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The measured value of the Higgs quartic coupling λ is peculiarly close to the critical value above which
the Higgs potential becomes unstable, when extrapolated to high scales by renormalization group running.
It is tempting to speculate that there is an anthropic reason behind this near-criticality. We show how an
axionic field can provide a landscape of vacuum states in which λ scans. These states are populated during
inflation to create a multiverse with different quartic couplings, with a probability distribution P that can be
computed. If P is peaked in the anthropically forbidden region of Higgs instability, then the most probable
universe compatible with observers would be close to the boundary, as observed. We discuss three
scenarios depending on the Higgs vacuum selection mechanism: decay by quantum tunneling, by thermal
fluctuations, or by inflationary fluctuations.
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I. INTRODUCTION

The standard model (SM) of particle physics, while
enjoying tremendous success as an accurate description of
nature, has many parameters whose values look mysterious
from a theoretical perspective. Why are the Higgs mass and
the energy scale of the cosmological constant so small
compared to the Planck scale? Why is θQCD so small? What
is the origin of the hierarchy of fermion masses? Such
questions have inspired many efforts to go beyond the
standard model. Following the discovery of the Higgs
boson, there is a new item, dubbed “Higgs near-criticality,”
on the list: why is the Higgs self-coupling λ (in conjunction
with the top quark Yukawa coupling yt) so close to the
critical value beyond which the Higgs potential becomes
unstable at high scales? The situation is illustrated in Fig. 1
[1], which shows the regions of stability, metastability and
instability of our vacuum, in the λ-yt plane, with the small
ellipse of the measured values falling in the narrow region
of metastability. In the metastability (instability) region the
vacuum lifetime is longer (shorter) than the age of the
Universe.

The answer could of course be that it is a coincidence: for
fixed yt, the quartic coupling is 0.01 below the stability
boundary (0.03 above the instability line), which is a tuning
of only 8% (23%) relative to its actual value. On the other
hand if λ could a priori have taken any value between 0 and
4π, this becomes a tuning of 0.08% (0.2%), more in accord
with the visual impression from Fig. 1. This is predicated
on the assumption that there is no new physics coupled to
the Higgs at high scales (up to the Planck scale) that might
shift the stability boundaries relative to where they are
shown. Nevertheless since there is an anthropic reason for λ
to avoid the instability region, it is tempting to construct a
scenario where this explains the coincidence.
While anthropic reasoning is eschewed by many phys-

icists, if there is a landscape of vacuum states in which
anthropically sensitive parameters are sampled, it seems
difficult to dismiss. For example the very large number of
flux compactifications in string theory [2,3] make it
plausible that our Universe is part of a much larger
multiverse [4]. A solution of the cosmological constant
(Λ) problem was proposed in which Λ is finely scanned by
these flux vacua [5], yielding values consistent with
anthropic bounds [6]. Coleman’s wormhole mechanism
[7] is another example of a multiverse in which the most
likely value of Λ is small (in fact vanishing).
In this context, Rubakov and Shaposhnikov argued [8]

that the observed values of physical constants might
generically be close to the boundaries of the anthropically
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allowed regions. If the probability distribution is such that
the most likely value of a parameter is anthropically
forbidden, then the most likely observed value would be
close to the boundary, since there are no observers on the
forbidden side. The near-criticality of the Higgs potential
looks like a possible example of this phenomenon.
The anthropic necessity of Higgs stability is an old

observation that was used to put a lower bound on the
Higgs mass (or an upper bound on the heaviest quark mass)
as early as 1979 [9]. Improved predictions using higher
orders in the loop expansion were subsequently made
[1,10]. An indication of how delicate the tuning is for
near-criticality is provided by the comparison of such
predictions at different levels of precision [11]: at leading
order our vacuum would be deep in the instability region, at
next-to-leading order in the middle of the metastable one
and at NNLO very close to the stability boundary.
Of particular relevance for our work, the implications of

Higgs stability within a landscape of vacua with λ scanning
were studied in Ref. [12], assuming conditions just like
those suggested by Ref. [8] for the underlying probability
distribution PðλÞ, namely that it is maximized in the
unstable region of small λ. In that work, a model-
independent analysis was done, where no particular model
of the landscape was proposed; rather a reasonable func-
tional form for PðλÞ was assumed, which led to predictions
for the Higgs mass prior to its measurement.
We think it is worthwhile to revisit the question of Higgs

near-criticality within a specific model of the landscape,
since such a study may reveal nontrivial challenges to the
overall consistency of such a picture that may be shared by

other possible examples. At the same time we introduce a
new kind of landscape that is particularly simple and
amenable to calculations, namely the vacuum states pro-
vided by the minima of the potential of an axion field
(whose detailed properties are very different from those of
the QCD axion).
We are inspired by a string-theory-motivated construc-

tion, axion monodromy, previously used for inflation [13]
and by the relaxion mechanism [14], used for solving the
weak scale hierarchy problem. In contrast to these appli-
cations, however, we wish to avoid classical evolution of
the axion a during cosmological evolution. Instead, the
Universe is assumed to split into causally disconnected
domains where a sits in different local minima of its
potential. These vacuum states were populated by quantum
fluctuations of a during a period of inflation, are essentially
stable against tunneling once formed, and so realize a
tractable example of a multiverse. The probability distri-
bution is calculable in terms of the axion potential, given
certain assumptions about the cosmological evolution that
we specify.

II. LANDSCAPE FOR λ

The field a has a potential of the form

VðaÞ ¼ V̄ðaÞ − Λ4
b cosða/fÞ; ð1Þ

where V̄ denotes the part of the potential that can be
approximated as nonoscillatory on a field range large
compared to 2πf. As the field a has an axionic origin
(a is a pseudo-Goldstone boson, like a phase field), it
originally enjoys a shift symmetry a → aþ c that is broken
by the potential (1). The term Λ4

b cosða/fÞ breaks the shift
symmetry down to a discrete subgroup a → aþ 2πf, while
V̄ðaÞ breaks the shift symmetry completely (at least in the
range we consider; see below). It is then natural to expect
these breaking terms to be much smaller than the typical
mass scale or cutoff of the theory that we call Λ. In a string
theoretic UV completion, Λ could be the string scale.
We assume then Λb ≲ Λ and take V̄ðaÞ ¼ Λ4Vðηa/ΛÞ,

with η ≪ 1. For our purposes it suffices to keep the linear
term of this function,

V̄ðaÞ ¼ ηΛ3aþ � � � ð2Þ

This linear term should accurately describe the potential
V̄ðaÞ in a typical field region. Without loss of generality (by
doing a shift in the field), we can take this typical region to
be in the vicinity of a ¼ 0 and we can also take η > 0 so
that V̄ðaÞ is a growing function of a.
A concrete example for V̄ that arises in certain string

theory compactifications [13] is

V̄ðaÞ ¼ M4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2/F2

p
≃M4a/F; ð3Þ
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FIG. 1. Regions of the λ-yt plane leading to stability, metasta-
bility, or instability of the Higgs potential at high scales [at next-
to-next-to-leading order (NNLO) accuracy [1]]. In the region
labeled “nonperturbativity” λ becomes strong below the Planck
scale. The couplings are defined at the electroweak scale.
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where the linear approximation is valid in the region where
a ≫ F. Here, M and F are generically at the string scale,
but if the axion arises from a warped throat, then M can be
parametrically suppressed by a warp factor, which may be
exponentially small.
Another example is the clockwork axion [15], with

V̄ðaÞ ¼ ϵΛ4 cosða/FÞ, and F ¼ Nf ≫ f, which is a hier-
archy that can be arranged in a natural way. In this setting, the
field range is compact, 2πF, but we are interested in a patch
Δa with 2πf ≪ Δa ≪ 2πF, and there we can expand
V̄ðaÞ as in (2) around some typical value a0, obtaining η ¼
−ðϵΛ/FÞ sinða0/FÞ.
Let the minima of the potential (1) be labeled by an

integer n, such that an ≃ 2πnf. A basic condition for
having a landscape is that V̄ must be sufficiently flat so
that it does not destroy the local minima of the oscillatory
part. This requires

V̄ 0ðaÞ ¼ ηΛ3 ≲ Λ4
b

f
; ð4Þ

which, if satisfied, would naively imply infinitely many
local minima. In realistic string constructions, however,
there is backreaction from large windings, so that the actual
number of minima is limited to N ≲ 10–100, beyond which
the above description breaks down, and possibly an extra
dimension decompactifies [16]. In clockwork constructions
the number of vacua is also finite as the field range is
compact.
We assume that in addition to V̄, there is a coupling of a

to the Higgs potential,

Vh ¼ ð−μ2h þ chηaΛÞjHj2 þ
�
λþ cλ

ηa
Λ

�
jHj4: ð5Þ

Such couplings also break the shift symmetry and so we
assign a factor η to them. The a terms in (5) could be
regarded as arising from a generalization of Eq. (3) by
taking M4 → M4 þOðΛ2jHj2; jHj4Þ or from expanded
cosða/FÞ potentials in the clockwork realization. In the
landscape of vacua of the a field, where hai ¼ an ≃ 2πnf,
this shifts the bare values (i.e., the values at the UV scale Λ)
of the Higgs parameters to

μ2n ¼ μ2h − nchηð2πfÞΛ;

λn ¼ λþ ncλη
2πf
Λ

≡ λþ nδλ: ð6Þ

Here we assume that some other mechanism solves the
weak scale hierarchy problem (e.g. a relaxion mechanism
[14]) so that μn is of electroweak size and focus on the shift
in the Higgs coupling. For reasons detailed below we also
choose cλ > 0. Likewise we must assume there is another
mechanism for solving the cosmological constant problem,
since the vacuum energy varies between a-vacua due to the
nonperiodic part of the potential V̄.

We consider three possible scenarios, each associated to
one of the three critical boundaries shown in Fig. 2; these
are the boundaries of instability and metastability at zero
temperature, and the boundary of high-temperature insta-
bility that depends upon the assumed reheating temperature
(dashed lines). Our mechanism explains why we would
observe ðλ; ytÞ to be near (and to the right of) one of these
boundaries. The characteristics of the three categories are
summarized in Table I. Figure 2 shows trajectories of
successive vacua that exemplify each case. Which one of
the three is actually realized depends upon cosmological
parameters, as we discuss in more detail in the next section.
In case (1) we end close to the instability boundary and the

probability to live in vacua beyond that boundary is depleted
by T ¼ 0 decay, in which the Higgs vacuum has a lifetime
that is shorter than the age of the Universe. To explain why a

TABLE I. Characteristics of the three cases we consider in the
text, regarding the critical boundary, vacuum selection mecha-
nism, step in λ needed and range of top mass (inside the
experimental 3σ band) required.

(1) (2) (3)

Boundary T ¼ 0 instability TR instability Stability

Vacuum Quantum Thermal Inflationary
selection T ¼ 0 decay decay decay

δλ ∼0.05 ∼0.02 ≪ 0.01

Mt/GeV 173.34� 2.28 173.34þ1.34
−2.28 ≃171
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FIG. 2. Zoom-in of Fig. 1 showing also the instability lines for
thermal vacuum decay with TR ¼ 1014–16 GeV (red dashed
lines). Trajectories of a-vacua are shown (surviving ones in
black, doomed ones in white) for the three cases discussed in the
text. We use Mh ¼ 125.09� 0.24 GeV [17] and Mt ¼ 173.34�
0.67 GeV [18] at 1-σ for the experimental ellipses.
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point lying in the experimentally allowed ellipse at yt ≃ 0.95
corresponds to the most probable anthropically allowed
vacuum, we need δλ ∼ 0.05, the approximate width of the
metastable region.1 Scenario (1) could take place for any
value of the top mass, within the experimentally preferred
region, which we take to be the 3σ range Mt ¼ 173.34�
3 × 0.67 GeV [18].
In case (2) we end in a vacuum near the instability

boundary for decay by thermal fluctuations with a high
reheating temperature, which reduces the region of meta-
stability. As concrete examples we illustrate the cases of
TR ¼ 1014 and TR ¼ 1016 GeV. The boundary of the
reduced region is shown as the dashed lines in Fig. 2
(see Refs. [20,21]), and a possible trajectory illustrating this
case is shown along yt ≃ 0.934. A smaller step size δλ ∼
0.02 is suggested for naturally explaining the distance of
the SM point from the dashed boundary. This mechanism,
for such large TR, favors the lower range of the top mass,
with Mt ≃ 173.34þ1.34

−2.28 GeV.
In case (3) we end very close to the stability boundary

beyond which the Higgs vacuum is unstable against decay
during inflation, for sufficiently large values of HI

ffiffiffiffiffiffi
Ne

p
.

This case is illustrated by the trajectory passing through the
bottom of the experimental ellipse. Here the most probable
state would be the one closest to the boundary in the
absolute stability region, and it would require a very small
step size δλ to be naturally close to the experimental ellipse.
Although this possibility is currently disfavored, it is not
excluded and provides another possible regime for explain-
ing near-critical stability, if the top mass is very close to its
lowest 3σ value, Mt ≃ 171 GeV.
Once δλ is fixed, (6) can be used to eliminate

the unknown parameter η in terms of f and δλ. We
introduce the ratio δλ ≡ δλ/0.05 [which is of order unity
in case (1)] to allow for the possibility of any of the three
cases. Hence

cλη ¼ 0.05δλ
Λ
2πf

: ð7Þ

III. PROBABILITY DISTRIBUTION OF VACUA

A key ingredient of our scenario is the process by which
the vacua get populated by quantum fluctuations during
inflation, and the resulting probability distribution function
Pðt; anÞ for the different vacua. It is governed by the
Fokker-Planck equation

∂P
dt

¼ ∂
∂a

�
V 0ðaÞ
3HI

Pþ H3
I

8π2
∂P
∂a

�
ð8Þ

(see for example Refs. [22–24]) where HI is the Hubble
parameter during inflation. We take the inflationary con-
tribution to the energy density to be much larger than VðaÞ
and consider HI to be approximately constant. Then the
stationary solution to (8) is2

PðaÞ ∼ e−8π
2VðaÞ/3H4

I : ð9Þ
We assume for the moment that this stationary solution (9)
is reached and determines the relative probabilities of the
different vacua (disregarding for now the possible decays
along the Higgs direction). The necessary conditions to
justify this assumption are discussed below. We do not care
about the normalization of PðaÞ as we are only interested in
relative probabilities between different vacua.
At the local minima of the potential we have

VðanÞ ≃ V̄ðanÞ, neglecting the uninteresting constant con-
tribution −Λ4

b and taking v ≪ Λ, where v ¼ 246 GeV is
the Higgs vacuum expectation value, with v2/2 ¼ hjHj2i.
With our convention η > 0, the underlying landscape
probability distribution prefers the more negative values
of n, which reduce V̄ðanÞ. By choosing cλη > 0 we then
favor negative λn in Eq. (6) and unstable Higgs potentials
are preferred within the landscape.
In order to have significant variation of PðanÞ near the

instability boundary, the exponent of (9) should change by
Oð1Þ between neighboring vacua. The ratio of the prob-
abilities of the second and first anthropically allowed
vacua, relative to the anthropic boundary, is given by

− ln
P2

P1

¼ 8π2ΔV̄
3H4

I
≳Oð1Þ; ð10Þ

where

ΔV̄ ¼ ηð2πfÞΛ3 ¼ 0.05Λ4
r : ð11Þ

In the last step we removed η by using (7) and introduce the
quantity Λr (that appears repeatedly) as

Λr ≡ ðδλ/cλÞ1/4Λ: ð12Þ
Condition (10) leads to the most likely anthropically

allowed vacuum being the one closest to the critical
boundary in question. It imposes a maximum value of
the Hubble rate during inflation: H4

I ≲ ð8π2ΔV̄/3Þ. On the
other hand, the derivation of the Fokker-Planck equation
from the stochastic approach to tunneling [22] assumes that

1This number can be estimated as follows. The vacuum decay
rate per unit volume is Γ ∼ h4t e−8π

2/ð3jλðhtÞjÞ, where ht is the
preferred value for tunneling. The decay probability is Γ times the
four-dimensional volume of our past light-cone ∼ðe140/mPÞ4.
Decay probabilities of order 1 require λðhtÞ ∼ −0.05 and
this number is confirmed by a more sophisticated calculation
(see e.g. [19]). Thus the metastable region is approximately
λðhtÞ ∈ f−0.05; 0g. This translates to the region shown in Fig. 1
after running the couplings down to the weak scale.

2If a contributes significantly to the energy density, the
stationary solution is PðaÞ ∼ expf24π2m4

P/½VI þ VðaÞ�g, where
VI is the inflaton field potential and mP the reduced Planck mass.
An expansion for small VðaÞ/VI reproduces Eq. (9).
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HI > ma, the mass of the a field. It is possible that this is
only a sufficient and not a necessary condition [25], but if
we respect it [along with (10)] then HI should be in the
interval3

ma ¼
Λ2
b

f

�
1 −

�
0.3

Λr

Λb

�
8
�
1/4 ≲HI ≲ 1.07Λr: ð13Þ

The upper limit is plotted in Fig. 3 with the label HI range.
Information on the lower limit, which varies from point to
point in the plane, is conveyed by the dashed lines; e.g., on
the line labeled ma/Λr ¼ 0.25, the interval for HI/Λr is
(0.25, 1.07). On the other hand, Eq. (4), required to
guarantee the existence of a landscape of a-vacua (which
coincides with the requirement ma > 0), gives the limit

Λb > 0.3Λr; ð14Þ
which is also plotted in Fig. 3 and labeled “landscape”.
If we also insist that the inflaton potential dominates over

the a potential, then H2
I ≳ 2πηΛ3Nf/3m2

P, where we have
assumed that a ¼ 2πNf in the vicinity of our a-vacuum.
Using (11) to eliminate ηf and combining with the upper
limit in (13) we find

Λr

mP
≲ 8.4ffiffiffiffi

N
p ; ð15Þ

which is not very constraining (e.g. ifN ≲ 100 or Λr ≪ Λ).

IV. VACUUM STABILITY

For our own a-vacuum to be habitable, it must not decay
too quickly through tunneling to neighboring axionic vacua
(not to be confused with the possible decay along the Higgs
direction). This might occur during inflation, after reheat-
ing, when the effect of finite temperature is important, or at
late times when we can consider T to be 0.
At zero temperature, the criterion for vacuum stability

becomes

Ae−S4 ≲H4
0 ð16Þ

where H0 is the present Hubble constant (∼e−140mP in
Planckian units). S4 is the four-dimensional Euclidean
action for critical bubbles corresponding to transitions
between neighboring vacua [26]. In (16), the prefactor
A ¼ ðS4/2πÞ2J, with J being a ratio of functional deter-
minants with dimensions of ½mass�4. The J factor is difficult
to compute, but is expected to be of order Λ4

b or f
4, always

smaller than Λ4 and m4
P, so it is conservative to require

S4 ≳ 560 as a condition for vacuum stability. We numeri-
cally compute the bounce solution and resulting S4 and plot
this stability condition, labeled “stability”, in Fig. 3.
An analytic formulation of the stability criterion can be

obtained using the thin-wall approximation [26], in which
the four-dimensional action is

S4;tw ≃
27π2

2

σ4

ΔV3
; ð17Þ

depending upon the bubble wall tension

σ ≃
Z

2πf

0

da
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Λ4

b½1 − cosða/fÞ�
q

¼ 8Λ2
bf; ð18Þ

and the potential difference between neighboring vacua as
given by (11). By numerical calculation of the actual
tunneling action, we find that this approximation is not
very good in the region of parameter space of interest;
however by comparing the exact and approximate results it
is possible to correct for this. The relevant parameter
determining how well the thin-wall approximation works
is Λb/Λr,

4 and we find that the fractional error in the action
can be accurately fit to the formula
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FIG. 3. Excluded (shaded) regions in the plane of Λb/Λr versus
f/Λr. The “landscape” region violates condition (4); the “long
inflation” region violates condition (22); “stability” denotes the
vacuum stability bound (16); the “HI range” curve denotes the limit
beyond which the interval of allowed inflationary Hubble ratesHI
from (13) vanishes. The dashed diagonal lines indicate the lowest
allowed value ofHI/Λr in this allowed range as the axion mass is
varied (see text). The bounds corresponding to “TR < Λb” depend
upon Λr/mP and are shown for two values of that ratio.

3Here we account for the displacement away from the mini-
mum of the cosine potential due to the linear term, using V 0 ¼ 0
to eliminate cosða/fÞ in m2

a ¼ V 00, and (11) to reexpress ΔV̄.

4By the rescalings â ¼ a/f and x ¼ rΛ2
b/f, we can write

S4¼2π2ðf/ΛÞ4R dxx3½12â02þð0.3Λr/ΛbÞ4â−cosâ�, using (11).
The thin-wall approximation breaks down as the coefficient of
the linear term becomes large.
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1 −
S4
S4;tw

≃ 7.1 × 10−5
�
Λb

Λr

�
−7.845

ð19Þ

where S4 is the full numerical value. This function is shown
in Fig. 4.
In the case of vacuum transitions due to thermal

excitation over the barrier, one should estimate the three-
dimensional action for critical bubbles, taking also into
account the thermal corrections to the potential. This is not
a straightforward task: it depends on possible couplings of
a to other sectors of the theory and is limited to temper-
atures well below the critical temperature Tc above which
the dynamics responsible for the nonperturbative gener-
ation of the barriers in the axion potential become inef-
fective, but this is unspecified in our scenario. If the
reheating temperature TR is above Tc one expects the
effective temperature-dependent barrier height Λ4

bðTÞ to
start falling as a power of T [27]. Given the level of
uncertainty on Tc, we content ourselves with imposing the
condition that TR < Tc ∼ Λb, as a rough estimate for Tc.
To obtain TR we use the relation for the Hubble para-

meter during radiation domination HR¼0.33
ffiffiffiffiffi
g�

p
T2
R/mP.

Assuming instant reheating we have HR ¼ HI with HI
respecting (13), which translates into the range

0.54
ffiffiffiffiffiffiffiffiffiffiffiffi
mamP

p
Λr

<
TR

Λr

�
g�
gSM�

�
1/4

< 0.56
ffiffiffiffiffiffiffi
mP

Λr

r
; ð20Þ

with gSM� ¼ 106.75. We exclude a point in parameter space
if the lower limit of this range is bigger than Λb/Λr. The
resulting limit is shown in Fig. 3, labeled TR < Λb, for two
representative values of Λr/mP ¼ 0.5, 1.
In cases (1) and (2) we must also consider the possibility

of vacuum decay along the Higgs field direction, since we
end up in the metastable region with respect to such decays.
Metastability here means that quantum fluctuations at zero
temperature are slow on the time scaleH−1

0 , and it does not
take into account the possibility that tunneling was

triggered at an earlier time by inflation. In fact during
inflation, ifHI is higher than the instability scale, the Higgs
field can be pushed over the barrier that separates the
electroweak vacuum from the unstable region of field space
[21,23,24], and this leads to an upper bound on HI

ffiffiffiffiffiffi
Ne

p
,

where Ne is the number of e-folds. As discussed in the next
section, this kind of bound can be generically violated in
our framework if a very long period of inflation is needed to
guarantee that the stationary solution to the Fokker-Planck
equation is reached. In fact, this is the vacuum selection
mechanism in case (3).
For cases (1) and (2) we then have to forbid such decays

during inflation. A simple way of circumventing this
danger is to have a nonminimal coupling ξjHj2R between
the Higgs field and the Ricci scalar R [23]. During inflation,
R ¼ −12H2

I , and this provides a contribution 12ξH2
I to

the squared Higgs mass that stabilizes the potential or
suppresses Higgs fluctuations altogether (for ξ > 3/16),
relaxing the bound on HI

ffiffiffiffiffiffi
Ne

p
[21]. Subsequent to infla-

tion, during preheating the induced Higgs mass term
oscillates along with the inflaton, and this can cause
parametric resonant production of Higgses, whose asso-
ciated classical field can probe the instability region again
[28,29] and trigger vacuum decay. To avoid this, it is
sufficient to have ξ in the range (0.06–4) [29], which we
assume to be the case for scenarios (1) and (2).

V. INITIAL CONDITIONS

We have assumed that the stationary solution of the
Fokker-Planck equation was achieved during inflation.
Here we consider how long a period of inflation would
be required to achieve this, starting from some different
initial condition, for example that PðaÞ was peaked around
the true vacuum state. The barriers between neighboring
vacua must be large enough to prevent tunneling at late
times, while the scale of inflation must be sufficiently low
so that PðaÞ is not too flat, Eq. (10). Both of these tend to
slow the time evolution of P.
It is instructive to consider a toy model consisting of a

double-well potential VðϕÞ with just two vacuum states,
separated by a barrier height Vb that is large compared to the
energy difference between the two vacua. The system is
initially sharply localized inone of thevacua,ϕ1, andallowed
to evolve in time according to the Fokker-Planck equation.
By a combination of numerical and analytical methods one
discovers two relevant time scales, hierarchically different.
The shorter one, τ1 ≃ 3HI/½2V 00ðϕ1Þ�, is associated with the
spread ofP until it reaches an approximately Gaussian shape
around the starting vacuum,PðϕÞ ≃ exp½−ðϕ − ϕ1Þ2/ð2σ21Þ�,
with σ21 ¼ 3H4

I /½8π2V 00ðϕ1Þ�. This solution is valid for small
displacements and is quasistationary. The long time scale, τt,
is associated with the probability leakage to the second
vacuum at ϕ2, through the top of the barrier, at ϕt.
The associated rate, Γ ¼ 1/τt, is

0.3 0.35 0.4 0.45
Λ

b
 / Λ

r

0

20

40

60

80

(1
 -

 S
/ S

tw
 )

 ×
 1

00
numerical
fit y = 0.0071 x

-7.845

y = 0.0071 x
-7.845

FIG. 4. Fractional error in the thin-wall approximation for the
four-dimensional tunneling action, as a function of Λb/Λr. The
analytic fit (19) as well as the numerical results are shown.
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Γ ∼
H3

I

16π2σ1σt
e−8π

2Vb/3H4
I ; ð21Þ

where σ2t ¼ 3H4
I /ð8π2jV 00ðϕtÞjÞ.

Applying this estimate to our scenario, we see that
to avoid an exponentially long period of inflation, one
needs H4

I ≳ 8π2Vb/3, while condition (10) implies
H4

I ≲ 8π2ΔV̄/3. Using Vb ¼ Λ4
b and ΔV̄ from (11), the

combined conditions require

Λb/Λr < 0.47: ð22Þ

Hence it is possible to satisfy all the criteria without having
a very long period of inflation.
However, a more generic situation is to admit a prior

period of eternal inflation, which would automatically
justify the stationary solution since then an arbitrarily long
period of evolution could occur prior to the final stage of
observable inflation. Two common situations can admit
eternal inflation. First, inflation could be chaotic during the
primordial stage, with the inflaton displaced high enough
on its potential so that upward quantum fluctuations can
dominate over the classical downhill evolution [4]. Second,
the inflaton (not necessarily the same inflaton that is
responsible for the final stage of inflation) could be trapped
in a false vacuum with an exponentially long lifetime, the
exponential of the tunneling action [30]. Either case allows
us to relax the requirement (22).

VI. SUMMARY AND CONCLUSIONS

We have presented a concrete realization of a mechanism
to explain the near-criticality of the SM Higgs quartic
coupling λ. It uses an axionlike field a with a potential that
develops a large number of nondegenerate vacua in which λ
takes different values, effectively scanning, due to a
coupling of the Higgs field to a. The vacua are assumed
to be populated during inflation with probabilities that
depend exponentially on the ratio VðaÞ/H4

I . By appropri-
ately choosing the sign of the overall slope of VðaÞ, vacua
with increasingly negative values of λ are favored. The
conditional probability for a particular vacuum state given
that it is compatible with observers is 0 if it undergoes
catastrophic decay of the Higgs vacuum. Thus the most
likely anthropically allowed states are those that are close to
a critical line in the plane of λ and yt. We discussed three
different scenarios, summarized in Table I and illustrated by
Fig. 2. They require different cosmological histories and
parameters for the potential of the a field, and they depend
upon the precise value of the top quark mass.

In case (1), vacua beyond the instability line are depleted by
quantum tunneling, which is faster than the age of the
Universe. In case (2), which requires a large reheating
temperature, thermal fluctuations over the Higgs barrier
remove vacua beyond the thermal instability line. In case (3),
which requires a high inflationary Hubble rate or a large
number of e-folds,Higgs fluctuations inducedduring inflation
trigger vacuum decay along the unstable Higgs direction,
effectively selecting vacua with stable Higgs potentials.
While the mechanism we have discussed offers an

explanation for the intriguing near-criticality of the
Higgs quartic coupling, it does not address the hierarchy
problem. It would be quite interesting to find a mechanism
that could address both issues simultaneously, especially
given the fact that similar mechanisms (e.g. relaxions) offer
potential solutions to the hierarchy problem.
It is perhaps disappointing that this scenario does not

make positive predictions for new physics at experimen-
tally accessible energies. Since the only new field, the
axion, has a mass typically much larger than the electro-
weak scale, there are no manifestations at low energy.
Instead, we predict an absence of new physics coupling to
the Higgs field at low scales, to the extent that such
couplings would move the critical lines of stability away
from their standard model values. On the other hand, we
think it is interesting that despite the lack of low-energy
experimental tests, the mechanism is highly constrained by
considerations of theoretical and cosmological consistency.
It shows that the mere existence of a landscape is not
sufficient for a successful anthropic explanation of tuning
problems. Our results further indicate that the new physics
scale should generically be very high (not far below the
string or Planck scale) to make the vacua of the landscape
stable against tunneling both during inflation and at late
times, and that a prior period of eternal inflation is strongly
motivated.
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