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We estimate contributions from Kaluza-Klein excitations of gauge bosons and physical charge scalar
for the explanation of the lepton flavor universality violating excess in the ratios RðDÞ and RðD�Þ in
5 dimensional universal extra dimensional scenario with nonvanishing boundary localized terms. This
model is conventionally known as nonminimal universal extra dimensional model. We obtain the allowed
parameter space in accordance with constraints coming from Bc → τν decay, as well as those from the
electroweak precision tests.
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I. INTRODUCTION

The Standard Model (SM) is to date the most successful
model in explaining our understanding of the fundamental
particles that are the building blocks of nature. Its predictive
capability as well as robustness have rigorously and
repeatedly been put to test over the last fifty years, with
the final piece of the puzzle, the Higgs’ boson, being
discovered back in 2012 [1,2]. However, we do know that
this model is still not the complete picture, as there exist
experimental signatures for the presence of new physics
(NP), such as massive neutrinos, dark matter (DM) etc., that
cannot be accounted for by this model. Hence, the
phenomenology of particle physics at this point of time
is not only subject to precision tests for the SM, but also on
the lookout for observables that show a deviation from their
SM predictions. These observables can then be used as a
probe for the favorable kind among the various NP models
that exist in the literature. The significance of the deviation
of these observables from SM can be used to rule out or
constrain these available models, or even predict the type of
NP that one can hope to probe.
To this end, heavy flavor physics has emerged as a

powerful tool over the past three decades. Tensions between

SM expectations and experimental results have been
found for observables such as the isospin asymmetry
AIðB→Kμþμ−Þ [3], the longitudinal polarization fraction

inBs→K�K� [4,5],RðD�Þ¼BRðB→D�τντÞ
BRðB→D�lνlÞ,RðDÞ¼BRðB→DτντÞ

BRðB→DlνlÞ
[6–10], and RK ¼ BRðB→Kμþμ−Þ

BRðB→Keþe−Þ [11,12]. Among these, the

RðDÞ and RðD�Þ are particularly interesting because
B → Dð�Þτντ are tree level processes in the SM and as
jVcbj and some form factor parameters get canceled in the
ratios, they are theoretically cleaner. The latest world
averages of the experimental results of these ratios, com-
bined, are about 4σ away from the latest SM predictions for
these ratios. These ratios thus point to a tantalizing prospect
of beyond SM physics. In this paper we aim at exploring
these ratios in the universal extra dimensional (UED)
model [13].
The scenario of UED has been built up with one extra

spacelike flat dimension (y), compactified on a circle S1

of radius R, which is accessed by all the SM particles.
Eventually from the 4 dimensional (4D) point of view, this
model possesses SM particles along with their infinite
number of Kaluza-Klein (KK)-partners specified by the so
called KK-number (n). This number represents the dis-
cretized momentum in the direction of the extra dimension.
One imposes an extra Z2 symmetry (y ↔ −y) to generate
the chiral fermions in the theory. We therefore eventually
come up with two special points y ¼ 0 and y ¼ πR called
the fixed points along the y direction and also with a
remnant symmetry called KK-parity ð−1Þn. This symmetry
has several consequences. For example conservation of
this KK-parity ensures that the lightest Kaluza-Klein
particle (LKP) with KK-number being unity (n ¼ 1) cannot
decay to a pair of SM particles and is absolutely stable.
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Consequently the LKP can be considered as a potential DM
candidate for this scenario [14,15]. Moreover, this model
can address other longstanding unsolved issues due to the
SM, like gauge coupling unification [16], neutrino mass
[17], fermion mass hierarchy [18] etc.
The mass of the nth KK-partner of any SM particle is

given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 þ ðnR−1Þ2Þ

p
where m is the zero-mode

mass (SM particle mass) which is small compared to R−1.
Hence, this scenario suffers from almost degenerate particle
spectrum at each KK-level. However, the corresponding
radiative corrections in 5 dimensions (5D) offer a remedy
to this situation [19,20]. There are two kinds of radiative
corrections, the bulk corrections which are finite and
nonzero for KK excitations of gauge bosons only, and
the boundary localized corrections (depending logarithmi-
cally on the cut-off.1 scale Λ [19]) which are embedded as
contributions to the 4D Lagrangian located at the two fixed
points of the orbifold. These boundary terms behave as
counterterms for cutoff dependent loop-induced contribu-
tions. The minimal version of UED assumes that one could
tune the boundary terms in a way so that 5D radiative
corrections exactly vanish at the cutoff scale Λ. However,
this assumption can be discarded and instead of actually
estimating the boundary localized corrections one might
consider kinetic, mass as well as other interaction terms to
parametrize these unknown corrections. This model is
collectively called non-minimal UED (NMUED).
Coefficients of the several boundary localized terms
(BLTs) along with the radius of compactification (R) can
be viewed as free parameters of this model and one can
constrain these parameters using different experimental
data. One can find various phenomenological analyses in
the framework of NMUED from different perspectives in
the literature. For example, bounds on the values of the
coefficients of the boundary localized terms are obtained
from the consideration of electroweak observables [21],
S, T, and U parameters [22,23], relic density [24,25],
production and decay of the SM Higgs boson [26], study of
LHC experiments [27,28], Rb [29], branching ratio of
Bs → μþμ− [30] and B → Xsγ [31], flavor changing rare
top decay [32], and unitarity of scattering amplitudes
involving KK-excitations [33].
In this article we explore the effects of the parameters of

this NMUED model on the RðDÞ and RðD�Þ observables.
One should note here that this exercise will not be possible
in the MUED model. This is because in MUED, the
orthogonality relations between the KK-wave functions
of different fields prohibit tree level couplings between a
pair of SM fermions and the KK-partner of gauge bosons
and charged Higgs. However, the effects of nonminimality
allow one to generate these couplings specified by nonzero
even KK-number(s). Considering contributions from the

(potentially infinite) gauge bosons alone will not affect the
ratios RðDð�ÞÞ in any way.2 However, on considering the
contribution coming from the (large number of) possible
Higgs scalars, one encounters a lepton-flavor dependent
coefficient.
We organize the article in the following way: we introduce

the NMUED model in Sec. II, express RðDð�ÞÞ in terms of
the model parameters in Sec. III A, describe the present
experimental status of the ratios and glean information about
the model parameters from experimental results (RðDð�ÞÞ
and Bc → τντ) in Secs. III B to III C. In Sec. III D, we put
additional constraints on NMUED parameters from the
experimental fit results of oblique electroweak precision
parameters.

II. KK-PARITY CONSERVING NMUED
SCENARIO IN A NUTSHELL

Here we briefly discuss the NMUED model and the
parameters therein that are relevant for the present analysis.
For a detailed discussion we refer to [27], [29,30], [34–38]. In
this scenario we do maintain the boundary terms to be equal3

at both boundary points (y ¼ 0 and y ¼ πR). This will
preserve a discrete Z2 symmetry which exchanges y ↔
ðy − πRÞ, hence the KK parity is restored in this scenario
and makes the LKP stable. Eventually one has the potential
DM candidate (e.g., first excited KK-state of photon) in this
scenario. One can find an extensivework on DM relic density
and related issues in this NMUED model in [25].
We start with the action for 5D fermionic fields including

their boundary localized kinetic term (BLKT) of strength rf
([25,30,31,37]):

Sfermion ¼
Z

d5x½Ψ̄LiΓMDMΨL

þ rffδðyÞ þ δðy − πRÞgΨ̄LiγμDμPLΨL

þ Ψ̄RiΓMDMΨR

þ rffδðyÞ þ δðy − πRÞgΨ̄RiγμDμPRΨR�; ð1Þ

where ΨLðx; yÞ and ΨRðx; yÞ are the 5D four component
Dirac spinors, which can be expressed in terms of two
component spinors [25,30,31,37]:

ΨLðx; yÞ ¼
�
ϕLðx; yÞ
χLðx; yÞ

�
¼
X
n

 
ϕðnÞ
L ðxÞfnLðyÞ

χðnÞL ðxÞgnLðyÞ

!
; ð2Þ

1Being an extra dimensional theory UED can be considered as
an effective theory characterized by a cutoff scale Λ.

2This contribution will however change the binned B→D�lνl
scenario, but that is not of immediate interest in our present
article.

3One can proceed with unequal strengths for the boundary
terms. In that case the KK parity will not be restored as a result of
nonconservation. A detailed discussion on the phenomenology in
such KK parity nonconserving cases can be found in [28,38,39].
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ΨRðx; yÞ ¼
�
ϕRðx; yÞ
χRðx; yÞ

�
¼
X
n

 
ϕðnÞ
R ðxÞfnRðyÞ

χðnÞR ðxÞgnRðyÞ

!
: ð3Þ

Here fLðRÞ and gLðRÞ are the KK-wave functions that can
be written in the following form [21,25,30,31,35]:

fnL ¼ gnR ¼ Nf
n

8>>><
>>>:

cos ½m
fðnÞ ðy−πR

2
Þ�

cos½
m
fðnÞ πR
2

�
for n even;

− sin ½m
fðnÞ ðy−πR

2
Þ�

sin½
m
fðnÞ πR
2

�
for n odd;

ð4Þ

and

gnL ¼ −fnR ¼ Nf
n

8>>><
>>>:

sin ½m
fðnÞ ðy−πR

2
Þ�

cos½
m
fðnÞ πR
2

�
for n even;

cos ½m
fðnÞ ðy−πR

2
Þ�

sin½
m
fðnÞ πR
2

�
for n odd:

ð5Þ

Nf
n is the normalization constant for nth KK-mode which

can be readily derived from orthonormality conditions
[25,30,31]:R

πR
0 dy½1þ rffδðyÞ þ δðy − πRÞg�fmLfnLR
πR
0 dy½1þ rffδðyÞ þ δðy − πRÞg�gmRgnR

�
¼ δnm;

R
πR
0 dyfmRf

n
RR

πR
0 dygmLg

n
L

�
¼ δnm; ð6Þ

and it is given by:

Nf
n ¼

ffiffiffiffiffiffi
2

πR

r 2
64 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
r2fm

2

fðnÞ
4

þ rf
πR

r
3
75: ð7Þ

The mass of the nth KK-excitation (mfðnÞ) satisfies the
following transcendental equations [25,30,31,35]:

rfmfðnÞ

2
¼
8<
:

− tan
�m

fðnÞπR
2

�
for n even;

cot
�m

fðnÞπR
2

�
for n odd:

ð8Þ

The action for the Yukawa interaction with the corre-
sponding boundary localized terms of strength ry is given
by [30,31]:

SYukawa¼−
Z

d5x½λ5t Ψ̄LΦ̃ΨR

þ ryfδðyÞþδðy−πRÞgλ5t ϕ̄L Φ̃χRþH:c:�: ð9Þ

Here λ5t represents the 5D coupling for the Yukawa
interaction for the third generation. Inserting the KK-
expansions for fermions [Eqs. (2) and (3)] in the actions

[Eqs. (1) and (9)] one obtains the bilinear terms involving
the doublet and singlet representations of the quarks. The
mass matrix for the nth KK-level is [30,31]:

− ð ϕ̄L
ðnÞ ϕ̄R

ðnÞÞ
�mfðnÞδ

nm mtInm
1

mtImn
2 −mfðnÞδ

mn

� 
χðmÞ
L

χðmÞ
R

!

þ H:c: ð10Þ

Here,mt stands for the SM top quark mass andmfðnÞ are the
solutions of transcendental equations given in Eq. (8). The
overlap integrals (Inm

1 and Inm
2 ) are given by [30,31]:

Inm
1 ¼

�
1þ rf

πR

1þ ry
πR

�Z
πR

0

dy½1þ ryfδðyÞ þ δðy− πRÞg�gmRfnL;

ð11Þ

Inm
2 ¼

�
1þ rf

πR

1þ ry
πR

�Z
πR

0

dygmLf
n
R: ð12Þ

The integral Inm
1 is nonzero for both the cases of n ¼ m and

n ≠ m. However for ry ¼ rf, this integral equals 1 (when
n ¼ m) or 0 (for n ≠ m). The integral Inm

2 is non vanishing
only when n ¼ m and equal to 1 in the limit ry ¼ rf. To
avoid the complications of mode mixing and construct a
simpler form of fermion mixing matrix we choose an
equality condition (ry ¼ rf) in our analysis [29–31]. With
this motivation, we will keep this equality (ry ¼ rf) in the
rest of our analysis.4

Applying the above equality criteria, the resulting mass
matrix [given in Eq. (10)] can be diagonalized by following
biunitary transformations for the left- and right-handed
fields respectively [30,31]:

UðnÞ
L ¼

�
cos αtn sin αtn
− sin αtn cos αtn

�
; ð13Þ

UðnÞ
R ¼

�
cos αtn sin αtn
sin αtn − cos αtn

�
; ð14Þ

where

αtn ¼
1

2
tan−1

�
mt

mfðnÞ

�
ð15Þ

is the mixing angle. The mass (T1
t and T2

t ) and gauge
(ΨLðx; yÞ and ΨRðx; yÞ) eigenstates are related by the
following relations [30,31]:

4However, in general one can proceed with unequal strengths
of boundary terms for Yukawa and kinetic interaction for
fermions.
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ϕðnÞ
L ¼ cos αtnT

1ðnÞ
tL − sin αtnT

2ðnÞ
tL ; ð16Þ

χðnÞL ¼ cos αtnT
1ðnÞ
tR þ sin αtnT

2ðnÞ
tR ; ð17Þ

ϕðnÞ
R ¼ sin αtnT

1ðnÞ
tL þ cos αtnT

2ðnÞ
tL ; ð18Þ

χðnÞR ¼ sin αtnT
1ðnÞ
tR − cos αtnT

2ðnÞ
tR : ð19Þ

The mass eigenvalue at the nth KK-level is MtðnÞ ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

t þm2
fðnÞ

q
and is the same for both physical eigenstates

T1ðnÞ
t and T2ðnÞ

t .
Let us concentrate on the free action (governed by

SUð2ÞL ×Uð1ÞY gauge group) of 5D gauge and scalar
fields with their respective BLKTs [21,29–32,40]:

Sgauge ¼ −
1

4

Z
d5x½Wi

MNW
iMN

þ rWfδðyÞ þ δðy − πRÞgWi
μνWiμν þ BMNBMN

þ rBfδðyÞ þ δðy − πRÞgBμνBμν�; ð20Þ

Sscalar ¼
Z

d5x½ðDMΦÞ†ðDMΦÞ

þ rϕfδðyÞ þ δðy − πRÞgðDμΦÞ†ðDμΦÞ�: ð21Þ

Here, rW , rB, and rϕ parametrize the strength of the
BLKTs for the respective fields. 5D field strength tensors
are given below:

Wi
MN ≡ ð∂MWi

N − ∂NWi
M − g̃2ϵijkW

j
MW

k
NÞ;

BMN ≡ ∂MBN − ∂NBMÞ: ð22Þ

Wi
Mð≡Wi

μ;Wi
4Þ and BMð≡Bμ; B4Þ (M ¼ 0; 1…4) are the

5D gauge fields corresponding to SUð2ÞL andUð1ÞY gauge
groups respectively. 5D covariant derivative is defined as
DM ≡ ∂M þ ig̃2

σi

2
Wi

M þ ig̃1
Y
2
BM, with the 5D gauge cou-

pling constants g̃2 and g̃1. σi

2
and Y

2
are the corresponding

generators of the gauge groups. i is the SUð2ÞL group index
and runs from 1 to 3. Φ ¼ ðϕþ

ϕ0Þ is the 5D Higgs doublet.
Appropriate KK-expansion of the gauge and scalar fields
which are involved in the above actions [Eqs. (20) and (21)]
can be schematically written as [30,31,40]:

Vμðx; yÞ ¼
X
n

VðnÞ
μ ðxÞanðyÞ ð23Þ

V4ðx; yÞ ¼
X
n

VðnÞ
4 ðxÞbnðyÞ; ð24Þ

and

Φðx; yÞ ¼
X
n

ΦðnÞðxÞhnðyÞ: ð25Þ

In the above V generically represents both the SUð2ÞL and
Uð1ÞY gauge bosons.
Before going further, we would like to make some

clarifying remarks which could help the reader understand
the following field and the corresponding KK-wave func-
tion structure of the gauge as well as the scalar particles.
First of all, KK-decomposition of neutral gauge bosons
become very complicated due to the fact that B andW3 mix
in the bulk as well as on the boundary. So, unless rW ¼ rB,
it would not be possible to diagonalize the bulk and
boundary actions simultaneously by the same 5D field
redefinition.5 In the following we will stick to the rW ¼ rB
equality condition [29–32,40]. As a consequence, in this
case one has the same structure of mixing between KK-
excitations of the neutral component of the gauge fields
(i.e., the mixing between W3ðnÞ and BðnÞ) as the MUED
scenario. Eventually, the mixing between W3ð1Þ and Bð1Þ

(i.e., the mixing at the first KK-level) gives the Zð1Þ and γð1Þ.
This γð1Þ is absolutely stable which can not decay to pair of
SM particles by the conservation KK-parity and possesses
the lowest mass among the first excited KK states in the
NMUED particle spectrum. Therefore, this γð1Þ has been
treated as the DM candidate of this scenario [25]. From
now and onwards we use rV as the generic BLKT
parameter for gauge bosons.
Equations (20) and (21) must be supplemented by the

gauge-fixing action. In the following, we have considered
the following gauge fixing action appropriate for NMUED
model [29–32,40]. A detailed study on gauge fixing action/
mechanism in NMUED can be found in Ref. [40].

SGF ¼−
1

ξy

Z
d5xj∂μWμþ

þξyð∂yW4þþ iMWϕ
þf1þ rVðδðyÞþδðy−πRÞÞgÞj2

−
1

2ξy

Z
d5x½∂μZμ

þξyð∂yZ4−MZχf1þ rVðδðyÞþδðy−πRÞÞgÞ�2

−
1

2ξy

Z
d5x½∂μAμþξy∂yA4�2: ð26Þ

The above gauge fixing action is somewhat special and
at the same time very crucial for this NMUED scenario.
The presence of the BLKTs in the Lagrangian lead to a
nonhomogeneous weight function for the fields with
respect to the extra dimension. This inhomogeneity forces

5However, in general one can deal with rW ≠ rB, but in this
case the mixing term between B and W3 in the bulk and on the
boundary points generate off-diagonal terms in the neutral gauge
boson mass matrix.
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us to choose a y-dependent gauge fixing parameter ξy
as [29–32,40],

ξ ¼ ξyð1þ rVfδðyÞ þ δðy − πRÞgÞ; ð27Þ
here ξ is independent of y. This relation can be viewed
as renormalization of the gauge fixing parameter as the
BLKTs are in some sense counterterms taking into account
the unknown ultraviolet contribution in loop calculations.
In this sense, ξy is the bare gauge-fixing parameter while ξ
can be viewed as the renormalized gauge-fixing parameter
taking the values 0 (Landau gauge), 1 (Feynman gauge),
or ∞ (Unitary gauge) [40].
Proper gauge fixing necessitates rV ¼ rϕ [29–32,40]. As

a consequence KK-masses for the scalar and gauge field are
equal (mϕðnÞ ð¼ mVðnÞ Þ) and follow the same transcendental
equation [Eq. (8)]. Mass eigenvalue for the nth KK-mode
of gauge fields (WμðnÞ�) and charged Higgs (HðnÞ�) is
[29–32,40]

MWðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

W þm2
VðnÞ

q
: ð28Þ

To this end we would like to discuss the necessary
interactions that are relevant for our calculation. In general
we obtain these by integrating out the 5D action over
the extra space-like dimension after substituting the
y-dependent KK-wave function for the respective fields
in the 5D action. Consequently some of the MUED
counterparts are scaled by the so called overlap integrals
[30,31]. Furthermore in NMUED model we have several
extra interacting vertices (which contain the overlap inte-
gral) with respect to the MUED model. We provide the
overlap integrals crucial for our analysis below:
(i) The interaction between a pair of zero-mode (left-

handed) fermion and nth (n being the nonzero even
KK-number) KK-mode of W-boson:

Ign ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πR

�
1þ rV

πR

�s

×
Z

πR

0

dy½1þ rffδðyÞ þ δðy − πRÞg�anf0Lf0L;

ð29Þ
where an is the wave function for nth KK-mode of the
W-boson.

(ii) Yukawa interaction between a pair of zero-mode
fermion and nth (n being the nonzero even KK-
number) KK-mode of scalar:

IYn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πR
�
1þ rV

πR

�s

×
Z

πR

0

dy½1þ ryfδðyÞ þ δðy − πRÞg�hnf0Lg0R:

ð30Þ

In Eq. (30), hn is the wave function for the nth KK-
mode of the scalar field. In our case we set rϕ ¼ rV
hence hn ≡ an and further from the equality condition
(rf ¼ ry) one obtains Ign ≡ IYn [30,31]. Without any
loss of generality we call it In. The corresponding
expression is

In ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rV

πR

q

ð1þ rf
πRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2Vm

2

VðnÞ
4

þ rV
πR

r ðrf − rVÞ
πR

: ð31Þ

This integral becomes zero in MUED model due to
the orthogonality property of the wave functions of the
KK-fields. Hence the b → clνl transitions relevant for
our present article that are mediated by KK-W-bosons and
KK-charged scalar fields will not occur in the MUED
model. However for the NMUED model, the above overlap
integral appears in the vertices involving the b → clνl
decay amplitudes. One should note that In vanishes
for rV ¼ rf.

III. RðDÞ AND RðD�Þ
A. Formalism

In presence of NMUED, the general effective
Hamiltonian describing the b → cτντ transitions with all
possible four-fermi operators in the lowest dimension is
given by

Heff ¼
4GFffiffiffi

2
p Vcb½ð1þ CWÞOW þ Cl

SOS�; ð32Þ

where, following the convention of [41], the operator basis
is defined as

TABLE I. Nuisance inputs in the theory expressions. Only
those form factor parameters which appear inRðDð�ÞÞ are shown
here (with correlations). These are obtained from the analysis in
Ref. [43].

Parameters Value Correlation

ρ2D 1.075(42) 1 0.26 −0.01 −0.13 0
ρ2D� 1.221(118) 1 0.08 −0.80 0
R1ð1Þ 1.372(36) 1 −0.08 0.21
R2ð1Þ 0.895(65) 1 −0.01
R0ð1Þ 1.186(16) 1
mB 5.279 62(15) GeV
mD� 2.010 26(5) GeV
mW 80.385(15) GeV
mW 80.385(15) GeV
mc 1.28(3) GeV
mb 4.18þ0.04

−0.03 GeV
mτ 1.776 82(16) GeV
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OW ¼ ðc̄LγμbLÞðτ̄LγμντLÞ;
OS ¼ ðc̄LbRÞðτ̄RντLÞ;

and the corresponding Wilson coefficients are given by
CXðX ¼ W; SÞ. Following Ref. [42] and references therein,
differential decay rates for B̄ → Dð�Þlν̄l (with l ¼ e, μ or τ)
are

dΓðB̄→Dlν̄lÞ
dq2

¼G2
FjVcbj2

96π3m2
B
q2pD

�
1−

m2
l

q2

�
2

×

�
ð1þCWÞ2

�
1þm2

l

2q2

�
2

Hs2
V;0

þ3m2
l

2q2
Hs2

V;t

�
1þCWþ q2

mlðmb−mcÞ
Cl
S

�
2
	

ð33Þ

dΓðB̄→D�lν̄lÞ
dq2

¼ G2
FjVcbj2

96ðπÞ3m2
B
q2pD�

�
1−

m2
l

q2

�
2
�
ð1þCWÞ2

�
1þ m2

l

2q2

�
× ðH2

V;þþH2
V;−þH2

V;0Þ

þ3m2
l

2q2

�
1þCW þ q2

mlðmbþmcÞ
Cl
S

�
2

H2
V;t

	
; ð34Þ

wherepDðD�Þ ¼
λ1/2ðm2

B;m
2
DðD�Þ;q

2Þ
2mB

,with λða; b; cÞ ¼ a2 þ b2 þ
c2 − 2ðabþ bcþ caÞ and qμ ≡ ðpB − pXÞμ is the momen-
tum transfer. Hs

V;Xðq2Þ and HV;Xðq2Þ are the helicity ampli-
tudes respectively (with X ¼ �, 0).
In terms of these distributions, the ratios RðDÞ and

RðD�Þ are defined as

RðDð�ÞÞ ¼
�Z

q2max

m2
τ

dΓðB̄ → Dð�Þτν̄τÞ
dq2

dq2
	

×

�Z
q2max

m2
l

dΓðB̄ → Dð�Þlν̄lÞ
dq2

dq2
	−1

ð35Þ

with q2max ¼ ðmB −mDð�Þ Þ2, and l ¼ e or μ. In both cases,
both isospin channels are taken into account.
Let us spend some time on the Wilson coefficients and

their expressions which are relevant in our present article.
First, we discuss the Wilson coefficient CW [given in
Eq. (32)] which is associated with the extra left-handed
charged currents in the gauge sector. The expression is
given in the following:

CW ¼
X
n≥2

I2nM2
W

M2
WðnÞ

: ð36Þ

This originates from the coupling between pair of SM
fermions (quark or lepton) with the KK excited W� boson

(i.e., W�ðnÞqq̄0 and W�ðnÞlνl) [see Eq. (1)]. As we have
chosen the same BLKT coefficient (rf) for all fermions, so
the coupling of W�ðnÞ to lνl is same for all lepton flavor
[25,28–32,38]. Therefore, there is no lepton flavor univer-
sality (LFU) violation in the gauge sector. However,
LFU violation is possible via another Wilson coefficient
Cl
S (associated with left-handed scalar type NP charged

current interactions) whose expression is given below

Cl
S ¼ mbml

X
n≥2

I2nm2
VðnÞ

M4
WðnÞ

× ½cosðcðnÞ − lðnÞÞ − sinðcðnÞ þ lðnÞÞ�
≡mbmlCl

H; ðl≡ e; μ or τÞ: ð37Þ
This is generated from the interaction given in Eq. (9). The
explicit form of the couplings of this interaction are given in
the appendices of Refs. [30,31]. We find that the coupling
HðnÞ� to lνl is lepton flavor dependent by means of lepton
mass and using those couplings we calculate the Wilson
coefficient Cl

S [see Eq. (37)]. Hence from this Cl
S we obtain

the LFU violation which is very crucial for the present
RðDð�Þ analysis.
The expressions of MWðnÞ and In are given by Eqs. (28)

and (31) respectively. Here, n is a nonzero even integer.
Using Eq. (15) one can obtain cðnÞ and lðnÞ from the
following equations:

tan½2cðnÞ� ¼ mc

mfðnÞ
; ð38Þ

tan½2lðnÞ� ¼ ml

mfðnÞ
; ð39Þ

where, mc is the mass of charm quark and ml denotes the
mass of charged lepton.

B. Fit of CW and Cτ
H

1. Present status

To date, several experiments have measured the ratios
RðDð�ÞÞ, and the current status is summarized in Table II and
Fig. 2 where the results show the q2-integrated data onRðDÞ
and RðD�Þ with appropriate correlations wherever the
data is available. Though both the BABAR and the Belle
Collaborations have also published the results on differential
distributions, which would increase the sensitivity only
nominally,we refrain fromusing the binned data. The reasons
are
(a) While all data, apart from Belle 2015 and the latest

LHCb results, are consistent with a sizable deviation
from the SM expectations, there is some tension
between the q2 distributions as seen by BABAR and
Belle. As a result, using this data would not lead to any
significant improvement in the results.
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TABLE II. Present status (both theoretical and experimental) of RðDÞ and RðD�Þ. The first uncertainty is the statistical one and the
second one is systematic. The SM calculation in this paper is closest to the one in bold-face.

RðDÞ RðD�Þ Correlation

SM 0.300(8) [44] 0.252(3) [45]
0.299(11) [46]
0.299(3) [47] 0.262(10) [48]
0.299(3) 0.257(3) 0.44 [49]
0.302ð3Þ 0.257ð5Þ 0.127 [43]

BABAR 0.440ð58Þstð42Þsy 0.332ð24Þstð18Þsy −0.27 [7]
Belle (2015) 0.375ð64Þstð26Þsy 0.293ð38Þstð15Þsy −0.49 [9]
Belle (2016) ... 0.302ð30Þstð11Þsy [10]
Belle (2016, Full Dataset) ... 0.270ð35Þstþ0.028

−0.025 [50]
LHCb (2015) ... 0.336ð27Þstð30Þsy [51]
LHCb (2017) ... 0.285ð19Þstð29Þsy (Presented at FPCP2017)
World Avg. 0.407ð39Þstð24Þsy 0.304ð13Þstð7Þsy 0.20 [52]

FIG. 1. RðDð�ÞÞ fit results corresponding to separate fits listed in Table III. Red(dotted) and blue(solid) lines enclose 1σ (Δχ2 ¼ 2.30)
and 3σ (Δχ2 ¼ 11.83) regions respectively. Only the gridlines corresponding to CW and Cτ

H ¼ 0 are shown, such that there intersection
point represents SM.
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(b) While the binned data by BABAR is independent of the
background models, Belle 2015 data is noticeably not.
The SM expectations used by the two collaborations
also differ from each other.

(c) No other result accompanies the q2 binned data.

2. Methodology

As the NMUEDmodel parameters RV , Rf and R−1 occur
in transcendental equations like Eq. (8), fitting them
directly from the experimental data of RðDð�ÞÞ is deemed
improbable. We instead fit CW and Cτ

H and then find out the
allowed parameter space for the model parameters from the
fit results. We constrain both parameters to be real and CW
to be positive.
For the theoretical expressions of RðDð�ÞÞ, we follow

the Caprini-Lellouch-Neubert (CLN) [53] parametrization
of the B → Dð�Þ form factors. Table I contains the full
information on the nuisance parameters. As me or mμ are
very small compared to mτ, their effect in RðDð�ÞÞ would
be negligible, at least in the present work. To fit CW and
Cτ
H, we have performed a test of significance (goodness of

fit) by defining a χ2 statistic, a function of the parameters,
which is defined as

χ2NMUED ¼
Xdata
i;j¼1

ðRðDð�ÞÞexpi −RðDð�ÞÞthÞ

× ðVstat þ VsystÞ−1ij ðRðDð�ÞÞexpj −RðDð�ÞÞthÞ
þ χ2Nuisance; ð40Þ

whereRðDð�ÞÞth is given by Eq. (35) andRðDð�ÞÞexpi is the
central value of the ith experimental result. Also,

χ2Nuisance ¼
Xtheory
i;j¼1

ðparami − valueiÞðVnuisÞ−1ij

× ðparamj − valuejÞ: ð41Þ

In all of these cases, Vij ¼ δi × δj × ρij is the respective
covariance matrix, where ρij is the correlation between ith
and jth observable or parameter.

3. Results

We have taken several combinations of the eight available
RðDð�ÞÞ data points while fitting. Table III contains the fit
results, best fit values of the fit parameters with their
uncertainties and correlations. They show that though all of
them are good fits, BABAR data has a tension with those of
Belle and LHCb. Here we note that the latest LHCb data on
RðD�Þ is actually obtained by multiplying the particle data
group (PDG) average values of appropriate branching frac-
tions with the actually measured ratio KhadðD�Þ ¼
BrðB → D�τνÞ/BrðB → D�πππÞ. This is why we have even
fitted for a case with this one data-point dropped and we note
that inclusion of this point actually gives us a better fit of the
data with our new physics coefficients. Each region plot in
Fig. 1 contains the 1σ and 3σ contours in theCW-Cτ

H plane for
a different set of experimental results, that are equivalent to
p-values of 0.3173 and 0.0027, corresponding to confidence
levels of 68.27% and 99.73%, respectively. For our purpose,
each confidence interval corresponds to a particular value of
X ¼ Δχ2 (i.e., χ2 − χ2min) for d:o:f ¼ 2 (no. of parameters),
such thatpðXjd:o:fÞ is fixed.As an example,Δχ2 ¼ 2.30 and
11.83 for 1σ and 3σ regions respectively in 2 dimensions.6

We observe that for all combinations of results shown in
Fig. 1, there is a two-fold ambiguity in the best-fit results.
One of these points is closer to SM than the other and as
will be clear from the next section, this is the one that is
important for us in constraining NMUED.We also note that
while the results from Belle and LHCb are consistent with
SM within 3σ [Figs. 1(b) and 1(e)], for any and all other
combination of results, the SM is away from the best fit
point by more than 3σ in the CW-Cτ

H plane.
Along with the present theoretical and experimental

status, Fig. 2 displays the 1σ uncertainty ellipse (blue,
shaded) corresponding to the fit results with all data in
Table III (in bold face). It is encouraging that the fit result is
completely consistent with the HFAG world average for
these ratios as can readily be seen from the figure.

4. Constraint from B−
c → τ − ν̄

The tauonic decay of B−
c is linked toRðDð�ÞÞ through the

same effective general Hamiltonian in Eq. (32). The

FIG. 2. Experimental values and NMUED prediction (with 1σ
errors) for the RðDÞ and RðD�Þ ratios represented on the RðDÞ
vs RðD�Þ plane.

6Though Δχ2 ¼ 1 gives 1σ region for a single PDF and is
needed for quoting uncertainties, it encloses a smaller region than
the confidence level of 68.27% for any higher dimensional PDF.
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branching fraction for Bc → τντ in a particular model
[along withRðDð�ÞÞ] can hence be used to further constrain
the model parameters. The expression for the correspond-
ing branching fraction in the NMUED model is [54],

BrðB−
c → τ−ν̄Þ ¼ τB−

c

mBc
m2

τf2Bc
G2

FjVcbj
8π

�
1 −

m2
τ

m2
Bc

�
2

×





1þ CW þ m2
Bc
mb

ðmb þmcÞ
Cτ
H





2; ð42Þ

where fBc
¼ 0.434ð15Þ GeV is the Bc decay constant and

τB−
c
¼ 0.507ð9Þ ps is the B−

c lifetime.
As is argued in ref. [54], the Bc lifetime should mainly be

accounted for by b and c decays in the Bc meson. As a
consequence, only ≲5% of the measured experimental
width, ΓBc

¼ 1/τBc
, can be explained by (semi)tauonic

modes, including the whole CW–Cτ
H parameter space that

would explain the RðDð�ÞÞ excess. Accounting for the
maximum possible errors in the calculation, this limit can
be relaxed up to ≲30% of ΓBc

.
We thus have chosen an intermediate bound of ≲10%

and in Fig. 3, we overlay the region excluded by this bound
over the main fit result from Fig. 1(a). As can clearly be

seen, this bound completely rules out the RðDð�ÞÞ best fit
region away from SM, but spares the entire 1σ region near
SM. Furthermore, as can be seen from Fig. 4(a) and is
explained in the next section, the entire CW–Cτ

H parameter
space allowed by NMUED is allowed by even the more
aggressive bound of ≲5% of ΓBc

. Moreover, the allowed
region shows that the contribution from the operator
involving vector current is mainly responsible for explain-
ing the RðDð�ÞÞ excess, which is consistent with the
findings of Ref. [42].

C. Model parameter estimation

Equations (31), (36), and (37) enable one to express the
fit parameters CW and Cτ

H in terms of the inverse of the
radius of compactification (R−1) and the scaled BLKT
parameters (RVð≡rV /RÞ, Rfð≡rf/RÞ). The CW and Cτ

H fit
results (displayed in Table III) can hence be transformed
into constraints on the model parameters. We discuss these
constraints using the best fit values of CW and Cτ

H in this
section and further plot the allowed parameter space in
Figs. 4 and 5. Subsequently, every mention of the allowed
parameter space will implicitly assume the 3σ confidence
level unless otherwise stated.
In Fig. 4(a), we show the part of the CW–Cτ

H space
populated by the NMUED parameters. As can clearly be
seen, the scalar contribution is orders of magnitude sup-
pressed compared to its gauge boson counterpart. Unlike in
other possible similar NP models, this does not mean that
Cτ
H is ≈0, due to the reason stated in the penultimate

paragraph of the introduction. In Fig. 4(b), we zoom in and
show the CW–Cτ

H space allowed by RðDð�ÞÞ results,
varying all NMUED parameters. As is mentioned in the
previous subsection, this whole parameter space is allowed
by the constraints coming from Bc → τν decay.
We would like to note here that though the BLT

parameters can in general be negative or positive, it is
evident from Eq. (7) that for rf/R ¼ −π, the zero-mode
solution becomes divergent and beyond this limit the fields
appear to be ghost like. Therefore, while we show numeri-
cal results for negative BLT parameters for the purpose of
completeness, any value of BLT parameters lower than −π
should be discarded.

TABLE III. Fit of q2-integrated results of RðDÞ and RðD�Þ with the parameters defined in Eqs. (36) and (37). The uncertainties and
correlations are obtained from the hessian and the p-value is obtained for the χ2min value under a χ

2 distribution of corresponding degrees
of freedom (d.o.f.).

Data χ2min d.o.f p-value CW Cτ
H (in GeV−2) Correlation

All Data 2.935 6 81.694 0.076ð32Þ 0.015ð12Þ −0.702
All Belle 0.349 2 83.98 0.060(46) 0.010(18) −0.715
BABARþLHCb 1.057 2 58.941 0.091(45) 0.022(17) −0.687
BABARþBelle 2.652 4 61.77 0.084(36) 0.013(13) −0.728
Belle þ LHCb 0.398 4 98.264 0.057(39) 0.011(17) −0.678
All Except Latest LHCb 2.662 5 75.191 0.084(36) 0.013(13) −0.728

FIG. 3. Figure 1(a) overlaid with the region excluded by
demanding BrðB−

c → τ−ν̄Þ≲ 10%.

RðDð�ÞÞ ANOMALIES IN LIGHT OF A … PHYS. REV. D 97, 035019 (2018)

035019-9



It is evident from Eq. (31) that the overlap integral (In)
vanishes forRV ¼ Rf,makingCW andCτ

H vanish as a result.7

This corresponds to the SM, which is more than 3σ away
from the best-fit point according to the experimental results
i.e., we can not explain the excess of the RðDð�ÞÞ for
RV ≈ Rf. In order to do that we need to increase the values
of CW andCτ

H which are directly proportional to the overlap
integral (In). This can be done by increasing the absolute
value of jRf − RV j. A higher jRf − RV j necessitates a large
Rf and a low RV or vice versa. In Fig. 5(b) we show the
allowed region of the parameter space obtained from

RðDð�ÞÞ fit in the Rf vs RV plane. Just to elaborate, the
region colored red in that figure corresponds to the red
region in Fig. 4(b) and so on. Due to the reason stated just
above, in the limit (RV ¼ Rf), we find a “discontinuity” in
the allowed parameter space dividing the parameter space in
two distinct halves.
We vary the scaled BLT parameters within their allowed

range8 subject to the best fit values of CW and Cτ
H dictated

by the integrated RðDð�ÞÞ data. Fig 5(b)[5(c)] shows the
variation of RfðRVÞ with respect to R−1 for all possible
values of RVðRfÞ. Though these plots show the region of
parameter space allowed byRðDð�ÞÞ data, they do not help

FIG. 5. Regions in the NMUED model parameter space, allowed by CW–Cτ
H fit of RðDð�ÞÞ data.

FIG. 4. Region in CW-Cτ
H plane, populated by NMUED parameters. In the first figure, the brown (overlay) region points to the allowed

parameter space and the purple(hatched) region is excluded by demanding BrðB−
c → τ−ν̄Þ≲ 5%. The allowed parameter space is blown

up in proportion in the second figure.

7One should also note that the CW and Cτ
H tend to vanish with

the increasing values of R−1 and asymptotically converges to its
SM value as R−1 → ∞.

8One can obtain the upper limit (∼26) on the scaled BLT
parameters from the unitarity analysis [33].
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us glean any information on the lower bound of R−1.
Figure 6 [where every shown region corresponds to the 1σ
allowed region of 4(b)] enables us to put a lower bound on
R−1 (which we find can reach a value of approximately
1 TeV). We quote a few benchmark values for the lower
limits of R−1 for different combinations of Rf and RV as is
evident from Figs. 6(b) and 6(c):

(i) R−1 ≳ 480 GeV, for Rf ¼ 0, RV ¼ 15,
(ii) R−1 ≳ 550 GeV, for Rf ¼ 20, RV ¼ 0 (RV ¼ 20,

Rf ¼ 0),
(iii) R−1 ≳ 1 TeV, for Rf ¼ −1, RV ¼ 20.

These lower bounds obtained from our analysis is con-
sistent with the studies of Rb [29], branching ratio of
Bs → μþμ− [30] and B → Xsγ [31]. Figure 6(b)[6(c)]
allows one to extract the maximum value of RVðRfÞ and
R−1 for a given RfðRVÞ.

D. Electroweak precision constraints

We present a brief discussion on the electroweak
precision test (EWPT) constraints on the NMUED model
in this section. EWPT is an essential and important tool
for constraining any form of BSM physics. For the
NMUED model, these constraints have been discussed
in Refs. [21,55,56], albeit in a different approach. In our
present work, we follow the approach discussed in [30].
The corrections to the Peskin-Takeuchi (Oblique) param-

eters S, T and U in NMUED appear through the correction
to the Fermi constant, GF at tree level, which is in stark
contrast to the minimal version of the UED model where
such corrections appear via one loop processes. The
corrected Fermi constant GF can be written as:

GF ¼ G0
F þ δGF; ð43Þ

where the 0-mode W� exchange contributes to G0
F, while

δGF stands for the sum of the contributions from all

nonzero (even) W� KK-modes. The effective Fermi con-
stant can be expressed as

G0
F ¼ g22

4
ffiffiffi
2

p
M2

W

; δGF ¼
X
n≥2

g22I
2
n

4
ffiffiffi
2

p
M2

WðnÞ
; ð44Þ

where M2
WðnÞ and In are obtained from Eqs. (28) and (31).

Following the approach of Refs. [55,56] the NMUED
contributions to the S, T, and U parameters can be
written as:

SNMUED ¼ 0;

TNMUED ¼ −
1

α

δGF

GF
;

UNMUED ¼ 4sin2θw
α

δGF

GF
: ð45Þ

where g2 is the SUð2Þ gauge coupling constant and α
the fine structure constant calculated at MZ. θw is the
Weinberg angle. One can now compare the predictions
from NMUED model with the experimental results of S, T
and U, along with their correlations, given in the Ref. [57],
for input Higgs mass mh ¼ 125 GeV and top quark
mass mt ¼ 173 GeV.
Figure 7(a) shows the allowed and disallowed ranges

for the NMUED model on the U-T plane. We observe that
this model is compatible with the EWPT constraints at the
2σ level.
Figure 7(b) is the result of superimposing these EWPT

constraints on Fig. 5(b). We find that the inclusion of the
EWPT constraints at 2σ confidence level results in a
reduction of the parameter space allowed by RðDð�ÞÞ for
NMUED in the RV-Rf plane. This also affects the range of
allowed lower limits for R−1.

FIG. 6. Same regions as in Fig. 5, with multiple distinct values of the “other” parameter.
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IV. CONCLUSIONS

We have investigated the effects of KK-excitations of
W-boson and charged scalars to the RðDð�ÞÞ ratios in a
nonminimal universal extra dimensional model in 4þ 1
dimensions. Here all SM fields can access an extra spatial
dimension. This model is characterized by several boun-
dary localized terms (kinetic, Yukawa etc.). These boun-
dary localized terms can be thought of as the counterterms
to unknown radiative corrections and the coefficients of
these terms can be treated as free parameters of this
scenario. Due to the presence of these boundary terms
the masses and couplings of the KK-excitations have been
changed with respect to the minimal universal extra dimen-
sional model. Using two different types of BLT parameters
RV (for gauge and Higgs sector) and Rf (fermion sector)
along with inverse of the radius of compactification (R−1)
we have analyzed the RðDð�ÞÞ ratios in NMUED model.
The contributions from the vector gauge bosons and the

scalar Higgs bosons have been parametrized in terms of
two parameters: CW which is dimensionless and Cτ

H which
has the dimensions of GeV−2. In the current analysis of the

RðDð�ÞÞ ratios, we have neglected masses of the lighter
leptons compared to that of τ. We have performed the fits
taking into account several combinations of the available
experimental data due to BABAR, Belle, and LHCb. We
find that the predictions for this model is at par with the
HFAG global average for these ratios at 1σ. The best-fit
values and errors for CW and Cτ

H can be translated into
constraints for the BLT parameters and R−1. For specific
values of the BLT parameters (RV ¼ 20 and Rf ¼ −1), we
find that the lower limit of R−1 can reach appreciably high
values of the order of 1 TeV. We find that there is a
considerable region allowed for these parameters in accor-
dance with the current experimental values for these ratios,
as well as constraints coming from Bc → τν decay.
However, if one considers constraints due to electroweak
precision measurements up to 2σ level, the allowed
parameter space reduces considerably.
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