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The relativistic version of finite-range regularization is proposed. The covariant regulator is generated
from the nonlocal Lagrangian. This nonlocal interaction is gauge invariant and is applied to study the nucleon

electromagnetic form factors at momentum transfer up to 2 GeV?2. Both octet and decuplet intermediate
states are included in the one-loop calculation. Using a dipole regulator with A around 0.85 GeV, the obtained
form factors, electromagnetic radii, as well as the ratios of the form factors are all comparable with the
experimental data. This successful application of chiral effective Lagrangian to relatively large momentum
transfer makes it possible to further investigation of hadron quantities at high Q2.
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I. INTRODUCTION

The study of the properties of hadrons continues to
attract significant interest in the process of revealing and
understanding the essential mechanisms of the strong
interactions. The investigation of the electromagnetic form
factors of the nucleon is very important to help us discover
their internal structure. Though QCD is the fundamental
theory to describe strong interactions, it is difficult to study
hadron physics using QCD directly. There are many
phenomenological models, such as the cloudy bag model
[1], the constituent quark model [2,3], the 1/N_. expansion
approach [4], the perturbative chiral quark model [5], the
extended vector meson dominance model [6], the SU(3)
chiral quark model [7], the quark-diquark model [8,9], etc.

Besides the phenomenological models, there are also
many lattice-QCD calculations for the electromagnetic
form factors [10-16]. Lattice simulation is the most
rigorous approach that starts from the first principles.
Because of the computing limit, most quantities are still
calculated with large quark (z) mass.

In hadron physics, another important method is chiral
perturbation theory (ChPT). Heavy baryon and relativistic
chiral perturbation theory have been widely applied to study
the hadron spectrum and structure. Historically, most for-
mulations of ChPT have been based on dimensional or
infrared regularization. Though ChPT is a successful and
systematic approach, for the nucleon electromagnetic form
factors, itis only valid for 0> < 0.1 GeV?[17]. When vector
mesons are included, the result is close to the experiments
with Q2 less than 0.4 GeV? [18]. Therefore, with traditional
ChPT, it is hard to study the form factors at relatively large
Q?, for example, to explain the G/G,, puzzle at large Q?.
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An alternative regularization method, namely, finite-
range regularization (FRR), has been proposed. Inspired
by quark models that account for the finite size of the
nucleon as the source of the pion cloud, effective field
theory with FRR has been widely applied to extrapolate the
vector meson mass, magnetic moments, magnetic form
factors, strange form factors, charge radii, first moments of
generalized parton distributions, nucleon spin, etc. [19-34].
In the finite-range regularization, there is no cut for the
energy integral. The regulator is not covariant and is in
three-dimensional momentum space. This nonrelativistic
regulator can only be applied with the heavy baryon ChPT.
A lot of investigations have been done for the finite-range
regularization and we have good knowledge on the non-
relativistic regulator that was kept the same for all the above
calculations. But we know little about the relativistic
regulator and we try to determine the relativistic regulator
from the well-known form factors of nucleon.

In this paper, we provide a relativistic version of FRR. If
we simply replace the nonrelativistic regulator with a
covariant one, the local gauge symmetry and charge
conservation is destroyed. As a result, the renormalized
proton (neutron) charge is not 1 (0). Therefore, we generate
the covariant regulator from the local gauge invariant
Lagrangian. As a result, the nonlocal Lagrangian is
introduced. Using this nonlocal chiral effective
Lagrangian, we study the electromagnetic form factors
up to Q> =2 GeV>. The paper is organized in the
following way. In Sec. II, we briefly introduce the chiral
Lagrangian and construct the nonlocal interactions. The
matrix elements of the nucleon electromagnetic current are
derived in Sec. III. Numerical results are presented in
Sec. IV. Finally, Sec. V is a summary.

© 2018 American Physical Society
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II. CHIRAL EFFECTIVE LAGRANGIAN

The lowest order chrial Lagrangian for baryons, pseu-
doscalar mesons, and their interaction can be written as
[35,36]

L= iTrB]/MDB - mBTI‘BB + Tﬁbc(i}/"mDa - mT}/’w)Tl‘be
2
+ ZTr@,Z@”Z* + DTrB}/ﬂy5 {A”, B}
+ FTrBy,rs|A,. B]

cC . -
+ ?6“” Tt (g™ + 2r,1,) BEO,¢) + H.C| (1)

where D, F, and C are the coupling constants. The chiral
covariant derivative D, is defined as D,B = d,B + [V, B].
The pseudoscalar meson octet couples to the baryon field
through the vector and axial vector combinations as

1 1
V.= 3 (L9, +70,0) + 3 ie A ({TOC + (00T,

1 1
A, =5 (0,8 = 010,0) ~5e QLT = 00). ()
where

C=e  f=093MeV. 3)

The matrix of pseudoscalar fields ¢ is expressed as

%77:0‘1“%77 s K+
1|
=i\ —R g K@
— 0 2

A is the photon field. The covariant derivative D, in the
decuplet part is defined as D, T4" = 9,T4" + (I, T, ),
where I, is the chrial connection [37] defined as
(X.T,) = (X)4TdP + (X)5Ta% + (X)5Tab. yay are
the antisymmetric matrices expressed as

1
=5yl and

HUp —
) I4

HIZIRA NG

In the chiral SU(3) limit, the octet and decuplet baryons
have the same mass my and my. In our calculation, we use
the physical masses for baryon octets and decuplets. The
explicit form of the baryon octet is written as

1 50 L +
ﬁZ +\/€A z p
B=| %" -5+ A nl. (6)
== =0 2
= =) \/EA

For the baryon decuplets, there are three indices, defined as

1 1
T = AT, T112=%A+, T122=%A0,
1 1
Ty =A7, T3 —7§2*+7 T23 :762*0»
1 1 1
Ty =—=2%7, T3 =—=E*0, Ty = —=E*7,
m= 133 2 W=
Ty =Q7. (7)

The octet, decuplet, and octet-decuplet transition magnetic
moment operators are needed in the one-loop calculation of
nucleon electromagnetic form factors. The baryon octet
anomalous magnetic Lagrangian is written as

e - -
£ :M(CITI‘BU’MD{F;V,B} +C2TI‘BO'IW[FIZ,B]), (8)
where

1
Fiy = =5 (CTFuQC +CFL000), (9)
The transition magnetic operator is

. e o kA
52lW#TF;w(ijQj-B{n}’”VsT"’klm+€”kale1,,,7”753;"),
N

(10)

where the matrix Q is defined as Q = diag{2/3,—1/3,
—1/3}. At the lowest order, the Lagrangian generates the
following nucleon anomalous magnetic moments:

1 2
F{ =—c| + ¢, Fg‘:—gcl. (11)

3
In the quark model, the nucleon magnetic moments can
be written in terms of quark magnetic moments. For

4 1 4 1 :
example’ Hp =3Hu —3Ha>  Hn = 3Ha — 3Hu- Using
u, = —2u, = —2u,, we can get the following relationships:

3
(2 +1), €1 = 5k pr =4cy. (12)

N W

cp =

The effective decuplet anomalous magnetic moment oper-
ator can be expressed as effective Lagrangian

- T
- iel

L Tabeor7q, A, Tabe. (13)

o 2mT

For each decuplet baryon, its moment F7 can be written in
terms of ¢;. For example, for A™*, the magnetic moment
pia++ = 3p, = 2¢;. Therefore, F4" =2¢;—2. In our
numerical calculations, the above anomalous magnetic
moments of baryons at tree level that only depend on
the parameter c¢; are used.
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Now we construct the nonlocal Lagrangian that gener-
ates the covariant regulator. The gauge invariant nonlocal
Lagrangian can be obtained using the method in [38—40].
For instance, the local interaction including 7 meson can be
written as

D+F
V2f

Ll = | dx p(xX)yysn(x)(0, + ieA,(x))x " (x).
(14)

The nonlocal Lagrangian for this interaction is expressed as

/dx/dy () ysn(x)F(x = y)

X exp {ie / dz, / daA”(z—a)F(a)}

X (Gﬂ +ie / daA,(y - a)F(a))n’*(y), (15)

where F(x) is the correlation function. To guarantee the
gauge invariance, the gauge link is introduced in the above
Lagrangian. The regulator can be generated automatically
with correlation function. As in Ref. [38], we introduce the
notation

I(x,y,p) = /y dzl,/daA”(z —a)F(a), (16)

where p explicitly denotes the dependence on the path from
x to y. The derivative is defined by

0 .
lim aly,,8 LI(x.y.p)= dilrilo](x,y,-i-dywpl) —I(x,y,p),

dy,—0

(17)

where the path p’ is the same as p except adding the
extension dy, to the y end. With the definition in the above
equation, we have

plep) = [dado-aF@.  (8)

The important point is that the derivative of the path
integral does not depend on the path used in defining it.
With the same idea, the nonlocal electromagnetic inter-
action can also be obtained. For example, the local
interaction between proton and photon is written as

—ep(x)r* p(x)A,(x)

_%ﬁ(x)gﬂvp(x)F”y(x)_ (19)

local __
L EM —

The corresponding nonlocal Lagrangian is expressed as

Liy = —e / dap(x)y*p(x)A,(x — a)Fy(a)
} %/ dap(x)o** p(x)Fu(x = a)Fa(a),

(20)

where F(a) and F,(a) is the correlation function for the
nonlocal electric and magnetic interactions. The form
factors at tree level that are momentum dependent can
be easily obtained with the Fourier transformation. The
simplest choice is to assume that the correlation function of
the nucleon electromagnetic vertex is the same as that of the
nucleon-pion vertex, i.e., Fi(a) = F,(a) = F(a). There-
fore, the Dirac and Pauli form factors have the same
dependence on the momentum transfer at tree level. As
a result, the obtained charge form factor of the proton
decreases very quickly with increasing Q? and it becomes
negative after some Q. The better choice is to assume that
the charge and magnetic form factors at tree level have the
same the momentum dependence as the nucleon-pion
vertex, i.e., Gi¢(p) = ¢,G¥¢(p) = ¢, F(p), where F(p)
is the Fourier transformation of the correlation function
F(a). The corresponding function of F,(g) and F,(q) is
then expressed as

4m3%, + ¢, 0? -

4m?
4m3 +Q* F1(0) -
N

4m3, + Q*
(1)

F{(q)=F(q) =F(q)

From the above equations, one can see that in the heavy
baryon limit, these two choices are equivalent. The non-
local Lagrangian is invariant under the following gauge
transformation,

zt(y) = eVt (), plx) = e Wp(x),

1
A, (x) = A, (x) - E(?ﬂa’(x), (22)
where a(x) = [dad' (x — a)F(a). From Egq. (15), two

kinds of couplings between hadrons and one photon can
be obtained. One is the normal interaction expressed as

o= / dr [ ay2 L pprysn()F (- y)at ()

\/_f
y / daA,(y - a)F(a). (23)

This interaction is similar to the traditional local
Lagrangian except the correlation function. The other
one is the additional interaction obtained by the expansion
of the gauge link, expressed as
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Lo — e / dr | dy2EE pyprsn()F(x - y)

+ F
V2f
x / "z, / dad(z - )F(@)d,rt (). (24)

The additional interaction is important to get the renor-

malized proton (neutron) charge 1 (0). It can be expressed
in momentum space as

wi_, [dP [ d'p [ d% [ dk
£ = / <2n>4/ (27:)4/ (27:)4/ 22)°
DA o (o Kysn(p)F (k)]

VT
x(p' = p—ki. kg —k)zt(k), (25)

where I(p,, p,) is the Fourier transformation of 7(x, y) and
the path p is not shown explicitly here. With Taylor
expansion of F (k1), and then Fourier transforming back
to position space, we have

cime [an fas [ a2 d4" D P krsn(2)a” ()

<[SE0

n=0

(=02)"I(x.z) exp(ik(y—z))| 5(x—2).
(26)

From the above equation, one can see that with Taylor
expansion, the interaction is related to the derivatives of the
path integral. Therefore one can get the path independent
vertex. With tedious differentiation as in Refs. [38,39], the
vertex in momentum space is expressed as

(k+q)2n _q2n

D+F , . F'(0)
r,=-—e ﬁfl(ysF(cD; PTG 2 e oo
_ D4F, . F(k+a)=F(a)
— \/EnySF(q>(2k+Q)H P+2k-q 27)

The Feynman rules for the nonlocal Lagrangian are all
listed in the appendix.

III. ELECTROMAGNETIC FORM FACTORS

The Dirac and Pauli form factors are defined as

(N(P)IuIN(P))

where ¢ = p' — p and Q% = —¢*. FY(Q?) and FY(Q?) are
the Dirac and Pauli form factors. The combination of the
above form factors can generate the electric and magnetic
form factors as

6@ - (@) - 2 ()
GH(@?) = F(Q) + FY(Q) (29)

Charge and magnetic radii are defined by

P\2\ __ —6 ng(Qz)
<(rE) > - Gg(()) sz Q2:07
P2y — —6 dex[(QZ)
oy _(dGHQ?)
((rg)?) = -6 o
4 2y -6 dG;ll/1<Q2)

According to the Lagrangian, the one-loop Feynman
diagrams that contribute to the nucleon electromagnetic
form factors are plotted in Fig. 1.

In this section, we only show the expressions for the
intermediate octet baryon part. For the intermediate dec-
uplet baryon part, the expressions are written in the
appendix. In diagram Fig. 1(a), the photon couples to
the meson. The contribution of Fig. 1(a) to the matrix
element in Eq. (28) is expressed as

(3F+D)* ., (D-F)?

" = ~(D+ FPRIY, = I = I
(32)
0" =(D+ F21Y, — (D - F)*I%,  (33)

_ ﬁ(p/){y”Fllv(Qz) io"q, FN(QZ)} (p). (28)  Wwhere It Ifx, and I5y are the integrals for the Nz, AK,
2my and XK intermediate states, respectively. IV is expressed as
|
N d*k (K + ﬂf)y5 1 1 —Kys -
IN. = F(q)u k) ——(2k H F(k . 34
= @) [ G AT R0 s Gk Y s SR FRuG). (64
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FIG. 1. One-loop Feynman diagrams for the nucleon electromagnetic form factors. The solid, double-solid, dashed, and wave lines are
for the octet baryons, decuplet baryons, pseudoscalar mesons, and photons, respectively. The rectangle and black dot represent magnetic
and additional interacting vertex.

D, (k) is given by
D, (k) = k> — M? + ie. (35)

The expressions for 12 and 1% are the same except the intermediate meson and baryon masses are changed to be those of
K meson and hyperons. For simplicity, we only show the expression for the 7 meson case.

In Fig. 1(b), the photon couples to the intermediate baryon with electric vertex. The contribution of this diagram with
octet intermediate baryons is expressed as

1 12m? — ¢, 0?
Fﬂ(!’) — (D1 F)? P NN
b ( + ) 12m% _|_ 3Q2 br

2
(3F — D)*4m3, + ¢, 0? N 4 (D — F)? 24m3 +7¢,0% 5
6 4m%7 +0* b 24m2 + 60 bK
(3F+D)* Q> .\ BF+D)D-F) ¢

18 4mi +Q* K 3 Am2 + Q7 >, (36)
PO _ (1 12m§,2+ 2c1Q22 oy (3F - D)? ‘ 0? v (3F + D)? c 0? o
12m2 + 30 0 dAmZ+ QP 18 4mi+0
—(D- F)Z%I% (3F + D3)(D - F) 4m6;21$2Q2 NAS (37)
where the integral I}V is written as
1 = Ful) [ G5 P s ) e F). G8)
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Figure 1(c) is for the magnetic baryon-photon interaction. The contribution of this diagram is expressed as

(p) (4c1 + 12)m} ooy, (4er - 4)m;, 27NN 4eymy 27NA
W= T (D PPN 4L (3F = D)’ NN — —— A (3F + D)1}
12m 2+3Q2( +F) T lom 2+3Q2( ) 36mi+9Q2( + D)Lk
28¢, — 24)m 8¢, (D — F)(3F + D)m?
(28e1 229 1y _ pyeppy - BLD =YL 4 DI s (39)
12m% + 30 12m% + 30
: 16¢, — 24 2 deymA
P — —( A Z20M 1y g 8C1mN S(BF —DRIY - —— A (3p 4 py
12m? + 30 +90 36m3% +90
(4c) —24)m3 8¢ (D F)(3F + D)m%
— o (D= FPI + I (40)
12m% + 30 12m% + 30
where
- d*k k/y - 1 o'q, 1 i Kys -
INN — E(g)a(p' 5 L F(k 41
M = F@p) | SSRGS S s R (). (41)
The contribution from Figs. 1(d) and 1(e) is written as
) _ (3F + D)? (D - F)?
Fl:Pre - (D + F)zlj(\t]ilie)n - 6 I](\t]il}ke)l( - 2 Ij(\t/iie)l(’ (42)
Tl =D+ PRI, = (D= FPIE (43)
where
5 d*k Kys - 1 1 -1 .
NN = F(q) / > F(k mysF(q — k)u
(d+e)m (Q) ( ) (2”) \/.f ( ) —K— mD,,(k) \/Ef}, 75 (q ) (p)
L d*k 1 1 —Kys .
F(q)u k F(k ) 44
R [ G s s Fu) (44)

These two diagrams only have contribution in the relativistic cases. In the heavy baryon limit, they have no contribution to
either electric or magnetic form factors.

Figures 1(f) and 1(g) are the additional diagrams that generated from the expansion of the gauge link terms. They are
important to get the renormalized charge to proton (neutron) to be 1 (0). The contribution of these two additional diagrams
with intermediate octet baryons is expressed as

(3F + D)? (D - F)?

) = =D+ FPIY ) = e I = I (45)
DA =D+ FPIN = (D= F2NE L (46)
where
4
B0 = F@tr!) [ S b W) = (k) S k= ) = F(RJulr)
o Ak 1 Qk+q) . 3 L Ky
+F@) [ ks G P o) - OOy s S P, @)
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Using FeynCalc to simplify the y matrix algebra, we can get
the separate expressions for the Dirac and Pauli form
factors. Numerical results are discussed in the next section.

IV. NUMERICAL RESULTS

In the numerical calculations, the parameters are chosen
as D=0.76 and F =050 (g4 =D+ F = 1.26). The
coupling constant C is chosen to be 1 which is the same
as in Ref. [41]. The off-shell parameter z is chosen to be
z = —1 [42]. The low energy constant c; is fitted by the
experimental moment of F%(0) = —1.91. The covariant
regulator is chosen to be of a dipole form

- 1

Fk) = (1= k*IN%)?’ (48)
where Lambda is the only free parameter. By varying the
value of A, we found that when A is around 0.85 GeV, the
results are very close to the experimental nucleon form
factors.

The calculated proton magnetic form factor G}, (Q?) versus
Q? is plotted in Fig. 2. The solid line is for the empirical
result with G4, (Q?) = 2.79/(1 + 0/0.71 GeV?)?. The dot-
ted, dot-dashed, and dashed lines are for the tree, loop, and
total contribution, respectively. As we explained previously,
on the one hand, the nonlocal Lagrangian generates the
covariant regulator that makes the loop integral convergent.
On the other hand, it also generates the Q> dependent
contribution at tree level. Compared with the conventional
ChPT, the tree level contribution is not expanded in powers of
momentum transfer. As a result, both the tree and loop
contribution decrease smoothly with the increasing Q% and
the total obtained form factor is close to the experimental value
upto Q% = 2 GeV?. For Q* = 0, the contribution to 4, at tree
level is 2.11 and the loop contribution to y,, is 0.67. The total

20p :

N
0.5F°~\,

_________
...........
...................

FIG. 2. The proton magnetic form factor versus momentum
transfer Q2 with A = 0.85 GeV. The solid line is for the
empirical result. The dotted, dot-dashed, and dashed lines are
for the tree, loop, and total contribution, respectively.

Hp is 2.78. This proton magnetic moment is calculated with
fixed c¢;, which is determined by the neutron magnetic
moment (4, = —1.91). The proton magnetic radii is
0.848 fm in our calculation, which is obviously close to
the experimental value.

The proton charge form factor versus Q2 is shown in
Fig 3. The solid, dashed, dotted, and dot-dashed lines have
the same meaning as Fig. 2 except for the charge form
factor. From the figure, one can see that both the tree and
loop contribution are important to get the correct Q2
dependence of the form factors. At Q> = 0, the sum of
the tree and loop contribution to proton charge is 1. The
additional diagrams generated from the expansion of the
gauge link are crucial to get the renormalized proton
charge 1. Compared with the magnetic form factor, the
charge form factor decreases faster. As a result, the
obtained charge radii of 0.857 fm are a little larger than
the magnetic radii.

The neutron magnetic form factor versus Q? is shown in
Fig. 4. Similar as the proton case, the solid line is for the
empirical result. The dotted, dot-dashed, and dashed lines
represent the tree, loop, and total contribution to the
neutron form factor, respectively. Again, compared with
the empirical data, our calculated result is very good up to
Q? = 2 GeV?. The calculated magnetic radii of neutron are
0.867 fm. From Figs. 2 to 4, we can see the loop diagrams
contribute about 25%-30% to proton electromagnetic form
factors and neutron magnetic form factor, while 70%—75%
of the form factors is from the tree level contribution.

The neutron charge form factor is plotted in Fig. 5. Since
the charge of the neutron is 0, all the contribution to the
neutron charge form factor is from the loop. It first increases
and then decreases with the increasing momentum transfer.
The neutron charge radii {(#4,)?) = —0.077 fm?, which is
smaller than experimental value —0.11 fm?. Though the
calculated charge form factor of neutron is smaller than
experimental values, overall the result is still reasonable.

In the traditional ChPT, in addition to the two parameters
¢y and ¢, that were determined by the proton and neutron

1.0 T T T

08} ]
06F% N i
04F E

W T TS
02F .o T TS -
F Se TTEel 0SS 4
..............
TSl e lTTETEE=—

FIG. 3. Same as Fig. 2 but for the proton electric form factor.
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FIG. 4. The magnetic form factor of neutron versus momentum
transfer Q2 with A = 0.85 GeV. The solid line is for the
empirical result. The dotted, dot-dashed, and dashed lines are
for the tree, loop, and total contribution, respectively.

magnetic moments, there are four other parameters fitted by
the electric and magnetic radii of proton and neutron. Here
besides the parameter ¢ fitted by the experimental neutron
magnetic moment, we have only one free parameter A in
the regulator. The proton magnetic moment and the nucleon
radii are calculated instead of fitted. With fewer parameters,
the obtained electromagnetic form factors of proton and
neutron are all much better than those in the traditional
ChPT. This makes it possible to study the form factors
precisely at relatively large Q2.

With the precisely determined form factors, we now
show the ratios of the electric to normalized magnetic form
factor. The ratio for the proton is plotted in Fig 6. If without
loop contribution, the ratio remains 1 for all Q. With loop

#,Gr.
] G[I\;
ing Q%. Our calculated result is comparable with the
experimental data, though at large Q7, the experimental
data drop more quickly.

contribution automatically deceases with the increas-

.12 —r—F—F"—T—"——T—T——7—"

0.08 E

0.02 E

0.00 L L L
0.0 0.5 1.0 1.5 2.0

Q@ (GeV?)

FIG. 5. The electric form factor of neutron versus momentum
transfer Q> with A = 0.85 GeV. The experimental date are
from [43].

09F

Qly
[GR I~
AkS i

BN 08F I E
0.7F b
06F b
0.5 L L L

0.0 0.5 1.0 15 2.0

Q% (GeVv?)
FIG. 6. Radio of proton electric to normalized magnetic form

factor versus momentum transfer Q2. The experimental result is
from [44].

0.5 T T T

) L
. ST

. I{I

01F ! =

iy G2
N
M

0.0 . . .
0.0 0.5 1.0 15 2.0

Q% (GeV?)

FIG. 7. Radio of neutron electric to normalized magnetic form

factor versus momentum transfer Q2. The experimental result is
from [45].

The ratio for neutron is plotted in Fig. 7. From the figure,

n

l’lnGE
Gl
as the experimental data. This is purely due to the loop

one can see the ratio increases with the increasing Q>

. . . . 1, G7 .
contribution. The experimental ratio of ‘G—E increases more
M

quickly than our result. It is mainly because our calculated
%% 1s smaller than the experimental data.

V. SUMMARY

We proposed a relativistic version for the finite-range
regularization that makes it possible to study the hadron
properties with relativistic chiral effective Lagrangian at
large Q7. The finite-range regularization has been widely
applied to investigate the nucleon mass, form factors,
electromagnetic radii, generalized parton distributions,
proton spin, etc. We have good knowledge on the three-
dimensional regulator that was kept the same for all the
calculations. However, we have little knowledge on the
covariant four-dimensional regulator. Therefore, we start
from the well-determined nucleon form factors and it was
found that using the dipole regulator with A around
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FIG. 8.

0.85 GeV the nucleon form factors can be described very
well up to Q? =2 GeV?. The covariant regulator is
generated from the nonlocal gauge invariant Lagrangian.
As a result, the renormalized charge of proton (neutron) is 1
(0) with the additional diagrams obtained by the expansion
of the gauge link. The nonlocal interaction generates both
the regulator, which makes the loop integral convergent,
and the Q? dependence of form factors at tree level. In this
approach, we have only two parameters ¢; and A instead of
six parameters in the traditional ChPT. With fewer param-
eters, our calculated form factors are much better. The
ratios of the electric to normalized magnetic form factor are
also comparable with the experimental data. From our
calculation, the G§/G¥ puzzle can be naturally understood.
This is the first time that we calculate the form factors
precisely at relatively large Q® with chiral effective
Lagrangian. The successful application of chiral effective
Lagrangian to large momentum transfer is very helpful for
us to investigate hadron quantities at high Q. As a
summary, we list the parameters and obtained magnetic
moments and electromagnetic radii in Table I.
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TABLE 1. The parameters and calculated magnetic moments
and electromagnetic radii of nucleon.

A mp TEp "'Mn ’%n
GeV) Z o owy om ) dm ed

0.8 0.71 3.090 2.78 —-1.91 0.893 0.903 0912 -0.076
0.85 0.69 3.085 278 —191 0.848 0.857 0.867 —0.077
0.9 0.66 3.077 2.78 -1.91 0.808 0.816 0.829 —0.082
Exp. ceeeee 279 =191 0.836 0.847 0.889 —0.113

The interacting vertex in the calculation of nucleon form factors. Only the 7 case is shown as an example. The rectangle and
black dot represent the magnetic and additional interacting vertex.

APPENDIX: FEYNMAN RULES AND DECUPLET
CONTRIBUTION

The Feynman rules for the nonlocal vertices plotted in
Fig. 8 are written as written as

. Krs ;
m.%yw+mnm
2): - f—zf (D + F)y'ysE(k+ q)F(q)

) e 2k +g)* - e
() =5 O+ Flkrsyp =05 [Flk+ ) = FOIF(g)

(4): —ie(p+ p")'F(q)

(5): — f%f (k, + zy, K)F (k)

_eC
V(i

(¢ + 2r*r")F(k + q)F(q)

o % (kﬂ+Zy#/()%[F(k+q)—F(k)]F(Q)
(8): —iey”%F(Q)
9): —iey“””%i:(@
o= et g
e Sl

(10): .

(11):

ZmA
V3 -
(12): e%CIFM’”YSF(CI)'

The expressions for the decuplet part are written in the
following way. The contribution of Fig. 1(h) is expressed as
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h 3 6hK’ ( ) i 3 42+Q2 in 64*2+Q2 iK ( )
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Fh 3 I]m 3 IhK s (AZ) F,,(n):_C 4mA+C]Q II.VA—C 4m2 +C]Q INZX (A6)
: 3 4mi+0% " 6 AmP+0* *7
where
where
d*k 1
B2 = F@up) [ skt a), ~ " 1
1 = F@)a(p) [ s (e + 2k F ) 3
1 (27)* 2f D, (k)
+2(K+ q)7,))F(q + k) D.(k+q) |
T Q) oy~
X Soa X (=27"*)
(2k )/4 1 Iﬁ/—k/—mA p—k/—mA
e +q ~
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e ! The contribution of Fig. 1(j) is expressed as
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3mA . J 34mi+Q2 Jr 6 4m *2+Q21
The contribution of Fig. 1(i) is expressed as where
- dk 1 ~ i i (I—=c¢y)
A =F(qu(p) | 377 (ks + 2Ky,)F S -
jn (C])M(p ) / (2”)4 2f2( +z 7/0’) ( )Dﬂ(k) p/_k/_ M ov Mo 07q,
i -
The contribution of Figs. 1(k) and 1(I) is expressed as
5
r =2(p+ F)CIA,  + (D= F)CIE  + (3F +D)CIE . (Al1)
1
r\) = -2p+ F)Crp, + 2 (D+F)CIE  — (3F + D)CIYE, ¢ (A12)
where
- d*k ¢ - 1 1 i
= =—F(q)i LR e Yysq,———— S, (k —
(k+1)7 (Q)u(p ) / (271_)4 6’/’12 f2 (k)k/yS [5’ _k/_ mz}/ }/Squp,_k/_ My ﬂ[)( 14 + ZY/)k/) D”<k) u<p)
~ d4k C1 ~ 1 1 i
F(q)u(p' ——— FXk)Kys——i " — S (k —
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The contribution of Figs. 1(m) and 1(n) is expressed as
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