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We compute the mass function of bound states of asymmetric dark matter—nuggets—synthesized in the
early Universe. We apply our results for the nugget density and binding energy computed from a nuclear
model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve
the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of
bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late
Universe cosmology of nuggets in a future companion paper.
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I. INTRODUCTION

Searches for dark matter (DM)—whether through DM
annihilations to Standard Model (SM) particles in our
Galaxy, through observations of structure, through collider
searches, or through DM interactions with SM nuclei in
underground detectors—have focused on DM that behaves
as a single massive particle or as a coherent field configu-
ration. The weakly interacting massive particle (WIMP)
and the axion have served as primary motivators of these
search techniques; in addition to being well-motivated
candidates, they provide sharp predictions for experiments
probing the nature of dark matter. It is, however, important
to explore well-motivated new ideas for dark matter
candidates that lead to qualitatively different experimental
signatures of dark matter, and inform new search strategies.
Even modest changes in the nature of the dark sector can

have radical implications for cosmology and its associated
observational constraints. In this paper, we consider a
DM particle with a particle-antiparticle asymmetry [as in
asymmetric dark matter (ADM); see e.g. [1,2] for reviews]
that self-interacts through an attractive force. Similar to SM
nuclei, given a sufficiently strong attractive force, DM
particles bind together to form composite states. The size of
these composite states depends both on the strength and
range of the force, and on the presence or absence of
bottlenecks. For example, in the SM, only small nuclei are
synthesized in the early Universe because the A ¼ 5, 8
nuclei are unstable; three helium nuclei must fuse to carbon

in order to surpass this bottleneck. In a dark sector,
however, such bottlenecks may not be present. This is
especially true if a repulsive long-range force like electro-
magnetism is absent, and if the force mediator binding the
dark nuclei is longer range than the nuclear force mediated
by QCD mesons.
We study the synthesis of the dark nuclei, which, as in

Ref. [3], we refer to as “dark nuggets (DN).” Our goal is to
obtain results that connect the size of the synthesized
nuggets to a simple UV complete model; we employ a
model with fermionic ADM and a scalar mediator with
arbitrary mass that mediates an attractive dark force. We
draw on the results of our companion paper [4], which
computes the relevant nugget properties—notably the
saturation density and binding energy—using the σ-ω
model from nuclear physics. The σ-ω model, named for
the lightest scalar and vector QCD mesons mediating the
most important attractive and repulsive interactions that
bind large nuclei, employs relativistic mean field theory
(RMFT) in order to solve the equations of motion that
determine bulk properties of ground states of nuclei. We
use results from [4] along with the compound nucleus
model to obtain approximations for the fusion and splitting
cross sections.
Synthesis becomes efficient once the temperature of the

Universe drops below the binding energy of the nugget.
Utilizing simple analytic arguments, along with our results
in Ref. [4], we are able to obtain an estimate for the typical
nugget size just before the era of structure formation. We
also obtain a distribution of nugget sizes by solving the
Boltzmann equations for synthesis numerically. Using the
results of this simulation and argument by analogy to SM
nucleosynthesis, in our Coulomb repulsion-free scenario,
we argue that a substantial bottleneck is likely to occur
only if multiple states adjacent in size (e.g. N ¼ 3, 4) are
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unstable. Superficial bottlenecks, corresponding to isolated
states being hard to form (either due to a very low formation
cross section or absence of a stable state), do not signifi-
cantly affect the distribution of nugget size (or mass
function) at the end of synthesis.
Our main results are shown in Figs. 2 and 5, for the cases

of a presence or absence of a bottleneck to synthesis at
low N. In parameter ranges where two-particle bound states
are easily formed in the early Universe (see [3]), assuming
that other substantial bottlenecks at low N do not occur,
large nuggets can be synthesized in the early Universe in
the presence of sufficiently attractive and long-range
forces. For example, as shown in Fig. 2, assuming DM
mass mX ∼ GeV, DM-mediator fine structure coupling
constant αϕ ∼ 0.3, and mediator mass mϕ ∼MeV, the
typical nugget size exiting early Universe synthesis is of
order N ∼ 1012 or MN ∼ 1011 GeV, with the sizes scaling
as N ∼ ðBE3=2

2 =m̄7=2
X Þ6=5 and MN ∼ m̄XN, where the two-

particle bound state binding energy that sets the synthesis
temperature is BE2 ∼ α2ϕmX=4 and the nugget saturation

mass scale is m̄X ∼ α−1=4ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffimXmϕ

p . Since large nugget
binding energies are typically quite large when the DM/
mediator mass hierarchy is large, the nugget masses can be
significantly smaller than mXN.
If synthesis proceeds at all, we find that nuggets are

generically synthesized past their saturation size, where the
force range, m−1

ϕ , sets the nugget size and binding energy
along with the coupling and DM mass. Nuggets bound by a
scalar mediator much lighter than the dark matter constituent
saturate at a largerN, but by virtue of the effectively stronger
coupling in this limit, synthesis to large nuggets occurs more
readily. Simulating synthesis with fusion through both
mediator and small nugget emission, we show that the
spectrum of nugget sizes exiting synthesis can be fairly
broad. The mass function exiting synthesis is shown in
Fig. 4. This may have implications for the late Universe
cosmology and detection prospects, which we study in a
future companion paper [5]. Substantial bottlenecks at low
N, on the other hand, can lead to a bimodal distribution of
dark matter exiting early Universe synthesis, with the
majority of DM residing in the form of small-N nuggets
and a subdominant population of even larger nuggets—for
example, as shown in Fig. 5, with typical size N ∼ 1020 or
MN ∼ 1019 GeV for the benchmark quoted above.
Dark matter nugget properties and synthesis (“darkleo-

synthesis”) have been explored elsewhere, though with
more limited assumptions for obtaining quantitative results.
Early Universe synthesis of two-particle bound states was
addressed in [3]; we will utilize these results in the initial
step of our analysis. Reference [6] considered larger N
bound states, but did not address the saturation limit. We
will find, however, that nugget synthesis typically termi-
nates with saturated nuggets, even when the attractive force
is very light relative to the DM. Reference [7] considered

the synthesis of nucleuslike nuggets, assuming dark nuclei
properties (notably the saturation density and binding
energies) that directly mirror SM nuclei. We utilize similar
analysis techniques and confirm several major results of
that work—that the typical size of synthesized nuggets
scales as a dimensionless interaction time to the 6=5th or
3rd power in a no-bottleneck or bottlenecked scenario,
respectively, and that, in the no-bottleneck scenario, nugget
sizes are peaked within a couple of generations in size
about the typical size. Our work differs from that of [7] in
two primary ways. First and most importantly, we provide a
detailed accounting of underlying assumptions entering the
setup of Boltzmann’s equations within a concrete model
through employing the results of [4] for nugget properties,
which also allows us to link the dimensionful scales
entering the interaction time to Lagrangian parameters;
this reveals that larger synthesized nugget sizes (by several
orders of magnitude) than advertised in [7] are possible.
At the same time, it is notable that our analysis justifies
many of the arguments made in [7]. Second, instead of
employing a simple fusion model with geometric cross
sections involving a single mediator emission, we consider
the compound nucleus model and show that multiple
mediator emissions are dominant, but also consider the
effects of possible light dark nugget emission, analogous to
nuclear fusion through nucleon or α particle emission.
Reference [8] studied the synthesis of dark nuclei modeled
on SM nuclei, with a dark confining force binding the
composite dark baryons into nuclei and an additional weak
dark electromagnetism enabling “di-darkleon” fusion.
Lastly, Ref. [9] studied the synthesis of dark spin-0
deuterium forming in a two-flavor, two-color, dark QCD.
The outline of this paper is as follows. In the next section

we review the features relevant for synthesis of our nuclear
model for ADM nuggets. Then in Sec. III we outline the
conditions for synthesis to begin in the context of our simple
UV complete model. In Sec. IV, we set up the Boltzmann
equations with the appropriate fusion and dissociation rates
before solving them. We utilize these results to obtain
analytic estimates for the typical nugget size. We conclude
with an eye toward future work exploring the impact of dark
nuggets on stellar and structure formation.

II. A NUCLEAR MODEL FOR ASYMMETRIC
DARK NUGGETS

We will consider a model with a single Dirac fermion
with attractive self-interactions mediated by a lighter, real
scalar, governed by

L ¼ X̄½i=∂ − ðmX − gϕϕÞ�X þ 1

2
ð∂ϕÞ2 − 1

2
m2

ϕϕ
2 − VðϕÞ:

ð1Þ
As discussed in detail in [4], large collections of dark matter

can form stable bound states when αϕ
m2

X
m2

ϕ
≳ 2.6, where
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αϕ ¼ g2ϕ=4π. Two-body bound states form when αϕ
2

mX
mϕ

≳
0.84 (assuming perturbative coupling; see [3] and refer-
ences therein). Here we are interested in the synthesis
of such bound states in the early Universe. As we will see,
for synthesis to begin with two-particle bound states, it is
important that the force mediator be light enough to be
produced on shell in the fusion process, such that BE2 ≳
mϕ. Since, for perturbative coupling, BE2 ∼ α2ϕmX, one
generally needs mX > mϕ.
It is also natural to consider a strongly coupled dual

of this model, where X is the analog of a nucleon and ϕ is
the analog of the lightest scalar meson, σ (or f0). In a
composite model, one expects other meson degrees of
freedom such as vectors (like theω) and pseudoscalars (like
pions) to mediate repulsive and/or spin-dependent inter-
actions of comparable importance. If there is an additional
approximate symmetry in the dark sector, the analog of
isospin-dependent interactions may also be important.
One also naively expects a mass hierarchy between the
dark matter constituents (baryons) and force mediators
(mesons) to be moderate, and for the masses of the
mesons to be of very similar size. As discussed in [4], if
this is the case, it is unlikely that there is a viable region of
parameter space in which any of the mesons is lighter
than the two-body binding energy, which will stifle early
Universe synthesis.
In the SM, deuterium forms through pþ n → Dþ γ.

The deuterium binding energy ∼2 MeV is significantly
smaller than mπ0 ∼ 135 MeV. Without electromagnetism,
fusion into deuterium would require π0 emission. Such a
process would then only be efficient at temperatures near
mπ , where dissociation would dominate. So, taking a cue
from the SM, why not just add a dark photon in order to
enable the first step of synthesis? (This is precisely the
scenario considered in [8].) There are costs. Including a
dark photon will destabilize dark nuggets of sufficiently
large size—just as electromagnetism helps to destabilize
large nuclei. The larger the coupling, the smaller the size at
which nuggets will destabilize. So allowing for very large
nuggets requires very small coupling. But the smaller the
coupling, the smaller the two-body fusion cross section.
Due to these complications, we will focus on the case

of an attractive force mediator only, where there is a large
parameter space for efficient nugget synthesis. We will
restrict our attention to perturbative couplings, where we
have a good handle on the two-body bound state properties
that govern the initiation of early Universe synthesis,
even though the RMFT used to deduce properties of large
nuggets is valid also for nonperturbative coupling. In our
synthesis estimates that follow, the behavior of binding
energy and fusion cross sections as a function of nugget
size will be important. Thus here we first summarize these
features of nuggets, justified and presented in more detail
in [4].

A. Binding energy and the liquid drop model

In [4], relativistic mean field theory was used to derive
the behavior of nugget structure (density, size) and binding
energy as a function of the nugget number, N. RMFT
applied to nucleons has been used to accurately model bulk
properties of large nuclei such as binding energy, density,
and the saturation property of nuclei—that the density is
relatively constant as a function of mass number [10].
As one expects since the only force in play is attractive,

the binding energy per dark number increases as a function

of N. At some N determined roughly by Nsat ∼ ðαϕ m2
ϕ

m2
X
Þ−3=4,

the binding energy per dark number levels off, asymptoting
towards a constant determined as a fraction of mX by the

combination of parameters, C2 ≡ αϕ
m2

X
m2

ϕ
(a larger fraction

for larger C2). At N > Nsat, the density as a function of N
also approaches a constant, exhibiting saturation behavior:
adding further constituents does not change the nugget
density but simply increases the nugget size as RðNÞ ∝
N1=3. For N > Nsat, just as for large nuclei which exhibit
saturation, a liquid drop model gives a good description of
the nugget binding energy:

NmX − BEN ≈ Nμ0 þ ϵsurfN2=3 ð2Þ

where 0 < μ0 < mX is a bulk energy constant equivalent
to the chemical potential of infinitely large nuggets and
ϵsurfN2=3 > 0 [with N1=3

sat ðmX − μ0Þ ≫ ϵsurf ] is a correction
term proportional to the surface area of the nugget that
takes into account the dearth of close-range attractive
interactions of constituents at the surface which would
have decreased the energy of the configuration. The infinite
matter chemical potential μ0 approaches mX as C2 → ∞
and the surface energy constant ϵsurf grows with decreasing
mϕ=mX and decreasing αϕ. (See Table I of [4].)

B. Saturation properties of nuggets

In the following sections, we will show that in the
range of parameter space in which two-body synthesis
proceeds easily, nuggets are generically synthesized up to
sizes beyond which they exhibit saturation behavior. We are
able to self-consistently estimate the results of synthesis
in terms of the saturation properties of nuggets: chiefly,
in terms of average nugget mass per dark number, m̄X¼
mX−BEN=N∼μ0 and nugget length scale r0≈ð4

3
πnsatÞ−1=3,

with nsat the saturation number density.
In the limit where large nuggets are strongly bound

(which is generally true when αϕ < 1 and BE2 > mϕ), the
saturated nugget parameters r0 and m̄X0 are given approx-
imately by

m̄X0≈
�
3π

2αϕ

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffi

mXmϕ
p

and r0≈
�
9π

4

�
1=3 1

m̄X0
: ð3Þ
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The m̄X0 → mX limit represents the limit of no binding,
where the above equations are invalid.
Inclusion of a quartic potential of the form VðϕÞ ¼

4
3
λ4α

2
ϕϕ

4 leads to an effective scalar mass,

mϕeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ þ λ4
2αϕ
3π

ðmX −m�Þ2
r

; ð4Þ

where m� is the effective DM mass, related to the scalar
field VEV through m� ¼ mX − gϕhϕi. The equations of
motion guarantee that m� ≥ 0. In the limit where αϕm2

X ≫
m2

ϕ and λ4 ≪ 1, m� ≪ mX and we find Eq. (3) holds if we
replace mϕ with mϕeff . See [4] for details.
The saturation size, Nsat ∼ ðr0mϕeffÞ−3, corresponding to

the point where nugget radius exceeds the force range,
R≳m−1

ϕeff , is also important in checking the consistency of
our estimates. In the synthesis estimates that follow, we will
assume λ4 ≪ 1 so that the effects of the quartic potential are
essentially encapsulated inmϕeff . We will frame our analysis
as if the potential is completely absent, but we note that our
results hold equally well when a quadratic potential with
λ4 ≲ 0.01 is included through taking mϕ → mϕeff . It should
also be noted that, even if a large hierarchy between mϕ and
mX is achieved, the quartic coupling will limit the size of the
mX=mϕeff hierarchy relevant to nugget properties.

III. CONDITIONS FOR SYNTHESIS

Here we discuss conditions for initiating synthesis with
the formation of two-dark-nugget bound states, 2X, the
temperature at which this initiation occurs, and possible
bottlenecks at low dark nugget number. We will follow
nuclear physics convention and denote each dark nugget
species as NX, where N is the dark nugget number.

A. Conditions for beginning synthesis

Nugget synthesis begins in the early Universe when 2X
bound states form. This very first stage of synthesis
corresponds to passing the two-DN bottleneck, analogous
to the deuterium bottleneck in big bang nucleosynthesis
(BBN). The bound state 2X can begin to accumulate if the
2X formation rate exceeds the Hubble expansion rate when
the dissociation rate drops below the formation rate. This
occurs when the number density of mediators energetic
enough to dissociate the 2X drops below the 2X equilibrium
number density.
Because formation through the process X þ X → 2X þ ϕ

is typically inefficient when mϕ ≳ BE2, as argued in detail
in Ref. [3], efficient two-DN synthesis generally requires

BE2 ≈ α2ϕ
mX

4
≳mϕ; ðfirst 2X synthesis conditionÞ ð5Þ

where we have used the expression for the two-body
Yukawa bound state binding energy in the Coulomb

(hydrogenlike) limit, which is self-consistent as long as
the coupling is perturbative.1 In addition, for the formation
rate to exceed the Hubble rate at any temperature below the
X freeze-out temperature, we also require (see [3])

αϕ≳ 0.1

�
mX

100 GeV

�
1=3

ðsecond 2X synthesis conditionÞ:

ð6Þ

Figure 1 shows these 2X synthesis conditions, along with
the region of parameter space for which the 2X synthesis
temperature—as we discuss in the next section—is an order
of magnitude larger than the temperature at matter-radiation
equality, Tsyn > 10 Teq. Synthesis near matter-radiation
equality would require an analysis taking into account
nonlinear structure formation and is thus neglected. It is
interesting to note that synthesis can begin significantly
before the end of radiation domination only if αϕ ≳ 0.01.

B. Synthesis temperature

Since dissociation of 2X must become inefficient relative
to formation in order for synthesis to begin, and because
dissociation becomes inefficient only once the temperature
drops below the binding energy, the big bang darkleosyn-
thesis temperature, Tsyn, is typically set by BE2. This is
analogous to BBN, where TBBN is set by the deuteron
binding energy, BED ∼ 2 MeV.

FIG. 1. Approximate conditions for synthesis to begin with
efficient formation of 2X. The top line corresponds to the
condition for the formation rate to ever be larger than the Hubble
rate in the BE2 ≫ mϕ limit [Eq. (6)]. The bottom line shows the
condition for synthesis to begin when the temperature is an order
of magnitude larger than Teq, ensuring that our analysis assuming
synthesis before the onset of nonlinear structure formation
remains valid. The dashed lines correspond to BE2 ¼ mϕ; at
least roughly speaking, BE2 > mϕ [Eq. (5)] in order for the
dissociation rate to ever dip below the formation rate.

1Thermal corrections to mϕ may be relevant, but since they
depend on interactions that do not directly contribute to fusion,
we assume that they are small and can be neglected.
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More specifically, one can estimate TBBN by setting the
number density of photons with energy greater than BED
equal to the deuteron equilibrium number density, and
solving for the temperature. Because the baryon-to-photon
ratio is so small, the temperature must fall to order
TBBN ∼ BED=37. Following the same logic, and ignoring
all but the 2X ground state, we see that chemical equilibrium
implies a Saha relation,

n2X ¼
n21X
4

�
2 −

BE2

mX

�
3=2

�
mXTX

2π

�
−3=2

eBE2=TX ; ð7Þ

where we have taken the ϕ chemical potential to be zero,
which is valid as long as number changing processes for ϕ
are still efficient. At the very beginning of synthesis the
total dark number density nX is dominated by unbound X’s
so that we may take n1X ≈ nX ¼ ΩDM

ΩB

mp

m̄X
nB where m̄X is the

average mass per dark number at the end of synthesis.
The equilibrium number density of ϕ’s with enough

energy to dissociate 2X is

nϕðϵ > BE2Þ ¼
1

2π2

Z
∞

BE2>mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 −m2

ϕ

q
eðϵ−μϕÞ=Tϕ − 1

ϵdϵ

≈
e−BE2=TXðBE2Þ2TX

2π2
; ð8Þ

where again we have set μϕ ¼ 0 and Tϕ ¼ TX. Setting
nϕðϵ > BE2Þ ¼ n2X leads to the condition for synthesis
temperature,

e−2BE2=T
syn
X

�
BE2

Tsyn
X

�
7=2

≈ 10−15
�
g�SðTsyn

γ Þ
10.75

�
Tsyn
γ

Tsyn
X

�
3GeV
m̄X

�
2
�
BE2

mX

�
3=2

; ð9Þ

where we have assumed BE2 ≪ mX. For MeV≲mX ≲
TeV, 0.01≲ αϕ ≲ 0.3, and including other constraints for
2X synthesis discussed above [Eqs. (5) and (6)], we find that
BE2=T

syn
X ∼ 10 to 30.

Here we briefly discuss the relationship between the DM
and SM bath temperatures. Suppose the dark sector kineti-
cally decouples from the SM at temperature Td, when the
DM bath is still relativistic. Then, while the DM bath is still
relativistic, the ratio of dark to SM temperatures changes
only when some relativistic species falls out of chemical
equilibrium and dumps its entropy in one bath or the other.
Supposing only the SM bath is heated relative to the DM

bath, for example, then Tγ

TX
∼ ðgSMðTdÞ

gSMðTγÞÞ
1=3 where gSMðTdÞ

counts the number of relativistic degrees of freedom in the
SM when the two sectors decouple and gSMðTγÞ counts
them at temperature Tγ. When ϕ becomes nonrelativistic
and decays, its entropy is dumped either into some hidden

sector bath (which would heat that bath relative to the SM
bath) or into the SM bath, heating it further. Ifmϕ ≳ 5 MeV
when it decays to the SM (whether to electrons or
neutrinos), there is little effect on BBN or cosmic micro-
wave background (CMB) measurements of the number of
relativistic degrees of freedom, Neff [11]; if, on the other
hand, mϕ ≲ 5 MeV and the decay is to neutrinos or to
additional radiation in the dark sector, there may be
observable signals in next-generation CMB experiments,
depending on the decoupling temperature of the dark sector
from the SM. In this paper we take an agnostic view
towards the exact dynamics that determines the ratio of
temperatures, but note that in many plausible scenarios,
Tγ

TX
∼ few, and we take Tγ

TX
≈ 1 in several illustrative plots that

follow; this ratio has little quantitative or qualitative impact
on our results.
Once T ≲ Tsyn

X , larger N nuggets will efficiently form
unless there is an additional bottleneck at low N analogous
to the A ∼ 5 bottleneck for BBN. This is because, as shown
in [4], the binding energy per particle of larger nuggets
increases monotonically as a function of N, asymptoting
to the saturation value at very large N. Up to angular-
momentum-dependent effects, it is thus energetically
favorable to form successively larger nuggets, with the
threshold for dissociation of nuggets growing ever larger
than the temperature.2 By arguing through analogy with the
SM, in the next subsection we discuss the circumstances
under which a nugget bottleneck could appear.
A feature of large nuggets discussed in [4] is that the

total binding energy per dark (baryon) number can be a
substantial fraction of mX. Thus if very large nuggets are
synthesized, because all of this binding energy is released
in the synthesis process, one might worry that substantial
heating of the dark bath relative to the SM bath could occur.
However, under reasonable assumptions, we will see that
the binding energy release results in at most an Oð1Þ
change in the dark sector temperature. Assuming that the
dark bath consists of only the scalar mediators, ϕ, and the
dark matter, we may place an upper bound on the change in
temperature:

ΔTX ≲ nX
nϕ þ nX

����
Tsyn
X þΔTX

BENsat

N
; ð10Þ

where BENsat=N is the saturation binding energy per dark
number.3 For nϕ

nX
≫ BENsat=N

Tsyn
X

, the temperature change will be

2This is in contrast to large nuclei in the SM, where binding
energy per nucleon grows with mass number A up until a global
maximum near A ∼ 60; the drop is due to Coulomb (repulsion)
energy and symmetry energy associated with neutron-proton
imbalance.

3If all of the dark matter were bound in nuggets of effectively
infinite dark number and there were no additional components of
the dark bath, then the inequality would be saturated.
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negligible. The analogous statement for nucleosynthesis is

that nγnB ≫
BE4He=4

TBBN
∼ 100, which, of course, is easily satisfied.

Here since ϕ is massive and because the binding energy per
dark number can be an order-one fraction of mX, we can
have BENsat=N

Tsyn
X

∼ mX
BE2=30

∼ 100
α2ϕ
,4 so the condition nϕ

nX
≫ BENsat=N

Tsyn
X

does not necessarily hold. However, since the asymmetric
abundance nX has frozen out well before synthesis begins,5

heat release increases the ϕ number density but not the X
number density, which serves to limit the overall temper-
ature change. Taking the equilibrium number density

nϕðTÞ ¼ 1
2π2

R
∞
mϕ

ffiffiffiffiffiffiffiffiffiffi
ϵ2−m2

ϕ

p
eϵ=T−1 ϵdϵ and nX ¼ ΩDM

ΩB

mp

mX
nBjTγ¼Tsyn

X
,

we find that ΔTX ≲ Tsyn
X in the parameter range of interest.

The temperature change can approach order 1 when ϕ is
nonrelativistic at the onset of synthesis (when BE2 ∼mϕ,
corresponding to mϕ=mX at the upper range of what we
consider) or when ϕ is very highly relativisticmϕ ⋘ mX at
the onset of synthesis. In the relativistic ϕ limit,

nXðTsyn
X Þ

nϕðTsyn
X þ ΔTXÞ

∼ η
ΩDM

ΩB

mp

m̄X
g�SðTsyn

γ Þ
�
Tsyn
γ

Tsyn
X

�
3
�
1þ ΔTX

Tsyn
X

�
−3

ð11Þ

where m̄X is the average mass per dark number and η is
the baryon-to-photon ratio. When mϕ ⋘ mX, then m̄X ¼
mX − BENsat=N ∼ α−1=4ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffimϕmX
p [see Eq. (3)] assuming

most DM is bound into saturated nuggets at the end of
synthesis. Though nX=nϕ can be larger than naively

expected, as long as ffiffiffiffiffiffiffiffiffiffiffiffiffimXmϕ
p ≫ 10−10mpðT

syn
γ

Tsyn
X
Þ3, then

nX ≪ nϕ.
Putting this all together in the mϕ ⋘ mX limit we then

have

ΔTX

Tsyn
X

�
1þΔTX

Tsyn
X

�
3

∼ 10−9g�SðTsyn
γ Þ

�
Tsyn
γ

Tsyn
X

�
3 mpffiffiffiffiffiffiffiffiffiffiffiffiffimXmϕ
p α1=4ϕ

×
BENsat=N

Tsyn
X

ðmϕ ⋘mXÞ: ð12Þ

As discussed above, BENsat=N
Tsyn
X

→ mX
Tsyn
X
∼ 100=α2ϕ in the mϕ ⋘

mX limit. So e.g. for αϕ ∼ 0.1, one could approach an
order-one temperature change when ffiffiffiffiffiffiffiffiffiffiffiffiffimϕmX

p ≲ 10−4 GeV
or an order of magnitude when ffiffiffiffiffiffiffiffiffiffiffiffiffimϕmX

p ≲ 10−8 GeV. It is

important to note that the heat per dark number,
∼BENsat=N, is not released all at once, but rather in
increments over the entire synthesis process up to large
nuggets. Since on average the dissociation temperature
rises as a function of nugget size, the heat release should
not delay synthesis.

C. Bottlenecks at low dark nugget number?

By arguing through analogy with the SM, here we discuss
the circumstances under which a dark nugget bottleneck
could appear. First we briefly review the nature of the SM
BBN bottlenecks. BBN proceeds when the temperature
drops below the deuteron binding energy (order MeV) so
that deuteron dissociation is suppressed. Once a substantial
fraction of deuterons exists, almost all free neutrons are
incorporated into 4He [with intermediate steps of e.g.
DðD; nÞ3He, 3HeðD;HÞ4He]. A few factors prevent any
significant amount of synthesis to higher-A isotopes. First,
the Coulomb barrier is substantial at TBBN and becomes
rapidly more substantial as A and Z grow. Second, building
up from 4He to larger nuclei through Coulomb-barrier-free
neutron capture is stifled because 5He, with its unpaired
neutron, is unstable to decay to 4Heþ n. Additionally, a
4Heþ 4He fusion process is endothermic, including 8Beþ γ,
such that 8Be is unstable. Taken together, these facts imply
the presence of bottlenecks not only at A ¼ 2, but also at
A ¼ 5 and A ¼ 8. This guarantees a small abundance of
nuclei larger than 4He exiting BBN.
We can consider the existence of bottlenecks in nugget

synthesis by analogy with the SM. By construction there is
no obstruction due to a Coulomb barrier. However, fluc-
tuations in binding energy as a function of nugget size,
leading to unstable states analogous to A ¼ 5, 8 for nuclear
matter, could lead to substantial bottlenecks. The absence
of stable A ¼ 5, 8 nuclei can be understood qualitatively
within the shell model of the nucleus. Within the shell
model, constituents are treated as noninteracting, but
each is under the influence of an emergent potential.
Constituents fill up available states from low to high
energy, obeying Pauli’s exclusion principle. The existence
of many approximately degenerate energy eigenstates
results in some states having significantly larger binding
energy per constituent than their neighbors with slightly
larger nugget number. The constituent numbers Ni of these
exceptional states are referred to as magic numbers. For
spherically symmetric bound states, the first two magic
numbers are always 2 and 8 (corresponding to doubly
magic 4He and 16O nuclei), corresponding to the filling of
l ¼ 0 and 1 states. For larger N, the locations for the magic
numbers depend on the potential and spin-orbit coupling,
and may scale like Ni ∼ i2 to i3 (for Coulomb and quadratic
potential).
States with size just over or equal to a sum of magic

numbers are prone to instability or metastability. Isospin

4However, recall that αϕ ≳ 0.01. See Fig. 1.
5Since Tsyn ≲ BE2=15 ∼ α2ϕmX=60, X is nonrelativistic at the

onset of synthesis when the coupling is perturbative. During
synthesis, the average mass per dark number may decrease as
more X’s are bound into (more and more tightly bound) nuggets,
but any individual DM nugget will always have mass greater than
or equal to mX.
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slightly complicates the story for nuclei, but consider states
closely related to doubly magic 4He. The doubled state,
8Be, decays to 24He. States with one extra neutron or proton
(5He or 5Li) decay to 4He plus a free nucleon. For the A ¼ 5
states, pairing also plays a role; nuclei with unpaired
nucleons of given isospin are less strongly bound. This
is because (pseudoscalar) pions mediate an attractive
interaction between opposite-spin nucleons, effectively
reducing the energy of the configuration. Since we have
only a scalar mediator, it is unclear whether an analog of a
pairing effect might exist.6 In any case, in the context of
small nuggets, if the binding of 4X is smaller than twice the
binding energy of 2X, the decay process 4X → 2X þ 2X will
become possible. Similarly, perhaps the rest energy of 3X is
greater than that of 2X þ X since the third nucleon in 3X sits
alone, unpaired, in an l ¼ 1 shell. For larger N, the
degeneracy of energy eigenstates is typically broken more
strongly and the spacing of energies becomes smaller so
that magic numbers become rare and unimportant.
Since the system under consideration contains only one

type of constituent (isospin zero) instead of two as in the
SM, as just discussed, the analogue to unstable A ¼ 5 and
A ¼ 8 states for nuclei is unstable N ¼ 3 and N ¼ 4

nuggets. If both 3X and 4X are unstable and have small
lifetimes in comparison to the cross section for fusions
ðn3ð4Þvσð3ð4ÞX þ 2X → 5ð6ÞX þ 0XÞÞ−1, then there is a
bottleneck to fusion of larger nuggets. In the absence of
a Coulomb barrier, if only one of 3X and 4X were unstable,
it would be easier to synthesize past this artificial bottle-
neck (e.g. 3X þ 2X → 5X þ ϕ or 2X þ 2X → 4X þ ϕ).7

Since the shell model is fundamentally phenomenological
and not predictive in terms of a UV completion, we cannot
make definitive statements about the presence or absence
of these bottlenecks. We will thus frame our discussion of
nugget synthesis in terms of the presence or absence of
bottlenecks.

IV. NUGGET SYNTHESIS

We have just reviewed the conditions for the formation
of an N ¼ 2 nugget (2X). Once a population of 2X exists,
there are a number of routes to creating larger nuggets. Here
we discuss synthesis of larger-N nuggets given either the
presence or absence of low-N bottlenecks. First we review
fusion processes and reasonable models for their respective
cross sections. Next we set up the Boltzmann equations that
govern the evolution of the mass function and introduce a
dimensionless interaction time—a dimensionless function

of dark number density, typical cross section, typical speed,
and Hubble rate—that sets the nugget size scale at the end
of synthesis. Then we provide analytic estimates of typical
nugget size after synthesis in both the presence and absence
of bottlenecks. Finally we present semianalytic solutions
to the Boltzmann equations for the mass function after
synthesis and relate them to our analytic estimates. Our
semianalytic discussion of the solution to the Boltzmann
equations is similar to that of [7], though with two
significant differences. First, utilizing the results of our
companion paper, we are able to compute the synthesized
nugget mass in terms of the parameters of the model, mX,
mϕ, and αϕ. Second, we employ the compound nucleus
model, and account for the possibility of reactions resulting
in final states that include an extra nugget emission, which
can lead to a broader mass function exiting synthesis.

A. Dominant processes and cross sections

The relevant reactions, ignoring any contribution from
N-body interactions for N > 2, are of the form,

iX þ jX ↔ kX þ lX þ mX þ � � � ð13Þ

where 0X denotes the mediator ϕ, and X number con-
servation dictates that iþ j ¼ kþ lþmþ � � � Here we
describe and motivate using the compound nucleus (CN)
model of nuclear physics for modeling cross sections for
these processes.
Within the CN model, one treats such reactions in two

stages: first, an excited CN of size iþ j is formed, and then
the compound state disintegrates [12] (see also e.g. [13]). If
any excess energy within the CN is quickly shared amongst
all constituents, then it is reasonable to treat the two stages as
independent processes. In this case, the probability for
disintegrating into any given final state depends only on
the energy, angular momentum, and parity of the CN, with
no specific dependence on how the state is formed. We can
expect this so-called Bohr assumption to apply in most
nugget reactions involving at least one saturated nugget in
the early Universe. This is because the characteristic time for
energy to be transferred across a nugget of size R is order
R=vs where vs ¼ dp=dϵ is the speed of sound within a
nugget, which we find to be a substantial fraction of the
speed of light for saturated nuggets. On the other hand,
the time scale over which the nuggets interact is order
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b=R

p
=v, where b is the impact parameter and v the

relative speed of the initial state nuggets. For large nuggets, v
is typically much smaller than the speed of light; thus we
expect the excess energy to be efficiently distributed within
the compound system over the time of a typical interaction as
long as b≲ R. There is a potential exception coming from
interactions with b≃ R, where grazing interactions could
lead to two-to-two dark number exchange processes.
Given the Bohr assumption, the cross section for

reactions Eq. (13) takes the form

6By virtue of paired constituents being in close proximity,
since real scalars will mediate a strong attractive interaction
independent of spin, one can imagine that a similar pairing effect
might arise.

7Though note that rates for these processes could be low if
BE5 − BE2 − BE3 þ Tsyn

X < mϕ or BE4 − 2BE2 þ Tsyn
X < mϕ.
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σij→α ¼ σij
Γα;iþj

Γ
; ð14Þ

where σij is the cross section for forming the compound
state of size iþ j and Γα;iþj is the rate for the compound
state to disintegrate into a final state, α. We will now
address models for the formation cross section σij and the
disintegration rates, Γα;iþj, in turn.
For collisions of two large, saturated nuggets, we adopt a

geometric cross section,

σij ¼ πðRi þ RjÞ2 where Ri ¼ i1=3r0 ð15Þ

with r0 given by Eq. (3). For collisions between a large
saturated nugget and a much smaller nugget (i ≫ j) we
adopt a quantum-corrected geometric cross section similar
to models used for neutron capture,

σij¼πðRiþ1=pÞ2T whereT ¼ 4pp0

ðpþp0Þ2 ði≫ jÞ: ð16Þ

Here p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
j −m2

q
is the small nugget momentum and

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
j −m2

eff

q
is the effective momentum inside the

large nugget, and meff ¼ jμ is the effective mass of the
small nugget inside iX. The 1=p correction to the radius
accounts for the effective de Broglie wavelength of the
small nugget, which leads to an enhancement for small
nugget capture. For larger nuggets sizes Ri, 1=p is typically
subdominant and thus neglected. The transmission factor T
accounts for quantum reflection effects due to a sudden
change in the small nugget’s effective mass upon entering
the large saturated nugget; note that in the limit that the
smaller nugget is also saturated, p ¼ p0 and thus T ¼ 1.
Time reversal invariance or reciprocity relates disinte-

gration rates to formation cross sections for the reverse
process. Consider the decay of a CN, NX�, to a less excited
state N−kX�, while emitting a much smaller nugget kX (or a
mediator for k ¼ 0). It can be shown (see Refs. [13,14]),
when the density of states into which the CN can decay is
large, that the partial width of the CN to decay into products
N−kX� þ kX is described by a thermal distribution weighted
by the energy release [using the liquid drop model in
Eq. (2)] in the decay,

Γk¼
Z

gkp2

2π2
σkve−ΔE

�=TðE�Þdp

≈
gk
2π2

e−ðMk−kμÞ=TðE�Þ
Z

σke−ϵ=TðE
�Þϵðϵþ2MkÞdϵ; ð17Þ

where ΔE� ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

k þ p2
q

− kμ is the energy release. TðE�Þ
is the temperature of the nucleons in the excited CN,

ϵ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

k þ p2
q

−Mk is the kinetic energy of the emitted

particle, gk the degrees of freedom of the emitted particle,
and σk is the cross section for the inverse process
N−kX� þ kX → NX�. For very low temperatures satisfying
T ≪ Mk − kμ, it is immediately apparent that emission of
the lightest possible particles is heavily favored if gkσk is
not radically different for different k. In our case, we will
see that the temperatures are sufficiently small that we
expect ϕ emissions to dominate.
At low temperatures, the nugget is described as a

Fermi gas with a modified fermion mass m�. Then, to
leading order in the excitation energy E�, the temperature is
given by T ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�=Nð4μ=π2Þ

p
, where μ ¼ mX0 is the Fermi

energy given by Eq. (3). The binding energy release
in the process, fNX þ ð1−fÞX → NX, is given by Q ¼
ϵsurfN2=3ðf2=3 þ ð1 − fÞ2=3 − 1Þ, which is maximal when
f ¼ 1=2 for fixed N. Thus, assuming negligible kinetic
energy in comparison to binding energy release, the
maximal excitation energy of a CN is E�∼0.26ϵsurfN2=3.
This leads to maximum temperatures of order Tmax ∼
0.3N−1=6 ffiffiffiffiffiffiffiffiffiffiffi

ϵsurfμ
p ∼ 0.4ðN=NsatÞ−1=6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵsurfmϕ
p , where in

the final expression we used the definition Nsat ≡
ðr0mϕÞ−3 and Eq. (3). In Ref. [4], we found that ϵsurf is
order 3mX to 10mX for sample parameters αϕ ¼ 0.1, 0.01
and mϕ=mX ¼ 10−2; 10−3; 10−4, and it mildly increases
with decreasing mϕ=mX and decreasing αϕ. At saturation,
the typical temperature of the formed CN will be much
smaller than mX but possibly comparable to or larger than
mϕ. In the parameter ranges of interest (where saturation
applies), scalar emissions generally dominate by many
orders of magnitude over small nugget emission, with
stronger domination as N grows and mϕ=mX falls.
Despite domination of scalar emission over small nugget

emission at each step in the cascade, one might worry that
the large number of steps in a CN cascade could lead
to a sizable total small nugget emission rate. An upper
bound on the number of X emissions can be estimated as
NX ≲ NϕΓXðE�

0Þ=ΓϕðE�
0Þ with Nϕ the number of ϕ emis-

sions given an initial excitation energy E�
0. Using the further

upper-bound estimate Nϕ ≲ E�
0=mϕ, we find that NX is

substantially below 1 for the relevant parameter ranges
discussed in Sec. III A.

B. Boltzmann equations

We have just seen in Sec. IVA that coagulation—fusion
through emission of mediators only—will typically domi-
nate when the Bohr assumption of quick thermalization
applies. At larger impact parameter, a thermal model may
not apply and nugget fragmentation could occur. We will
suppose that—if they are relevant at all—the dominant
form of nonthermal fusion reactions are of the form
iX þ jX → iþj−kX þ k>0X þ ϕ’s, which we will refer to
as two-to-two reactions.
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In either case, the nugget distribution will follow a set of
Boltzmann equations. Defining yk ≡ nkX=nX with nk the
number density of a nugget of size k and nX ¼ P

kknk,
we have

dyk
dt

¼ nX

�X
i≤j

yiyjhσvðiX þ jX → kX þ iþj−kXÞi

− yk
X
m<n

ymþn−khσvðkX þ mþn−kX → mX þ nXÞi
�
;

ð18Þ

and for notational simplicity, we denote coagulation as a
two-to-two process with a final state particle 0X. All fusion
processes will generally include many additional ϕ emis-
sions, which do not impact the nugget number distribution.
At low temperature, only exothermic processes contribute,
and the summations in Eq. (18) are restricted to final states
that are more asymmetric than the initial state.
Total dark number conservation implies that

P
kkyk ¼ 1,

so that in the large N continuum, kyk becomes a probability
distribution. There are two sources of time dependence for
the Boltzmann equation: the density nX, which dilutes away
as ∼1=a3, and the thermal-averaged cross sections, which
may include a nontrivial transmission factor T . It is
possible to factor out the time dependence by defining a
dimensionless interaction time γ, such that (cf. w in [15])

dγ
dt

¼ nXðtÞσ∘hvT i∘ðtÞ; ð19Þ

where σ∘ ¼ πr20, and hvT i∘ is the common factor obtained
from a thermal average of the velocity-dependent part
of the cross sections. For fusion of nuggets both deep in the
saturation regime, T ¼ 1, and we simply take hvT i∘≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TX=m̄X

p
. Note that the binding energy per particle can be

very large and thus m̄X can be significantly smaller than
mX. For 2X-large fusion, relevant in bottleneck scenarios,
we instead take T ∼ 4v, and hvT i∘ ≃ 4TX=mX. In terms
of γ, the Boltzmann equation becomes

dyk
dγ

¼
�X

i≤j
yiyj

hσvðiX þ jX → kX þ iþj−kXÞi
σ∘hvT i∘

− yk
X
m<n

ymþn−k
hσvðkX þ mþn−kX → mX þ nXÞi

σ∘hvT i∘

�
;

ð20Þ

where the factor σ∘hvT i∘ absorbs the time dependence of
hσvi, such that the temporal evolution of the nugget
distribution is entirely captured by γðtÞ.
In general, the nugget bath temperature TX can deviate

from the temperature of the photon bath Tγ , if the dark
sector is not in kinetic equilibrium with the SM. Depending

on whether the nugget bath is relativistic (TX ∝ a−1) or not
(TX ∝ a−2), the form of γðtÞ varies. In the deep saturation
limit during radiation domination, one has

γ ¼ nXðtsynÞσ∘
HðtsynÞ

ffiffiffiffiffiffiffiffi
Tsyn
X

m̄X

s 8<
:

1
2
½1 − ð a

asyn
Þ−2�; ðTX ∝ a−2Þ

2
3
½1 − ð a

asyn
Þ−3=2�; ðTX ∝ a−1Þ ;

ð21Þ

and for the case of 2X-large nugget fusion, one has

γ ¼ nXðtsynÞσ∘
HðtsynÞ

4Tsyn
X

mX

8<
:

1
3
½1− ð a

asyn
Þ−3�; ðTX ∝ a−2Þ

1
2
½1− ð a

asyn
Þ−2�; ðTX ∝ a−1Þ ; ð22Þ

where the subscript “syn” denotes the value of the quantity
at the beginning of synthesis. For BE2 not radically greater
than mϕ, ϕ is nonrelativistic at Tsyn already, and without an
additional dark relativistic component, the dark bath will be
nonrelativistic.
As discussed later, the typical nugget size exiting

synthesis will be of order γ6=5max with γ determined through
Eq. (21) in the absence of a bottleneck, and the typical size
of a subdominant population of very large nuggets will be
order γ3max with γ determined through Eq. (22) when a
strong bottleneck is present.

C. Large nugget formation in the absence
of a bottleneck

Here we derive an analytic understanding of the typical
size of a nugget exiting synthesis. We start by defining an
average nugget size. Motivated by the fact that

P
kkyk ¼ 1,

which indicates kyk acts like a probability distribution
in the continuum limit, we define the average size by
k̄≡P

k¼1k
2yk.

8 For large k,mk ∝ km̄X, and k̄ is essentially
an energy density-weighted average. The evolution of k̄
follows

d log k̄
dγ

¼ k̄−1
X
k<i≤j

2yiyjði − kÞðj − kÞ

×
hσvðiX þ jX → kX þ iþj−kXÞi

σ∘hvT i∘
: ð23Þ

Here the summation only includes processes where the
final states have a more asymmetric nugget distribution,

8An alternative definition k̄ ¼
P

k¼1
kykP

k¼1
yk

¼ ðPkykÞ−1 corre-

sponding to a number density-weighted average is not appro-
priate when two-to-two processes contribute significantly toward
fusion of large nuggets. This is because

P
kyk does not change

under two-to-two processes, but only under fusion through
mediator emissions.
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such that iþ j − k > j ≥ i > k, implying that k̄ is mono-
tonically increasing.
To proceed further, we take the saturation limit, which

will be a good approximation as long as k̄≳ Nsat. Consider
the most dominant contributions in Eq. (23), which comes
from fusions of large nuggets with sizes around k̄, and
emissions (mostly) of mediator particles ϕ. This process
roughly doubles the size, and leads to an Oð1Þ change in
log k̄. When the time scale for this process to occur exceeds
γmax, synthesis freezes out. Therefore, we approximate
Eq. (23) by replacing the cross section (summed over k) in
Eq. (23) with the total k̄ − k̄ interaction rate, and substitute
ðk − jÞðk − iÞ ∼ k̄2 and

P
i;jyiyj ∼ 1=k̄2. The freeze-out

condition then becomes

d log k̄
dγ

∼ k̄−1
hσvðk̄X þ k̄X → ∼2k̄ÞXi

σ∘hvT i∘
≲ 1

γmax
: ð24Þ

In the saturation limit, the cross section for k̄ − k̄ fusion
scales like σk̄ k̄ ∼ σ∘k̄2=3, with a velocity dependence
vk̄ k̄ ∼ v∘k̄−1=2. (The transmission factor is T ¼ 1 in this
limit.) Then, setting hσvðk̄X þ k̄X → ∼2k̄ÞXi ¼ σ∘v∘k̄1=6, the
typical nugget size at the end of synthesis is

k̄fo ∼ ðγmaxÞ6=5; ð25Þ

with γmax given by Eq. (21) when asyn=a → 0, and the
typical nugget mass is M̄fo ∼ k̄fom̄X. Explicitly,

γmax ≈ 106

ffiffiffiffiffiffiffiffi
gsyn�S
gsyn�

s ffiffiffiffiffiffiffiffi
gsyn�S
10

r
Tsyn
γ

Tsyn
X

�
Tsyn
X

BE2=28

�
3=2

�
r0mX

23

�
2

×

�
10 GeV
mX

�
2
�
400BE2

mX

�3
2

�
mX

10m̄X

�
3=2

; ð26Þ

where fiducial values correspond roughly to the parameters
αϕ ¼ 0.1, mX ¼ 10 GeV and mϕ ¼ 10 MeV.
In Fig. 2 we show contours of constant k̄fo and M̄fo=GeV

assuming saturation values for r0 and m̄X as described in [4]
and summarized in Sec. II B, as a function of mX and mϕ,
with two choices of fixed αϕ. We have taken Tsyn

γ ¼ Tsyn
X ,

with Tsyn
X estimated as described in Sec. III B, and we have

included the contribution of ϕ to g� when relevant.
9 ThemX

range shown is that which satisfies the synthesis condition
Eq. (6) and the condition Tsyn

X > 10Teq. The shaded region
at smaller mX=mϕ does not satisfy the synthesis condition
in Eq. (5). We chose the lower cutoff for mϕ according toffiffiffiffiffiffiffiffiffiffiffiffiffimϕmX
p ≳ 10−8 GeV. For smaller values of ffiffiffiffiffiffiffiffiffiffiffiffiffimϕmX

p , as
discussed in Sec. III B, if the SM and DM sectors are
kinetically decoupled and the thermal DM sector does not
contain additional light degrees of freedom, the dark sector
temperature could increase by an order of magnitude or
more during synthesis, which would increase the estimate
by a similar factor.
In Fig. 2, we can see that k̄fo and M̄fo depend much more

strongly on mϕ and αϕ than on mX. Using BE2 ¼ α2ϕmX=4
and the estimates Eq. (3), modulo the very weak

FIG. 2. Contours of typical nugget number exiting big bang darkleosynthesis, k̄fo (dashed red line) and typical nugget mass M̄fo (solid
purple) for αϕ ¼ 0.03 (left) and αϕ ¼ 0.3 (right). The temperature of the dark sector is assumed to be roughly TX ≈ Tγ. The blue shaded
region corresponds to BE2 < mϕ, where 2X synthesis will not be efficient [Eq. (5)]. The uppermX cutoff corresponds to the requirement
that the 2X fusion rate be smaller than Hubble as in Eq. (6), and the lower mX cutoff corresponds to Tsynth ≲ 10Teq. (See Fig. 1.) The
various kinks in the contours are results of the change in g� as the synthesis temperature passes through the QCD phase transition and
neutrino decoupling.

9As discussed in Sec. III B, depending on details of the
cosmology, we expect Tsyn

γ ¼ Tsyn
X to within a factor of a few,

depending on the decoupling time of the two sectors.
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dependence of g� and BE2=T
syn
X on model parameters,

we find that the typical nugget number k̄fo and mass M̄fo
scale as

k̄fo ∝ α93=20ϕ m−3=10
X m−21=10

ϕ and M̄fo ∝ α22=5ϕ m1=5
X m−8=5

ϕ :

ð27Þ

This scaling is reflected in the plot. For example, it is worth
noting that k̄fo grows slightly more rapidly with decreasing
mϕ than does M̄fo. This is entirely due to the increase of
binding energy per particle with decreasing mϕ.
Recall that our estimate is valid only when k̄fo > Nsat

since we have used the saturation cross section and binding
energy in our freeze-out estimate. In the strong binding
limit,

Nsat ≡ ðmϕr0Þ−3 ≈ α−3=4ϕ

�
mX

mϕ

�
3=2

: ð28Þ

Thus since k̄fo scales more strongly with m−1
ϕ , for fixed

αϕ and mX, the approximation becomes better as mϕ

decreases. Numerically, we find that for αϕ ≲ 0.1, the
self-consistency condition for applying the saturation limit
k̄fo > Nsat is always satisfied whenever the synthesis
conditions are met. In Fig. 2, where the region with
k̄fo < Nsat for αϕ ¼ 0.3 is shaded red, we see that even
for larger αϕ the estimate is invalid only in a small region of
parameter space.

D. Nugget distribution function in the
absence of a bottleneck

So far we have focused on order of magnitude analytic
estimates. Here we support and complement our estimates
with a full semianalytic analysis of the Boltzmann
equations in Eq. (20), complemented with numerical
calculations. As before, we only consider coagulation
and two-to-two processes. However, much of the analysis
carries over when higher order processes are included, as
long as they stay homogeneous with the same weight as we
will discuss. It is useful to rewrite the infinite set of
differential equations in Eq. (20) by introducing a kernel,
Kði; j; kÞ,

Kði; j; kÞ ¼ hσvðiX þ jX → kX þ iþj−kXÞi
σ∘hvT i∘

ð29Þ

so that the Boltzmann equation, Eq. (18), becomes

dyk
dγ

¼
�X

i≤j
yiyjKði; j; kÞ −

X
kþl<2m

ykylKðk; l; mÞ
�
: ð30Þ

Analogous equations have been considered in the statistical
and mathematical physics literature (see Ref. [16] for a
pedagogical introduction), and when Kði; j; kÞ ∝ δiþj;k,
Eq. (30) is known as the Smoluchowski equation for
coagulation [17]. Here we consider the saturation limit
and utilize the CN-like picture for two-to-two processes,
such that the kernel scales simply as

Kði; j; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

i
þ 1

j

s �
i
1
3 þ j

1
3

	
2 Γk

Γ
; ð31Þ

where Γk is proportional to the partial width of a
compound state iþ j transitioning into a final state
kþ ðiþ j − kÞ, the squared factor characterizes the
scaling of the geometric cross section, and the square
root factor characterizes the relative speed. A similar
kernel was considered in [7], but with Γk ¼ δiþj;k,
corresponding to the case of coagulation [17].10 There
are generally no closed form solutions even for a
simplified choice of fusion kernel [16], and given that
k̄ and the total interaction time γmax are typically very
large, numerical calculations quickly become intractable.
Fortunately, as similarly discussed in [7], when the kernel
is homogeneous Kði; j; kÞ ¼ λ−αKðλi; λj; λkÞ, scaling sol-
utions exist, which allow for extrapolation of numerical
results for small γ to large γ ∼ γmax. In the saturation
limit, the total inelastic cross section is already homo-
geneous with degree 1=6. Then a scaling solution is valid
as long as Γk in Eq. (31) is also homogeneous, which we
will assume for now. It is important to note that the
kernel, Eq. (31), applies only when large saturated
nuggets dominate the dark matter density; for fusion
involving at least one unsaturated nugget, the form of the
kernel will change, and for the most general fusion
interactions, one cannot even define a time-independent
kernel. We will check that our results are self-consistent
in that the vast majority of nuggets exiting synthesis are
above the saturation size, where the kernel we use
does apply.
We will now derive the scaling solution, following [16]

in spirit. In the large k̄ limit, nugget indices may be
treated as continuous variables. Consider the ansatz
ykðγÞ¼ s2fðksÞ, where sðγÞ is some function of γ that
is to be determined. Substituting the ansatz into Eq. (30)
and replacing summation with integration in the con-
tinuum limit, we have

10Specifically, Ref. [7] usedKði;jÞ¼ði−1=2þj−1=2Þði2=3þj2=3Þ
to match with existing mathematical literature on the coagulation
equations. However, as we explicitly show, it is not necessary to
choose such a kernel for the scaling solution to apply. Therefore, we
use the more physical kernel that properly characterizes the total
geometric cross section and relative velocity.
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_ss½ðksÞf0ðksÞ þ 2fðksÞ�

¼ s2−α
�ZZ

dðisÞdðjsÞKðis; js; ksÞfðisÞfðjsÞ

−
ZZ

dðlsÞdðmsÞKðks; ls; msÞfðksÞfðlsÞ
�
; ð32Þ

where we have used the homogeneity property of K to
change the integration variable. We have not explicitly
included the integration bounds, which do not affect the
derivation as long as they are linear functions of the
integration variables. One sees that for s ¼ cγ1=α, the γ
dependence drops out entirely, and one is left with an
integro-differential equation for fðxÞ, given by

xf0ðxÞ þ 2fðxÞ ¼ αc−α
�ZZ

dydzKðy; z; xÞfðyÞfðzÞ

−
ZZ

dydzKðx; y; zÞfðxÞfðyÞ
�
: ð33Þ

For nugget fusion, we will consider K with homogeneous
weight α ¼ −5=6, and hence s ∼ γ−6=5. Equation (33) in
general is still very difficult to solve even numerically.
However, it is known that the nugget distribution generally
approaches the scaling solution very quickly independent of
the initial condition (see [16]). Therefore, it is possible to
numerically integrate Eq. (30) by truncating the differential
equation at finite nugget number, and then extract the
scaling function fðxÞ by testing that the solutions ykðγÞ
have converged to a scaling limit.
It is illuminating to revisit our earlier discussion of

typical nugget size k̄ in Sec. IV C in light of the scaling
solution. In the scaling limit, k̄ ¼ s−1

R
dx x2fðxÞ. Given

that there is freedom to choose fðxÞ by rescaling s, we may
set k̄ ¼ s−1. Then the scaling limit simply becomes

k2ykðγÞ →
k2

k̄2
f

�
k

k̄

�
: ð34Þ

In the scaling limit, k2yk maintains the same shape, centered
on k̄, with a scaling behavior k̄ ∼ γ6=5, verifying our earlier
estimate.
For our numerical study, we consider three separate

homogeneous Γk for the kernel Kði; j; kÞ. The three
branching ratio forms we consider correspond to

(i) Coagulation: Where Γij→k ∼ δiþj;k
(ii) Uniform: Γij→kl ∼ θðjk − lj − ji − jjÞ.
(iii) Energy scaling: Γij→kl ∼Q2

ij→klσkþl, where the heat
release Qij→kl is proportional to the change in total
surface area for a given reaction. Specifically,
Γðiþ j → kþ lÞ ∼ ½ði23 þ j

2
3Þ − ðk2

3 þ l
2
3Þ�2ðk1

3 þ l
1
3Þ2,

which roughly captures the increase in phase space
as the reaction becomes more exothermic.

Coagulation dominates when (a) the compound nucleus
model applies, (b) the difference between the binding
energy per particle of very large and very small nuggets
is greater than the mediator mass, and (c) the excited
nucleus temperature is small [see Eq. (17) and surrounding
discussion]. In Sec. IVA we argued that the compound
nucleus model should apply except possibly when the
impact parameter is comparable to the nugget radii—i.e. for
grazing collisions. While points (b) and (c) are valid for
the parameter ranges we consider, it is useful to have a
sense for what might change in models where they do not
hold. Therefore we consider potential corrections to the
coagulation-only picture by analyzing two other reasonable
choices for the branching ratios where our scaling solution
still applies.
Startingwith the initial condition yið0Þ ¼ δi0, Fig. 3 shows

k2ykðγÞ as a function of nugget number k and a specific
nugget branching fraction as a function of interaction time γ.
In the continuum limit, k2ykðγÞ is interpreted as the differ-
ential nugget probability distribution, dpðkÞ=d log k, or the

FIG. 3. Nugget distribution function at different interaction time γ (right) and specific number fraction as a function of γ. Here, the
different line style depicts different assumptions for the branching ratio, with the solid/dashed/dotted lines corresponding to the energy-
scaling/uniform/coagulation branching ratio assumption as described in the main text.
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fractionof the nugget number sharedbynuggets centered onk
within a unit bin in log k. We see that the nugget distributions
very quickly become dominated by large k even at small
interaction time γ ¼ 100. Differences in the branching ratios
do not significantly alter the behavior, although a flatter
branching ratio tends to enhance the nugget distribution at
small k.
Figure 4 shows the extracted mass function at different

interaction time γ ∈ f10; 20; 100g, in dotted/dashed/solid
line for the different branching ratio assumptions. One
already sees a convergence to a universal function. At
smaller nugget number, the mass functions are significantly
broader for branching ratios that include two-to-two proc-
esses. However, the difference between the uniform and
energy scaling branching ratios are small.

E. Large nugget formation in the presence of
bottleneck: Nugget capture

In this section we consider nugget synthesis in the
presence of a bottleneck. As discussed in Sec. IV E, we
expect the nugget distributions to be impacted significantly
only when both 3X and 4X are unstable. In this case, the
two-to-two fusion processes are halted until larger nuggets
(5X or 6X) are formed through other processes. For instance,
6X can be produced via rare three-2X fusions, where a short-
lived state 4X may exist, permitting the reaction 4X þ 2X →
6X þ 0X to proceed before the 4X decays. This is analogous
to 3 4He → 12C through the 8Be resonance. In this case, the
6X now functions as a nucleation site, capturing nearby 2X.
In the limit that the nucleation sites are sparse, the

process NX þ 2X → Nþ2X with ϕ emissions dominates.
Considering only this coagulation process, for large k,
the Boltzmann equation in Eq. (20) becomes

dyk
dγ

¼ y2

�
yk−2

hσvðk−2X þ 2X → kXÞi
σ∘hvT i∘

− yk
hσvðkX þ 2X → kþ2XÞi

σ∘hvT i∘

�
: ð35Þ

Working in the saturation limit, and taking the large k
continuum limit, the cross sections will scale as
hσvðkX þ 2X → kþ2XÞi≃ σ∘hvT i∘k2

3, and we have

∂
∂γ ðk

2
3ykÞ ¼ −ξ

∂
∂k1

3

ðk2
3ykÞ; ð36Þ

where ξ ¼ 2y2=3 is approximately constant. Analytically,
Eq. (36) is a simple linear wave equation describing a
distribution moving forward in k

1
3-space with speed ξ. This

implies that, for nucleation site populations with roughly
the same size k, the distribution will remain peaked in
k
1
3-space at later times. Inclusions of large-large interactions
will change the shape of the distributions, but should
remain subdominant as long as the nucleation sites remain
sparse. The average nugget size for the nucleation sites
exiting synthesis can then be approximated by

k̄fo ∼ ðξγmaxÞ3 ð37Þ

with γmax given by Eq. (22). Explicitly,

γmax ≈ 4 × 104

ffiffiffiffiffiffiffiffi
gsyn�S
gsyn�

s ffiffiffiffiffiffiffiffi
gsyn�S
10

r
Tsyn
γ

Tsyn
X

�
Tsyn
X

BE2=28

�
2
�
r0mX

23

�
2

×

�
10 GeV
mX

�
2
�
400BE2

mX

�
2
�

mX

10m̄X

�
2

; ð38Þ

FIG. 4. Left: Nugget mass functions k2ykðγÞ for different γ and kernel assumptions. The different colors, red/purple/blue, show the
mass functions for the fusion/energy scaling/uniform assumptions for the kernel respectively. The solid/dashed/dotted lines show the
curves for γ ¼ 10, 20, 100 respectively. All lines with the same color are seen to converge to a common function s2fðsÞ according to
Eq. (34). The blue (uniform) and purple (energy scaling) curves converge to the same function approximately. Right: The extracted
differential nugget density exiting synthesis for M̄fo ¼ 109 GeV [the distribution is proportional to sfðsÞ]. A different M̄fo simply shifts
the x-axis logarithmically while maintaining the shape of the differential distribution.
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where fiducial values correspond roughly to the benchmark
parameters αϕ ¼ 0.1, mX ¼ 10 GeV, mϕ ¼ 10 MeV.
The wave equation description breaks down when 2X

starts to be depleted, which happens when the fractional
DM number contained in the nucleation sites becomes
Oð1Þ. If we assume that the probability of a single 2X
squeezing through the bottleneck at the beginning of
synthesis is 2p, then the number density of the nucle-
ation sites will be pnX. The nucleation sites will evolve
linearly until the fractional DM number in nucleation
sites, pðξγÞ3, is roughly 1=2, at the transition interaction
time

γtrans ≳ 1

ξ

1ffiffiffi
3

p
2p

: ð39Þ

At this point, the average nucleation size will be
k̄ ∼ 1=ð2pÞ. Beyond this point, the 2X distribution is
expected to rapidly become depleted, and the subdomi-
nant large-large fusion will become significant. If
γ3trans < γ6=5max, the discussion in Sec. IV C will then apply
once again, with a scaling law k̄ ∼ γ5=6.
Figure 5 shows the nugget sizes and masses for the

nucleation sites exiting synthesis. We have assumed that p
is small enough that the 2X population always dominates.
Compared to Fig. 2, the final nugget number and masses
are significantly larger due to γ3max scaling. This is
expected as the fusion rate is controlled by the 2X densities
which remain relatively large. One may be concerned that
the local 2X density within a Hubble volume of a nugget
may be depleted before γmax is reached, which would
render our calculation invalid. Such a requirement will
impose a lower bound on p≳H3=nX ∼ m̄X

GeV
T3

ηm3
Pl
, which is

negligibly small when the temperature is of order GeV or
smaller.

F. Nugget distribution and bottlenecks

Here we present a numerical investigation of the effects
of bottlenecks on the nugget distribution. In Sec. IV E we
argued that a significant bottleneck might occur due to 3X
and 4X both being unstable, while isolated unstable nuggets
do not cause significant changes in the nugget distributions.
In order to simulate nugget evolution in this situation, we

follow the same setup in Sec. IV D, and use the cross
sections in Eq. (31). Though Eq. (31) is modeled on large-
large fusion, the velocity dependence approaches a constant
for small-large fusions and describes the bottleneck sce-
nario well. The large-large fusion cross section is not fully
captured by the kernel, as its temperature dependence is
different form the small-large case. However, contributions
from large-large interactions are subdominant whenever

p ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tsynm̄X=m2

X

q
∼ α7=8ϕ ðmϕ=mXÞ1=4=10, which is rel-

evant for the benchmark cases we have. The Boltzmann
equation is truncated at k ≤ 1000, such that all branchings
into higher k nuggets are fixed to zero. We also utilize the
energy scaling branching ratios, though different branching
assumptions do not change the quantitative behavior
significantly. The initial conditions are chosen such that
2y2 ¼ 1 − p and 6y6 ¼ p. To simulate the effects of
bottlenecks, we fix yk ¼ 0 and Γkl ¼ 0 if kX or lX is
unstable. The left panel of Fig. 6 shows the mass distri-
butions for different choices of p. We see that in general,
the nugget distributions are separated into two distinct
populations: the small 2X population and large nugget
nucleation sites. The distributions for the nucleation sites
are strongly peaked, and move forward rapidly as γ
increases. The total fraction of DM in the nucleation sites
increases as well. Variations in p simply modify the total
nucleation site density. At large γ, one expects the 2X
density to appreciably decrease eventually, although a

FIG. 5. Contours of the nugget number, kfo (dashed red line), and the typical mass of the nuggets, Mfo (solid purple) for the large
nugget populations exiting darkleosynthesis when a significant bottleneck is present. The coupling is fixed at αϕ ¼ 0.03 (left) and
αϕ ¼ 0.3 (right). Similar to Fig. 2, the blue shaded region corresponds to inefficient 2X fusion due to small binding energy, and the upper
(lower) cutoff for mX corresponds to an 2X fusion rate always smaller than Hubble and Tsynth ≲ 10Teq respectively.
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numerical confirmation is impractical, as it requires includ-
ing exponentially more terms in the Boltzmann equations.
The right of Fig. 6 also shows a comparison of different

nugget functions when including extra bottlenecks at k ¼ 9
for the dashed line (and also 10 for the dotted line), while
fixing p ¼ 10−5. With only one extra bottleneck at k ¼ 9,
the mass functions quickly move beyond the bottleneck and
become indistinguishable from the ones without the k ¼ 9
bottleneck. While for the case with two bottlenecks at
k ¼ 9, 10, no larger nuggets are produced beyond k ¼ 8.
This confirms our expectations, where isolated bottlenecks
do not change the nugget distribution while multiple
consecutive bottlenecks can bring fusion processes to
a halt.

V. CONCLUSIONS

We have studied the early Universe synthesis of many-
particle bound states of ADM, or nuggets. We focused on a
minimal model with spin-1=2 asymmetric dark matter
interacting through a scalar mediator; the scalar is solely
responsible for binding the nuggets and determines the
dynamics of fusion in both the initial and final stages of
synthesis. We unified the treatment of synthesis with a
quantitative calculation, in our companion paper [4], of the
properties of the large bound states, utilizing effective field
theory tools developed in nuclear physics. Within our

model, the typical nugget size exiting early Universe
synthesis can be many orders of magnitude larger than
has been estimated in previous treatments of many-particle
bound states of dark matter. We derived a nugget mass
function, describing the dark matter energy distribution in
nuggets of different sizes, from the Boltzmann equation.
We argued that within the minimal model fusion occurs
primarily through radiation of mediators, and showed that
in this case the mass function is peaked within a couple of
generations in size about the typical size, confirming the
findings in [7]. We found that inclusion of the analog of
baryon-number-transfer nuclear fusion reactions in addi-
tion to radiative fusion reactions generates a broader nugget
distribution.
With a quantitatively derived nugget mass function

exiting early Universe synthesis, we are now in a position
to study the late Universe cosmology of ADM nuggets.
This is the subject of our next investigation.
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