϕ0 plane are not straight lines;
however, by a field redefinition, they can be transformed
back to straight lines. We will return to this point in Sec. IV.
Another way of breaking the shift symmetry is by

introducing a potential as

2This is equivalent to the completely exceptional condition as
pointed out in [2,11].

3Note that the negative signs are kept in this equation to be
consistent with (2).
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L ¼ −
1

2
fðϕÞX − VðϕÞ: ð25Þ

Caustics are not generated for this case either. The reason is
that ξ�, which is associated with the kinetic structure of the
theory, is still given by (19) and thus is constant.

C. Comments on conformal Galileons

In general, the conformal Galileons are obtained by taking
the nonrelativistic limit of the conformal DBI Galileon (flat
brane in AdS space). The conformal Galileons preserve the
shift symmetry; however, they break the flat Galilean
symmetry [12,13]. As an example, we consider the
Lagrangian for the quadratic conformal Galileon:

L2 ¼ −
1

2
e−2π∂μπ∂μπ: ð26Þ

As stated above, a simple scaling function multiplying the
standard kinetic term can be redefined back to L ¼ − 1

2
X.

Hence, by performing the field redefinition ϕ ¼ e−π on (26),
we arrive at the standard canonical kinetic term with wave
equation□ϕ ¼ 0. We, thus, see that the quadratic conformal
Galileon is caustic free.
The next step is to add the cubic conformal Galileon,

L3 ¼ −
1

2
∂μπ∂μπ□π −

1

4
ð∂μπÞ4; ð27Þ

and study the characteristics of L2 þ a3L3. By imposing
the simple wave condition ðπ̈π00 − _π02 ¼ 0Þ, the equation of
motion is linear in second derivatives, allowing application
of the method of characteristics. The characteristic
curves are

ξ� ¼ 2a3e2ππ0 _π �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4a3e2πð− _π2 þ π02Þ þ 3a32e4πð− _π2 þ π02Þ2
p

1 − a3e2πð3 _π2 − π02Þ : ð28Þ

This expression for ξ� is very similar to the character-
istic curves studied in [1] for the L ¼ X þ X2/2 case,4

which is known to contain caustics. This is not surpris-
ing since the pure Galileon part of (27) vanishes for
simple waves in 1þ 1. This leads to the conclusion that
when imposing the simple wave condition, the combi-
nation of L2 þ a3L3 is not caustic free. It is expected
that the inclusion of the quartic and quintic conformal
Galileons will exhibit caustics as well since the explicit
ϕ dependence in combination with the complicated form
of the higher-derivative operators will lead to ϕ-depen-
dent wavefront velocities as we will see later for the
conformal DBI case.

III. THE DBI MODEL WITH ϕ DEPENDENCE

Next, we consider the introduction of a scaling function
in the DBI model. Given the Lagrangian,

L ¼ −fðϕÞ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ X
p þ fðϕÞ; ð29Þ

the EOM has the following form:

ϕ̈ð1þ ϕ02Þ þ ϕ00ð−1þ _ϕ2Þ − 2 _ϕ0 _ϕϕ0

þ 1

fðϕÞ
dfðϕÞ
dϕ

ðð1þ XÞ32 − ð1þ XÞÞ ¼ 0: ð30Þ

Since the coefficients of the second derivative terms are
independent of the scaling function, the solution to the
characteristic equation is the same as in the ϕ-independent
case (13). There, we were able to prove that _ϕ is linear in ϕ0
and ξ� ¼∓ a. In this case, we have to solve the compat-
ibility relation which includes a ϕ-dependent piece,

1

cs

dX
X

∓ 2du
1 − u2

¼ 2

fðϕÞ dfðϕÞ
c2s − cs

X
: ð31Þ

By looking at (13), we see that the wavefront velocity can
no longer be constant since the linear relation between _ϕ
and ϕ0 with constant coefficients (14) does not satisfy the
equation of motion due to the source term. A first attempt at
preserving a linear relationship is to include ϕ dependence
in the coefficients, _ϕ ¼∓ aðϕÞϕ0 þ bðϕÞ. This, however,
fails since plugging the ansatz into the EOM (30) results in
a differential equation for the coefficients with explicit ϕ0

(or _ϕ) dependence, inconsistent with the initial choice. In
fact, this is not surprising. We know for the standard DBI
model that ξ� is a constant only when the linear relation-
ship with constant coefficients is a valid solution. Since ξ�
is unchanged with the introduction of a scaling function,
it cannot be constant in this case. With ξ� not constant,
it is more difficult to determine if caustics exist. However,
having ξ� as a function of _ϕ and ϕ0 is very likely to lead to
intersections of the characteristics. For simple wave sol-
utions, the characteristics have to be parallel straight lines
in the x-t plane. For general waves, the characteristics are
not restricted to be straight lines, and whether they intersect
or not is less clear. It is worth pointing out that the existence

4This Lagrangian is written in the notation of [1] which used
the ðþ;−;−;−Þ signature and defined X ¼ 1

2
∂μϕ∂μϕ.
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of caustics might not be fatal to the theory unless they arise
for very generic initial/boundary conditions.
We conclude that introducing a scaling function, which

breaks the shift symmetry, into the DBI model is very likely
to introduce caustics which once again might indicate a
close connection between global symmetries and freedom
from caustics. The result does not come as a surprise since a
similar result has been pointed out in related cases [14–17].
For example, caustics have been found for specific cos-
mological setups where generic classes of potentials, fðϕÞ,
have been considered. In contrast to this work, where we
are applying the method of characteristics to the most
general case, the main focus there was on homogeneous
scalar fields as well as inhomogeneous scalar fields with
small gradients. It is worth pointing out that just as with the
standard kinetic term, through the use of a field redefini-
tion, we can find cases where caustics will not appear in the
DBI model. As an example consider a Lagrangian of the
form L ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ fðϕÞXp

. For this case, caustics clearly do
not form as we can see immediately from the fact that a
simple field redefinition can bring the result back to the
shift symmetric DBI model.
The next step is to break the shift symmetry for the DBI

model by adding a potential,

L ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ X
p

− VðϕÞ: ð32Þ

The structure in this case is different; nevertheless, this is
likely to introduce caustics similar to the inclusion of a
scaling function. Just as in that case, a linear relation between
_ϕ and ϕ0 with constant coefficients (14) does not satisfy the
equation of motion thus leading to non-constant ξ.

A. Comment on the conformal DBI-Galileon

Similar to the comments on the conformal Galileon,
we can consider the quadratic conformal DBI-Galileon
Lagrangian [13], given by

L ¼ λ0e−4λπ
�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2λπX
p

þ 1
�

: ð33Þ

Here, by performing the field redefinition ϕ ¼ 1
λ ð1 − eλπÞ,

the Lagrangian is brought to the form of (29) with
fðϕÞ ¼ ð1 − λϕÞ−4,

L ¼ −ð1 − λϕÞ−4 ffiffiffiffiffiffiffiffiffiffiffiffi

1þ X
p þ ð1 − λϕÞ−4: ð34Þ

Thus, we clearly see that the conformal DBI-Galileon is
likely to contain caustics.

IV. SIMPLE WAVES WHEN BREAKING THE
SHIFT SYMMETRY

In this section, we discuss what simple waves mean
when we break the shift symmetry. We show that the simple

wave condition is not invariant under field redefinitions. As
an example, consider the transformation

ϕ → fðψÞ: ð35Þ
The simple wave condition becomes

ϕ̈ϕ00 − _ϕ02 ¼ f0f00ðψ̈ψ 02 þ _ψ2ψ 00 − 2 _ψψ 0 _ψ 0Þ
þ f02ðψ̈ψ 00 − _ψ 02Þ: ð36Þ

The first thing to notice when looking at (36) is that if ϕ
is a simple wave solution then the left-hand side of the
equation is zero. However, due to the leftover piece
f0f00ðψ̈ψ 02 þ _ψ2ψ 00 − 2 _ψψ 0 _ψ 0Þ, the simple wave condition
in ϕ is not the same with the simple wave condition in ψ .
We recover simple waves for ψ only for the trivial case
of f → ψ . Let us make this point more clear by doing a
simple example. Consider the quadraticþ cubic Galileon,
L2 þ L3 ¼ − 1

2
∂μfðψÞ∂μfðψÞ − 1

2
∂μfðψÞ∂μfðψÞ□fðψÞ,

where the ϕ → fðψÞ transformation was performed. The
EOM in 1þ 1 is

□ψ −
2

f0
½f0f00ðψ̈ψ 02 þ _ψ2ψ 00 − 2 _ψψ 0 _ψ 0Þ

þ f02ðψ̈ψ 00 − _ψ 02Þ� þ f00

f0
X ¼ 0; ð37Þ

where X ≡ ∂μψ∂μψ . Notice that the term in the square
brackets is precisely the field redefined simple wave
condition (36). If we naively set ψ̈ψ 00 − _ψ 02 ¼ 0, then
the characteristic equation would depend on _ψ and ψ 0,
making it unclear if the general solution of the remain-
der has caustics. To have a clear picture, we should set
the term in the square brackets equal to zero and find
the solution to the remaining part using the compati-
bility relation. This reduces to a form very close to (18).

In this case, we find, _ψ ¼ �ψ 0 þ Cðσ∓Þ
f0 which does not

satisfy f02ðψ̈ψ 00 − _ψ 02Þ ¼ 0, it does however satisfy
f0f00ðψ̈ψ 02 þ _ψ2ψ 00 − 2 _ψψ 0 _ψ 0Þ þ f02ðψ̈ψ 00 − _ψ 02Þ ¼ 0. For
this type of wave, caustics do not form as we see
from (19).
On the other hand, by keeping f0f00ðψ̈ψ 02 þ _ψ2ψ 00 −

2 _ψψ 0 _ψ 0Þ þ f02ðψ̈ψ 00 − _ψ 02Þ in the EOM, and linearizing
in ψ , the explicit ψ dependence leads to ψ-dependent
wavefronts. Again this is very likely to lead to caustics,
unless highly tuned initial conditions are constructed to
avoid them.
In contrast, it is useful to look at a case in which we are

not able to perform a field redefinition to simple waves.
Consider the following example where the shift symmetry,
as well as the Galilean symmetry, are broken,

L2 þ L3 ¼ −
1

2
fðψÞX −

1

2
fðψÞX□ψ : ð38Þ
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The EOM reads

□ψ −
2

f
½fðψ̈ψ 00 − _ψ 02Þ þ f0ðψ 00ψ 02 þ ψ̈ _ψ2 − 2 _ψψ 0 _ψ 0Þ�

þ 1

2

f0

f
X −

1

2

f00

f
X2 ¼ 0: ð39Þ

First, let us do the naive thing as before and set
fðψ̈ψ 00 − _ψ 02Þ ¼ 0. We immediately see that we run into
problems as in the previous example. Setting this condition
to zero might be inconsistent, as simple waves might not be
solutions to this model. Alternatively, we could again try to
set the term in the square brackets to zero and look for a
solution to the remainder,□ψ þ 1

2
f0
f X − 1

2
f00
f X2 ¼ 0, which

is caustic free. An explicit calculation, though, shows that
the compatibility relation cannot be solved analytically.
That means that we cannot check whether the solution of
the remainder satisfies the constraint from the term in
the square brackets. This is in contrast to the previous
case, where setting the constraint to zero is exactly the
simple wave condition in the ϕ field. However, it would
be interesting to see if one could find solutions to
□ψ þ 1

2
f0
f X − 1

2
f00
f X2 ¼ 0 which also satisfy the term in

the square brackets being zero. That would impose a new
constraint, and hence this would be a special class of waves
that satisfies this condition and is caustic free.

V. DISCUSSION

In this work, we explored the formation of caustics for the
standard canonical kinetic theory as well the standard DBI
model and the conformal Galileons when breaking
the shift symmetry. We showed that multiplying the canoni-
cal kinetic term by any function of ϕ does not lead to the
formation of caustics. This does not come as a surprise since
we can always perform a field redefinition of the kinetic term
and bring it back to its original form which obeys the shift
symmetry. The freedom from caustics remains even with the
inclusion of a potential. Additionally, we explored the
conformal Galileons, leading to the result that the inclusion
of the cubic conformal Galileon is not caustic free (at least
for simple waves), since it reduces to a P(X) model which is
known to contain caustics. We pointed out that the conformal
Galileons preserve the shift symmetry; however, they break
the flat Galilean symmetry, hence making the connection of
caustics and global symmetries more evident, as has been
previously suggested.
Next we considered breaking the shift symmetry in the

DBI. For this case, we discovered that the linear relation
between _ϕ and ϕ0 no longer holds, hence leaving the
wavefront speed to depend on the initial choice of the field
which is a function of x and t. Unlike the shift symmetric
case, this means that the DBI model is not manifestly
caustic free when breaking the shift symmetry; however,
we do not exclude the possibility that caustic-free

solutions can still be constructed. By multiplying the
DBI Lagrangian by a function of ϕ, it is obvious that a
field redefinition does not exist to bring it back to the shift
symmetric form. In addition, we considered a variant of the
DBI model which is field redefinable back to its shift-
symmetric form and thus is caustic free.
Finally, we showed what simple waves mean when we

break the shift symmetry. We saw that the simple wave
condition is not invariant under field redefinitions; hence, it
might be different for different field choices. Thus, we
should be careful when imposing the simple wave con-
dition as it may be inconsistent with the EOM and mislead
us to believe that caustics might form.
Any model which is field redefinable to a caustic-free

model is naturally free of caustics too. When breaking the
global symmetries in our theory though, the models that
trivially remain caustic free are the ones that have awavefront
velocity equal to the speed of light. The close connection
betweenglobal symmetries andcaustics is evident throughout
this work. We notice that breaking global symmetries in our
models results in a difficulty of analytically integrating the
compatibility relation. Breaking a global symmetry, also,
removes a conserved current. Thismight suggest a connection
between the two; that is, the integrability of the compatibility
relation relies on the existence of a global symmetry. More
work is required to establish this connection.

ACKNOWLEDGMENTS

I would like to thank Claudia de Rham for suggesting
this problem and for useful discussions throughout its
development. Additionally, I would like to thank Craig
Copi for introducing me to the method of characteristics
and numerous discussions throughout this work. Finally, I
would like to thank Kurt Hinterbichler for useful discus-
sions related to Galileon theories and Glenn Starkman for
useful feedback and guidance. K. P. acknowledges support
from CWRU.

APPENDIX: THE METHOD OF
CHARACTERISTICS

The method of characteristics applies to second-order
partial differential equations that are linear in second
derivatives and can take the general form,

Aðϕ; _ϕ;ϕ0Þϕ̈þ 2Bðϕ; _ϕ;ϕ0Þ _ϕ0 þ Cðϕ; _ϕ;ϕ0Þϕ00

þDðϕ; _ϕ;ϕ0Þ ¼ 0; ðA1Þ

where the dot represents the partial derivative with respect
to time and prime with respect to x. To find solutions to a
hyperbolic PDE, it is sufficient to specify Cauchy boundary
conditions, that is ϕ, _ϕ and ϕ0 along a curve. Consider such
a curve parametrized by σ so that xðσÞ and tðσÞ along this
curve. Then the second derivatives of the field can be
calculated as

KLAOUNTIA PASMATSIOU PHYS. REV. D 97, 036008 (2018)

036008-6



d _ϕ

dσ
¼ ϕ̈

dt
dσ

þ _ϕ0 dx
dσ

dϕ0

dσ
¼ _ϕ0 dt

dσ
þ ϕ00 dx

dσ
: ðA2Þ

These equations can be solved everywhere except where

�
�
�
�
�
�
�
�

A 2B C
dt
dσ

dx
dσ 0

0 dt
dσ

dx
dσ

�
�
�
�
�
�
�
�

¼ 0 ¼ A

�
dx
dσ

�
2

− 2B
dt
dσ

dx
dσ

þ C

�
dt
dσ

�
2

¼ A

�
dx
dt

�
2

− 2B
dx
dt

þ C: ðA3Þ

The solutions to this quadratic equation are

ξ� ¼
�
dx
dt

�

�
¼ 1

A

�

B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 − AC
p �

; ðA4Þ

where ξ� are the two sets of the characteristic curves.
Rewriting the equations for the second derivatives as

ϕ̈þ _ϕ0 dx
dt

−
d _ϕ

dt
¼ 0; _ϕ0 þ ϕ00 dx

dt
−
dϕ0

dt
¼ 0; ðA5Þ

we can solve these equations along with the original
differential equation for the second derivatives. As an
example, we solve for ϕ̈ to find

ϕ̈ ¼

�
�
�
�
�
�
�
�

D 2B C

− d _ϕ
dt

dx
dt 0

− dϕ0
dt 1 dx

dt

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

A 2B C
dt
dσ

dx
dσ 0

0 dt
dσ

dx
dσ

�
�
�
�
�
�
�
�

: ðA6Þ

Along the characteristics, the denominator is zero. To
ensure that the second derivative is defined along the
characteristic, the numerator must also be zero.
Enforcing this, we find

DðξÞ2 þ ð2Bξ − CÞ d
_ϕ

dt
þ C

dϕ0

dt
ξ ¼ 0; ðA7Þ

and using

Aξ2 − 2Bξþ C ¼ 0; ðA8Þ

we have

A4 þ
d _ϕ

dt
þ 1

ϵ�

dϕ0

dt
¼ 0; ðA9Þ

where

1

ϵ�
¼ C

ξ�A
¼ ξ∓; A4 ¼

D
A
: ðA10Þ

This is called the compatibility relation satisfied by the
derivatives along the characteristic curves.
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