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We present a quantum algorithm for the calculation of scattering amplitudes of massive charged scalar
particles in scalar quantum electrodynamics. Our algorithm is based on continuous-variable quantum
computing architecture resulting in exponential speedup over classical methods. We derive a simple form of
the Hamiltonian including interactions and a straightforward implementation of the constraint due to gauge
invariance.
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I. INTRODUCTION

Quantum field theory (QFT) provides a unique perspec-
tive of the natural world, its composition, and how it works,
by combining the laws of quantum mechanics and special
relativity. QFT also forms the foundation of the Standard
Model of elementary particles which encompasses all
known particles and interactions between them with the
exception of gravity. Theoretical predictions are tested
experimentally using scattering. The calculation of scatter-
ing amplitudes is a daunting task with classical computers.
With the help of a perturbative expansion utilizing Feynman
diagrams, calculations are possible at weak coupling. For
strong coupling, lattice field theory is used and becomes
exponentially harder as the number of sites grows [1].
There are two ways to process information in a quantum

system. One way is to encode the information into discrete
systems, like the spin of an electron or the polarization of a
photon. Quantum algorithms are implemented on quantum
systems with discrete spectra. Another way to encode the
information is to use continuous variables (CV), which was
first proposed by Lloyd and Braunstein [2], relying on
quantum systems of which the observables have continuous
spectra, like the position and momentum of a particle or the
quadratures of an electromagnetic field [3–15] (also see
Ref. [16] for a discussion of hybrid schemes leading to
quantum algorithms that benefit from the advantages of both
discrete and continuous variables). The experimental advan-
tages brought on byCVquantum architectures have resulted
in an extensive use of CVs in recent years. For instance, the
extension of the discrete formalism of cluster state protocols
to the continuous formalism [17] provided the advantage of

the deterministic production ofmultipartite entangled states,
and the measurement of high fidelity, using present tech-
nology [18]. The physical realization of CV cluster-state
quantum computing has led to proof-of-principle experi-
mental demonstrations such as a fully tunable gate for
continuous-variable one-way quantum computation [19], a
dynamical squeezing gate for universal quantum informa-
tion processing [20], and large entangled states for scalable
quantum information and quantum computing [21].
The purpose of this paper is to present a quantum

calculation of scattering amplitudes of a massive charged
scalar particle in QED. To this end, we will utilize a CV
quantum architecture as a tool to describe our quantum
system, since it has certain advantages compared to discrete
variables. Quantum algorithms for the calculation of scatter-
ing amplitudes give an exponential speedup compared to
any known classical algorithms. This was first shown by
Jordan et al., who introduced a quantum algorithm using
discrete variables for the simulation of a scalar bosonic QFT
[1]. Marshall et al., adapted the results of Ref. [1] to the case
of a CV quantum architecture [22]. Others have studied the
quantum simulation of QED in order to understand the
elementary constituents of matter, using engineered and
controlled quantum mechanical devices, such as trapped
ions [23,24], or lattice gaugemodels [25,26].Wewill follow
the method developed in Ref. [22] and introduce a CV
quantum algorithm for the calculation of scattering ampli-
tudes of massive charged scalars in QED.
In our approach, in addition to extending the CV

algorithms for the computation of scattering amplitudes
of a scalar QED system, we introduce a straightforward
implementation of the constraint which is present due to the
gauge invariance of the system. Gauge invariance leads to
photons having 2 degrees of freedom (transverse polari-
zation), even though they are described by a 4-vector
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(gauge field). A reduction to the two physical degrees of
freedom is usually accomplished by imposing a gauge-
fixing condition. We will follow the alternative approach of
augmenting the Lagrangian with the addition of a term that
leads to a nonsingular propagator. This leads to a photonic
system that uses more than two fields for its description, the
additional fields corresponding to unphysical degrees of
freedom. Consequently, the Hilbert space contains unphys-
ical states. They are seen to decouple by imposing Gauss’s
law, which is a constraint on the system and generates
gauge invariance. In the calculation of scattering ampli-
tudes, we turn the coupling (electric charge) on and off
adiabatically. This breaks gauge invariance involving time-
dependent transformations, and one ought to exercise care
in imposing Gauss’s law. We show how this can be done in
a straightforward manner in the quantum algorithm.
Our discussion is organized as follows. In Sec. II, we

discuss our scalar quantum electrodynamic system. We
introduce the fields and the Hamiltonian defined on a
lattice. We discuss the complications due to gauge invari-
ance and renormalization and introduce a straightforward
method to account for the constraint (Gauss’s law). In
Sec. III, we discuss quantum computation of the initial
state, scattering amplitudes, and measurement of the final
state. Finally, in Sec. IV, we provide a summary and
outlook.

II. SYSTEM

A. Noninteracting scalars and photons

Ignoring interactions at the moment, our system consists
of two massive scalar fields ϕ1 and ϕ2, both of massm, and
a 4-vector (gauge) field ðAt;AÞ representing photons. The
Hamiltonian for each real scalar field in three spatial
dimensions is [22]

Hϕi
¼ 1

2

Z
½0;L�3

d3x½π2i − ϕi∇2ϕi þm2ϕ2
i � ð1Þ

for i ¼ 1, 2, where L is the size of each spatial dimension,
and we impose periodic boundary conditions. πi is the
conjugate momentum, obeying commutation relations

½ϕiðxÞ; πjðx0Þ� ¼ iδijδ3ðx − x0Þ: ð2Þ

In the presence of interactions, the mass parameter as well
as the fields are renormalized due to quantum effects. This
effect is often described by the terms bare referring to the
parameters and fields of the classical Lagrangian and
dressed referring to corrected parameters and fields due
to quantum effects. Here, we will not be concerned with the
renormalization of fields which are treated as dynamical
variables (in a path-integral formulation, one integrates
over them), but quantum corrections to (renormalization of)
the mass parameter are important. In our approach, we will

keep m as close to the physical (dressed, renormalized)
mass as possible by introducing a counterterm (correction
mass term in the Hamiltonian). In the weak-coupling limit,
this is achieved by an analytic calculation of renormaliza-
tion using perturbation theory, as we explain later on. In the
strong-coupling regime, the physical mass parameter can
only be determined in retrospect, by calculating the poles of
correlators (Green functions).
We may expand the fields in creation and annihilation

operators as

ϕiðxÞ ¼
1

L3/2

X
k

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp ðaiðkÞeik·x þ a†i ðkÞe−ik·xÞ;

πiðxÞ ¼
i

L3/2

X
k

ffiffiffiffiffiffiffiffiffiffi
ωðkÞ
2

r
ð−aiðkÞeik·x þ a†i ðkÞe−ik·xÞ; ð3Þ

where L
2π k ∈ Z3, and ωðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, and we used the

time evolution of the scalar fields, ∂tϕi ¼ πi. The commu-
tation relations (2) are easily seen to reduce to standard
commutation relations of the Fourier modes,

½aiðkÞ; a†jðk0Þ� ¼ δijδkk0 : ð4Þ

It is convenient to combine the two real scalar fields into a
complex scalar field ϕ ¼ 1ffiffi

2
p ðϕ1 þ iϕ2Þ and its conjugate

momentum π ¼ 1ffiffi
2

p ðπ1 − iπ2Þ. The complex field can be

expanded into creation and annihilation operators as

ϕðxÞ ¼ 1

L3/2

X
k

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp ðbðkÞeik·x þ c†ðkÞe−ik·xÞ; ð5Þ

with b ¼ a1þia2ffiffi
2

p , c ¼ a1−ia2ffiffi
2

p . The two creation operators,

b†ðkÞ and c†ðkÞ, create particles and antiparticles, respec-
tively. The normal-ordered Hamiltonian for the complex
scalar field reads

Hϕ¼Hϕ1
þHϕ2

¼
X
k

ωðkÞðb†ðkÞbðkÞþc†ðkÞcðkÞÞ: ð6Þ

Another useful quantity is the scalar Green function
Gϕðx; tÞ which satisfies

ð∂2
t − ∇2 þm2ÞGϕðt; xÞ ¼ δðtÞδ3ðxÞ: ð7Þ

By taking the Fourier transform, we easily obtain in the
large-L limit,

Gϕðt; xÞ ¼
Z

dE
2π

Z
d3p
ð2πÞ3 e

iðEt−p·xÞG̃ϕðE; pÞ;

G̃ϕðE; pÞ ¼
i

E2 − p2 −m2
: ð8Þ
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Turning to photons, quantization is not straightforward due
to gauge invariance (constrained system). The Lagrangian
is L ¼ 1

2

R
d3xðE2 − B2Þ, where E ¼ −∇At − ∂tA is the

electric field and B ¼ ∇ × A is the magnetic field. Even
though the system is described by a 4-component gauge
field ðAt;AÞ, it contains only two physical degrees of
freedom (transverse polarization). To reveal them, one
usually imposes a gauge-fixing condition. Instead, for
our purposes, we find it more convenient to add the term
− λ

2

R
d3xð∂tAt þ ∇ · AÞ2, where λ is an arbitrary parameter

that should not affect the physics. We obtain the conjugate
momenta ϖt ¼ −λð∂tAt þ ∇ · AÞ, and ϖ ¼ −E. Notice
that ϖt ¼ 0, if λ ¼ 0, showing that our system is con-
strained. After standard steps, we arrive at the Hamiltonian

HQED ¼ 1

2

Z
½0;L�3

d3x

�
−
1

λ
ðϖt þ λ∇ · AÞ2 þϖ2 − A · ∇2A

þ ðλ − 1Þð∇ · AÞ2 þ 2At∇ ·ϖ

�
: ð9Þ

Notice that At acts as a Lagrange multiplier imposing the
constraint (Gauss’s law)

∇ ·ϖ ¼ 0 ð10Þ

and its conjugate momentum decouples (At ¼ 0 gauge).
Moreover, since no physical results depend on λ, we will
make the convenient choice λ ¼ 1 (Feynman gauge). The
Hamiltonian simplifies to

HQED ¼ 1

2

Z
½0;L�3

d3x½ϖ2 − A · ∇2A� ð11Þ

described in terms of a three-component field which
includes an unphysical degree of freedom. It will be
eliminated after imposing the constraint (10). Once inter-
actions are turned on, the gauge field receives quantum
corrections (is renormalized), so the field appearing in the
classical Lagrangian is bare. However, we will not need to
be concerned about field renormalization here, because the
fields are treated as dynamical variables (integrated over in
a path-integral formulation).
To quantize the system, we impose standard commuta-

tion relations on the gauge potential A and its conjugate
momentum (electric field) ϖ,

½AiðxÞ;ϖjðx0Þ� ¼ iδijδ3ðx − x0Þ: ð12Þ

The gauge potential can be expanded in a manner similar to
the scalar field,

AðxÞ ¼ 1

L3/2

X
k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωγðkÞ

p ½aðkÞeik·x þ a†ðkÞe−ik·x�; ð13Þ

where ωγðkÞ ¼ jkj. We deduce the commutation relations

½aiðkÞ; a†jðk0Þ� ¼ δijδkk0 : ð14Þ

The normal-ordered Hamiltonian reads

HQED ¼
X
k

ωγðkÞa†ðkÞ · aðkÞ: ð15Þ

Unphysical states are rejected by demanding that physical
states obey the quantum extension of Gauss’s law (10). To
implement it, it is convenient to consider the commutator of
(10) with the Hamiltonian (11). We easily obtain ∇ · A ¼ 0.
After Fourier transforming to momentum space using (13),
at the quantum level, we impose the gauge condition

k · aðkÞjΨi ¼ 0: ð16Þ
Evidently, the ground state obeys the constraint (16). It is
easily seen that a single-photon state ζ · a†ðkÞj0i obeys
(16) provided its polarization is transverse, k · ζ ¼ 0.
Transversality is a general condition for states containing
an arbitrary number of photons to obey the gauge condition
(16). This shows that unphysical states do indeed decouple
and the system has only 2 degrees of freedom (transverse
polarization), even though it is described in terms of a
three-component gauge field A.
As with the scalar [Eq. (8)], we introduce the photon

propagator

Gγðt; xÞ ¼
Z

dE
2π

Z
d3p
ð2πÞ3 e

iðEt−p·xÞG̃γðE; pÞ;

G̃γðE; pÞ ¼
i

E2 − p2
; ð17Þ

showing that the photon is massless. The vanishing mass
should receive no quantum corrections. This is ensured by
gauge invariance at the quantum level.
For numerical calculations, we shall discretize space,

thus putting the system on a lattice. Let a be the lattice
spacing. Then, in each spatial dimension, we have L/a
points. We will set a ¼ 1 so that L is an integer
(xi ¼ 0; 1;…; L − 1, and L ≫ 1). Notice that in these
units, the continuum limit, which would normally be taken
as a → 0, is instead the limit in which all physical
quantities of positive length dimension become very large,
e.g., L → ∞. The momentum k lives on the dual lattice
( L
2π ki ¼ 0; 1;…; L − 1). Our system consists of 5L3 har-
monic oscillators (2L3 describing the complex scalar field
and 3L3 describing the gauge field1). The scalar modes can
be written in terms of the scalar field as

1Recall that, even though the photon has 2 degrees of freedom,
our system is described by a three-component gauge field A, and
the unphysical degree of freedom is dealt with by making sure
that unphysical states decouple.
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bðkÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ωðkÞ
2

r
ϕ̃ðkÞ þ iffiffiffiffiffiffiffiffiffiffiffiffi

2ωðkÞp π̃†ðkÞ;

cðkÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ωðkÞ
2

r
ϕ̃†ðkÞ þ iffiffiffiffiffiffiffiffiffiffiffiffi

2ωðkÞp π̃ðkÞ; ð18Þ

and the photon modes in terms of the gauge field are

aiðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ωγðkÞ
2

r
ÃiðkÞ þ

iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωγðkÞ

p ϖ̃iðkÞ; i ¼ 1; 2; 3;

ð19Þ

where we introduced the Fourier transform of the
field ϕðxÞ,

ϕ̃ðkÞ≡ 1

L3/2

X
x

e−ik·xϕðxÞ; ð20Þ

and similarly for the other fields, and we defined

ω2ðkÞ¼m2þ4
X3
i¼1

sin2
ki
2
; ωγðkÞ¼ωðkÞjm¼1

L
: ð21Þ

Notice that we set the mass of the photon to 1
L ≪ 1, and not

zero, in order to avoid numerical problems with zero
modes.
The noninteracting Hamiltonian reads

H0 ¼ Hϕ þHQED

¼
X
k

ωðkÞðb†ðkÞbðkÞ þ c†ðkÞcðkÞÞ

þ
X
k

ωγðkÞa†ðkÞ · aðkÞ: ð22Þ

The scalar and photon propagators, Eqs. (8) and (17),
respectively, in the large-L limit turn into

Gϕðt; xÞ ¼
Z

dE
2π

Z
½0;2π�3

d3p
ð2πÞ3 e

iðEt−p·xÞG̃ϕðE; pÞ;

G̃ϕðE; pÞ ¼
i

E2 − ω2ðpÞ ;

Gγðt; xÞ ¼
Z

dE
2π

Z
½0;2π�3

d3p
ð2πÞ3 e

iðEt−p·xÞG̃γðE; pÞ;

G̃γðE; pÞ ¼
i

E2 − ω2
γðpÞ

: ð23Þ

These expressions will be useful in the calculation of
Feynman diagrams when we include interactions.

B. Interactions and renormalization

In our discussion so far, we considered only free particles
(scalars and photons). This is a valid description of scalars
with no electric charge. We now switch on interactions
between the scalars and the photons by assigning an electric
charge e to the scalar particles. The Hamiltonian is
modified by the addition of the interaction Hamiltonian

HIðeÞ ¼ −
X
x

½ieA · ðϕ∇ϕ† − ϕ†∇ϕÞ þ e2A2ϕ†ϕ�; ð24Þ

where the gradients represent finite differences over neigh-
boring points on the lattice. Quantization of the system
yields quantum corrections (renormalization) of the fields
and the parameters (m and e). As explained above, we will
not be concerned with field renormalization. Mass renorm-
alization necessitates the addition of a mass counterterm to
the Hamiltonian,

Hc:t: ¼
δm
2

X
x

ϕ†ϕ; ð25Þ

with the parameter δm to be determined. As we switch the
coupling e on and off, we also need to switch δm in tandem.
The counterterm modifies the effective mass to

m2
0 ¼ m2 þ δm: ð26Þ

Ideally, we will choose δm so that the effective mass m0 is
the bare mass andm is the physical (renormalized, dressed)
mass of the charged scalar field. This is not always
possible. In general, the physical mass will not coincide
with m; it is found by calculating the poles of a Green
function. In the weak-coupling limit, which is usually the
physically relevant regime, the bare mass m0 can be
estimated by perturbation theory (given an experimentally
observed value of m) to a high degree of accuracy.
Thus, the full Hamiltonian of our system is

H ¼ H0 þHIðeÞ þHc:t:: ð27Þ

Gauss’s law (10) is also modified to

∇ ·ϖ − ρ ¼ 0; ρ ¼ ieðπϕ − π�ϕ�Þ: ð28Þ

It generates the gauge transformation

A → Aþ ∇χ; ϕ → eieχϕ; π → e−ieχπ; ð29Þ

where χðxÞ is an arbitrary time-independent function. The
part of the Hamiltonian that involves the scalar field
(H −HQED) is invariant under this transformation.
Notice that this is true even if the coupling constant is
time dependent [e ¼ eðtÞ], which is the case as it is being
adiabatically switched on or off in the calculation of
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scattering amplitudes. It follows that the part of the
Hamiltonian that has a nonvanishing commutator with
Gauss’s law (28) is the electromagnetic part, HQED, and
so the commutator of Gauss’s law with the Hamiltonian
leads to the same constraint as in the noninteracting case
considered above, ∇ · A ¼ 0. Consequently, the quantum
extension of Gauss’s law, i.e., the gauge condition (16) we
imposed above, remains the same after interactions are
switched on. It suffices to prepare a physical initial state
[i.e., one obeying the constraint (16)] for the state to remain
physical through evolution under the full interacting
Hamiltonian (27).
Having determined the implementation of the gauge

constraint, we turn to the determination of the mass
counterterm parameter δm. As noted above, it is desirable
to set its value so that m0 [Eq. (26)] is the bare mass of the
complex scalar so that m is the physical mass. It can be
calculated analytically in the case of weak coupling by
using perturbation theory. At lowest perturbative order, the
Feynman diagrams contributing to δm are shown in Fig. 1.
We obtain the contributions to the scalar self-energy,
respectively,

Σð1Þ
ϕ ðk0; kÞ ¼ −2e2

Z
∞

−∞

dl0

2π

Z
½−π;π�3

d3l
ð2πÞ3 ððl

0 þ 2k0Þ2

− ðl þ 2kÞ2ÞG̃γðl0; lÞG̃ϕðl0 þ k0; l þ kÞ;

Σð2Þ
ϕ ðk0; kÞ ¼ 8ie2

Z
∞

−∞

dl0

2π

Z
½−π;π�3

d3l
ð2πÞ3 G̃γðl0; lÞ; ð30Þ

where G̃ϕ, and G̃γ are defined in Eq. (23). The mass
counterterm parameter is given by

δm¼ðΣð1Þ
ϕ ðk0;kÞþΣð2Þ

ϕ ðk0;kÞÞjðk0Þ2¼k2þm2 þOðe4Þ: ð31Þ

We are interested in the limit in which the lattice spacing
a → 0. Since we are using units in which a ¼ 1, in this
limit, quantities with the dimension of energy do not
contribute at leading order. After setting k0, k, m to zero,
we obtain the expression for the mass counterterm

δm ¼ −6e2
Z

∞

−∞

dl0

2π

Z
½−π;π�3

d3l
ð2πÞ3

1

ðl0Þ2 − 4
P

3
i¼1 sin

2 li
2

þOðe4Þ: ð32Þ

The integrals can be evaluated numerically. We obtain

δm ¼ ½−1.36þOðm2Þ�e2 þOðe4Þ; ð33Þ

which is valid in the limit a → 0.2 A better approximation
to δm can be achieved by including higher-order perturba-
tive corrections, as long as the coupling constant is small.
Physically, e2

4π is the fine-structure constant 1
137

, which is a
small parameter. If e is not small (strong-coupling regime),
then m and δm can be adjusted by making sure that the
mass pole of correlation functions is the physical mass of
the complex scalar.
The electric charge e is also renormalized by the

interactions. Because of gauge invariance, this renormal-
ization can be deduced from the photon propagator. At the
lowest order, the diagrams that contribute are shown in
Fig. 2. We obtain the contributions to the vacuum photon
polarization, respectively,

Πð1Þðk0; k; ζ1; ζ2Þ ¼ −4e2
Z

∞

−∞

dl0

2π

Z
½−π;π�3

d3l
ð2πÞ3 ζ1 · lζ2 · lG̃ϕðl0; lÞG̃ϕðl0 þ k0; l þ kÞ;

Πð2Þðk0; k; ζ1; ζ2Þ ¼ 2e2ζ1 · ζ2

Z
∞

−∞

dl0

2π

Z
½−π;π�3

d3l
ð2πÞ3 G̃ϕðl0; lÞ; ð34Þ

where ζ1;2 are the photon polarizations of the two external legs (ζ1;2 · k ¼ 0). The calculation of Πð1Þ proceeds as follows.
We introduce a Feynman parameter to write the propagators as

FIG. 1. One-loop contributions to the scalar mass
renormalization.

FIG. 2. One-loop contributions to photon field (charge)
renormalization.

2Recall that we have set a ¼ 1. Were we to restore the lattice spacing a, the leading-order contribution to δmwould be − 1.36
a2 e2, which

diverges in the continuum limit a → 0.
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G̃ϕðl0; lÞG̃ϕðl0 þ k0; l þ kÞ ¼ −
Z

1

0

dx
1

½ðl0 þ ð1 − xÞk0Þ2 þ xð1 − xÞðk0Þ2 − xωðlÞ − ð1 − xÞωðl þ kÞ�2 : ð35Þ

After shifting l0 → l0 − ð1 − xÞk0, the integral over l0 is easily performed. We obtain

Πð1Þðk0; k; ζ1; ζ2Þ ¼ 2e2
Z

1

0

dx
Z
½−π;π�3

d3l
ð2πÞ3

ζ1 · lζ2 · l
½xωðlÞ þ ð1 − xÞωðl þ kÞ − xð1 − xÞðk0Þ2�1/2 : ð36Þ

Because of rotational invariance, and transversality, ζ1;2 · k ¼ 0, the above expression simplifies to

Πð1Þðk0; k; ζ1; ζ2Þ ¼ 2e2ζ1 · ζ2

Z
1

0

dx
Z
½−π;π�3

d3l
ð2πÞ3

l2

½xωðlÞ þ ð1 − xÞωðl þ kÞ − xð1 − xÞðk0Þ2�1/2 : ð37Þ

Expanding in ðk0; kÞ, we obtain

Πð1Þðk0;k; ζ1; ζ2Þ ¼ e2ζ1 · ζ2½Πð1Þ
0 þ ðk0Þ2Πð1Þ

1 þ k2Πð1Þ
2 …�;
ð38Þ

where Πð1Þ
i are constants that can be evaluated numerically

in the limit a → 0 (in which we can setma ¼ 0). We obtain

Πð1Þ
0 ¼ 0.455þOðm2Þ;

Πð1Þ
1 ¼ −Πð1Þ

2 ¼ 1

48π2
log

1

m2
þ 0.003þOðm2Þ: ð39Þ

If we restore the lattice spacing a, by dimensional analysis,
the leading terms in the above expansions are 0.455

a2 and
1

48π2
log 1

m2a2, which diverge in the continuum limit a → 0.
Similarly, we obtain for the second Feynman diagram

Πð2Þðk0; k; ζ1; ζ2Þ ¼ −e2ζ1 · ζ2Π
ð1Þ
0 ð40Þ

and for the sum of the two diagrams

Πð1Þðk0; k; ζ1; ζ2Þ þ Πð2Þðk0; k; ζ1; ζ2Þ

¼
�

1

48π2
log

1

m2
þ 0.003

�
e2½ðk0Þ2 − k2�ζ1 · ζ2 þ…:

ð41Þ

This implies photon field renormalization and, by gauge
invariance, charge renormalization, with the bare electric
charge given by

e20 ¼ e2 þ δe; δe ¼
�

1

48π2
log

1

m2
þ 0.003

�
e4 þ…:

ð42Þ

Therefore, we ought to add a counterterm to the
Hamiltonian, as we did with the mass parameter.
Alternatively, we ought to make sure that the coupling

constant in the Hamiltonian is the bare electric charge e0.
Even though δe diverges in the continuum limit, as
remarked above, the divergence is logarithmic, and in
practice, the numerical value of the charge counterterm
δe is small, so we will not include it explicitly here.

III. QUANTUM COMPUTATION

As explained in the previous section, we need 5L3

harmonic oscillators to build our system. 2L3 harmonic
oscillators will be represented by the scalar conjugate
variables ðϕiðxÞ; πiðxÞÞ (i ¼ 1, 2), and 3L3 harmonic
oscillators will be represented by the photon conjugate
variables ðAjðyÞ;ϖjðyÞÞ (j ¼ 1, 2, 3). Due to its transverse
polarization, the photon only has 2 degrees of freedom.
In our formulation, the photon is described by a three-
component gauge field. The redundant unphysical degree
of freedom is eliminated in the Hilbert space by imposing
the gauge condition (16). The harmonic oscillators will be
represented by a continuous-variable quantum system
consisting of 5L3 qumodes [27].
The ground state j0i of the system is annihilated by all

(a total of 5L3) annihilation operators, BðxÞ ¼
1ffiffi
2

p ðϕðxÞ þ iπ†ðxÞÞ, CðxÞ¼ 1ffiffi
2

p ðϕ†ðxÞþiπðxÞÞ, and AiðxÞ ¼
1ffiffi
2

p ðAiðxÞ þ iϖiðxÞÞ (i ¼ 1, 2, 3),

fAiðxÞ;BðxÞ; CðxÞgj0i ¼ 0: ð43Þ

We will first build the initial state of the system without
interactions and then adiabatically switch on the coupling.
Once the coupling reaches the desired value, we will let the
system evolve under the Hamiltonian (27). Subsequently,
the coupling constant will be adiabatically switched off,
and finally measurements will be performed on the free
system.

A. Initial-state preparation

Ground-state preparation is one of the most challenging
problems in quantum simulation [28]; creating the ground
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state of our system is cumbersome as it involves a large
number of modes. The desired ground state jΩi of our
system is annihilated by bðkÞ; cðkÞ; aiðkÞ (i ¼ 1, 2, 3),
given by Eqs. (18) and (19), respectively,

faiðkÞ; bðkÞ; cðkÞgjΩi ¼ 0: ð44Þ

To build jΩi, we will use Eqs. (18) and (19) to construct a
unitary transformation that relates faiðkÞ; bðkÞ; cðkÞg to the
modes fAiðxÞ;BðxÞ; CðxÞg. From Eq. (18), we obtain

bðkÞ ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffi
ωðkÞ

p
þ 1ffiffiffiffiffiffiffiffiffiffi

ωðkÞp
�
B̃ðkÞ

þ 1

2

� ffiffiffiffiffiffiffiffiffiffi
ωðkÞ

p
−

1ffiffiffiffiffiffiffiffiffiffi
ωðkÞp

�
C̃†ðkÞ; ð45Þ

where B̃ðkÞ ¼ 1ffiffi
2

p ðϕ̃ðkÞ þ iπ̃†ðkÞÞ is the Fourier transform

of BðxÞ [Eq. (20)], and similarly for C̃ðkÞ. These modes can
be constructed in two steps. First, we apply the Fourier
transform (20) on BðxÞ, which is a unitary transformation
B̃ ¼ UFTB, where the matrix elements of UFT are given by

UFTðk; xÞ ¼
1

L3/2 e
−ik·x: ð46Þ

It follows that there is a Gaussian unitary UFTðBÞ relating B
to its Fourier transform B̃,

B̃ ¼ U†
FTðBÞBUFTðBÞ; ð47Þ

involving only the modes BðxÞ, that can be implemented
with beam splitters and phase shifters [29]. Similarly, C̃ðkÞ
is constructed from the modes C via the unitary trans-
formation C̃ ¼ U†

FTðCÞCUFTðCÞ. Having constructed the
modes B̃ðkÞ and C̃ðkÞ, the desired modes bðkÞ are con-
structed by applying the two-mode down-converters [30]

U2ðkÞ ¼ e
ξðkÞ
2
ðB̃†ðkÞC̃†ðkÞ−B̃ðkÞC̃ðkÞÞ; eξðkÞ ¼ ωðkÞ: ð48Þ

We obtain

bðkÞ ¼ U†
2ðkÞB̃ðkÞU2ðkÞ: ð49Þ

The other modes are constructed similarly. Therefore, there
exists a unitaryU, consisting of Gaussian operations that can
be implemented with linear optical elements, that relates
faiðkÞ; bðkÞ; cðkÞg to the modes fAiðxÞ;BðxÞ; CðxÞg,

b ¼ U†BU; c ¼ U†CU; ai ¼ U†AiUði ¼ 1; 2; 3Þ:
ð50Þ

We can use the unitary U to construct the desired ground
state as

jΩi ¼ U†j0i: ð51Þ

Evidently, this state is annihilated by all modes faiðkÞ; bðkÞ;
cðkÞg on account of Eqs. (43) and (50) and is a physical state
obeying the gauge condition (16).
For scattering amplitudes, we need to build excited

states. We will consider scattering of scalar particles.
Antiparticles can be treated similarly, but we will not
consider photons in the initial state, because they are
massless excitations and the adiabatic evolution would
take a very long time. Adiabatic evolution of scalars takes
Oð1/mÞ time if they are self-interacting [1]. If they are also
interacting with an electromagnetic field, the time estimate
of adiabatic evolution receives logarithmic corrections [31].
A state containing a single scalar particle of momentum

k is b†ðkÞjΩi. To construct it, we first create the single-
mode excited state B†ðxÞj0i, where k ¼ 2π

L x. There are
various methods to construct a single-mode excited state
[32]. Despite considerable effort toward developing deter-
ministic single-photon sources, pair-based heralded single-
photon sources produced by parametric down conversion
are still the most extensively used sources that can simulate
excited states [33] (see also the method outlined in
Appendix C of Ref. [22]). Having constructed a single-
mode excited state, we then apply the unitary U† to produce
the single-particle state in our system, using

b†ðkÞjΩi ¼ U†B†ðxÞj0i; k ¼ 2π

L
x: ð52Þ

It is straightforward to extend this to an arbitrary number of
excitations. Standard techniques also allow us to engineer
wave packets from superpositions of single-mode excita-
tions,

P
kfðkÞb†ðkÞjΩi, where the profile fðkÞ is strongly

peaked at a given momentum k ¼ k0, as needed for
scattering amplitudes. Since all these excited states do
not involve photon excitations, they trivially obey the
gauge constraint (16), and hence they are physical.

B. Scattering amplitudes

A scattering amplitude can be written as

S ¼ houtjT exp

�Z
T

−T
dt½HintðtÞ þHc:t:ðtÞ�

�
jini; ð53Þ

where T denotes time ordering of operators, and we are
interested in the limit T → ∞. The incoming and outgoing
states, jini and jouti, respectively, are states in the Hilbert
space of the noninteracting Hamiltonian, H0 [Eq. (22)].
The initial state is constructed at time t ¼ −T, as

outlined above, to be the state of N scalar particles,

jini ¼
YN
n¼1

�X
k

fnðkÞb†ðkÞ
�
jΩi; ð54Þ
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where the profile fnðkÞ is strongly peaked at momentum
k ¼ kn. It evolves in timewith the application of a sequence
of evolution operators in the interaction picture,

UðtÞ ¼ eitH0eiδt½HIðeÞþHc:t:�e−itH0 ; ð55Þ

where HIðeÞ and Hc:t: represent interactions and are given
by Eqs. (24) and (25), respectively. The initial state jini
trivially obeys the gauge constraint (16) and is therefore a
physical state. As discussed in the previous section, the
constraint is not altered by the time evolution of the system,
because of gauge invariance. Therefore, the evolved state
UðtÞjini remains physical at all times t.
Using the Lie-Trotter product formula, we can approxi-

mate the scattering amplitude (53) by

S ≈ houtj½eiδtH0eiδtHIðeÞeiδtHc:t: �2Tδt jini; ð56Þ

where we divided the time interval into 2T
δt segments. The

approximation becomes exact in the limit δt → 0.
We divide the time interval ½−T; T� into three segments,

½−T;−T1�, ½−T1; T1�, and ½T1; T�. In the first segment, we
turn on the coupling constant eðtÞ adiabatically. Initially,
we have no interactions, so eð−TÞ ¼ 0. At the end of the
segment, the coupling constant reaches the desired value
eð−T1Þ ¼ e. As discussed in Sec. II B, this value is not the
physical value but is related to it via renormalization. In the
weak-coupling limit, the relation is given by Eq. (42). For
t ∈ ½−T;−T1�, we may choose e2ðtÞ ¼ Tþt

T−T1
e2. Similarly,

we ought to choose a path for the mass counterterm δm so
that δmð−TÞ ¼ 0 and δmð−T1Þ ¼ δm, the latter being the
desired value. It is determined by renormalization of the
mass, and for weak coupling, it is given by the perturbative
expression (33), so we may choose δmðtÞ ≈ −1.36 Tþt

T−T1
e2.

In the second time segment, t ∈ ½−T1; T1�, the coupling
constants are held fixed. Finally, in the third time segment,
t ∈ ½T1; T� the coupling constants are switched off adia-
batically following a path which is the reverse path of the
one followed during the first time segment.
During time evolution, the unitary operators eiδtH0

and eiδtHc:t: are Gaussian [since the corresponding
Hamiltonians, Eqs. (22) and (25), are quadratic in the
fields] and can be straightforwardly implemented with a
network of optical elements.
The unitary eiδtHIðeÞ involves interaction terms that are

cubic and quartic in the fields [Eq. (24)]. Notice that they
only involve the fields and not their conjugate momenta.
Since the fields act as coordinate quadratures on a state,
they can be implemented by cubic and quartic phase gates,
e.g., as detailed in Refs. [22,34,35].

After time evolution, at t ¼ −T, we uncompute the
system by applying the Gaussian unitary U [Eq. (50)]
and measure the photon number of each qumode. These
measurements provide us with a distribution of particles
(scalar particles and antiparticles, as well as photons) in the
final state jouti, on account of (50). Thus, we obtain the
scattering cross section corresponding to the scattering
amplitude (53).

IV. CONCLUSION

Quantum computation based on a continuous-variable
architecture (qumodes) has received significant attention in
recent years due to its experimental advantages over
discrete variables (qubits). However, quantum algorithms
based on continuous variables are a lot less developed than
discrete-variable algorithms. We presented a continuous-
variable quantum algorithm for the calculation of scattering
amplitudes of massive charged scalars coupled to photons,
by extending the quantum algorithm for self-interacting
chargeless scalars of Ref. [22]. The calculation of scattering
amplitudes is one of the most challenging problems in QFT,
especially in cases involving a large number of particles
which interact strongly. As in the discrete-variable case [1],
the quantum algorithm offers an exponential speedup over
known classical algorithms based on lattice gauge theory.
Thus, such quantum algorithms will allow us to understand
particle interactions beyond perturbation theory.
Working with quantum electrodynamics presented a

number of complications compared with chargeless scalars
emanating from gauge invariance. We showed that gauge
invariance could be ensured if one simply imposed it on the
noninteracting system and then adiabatically turned on the
electric coupling constant. Moreover, our gauge choice led
to an interaction Hamiltonian which only depended on the
fields and not on their conjugate momenta. Thus, it could
be implemented with higher-order (non-Gaussian) phase
gates, as in the case of scalar field theory [22]. We did not
include a scalar self-interaction term, although this can be
added straightforwardly.
It would be interesting to extend our approach to

fermionic fields in order to understand the dynamics of
electrons, etc. It is also desirable to develop a similar
algorithm for non-Abelian gauge quantum field theories in
order to understand (weak and strong) nuclear forces. Work
in this direction is in progress.
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