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Blockspin transformation of topological defects is applied to the violation of the non-Abelian Bianchi
identity (VNABI) on lattice defined as Abelian monopoles. To get rid of lattice artifacts, we introduce (1)
smooth gauge fixings such as the maximal center gauge (MCG), (2) blockspin transformations and (3) the
tadpole-improved gauge action. The effective action can be determined by adopting the inverse
Monte Carlo method. The coupling constants F(i) of the effective action depend on the coupling of
the lattice action $ and the number of the blocking step n. But it is found that F(i) satisfies a beautiful
scaling; that is, they are a function of the product b = na(f}) alone for lattice coupling constants 3.0 <
$ < 3.9 and the steps of blocking 1 < n < 12. The effective action showing the scaling behavior can be
regarded as an almost perfect action corresponding to the continuum limit, since @ — 0 as n — oo for fixed
b. The infrared effective monopole action keeps the global color invariance when smooth gauges such as
MCG keeping the invariance are adopted. The almost perfect action showing the scaling is found to be
independent of the smooth gauges adopted here as naturally expected from the gauge invariance of the
continuum theory. Then we compare the results with those obtained by the analytic blocking method of
topological defects from the continuum, assuming local two-point interactions are dominant as the infrared
effective action. The action is formulated in the continuum limit while the couplings of these actions can be
derived from simple observables calculated numerically on lattices with a finite lattice spacing. When use is
made of Berezinskii-Kosterlitz-Thouless (BKT) transformation, the infrared monopole action can be
transformed into that of the string model. Since large b = na(f) corresponds to the strong-coupling region
in the string model, the physical string tension and the lowest glueball mass can be evaluated analytically
with the use of the strong-coupling expansion of the string model. The almost perfect action gives us
Vo = 1.3, /oo for b > 1.0(6;}11},/52 ), whereas the scalar glueball mass is kept to be near M (0" ")~
3.7, /Ophys- In addition, using the effective action composed of 10 simple quadratic interactions alone, we
can almost explain analytically the scaling function of the squared monopole density determined

—1/2)

numerically for a large b region when b > 1.2(0phys
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I. INTRODUCTION

It is shown in the continuum limit that the violation of the
non-Abelian Bianchi identities (VNABI) J, is equal to
Abelian-like monopole currents k, defined by the violation
of the Abelian-like Bianchi identities [1,2]. Although
VNABI is an adjoint operator satisfying the covariant
conservation rule D,J, = 0, it gives us, at the same time,
the Abelian-like conservation rule 0,J,, = 0. There are N 2 -
1 conserved magnetic charges in the case of color SU(N).
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The charge of each component of VNABI is quantized a la
Dirac. The color invariant eigenvalue 4, of VNABI also
satisfies the Abelian conservation rule 9,4, =0 and the
magnetic charge of the eigenvalue is also quantized a la
Dirac. If the color invariant eigenvalue make condensation in
the QCD vacuum, each color component of the non-Abelian
electric field E“ is squeezed by the corresponding color
component of the sorenoidal current J§. Then only the color
singlets alone can survive as a physical state and non-
Abelian color confinement is realized.

To prove if such a new confinement scheme is realized in
nature, studies in the framework of pure SU(2) lattice gauge
theories have been done as a simple model of QCD [2]. An
Abelian-like definition of a monopole following DeGrand-
Toussaint [3] is adopted as a lattice version of VNABI, since
the Dirac quantization condition of the magnetic charge is
taken into account on lattice. In Ref [2], the continuum limit
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of the lattice VNABI density is studied by introducing
various techniques of smoothing the thermalized vacuum
which is contaminated by Ilattice artifacts originally.
With these improvements, beautiful and convincing
scaling behaviors are seen when we plot the density

pla(f),n) versus b =na(f), where p(a(p),n)=

D su\/ 2 1(Ka(s))? /(4/3Vh3), K (s) is an n blocked

monopole in the color direction a, n is the number of
blocking steps, V is the four-dimensional lattice volume,
and b = na(p) is the lattice spacing of the blocked lattice.
A single universal curve p(b) is found from n =1 up
to n = 12, which suggests that p(a(f),n) is a function
of b =na(p) alone. The scaling means that the lattice
definition of VNABI has the continuum limit.

The monopole dominance and the dual Meissner effect
of the new scheme were studied already several years ago
without any gauge fixing [4] by making use of huge
number of thermalized vacua produced by random gauge
transformations. The monopole dominance of the string
tension was shown beautifully. The dual Meissner effect
with respect to each color electric field was shown also
beautifully by the Abelian monopole in the corresponding
color direction.

Now in this paper we perform the blockspin renormal-
ization-group study of lattice SU(2) gauge theory and try to
get the infrared effective VNABI action by introducing a
blockspin transformation of lattice VNABI (Abelian
monopoles). Since lattice VNABI is defined as Abelian
monopoles following Degrand-Toussaint [3], the renorm-
alization-group study is similar to the previous works done
in maximally Abelian (MA) gauge [5-8]. However here we
mainly adopt global color-invariant maximal center gauge
(MCQG) [9,10] as a gauge smoothing the lattice vacuum,
although comparison of the results in other smooth gauges
is discussed. Beautiful scaling and gauge-independent
behaviors are found to exist, not only with respect to the
monopole density done in Ref. [2], but also with respect to
the effective monopole action.

After numerically deriving the infrared effective action
with the simple assumption of two-point monopole inter-
actions alone, we try to get the monopole action in the
continuum limit by applying the method called blocking
from the continuum [11]. When use is made of Berezinskii-
Kosterlitz-Thouless (BKT) transformation, the infrared
monopole action can be transformed into the string model
action. Since large b = na(ff) corresponds to the strong-
coupling region in the string model, the string tension and
the lowest glueball mass can be evaluated analytically with
the use of the strong-coupling expansion. The almost perfect

action gives us /o = 1.3, /Gy for b > 1.0(6;}11)1/52
the lowest scalar glueball mass is kept to be near M(0") ~
3.7y/c [12]. Finally, we try to explain the scaling behavior of
the monopole density observed in Ref. [2] starting from the

obtained effective monopole action composed of 10

), whereas

quadratic interactions alone. Since the square-root operator
is difficult to evaluate, we adopt the squared monopole
density R(b) = Y,.,(S3_, (K4(5))2)/(4VbY). R(b) is
found numerically to be a function of b = na(p) alone. It
is interesting to see the numerically determined scaling

behavior of R(b) can almost be reproduced analytically by

;hly/sz ), although
there remains around 30% discrepancy due mainly to the
choice of simplest 10 quadratic monopole interactions

alone.

the simple monopole action for b > 1.2(o

II. THE EFFECTIVE MONOPOLE ACTION
AND THE BLOCKSPIN TRANSFORMATION
OF LATTICE MONOPOLES

The method to derive the monopole action is the
following:
(1) We generate SU(2) link fields {U(s,u)} using the
tadpole-improved action [13] for SU(2) gluo-
dynamics:

_ _I
S(U) _ﬂ;Spl 20“% ;Srtv (1)

where §,, and S,, denote plaquette and 1 x2
rectangular loop terms in the action,

1

Spl.rt = ETr(l - Upl,rt)? (2)
the parameter u is the input tadpole improvement
factor taken here equal to the fourth root of the
average plaquette P = (1trU,/). We consider 48*
(24%) hyper-cubic lattice for g =3.0-3.9 (for
p = 3.0-3.7). For details of the vacuum generation
using the tadpole-improved action, see Ref. [2].

(2) Monopole loops in the thermalized vacuum pro-
duced from the above improved action (1) still
contain large amount of lattice artifacts. Hence we
adopt a gauge-fixing technique smoothing the vac-
uum, although any gauge-fixing is not necessary for
smooth continuum configurations. The first smooth
gauge is the maximal center gauge [9,10] which is
usually discussed in the framework of the center
vortex idea. We adopt the so-called direct maximal
center gauge which requires maximization of the
quantity

R =3 (TeU(s. )" ()

S

with respect to local gauge transformations. Here
Ul(s,p) is a lattice gauge field. The above condition
fixes the gauge up to Z(2) gauge transformation and
can be considered as the Landau gauge for the
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adjoint representation. In our simulations, we choose
a simulated annealing algorithm as the gauge-fixing
method which is known to be powerful for finding
the global maximum. For details, see Ref. [14].
For comparison, we also consider the direct
Laplacian center gauge(DLCG) [15], Maximal Abe-
lian Wilson loop (AWL) gauge [2] and Maximally
Abelian (MA) plus Ul Landau gauge(MAUI)
[2,16-18].
Next we perform an Abelian projection in the above
smooth gauges to separate Abelian link variables.
We explain how to extract the Abelian fields and the
color-magnetic monopoles from the thermalized
non-Abelian SU(2) link variables [4],

U(s.u) = U°(s,p) + iG - U(s. ), (4)

where ¢ = (o', 6%, 6°) is the Pauli matrix. Abelian

link variables in one of the color directions, for
example, in the ¢! direction are defined as

u,(s) = cos 0,(s) + ic' sin6,(s). (5)
where
1 S
0i(s) = arctan(ZogS:/;D (6)

corresponds to the Abelian field.

Monopole currents can be defined from Abelian
plaquette variables 6, (s) following DeGrand and
Toussaint [3]. The Abelian plaquette variables are
written by

05, (s) = 04(s) + 04 (s + 1) — 05 (s + D) — 04(s),
(—4r < 05,(s) < 4r).

It is decomposed into two terms:

05, (s) = 9ZU(S) + 27ng, (s),

(—m <604,(s) < m).

Here, 6%,(s) is interpreted as the electromagnetic
flux with color a through the plaquette and the
integer nj, (s) corresponds to the number of Dirac
string penetrating the plaquette. One can define
quantized conserved monopole currents

1 .
K(S) = seupdniols +0). ()

where O denotes the forward difference on the
lattice. The monopole currents satisfy a conservation
law 9,k (s) = 0 by definition, where 9’ denotes the
backward difference on the lattice.

We consider a set of independent and local monop-
ole interactions which are summed up over the
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whole lattice. We denote each operator as S;[k].
Then the monopole action can be written as a linear
combination of these operators:

S[k] = ZF(i)Si[k]’ (8)

where F(i) are coupling constants.
The effective monopole action is defined as
follows:

oS — / DU(s, p)e=5©
1 .
X HcS <k,‘j(s) - Eeﬂ,,pgaynga(s + /l)) ,

where S(U) is the gauge-field action (1).

We determine the monopole action (8), that is, the
set of couplings F(i) from the monopole current
ensemble {kj(s)} with the aid of an inverse
Monte Carlo method first developed by Swendsen
[19] and extended to closed monopole currents by
Shiba and Suzuki [6]. The details of the inverse
Monte Carlo method are reviewed in Appendix A.
See also the previous paper [7].

Practically, we have to restrict the number of
interaction terms. It is natural to assume that
monopoles which are far apart do not interact
strongly and to consider only short-ranged local
interactions of monopoles. The form of actions
adopted here are shown in Appendices B and C.
Some comments are in order:

(a) Contrary to previous studies in MA gauge, there
are three colored Abelian monopoles here. Due
to the possible interactions between gauge fields
and monopoles, there may appear interactions
between different colored monopoles. When we
consider here only effective actions of Abelian
monopoles, such induced interactions between
monopoles of different colors become inevitably
nonlocal. Also no two-point color-mixed inter-
actions appear.

(b) We adopt only monopole interactions which are
local and have no color mixing, since stable
convergence could not be obtained with the
introduction of color-mixed four- and six-point
local interactions.

(c) Actually, we study here in details assuming two-
point monopole interactions alone, although
some four and six point interactions without
any color mixing are studied for comparison. For
the discussions concerning the set of monopole
interactions, see Appendix C.

(d) All possible types of interactions are not inde-
pendent due to the conservation law of the
monopole current. So we get rid of almost all
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perpendicular interactions by the use of the
conservation rule [6,8].

(6) We perform a blockspin transformation in terms

of the monopole currents on the dual lattice to
investigate the renormalization flow in the IR
region. We adopt n =1, 2, 3, 4, 6, 8, 12 extended
conserved monopole currents as an n blocked
operator [5]:

n—1
K, (s") = > ku(s(n.i,j, 1)
i,7,1=0
=By (s"), ©9)

where s(n,i,j,0) =ns" + (n— D+ id+ jp+16.
Here s is the site number on the blocked lattice
and 7, p, 6 denote the direction perpendicular to f.
The renormalized lattice spacing is b = na(f3), and

3H ‘ 13 MCG monopole L the continuum limit is taken as the limit » — oo for a
i % I\M/Igg monopo%e oS fixed physical length b.
254 4 MCG Eﬁﬁggﬁli = We determine the effective monopole action from
g Mgg “mﬂggg{g the blocked monopole current ensemble {K, (s™)}.
Ir 12 MCG monopole Then one can obtain the renormalization-group flow
é st ! Self-coupling F(1) | in the coupling constant space.
' (7) The physical length b = na(/)’) is taken in unit of the
e 1 'y 1 physical string tension aphyq We evaluate the string
& tension o, from the monopole part of the Abelian
03T & i Wilson loops for each /3 since the error bars are small
®a @ . . p . . .
0 ‘ ‘ ‘ A gy | ‘ in this case. The lattice spacing a(f) is given by the
0 05 1 15 2 25 3 35 4 45 relation a(f) = /6/4:/ Gpnys- Note that b = 1.0 ;}}y/f
b=na(B)
— 08 —
14 F 1 MCG monopole *_+_* 1 MCG monopole
i 2 MCG monopole 75~ 07+ 2 MCG monopole "5~ -
ik 3 MCG monopole FK— 3 MCG monopole
- i 4 MCG monopole —E- 06 43 MCG monopole |
6 MCG monopole : 63 MCG monopole
1+ % 8 MCG monopole —O— - 8 MCG monopole
4 12* MCG monopole 05 12* MCG monopole

Q 08 . . [ . .
s Nearest-neighbor coupling F(2) E/ 0.4 Next nearest-neighbor coupling F(4) .
0.6 b 03 ]
04 ) 0.2 )
02 1 0.1 . .
d i g v
0 I I I \6 1 Q\ @ I I 0 ! I g‘® ]\@1 ® @ I I
0 0.5 1 1.5 2 25 3 35 4 4.5 0 0.5 1 1.5 2 25 3 3.5 4 4.5
b=na(B) b=na(B)
- 0.8 3
14 F 1 MCG monopole *_+_* 1 MCG monopole
23 MCG monopole 75~ 07 F 2 MCG monopole "5~ -
L 33 MCG monopole K~ 3 MCG monopole
- 4 MCG monopole = 06 - 4 MCG monopole ]
6 MCG monopole : 6 MCG monopole
1 % 8 MCG monopole —O— - 8 MCG monopole
12° MCG monopole 05 12* MCG monopole
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E Nearest-neighbor coupling F(3) E/ 04 i Next nearest-neighbor coupling F(5) T
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FIG. 1. The coupling constants of the self and the two nearest- FIG. 2. The coupling constants of the two next to the nearest-

neighbor interactions in the effective monopole action versus
b = na(p) in MCG on 48*.

neighbor interactions in the effective monopole action versus
b = na(p) in MCG on 48*.

034509-4



BLOCKSPIN RENORMALIZATION-GROUP STUDY OF ...

PHYS. REV. D 97, 034509 (2018)

corresponds to 0.45 fm, when we assume
Ophys = (440 MeV)2.

III. NUMERICAL RESULTS

As discussed in Appendices B and C, in the main part of
this work, we adopt 10 short-ranged quadratic interactions
alone as the form of the effective monopole action for
simplicity and also for the comparison with the analytic
blocking from the continuum limit.

i 13 MCG monopole —— ,
L4 2 MCG monopole 75~ 4+
3 MCG monopole FK— +
12+ 4 MCG monopole &+ ** 1
6 MCG monopole
1k 8 MCG monopole —S— >§»+ i
12> MCG monopole
& 08f 1
ool
0.6 1
04 ﬂ] @ 4
021 )@i@ Renormalization flow on F(1)-F(2) 1
O ’l'}- | | | | | |
0 0.5 1 1.5 2 2.5 3
E(1)
141 13MCG monopole F— ,
’ 2 MCG monopo{e
3 MCG monopole
12+ 4 MCG monopole H—EH 1
6 MCG monopole
1k 8 MCG monopole ++ J
12> MCG monopole xx +*
~ | Renormalization flow on F(1)-F(3) ¥« 4++
a 08 +
& s
0.6 g i
N |
02| @iﬂ@ ]
O 'tfﬁ | | | | |
0 0.5 1 1.5 2 2.5 3
E(1)
0.7 3
1 MCG monopo}e ——
2 MCG monopole
0.6 3 MCG monopole FK— 1
4 MCG monopole
| 6 MCG monopole |
05 8 MCG monopole —S— +
12> MCG monopole *%
. 04F ** :
N Renormalization flow on F(1)-F(4) %ﬁéf
& sl ﬁé i
02 ﬁ J
01} ‘ |
) i:n)ﬂ
0 "‘r’@ I I I I I
0 0.5 1 1.5 2 2.5 3
E(1)
FIG. 3. The renormalization-group flow projected onto the two-

dimensional coupling constant planes in MCG on 48*.

A. Results in MCG gauge on 48* lattice

The 10 coupling constants F(i)(i = 1-10) of quadratic
interactions are fixed very beautifully for lattice coupling
constants 3.0 </ <39 and the steps of blocking
1 <n <12. Remarkably they are all expressed by a
function of b = na(pf) alone, although they originally
depend on two parameters f and n. Namely, the scaling
is satisfied and the continuum limit is obtained when
n — oo for fixed b = na(f). The obtained action can be
considered as the projection of the perfect action onto the
plane composed of 10 quadratic coupling constants. These
behaviors are shown for the first five dominant couplings in
Figs. 1 and 2. These data are actually much more beautiful
than those obtained in previous works in MA gauge
considering the third color component alone [8].

B. Renormalization-group flow diagrams

The perfect monopole action draws a unique trajectory in
the multidimensional coupling-constant space. To see if
such a behavior is realized in our case, we plot the
renormalization-group flow line of our data projected onto
some two-dimensional coupling-constant planes in Figs. 3
and 4. Except the case for small b = na(f) regions,

07 13 MCG monopo%e 1
2 MCG monopole
0.6 3 MCG monopole K~ 1
4 MCGmonopole
05k 6 MCG monopole |
: 83 MCGmonopole
123 MCG monopole %*
. 04r +% 1
= -
B: Renormalization flow on F(1)-F(5) m,
03} ¥ .
02t E,@g» 1
0.1 mﬁ 4
0 o ( Ef 3 ﬁ\f\\}ﬂ I I I I
0 0.5 1 L5 2 25 3
E(1)
13‘ MCG monopole -
14 2 MCG monopole 725 i
3 MCG monopole K~
12+ 4 MCG monopole —H&H 1
6 MCG monopole
1k 8 MCG monopole »* ]
12 MCG monopole %%*
o 08t yor
= 3&56%(
0.6 1
04t M .
02 ,.,g"\i Renormalization flow on F(2)-F(3) 1
oo
0 DS I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4

FIG. 4. The renormalization-group flow projected onto the two-
dimensional coupling constant planes in MCG on 48,
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especially with n = 1 case, the unique trajectory is seen
clearly. The behaviors are again much more beautiful than
those obtained previously in MA gauge [8].

C. Volume dependence in MCG gauge

Volume dependence is checked in comparison with the
data on 24* and 48* lattices in MCG gauge. Figure 5 shows
examples of the most dominant self-coupling coupling
F(1) and the coupling of the next nearest-neighbor inter-
action F(5). Volume dependence is seen to be small,
although the error bars of the data on 24* become naturally
larger due to the boundary effect when the couplings at
larger distances are considered.

D. Smooth gauge dependence

The above results are all obtained in MCG gauge. Before
studying other smooth gauges, we show the result without
any gauge-fixing. In this case, the vacuum is contaminated

by dirty artifacts. Nevertheless, the infrared effective
monopole action is determined. Figure 6 shows an example
of the coupling of the self-interaction F(1) in comparison
with that in MCG gauge. One can see that scaling is not
seen at all in no gauge-fixing (NGF) case.

T T

_ ; 13 NGF mnopole F‘H
Self-coupling F(1) 2 NGF mnopole
3 NGF mnopole
4 NGF mnopole
6 NGF mnopole
8 NGF mnopole

1 | HitH- 12° NGF mnopole .
all MCG mnopole

F(1)

HEREKK
BRORKK X
0l HEEEE @ E
EMEEEE N
000 © @
0.01 p 7
0 0.5 1 1.5 2 2.5
b=na()

FIG. 6. The self coupling of the infrared effective monopole action
in NGF case for 3.3 < <3.9 in comparison with that in MCG case.

T T
3t 13 N24 monopole —1— -
% 23 N24 monopole
) 3 N24 monopole
251 gy Volume dependence 4 N24 monopole
B ) 6 N24 monopole
iy Self-coupling F(1) 1 N48 monogole
2t K 2 N48 monopole
~ Em MCG 3 N48 monopole
) 4 N48 monopole
= 15F %E. 6 N48 monopole
I " -
05 ﬁ @. b
I |
0 | | | |
0 0.5 1 L5 2 25
b=a(B)
(a) F(1)
0.5 ™
1 N24 monopole +
2 N24 monopole 75—
04 F % Volume dependence iz %2 ﬁgﬁggg%g 1
6 N24 monopole
1 N48 monopole
03 F 2 N48 monopole .
_ MCG 3 N48 monopole
N 4 4 N48 monopole
”‘ < 6> N48 monopole
02 % ]
3 Next nearest-neighbor coupling F(5)
o iy ’
0 % ﬁ @i B, ]
0 0 2 2.5
b=a(B)
(b) F(6)
FIG. 5. Volume dependence of the infrared effective monopole

action in MCG on 24* and 48*. The coupling constants of the self
F(1) and the next nearest-neighbor interactions F(5) are shown

as examples.

3 T T
% 1 DLCG monopo}e ——
2 DLCG monopole
25 ¢ @® DLCG and MCG 3 DLCG monopole F2K—
% 4 DLCG monopole -
6* DLCG monopole i
2+ % MCG all monopoles —O— |
= st -
z il g
®
1r [ i
Self-coupling F(1) B a
05 1
0 | | | | | | |
0 0.2 0.4 0.6 0.8 1 12 14
b=na(p)
0.5 T

DLCG and MCG

ol &
B
7

02

F(1)

Next nearest-neighbor coupling F(5)

13 DLCG monopole ——
2 DLCG monopole 75—
3 DLCG monopole K~ |
4 DLCG monopole =&

6> DLCG monopole
MCG all monop%les o

0 0.2 04 0.6 0.8
b=na(B)

FIG. 7.
MCG on 24*. The coupling constants
next nearest-neighbor interactions F(5)
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13 AWL monopole *_+_*
2 AWL monopole

3 AWL monopole

4 AWL monopole FE -
6 AWL monopole

8 AWL monopole

122 AWL monopole )
MCG all monopoles

AWL and MCG

F(1)

Self-coupling F(1)

0.5 F 1
0 | | | | | Q | |
0 05 1 15 225 3 35 4 45
b=na(P)
0.3 T
13 AWL monopole S
23 3 AWL monopole
0.25 | AWL and MCG 3 AWL monopole 1

4 AWL monopole

6 AWL monopole

8> AWL monopole —O— -
122 AWL monopole
MCG all monopoles

F(6)

Next next nearest-neighbor coupling F(6)
0.1 F % .

M e _
0 I I /‘:“\)"O 1,68 @ ) I !
0 0.5 1 L5 2 25 3 3.5 4 4.5
b=na()

FIG. 8. The infrared effective monopole action in AWL and
MCG on 48*. The coupling constants of the self (1) and the next
next nearest-neighbor interactions F(6) are shown as an example.

1. DLCG gauge

The direct Laplacian center gauge (DLCG) is a gauge
used to study the center vortex [15] as MCG. Since DLCG
gauge-fixing needs more machine time, we take data on
smaller 24* lattice only. The results are shown in com-
parison with those in MCG in Fig. 7 with respect to the self-
coupling F(1) and the next nearest-neighbor coupling
F(5) as an example. Both data are almost equal for the
b = na(p) regions considered, although small deviations

are seen in the F(5) case having the finite-size effects on
small 24* Iattice.

2. AWL gauge

The third smooth gauge is the maximally Abelian Wilson
loop (AWL) gauge [2,20], where Abelian 1 x 1 Wilson
loop is maximized as much as possible. The data in AWL is
shown in Fig. 8 along with those in MCG with respect to
the self-coupling F(1) and the next next nearest-neighbor
coupling F(6) as an example. The scaling is found very
clearly and the both data are almost the same even with
respect to F(6) on 48* lattice.

3. MAUI gauge

Now let us compare MCG and MAUT gauges, the latter
of which is the combination of the maximally Abelian
(MA) gauge-fixing [17] and Landau gauge-fixing with
respect to the remaining U(1) [18]. In MAUI, the global
isospin invariance is broken and the effective action S(k?)
is different from those of the off-diagonal monopole
currents S(k') and S(k?). See Fig. 9 as an example.
With respect to F(1) and F(2), the isospin breaking is
not so big, but large deviation is observed with respect
to F(3).

However, if the effective actions in both MAUI and
MCG are on the renormalized trajectory corresponding to
the continuum limit, the total sum of the monopole actions
in three color directions in MAU1 should be equivalent to
the sum of three monopole actions in MCG gauge. It is very
interesting to see from Figs. 10 and 11 that the expectation
is realized. Actually, except for small b = na(f) regions,
the gauge-invariance is seen clearly.

E. Summary of studies in smooth gauges

From the above data in various gauges, one can conclude
that if scaling behaviors are obtained and the effective
monopole action is on the renormalized trajectory with the
introduction of some smooth gauge-fixing, the trajectory
obtained becomes universal naturally. In fact, the renor-
malized trajectory represents the effective action in the
continuum limit and gauge dependence should not exist in

TABLE I. Best parameters fitted.

b = na(p) 0.5 1 1.5 2 2.5 3 35 4 4.5

K 0.117504  0.470017 1.057538 1.880067  2.937605  4.230151 5757705  7.520268  9.51784

m 9 18 27 36 45 54 63 72 81

my 0.9 1.8 2.7 3.6 4.5 54 6.3 72 8.1

a 8.682261 2.170565  0.964696  0.542641 0.34729 0.241174  0.177189  0.13566 0.107188
Vi 6.963001 6.963001 6.963001 6.963001 6.963001 6.963001 6.963001  6.963001 6.963001
7 1.06e-01 6.63e-03 1.31e-03 4.15e-04 1.70e-04 8.19e-05 4.42e-05 2.59e-05 1.62e-05
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FIG. 9. The coupling constants of the self and the two nearest-
neighbor interactions in the effective monopole action versus b =
na(f) in MAU1 on 48*.

the continuum. It is exciting to see that this natural
expectation is realized actually, at least for larger b regions

b>0.5(c,/7).
IV. BLOCKING FROM THE
CONTINUUM LIMIT

The infrared effective action determined above numeri-
cally shows a clear scaling, that is, a function of b = na(p)

10
13 IMAI+MA3 monopole S
2 2 2MAI+MA3 monopo}e 2
I 33 IMAI+MA3 monopole
8 T: 2MA1+MA3 and 3MCG 43 IMAI+MA3 monopole —5-
A 6 2MA1+MA3 monopole
b 8 2MA1+MA3 monopole
123 2MA1+MA3 monopole .
MCG all monopoles
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b=a(B)
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35 [ 2MA1+MA3 and 3MCG 23 IMAT+MA3 monopole ]
3 63 IMAI+MA3 monopole
8 2MAI+MA3 monopole FO—

12° IMA1+MA3 monopole
MCG all monopoles

F(2)

Nearest-neighbor coupling F(2) 1

b=a(B)

132MA1+MA3 monopole +

4r 2 2MA1+MA3 monopole o
3 2MA1+MA3 monopole

2MAL+MA3 and 3MCG 33 901141143 monopole —EH -
6> 2MA1+MA3 monopole

3f 83 OMAI+MA3 monopole FO—

122 IMA1+MA3 monopole

2.5 MCG all monopoles

F(3)

Nearest-neighbor coupling F(3) 1

e
0 ! I ! ij@] @ ® ! !

0 05 1 15 2 25 3 35 4 45
b=a(p)

FIG. 10. The coupling constants of the self and the nearest-
neighbor interactions in the effective monopole action versus
b = na(p) in MAU1 and MCG on 48*. The sum of each coupling
constant with respect to three color components is shown.

alone, and it can be regarded as an action in the continuum
limit. But it is an action still formulated on a lattice with the
finite lattice spacing b = na(f3). Hence various symmetries
such as rotational invariance of physical quantities in the
continuum limit are difficult to observe, since the action
itself does not satisfy, say, the rotational invariance. One
has to consider a perfect operator in addition to a perfect
action on b lattice in order to reproduce a symmetry such as
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FIG. 11. The coupling constants of the two next nearest-

neighbor interactions in the effective monopole action versus
b = na(f) in MAU1 and MCG on 48*. The sum of each coupling
constant with respect to three color components is shown.

rotational invariance in the continuum limit [8,21]. For
example, a simple Wilson loop on a plane does not
reproduce the rotational-invariant static potential on the

b lattice.
It is highly desirable to get a perfect action formulated in
the space-time continuum which reproduces the same
|

(Wu(C)) =

5,5

where Bky(s(”)) =yl ok

i H
term in Eq. (11):

physics at the scale b as those obtained by the above
perfect action formulated on the b lattice. If such a perfect
action in the space-time continuum is given, the rotational
invariance of physical quantities is naturally reproduced
with simple operators such as a simple Wilson loop, since
the action also respects the invariance.

If the infrared effective monopole action is quadratic, it is
possible to perform analytically the blocking from the
continuum and to get the infrared monopole action for-
mulated on a coarse b = na(f) lattice [8,21]. Perfect
operators are also obtained. This is similar to the method
developed by Bietenholz and Wiese [11].

We review the above old works [8,21] shortly. Let us
start from the following action composed of quadratic
interactions between magnetic monopole currents. It is
formulated on an infinite lattice with very small lattice
spacing a:

ST =Y "k,(s)Do(s — 5"k, (s"). (10)

o o
s,8" .y

Here we omit the color index. Since we are starting from the
region very near to the continuum limit, it is natural to
assume the direction independence of Dy(s — s"). Also we
adopt only parallel interactions, since we can avoid
perpendicular interactions from short-distant terms using
the current conservation. Moreover, for simplicity, we
adopt only the first three Laurent expansions, i.e.,
Coulomb, self, and nearest-neighbor interactions. Ex-
plicitly, Do(s — s') is expressed as ad ¢ + BA7 (s — 5')+
7A. (s —s'), where @&, 3, and 7 are free parameters. Here
Ap(s—s') ==>,0,0,0,. Including more complicated
quadratic interactions is not difficult.

When we define an operator on the fine a lattice, we can
find a perfect operator along the projected flow in the
a — 0 limit for fixed b. We assume the perfect operator on
the projected space as an approximation of the correct
operator for the action S[k| on the coarse b lattice.

Let us start from

eXp{—Zku(S)Do(s = s"ku(s") + 2ﬂiZNﬂ(S)kﬂ(S)} [Tk, (s") =By (s™))/2[K), (1)
. S s
(s(n,i,j,1)) (9). Note that the monopole contribution to the static potential is given by the

W,,(C) = exp <2ﬂiZNﬂ(s)kﬂ(s)> LN =) AL (s - ) %eﬂaﬁyaas;y(s' +h), (12)

where S[J,y(s’ + 1) is a plaquette variable satisfying 8}181137@) = J,(s), and the coordinate displacement /i is due to the
interaction between dual variables. Here J,(s) is an Abelian integer-charged electric current corresponding to

an Abelian Wilson loop. See Ref. [8].
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The cutoff effect of the operator (11) is O(a) by definition. This §-function renormalization-group transformation can be
done analytically. Taking the continuum limita — 0, n — oo (with » = na is fixed), finally, we obtain the expectation value
of the operator on the coarse lattice with spacing b = na(p) [21]:

<Wm(C)>:exp{—nz/wd4xd4yZNﬂ(x)Dal(x—y)NM(y)+7z2b8 Z Bﬂ(bs(n))DW(bs(”)—bs(n)/)BD(bs(n),)}
o m

5(n) ()
BV

X Z exp{ K, (s")]+27ib® ZB (bs"D,, (bs™ —bs")K, } Z Z[K.0], (13)

beﬂ bs)=-c0 (rl) y(n) sz}, bs)=—c0
a Kﬂ sV 2, Ky
where

B,(bs") =1lima®y TI,(bs"™ — as)< 6, — O, Dg!'(as — as')N,(as")

g e s,8" v s " Z/J 6/’ a;’ ° ‘ ’

1 n A n
IL,(bs" —as) = Fé(nas,(l )+ (n—1)a-as,) H <Z 6(nas§ )+ 1a- as,-)). (14)
i(#u) NM=0

S[K,(s™)] denotes the effective action defined on the coarse lattice:

S[K,(s™)] = b Z ZK (bs")D,,, (bs") — bs"™ K, (bs™)"). (15)

S

Since we take the continuum limit analytically, the operator in (13) does not have no cutoff effect. For clarity, we have
recovered the scale factor ¢ and b in (13), (14), and (15).
The momentum representation of D,w(bs(") — bs™") takes the form

HEY gi(Pi=p)/2, (16)

D/w(p) :Ap(t;l/F_l(p) -

where j, = 2sin(p,/2) and ASF “'(p) is the gauge-fixed inverse of the following operator

_(p+2aD),(p+2a1),] (p +2al),(p +2x1),\ ([T, P:)?
<H 2 >{ (p 27 [‘5 S(p + 2al)? } [L(p + 220)? } w17

i=1 l;=—oc0

The explicit form of D, (p) is written in Ref. [21]. Performing the BKT transformation explained in Appendix B of Ref. [8]
on the coarse lattice, we can get the loop operator for the static potential in the framework of the string model [22]:

[se]

WalC)) = W@z D

Oy () =—00

exp{ 220;4(1 8(18}} uv ( -5 )AZ2 (S] - S/)Gl//)’(s/)

D) (5)=0 /:i;
-27522 (5)0,A7" s—s/)B,,(s’)}, (18)

yb

o, 1s the closed string variable satisfying the conservation rule
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a[aa;w] = 8aapw + a;taua + ayaay =0. (19)

The classical part (W,,(C)),, is defined by

WO =exp{ -2 [ aaty SN, )

x Da%x—ywﬂ(y)}. (20)

V. ANALYTIC EVALUATION OF
NONPERTURBATIVE QUANTITIES

A. Parameter fitting

To derive nonperturbative physical quantities analyti-
cally, we have to fix first the propagator Dy (s) in (11) of the
continuum limit. It can be done by comparing D,,, (s — ')
in Eq. (15) with the set of coupling constants F(i)(i =
1-10) of the monopole action determined numerically
in Eq. (8).

Dy(s — ') in the monopole action (11) is assumed to be
ad,y + PAL (s —5') + 7AL (s — s'). We can consider more
general quadratic interactions, but, as we see later, this
choice is almost sufficient to derive the IR region of SU(2)
gluodynamics.

The inverse operator of Dy(p) = & + 8/ p> + 7p* takes
the form:

2 2

my ny
- , 21
pP+mi pP+ m§> 2

Dal(p)—K<

where the new parameters x, m;, and m,
k(mi—m3)=7""\mi+m3=a/7.mim;=p/7.

Substituting Eq. (21) into Eq. (17) and performing the
First Fourier transform (FFT) on a momentum lattice for
the several input values x, m;, and m, we calculate
D,,(p) [23].

To be noted, the three parameters as a function of b =
na(f) can not be uniquely determined. Changing
(my/m,)? from 10 up to 500 with the fixed value of the
string tension, we found the coupling constants determined
for three typical values of b (at b =1, 5, 3.0, 4.5) do not
strongly (at most 5%) depend on the ratio of (m;/m,)?>.
Moreover m,/b is found to correspond to the mass of the
lowest scalar glueball. Hence we assume

(i) (m;/m,)?* =100 for all b = na(p) regions.

(i) my/b ~ 1.8 corresponding t0 My++ ~ 3.7, /Gypys.

(iii) The string tension calculated analytically is as near
as possible to the physical string tension oy, and
shows scaling, namely 6/c s is constant for all
b = na(f) regions considered.

Table I shows the results of the best fit.

satisfy

B. Comparison of the couplings from numerical
analyses and theoretical calculations

Now let us show the coupling constants determined by
the analytical blocking method using the above best-fit
parameters in Figs. 12 and 13. As seen from these figures,
the fit is nice for b = na(f) > 1.0, although the deviation
becomes larger at smaller b regions, especially for the

100 T T T T
MCG monopole action —+—
% Almost perfect action X
g X
X Self-coupling F(1)
SEEEY
=
X
01k %X%@KXXXX |
XA
001 | | | | | | | |
0 0.5 1 1.5 2 25 3 35 4 45
b=a(B)
100 T T T T
' MCG monopole action —+—
Almost perfect action X
10X
X Nearest-neighbor coupling F(2)
X
ORENE: g
o
0.1
Hxag
0.01 | | | | | | | | X
0 0.5 1 1.5 2 25 3 3.5 4 45
b=a(p)
100 T T T T
MCG monopole action —+—
Almost perfect action X
10 f
Nearest-neighbor coupling F(3)
OB
59
X
0.1
WX‘%X% %
FEK X i
¥XX§
0.01 | | | | | | | |
0 0.5 1 1.5 2 25 3 3.5 4 45
b=a(p)

FIG. 12. Comparison of the coupling constants of the self and
the nearest-neighbor interactions in the effective monopole action
between numerical MCG data and theoretical values derived from
the almost perfect action.
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FIG. 13. Comparison of the coupling constants of the next

nearest-neighbor interactions in the effective monopole action
between numerical MCG data and theoretical values derived from
the almost perfect action.

couplings at larger distance. Note that the log scale is
adopted in the y axis.

C. The string tension (1)

Let us evaluate the string tension using the perfect
operator (18) [21]. The plaquette variable Sgﬂ in
Eq. (12) for the static potential V(Ib,0,0) is expressed by

S({zﬁ(z) = 5(115ﬁ45(12)5(z3)9(11)
X 9(1b - Z1)9(24)9(Tb - Z4). (22)

We have seen that the monopole action on the dual lattice is
in the weak coupling region for large b. Then the string
model on the original lattice is in the strong coupling
region. Therefore, we evaluate Eq. (18) by the strong
coupling expansion. The method can be shown diagram-
matically in Fig. 14.

As explicitly evaluated in Ref. [21], the dominant
classical part of the string tension coming from Eq. (20) is

6o =——In—". (23)
2

This is consistent with the analytical results [24] in type-2
superconductor. The two constants m; and m, may be
regarded as the coherence and the penetration lengths.

The ratio \/o/0pnys using the optimal values , m;, and
m, given in Table I becomes a bit higher, namely about 1.3
for all b regions considered. As shown previously [21],
quantum fluctuations are too small to recover the differ-
ence. This is due mainly to the assumption that 10 quadratic
monopole couplings alone is too simple.

Note that the rotational invariance of the static potential
is maintained by the calculation using the classical part as
naturally expected from the perfect action. For example,
the variable S,; for the static potential V(Ib,Ib,0) is
given by

Sap(2) = (8a1Ops + 042044)0(23)0(24)0(Th — z4)
x 0(21)0(Ib — z1)0(22)0(1b — 2,)d(z1 — 22).

The static potential V(Ib,1b,0) can be written as

\/imdb N
In—.

V(IDb,1b,0) =
my

(24)
The potentials from the classical part take only the linear
form and the rotational invariance is recovered completely
even for the nearest / = 1 sites.

D. The string tension (2)

In the above calculation of the string tension, we have
started from the source term corresponding to the loop
operator (22) for the static potential of the fine a lattice and
have constructed the operator on the coarse b lattice by
making the blockspin transformation. But as shown in
Ref. [8], the same string tension for the flat on-axis Wilson
loop can be obtained for /,7 — oo when we consider a
naive Wilson loop operator on the coarse b lattice. In this
method, we can evaluate the string tension directly by the
numerical data of the coupling constants of the effective
monopole action.

Consider the source term on the 1-4 plane of the coarse b
lattice:

314(3) = 8(52)0(53)0(s1)0(1 — 51)0(54)0(T — 54). (25)

034509-12



BLOCKSPIN RENORMALIZATION-GROUP STUDY OF ...

PHYS. REV. D 97, 034509 (2018)

Define

_ 1 = N
N,(s,S) = ZAZI (s =) Eeﬂaﬁyf)aSﬂy(s’ +i).

Then the classical part of the static potential is written as

=72y N () DR (s=5" )N, (s')

<Wm (C)>cl =e 2 ) (26)
where Dy} (s — ) is the inverse of the propagator of the
effective action on the coarse lattice. Since only the parallel
interactions are considered here, the momentum represen-
tation of the inverse propagator becomes D;l,l (k) =
8,,D7' (k). Then the exponent X(C) of (26) is written in
the momentum representation as

X(C) = -4z /_ i % A2(k) {smz <%> D3} (k)
+ sin? <%> Dl (k)] $1(0)8,4(—k). (27)

This can be calculated easily when we take the limit
I, T - oo as

IT7> [z d’k 1
X(C) = - ”/

4 Jr 22)* (sin? (&) + sin?(%)

« [sinz <%)D521(k) + sin? (%) Dl‘]l(k)} (28)

Using the 10 quadratic coupling constant, we get for
example

-

Dy (ki.ky,0) =4[f + frcos(ky)+ f3(2+cos(ky))
+f4cos(ky)(2+cos(ka))+ f5(1+2cos(ky))
+ focos(ky)(1+2cos(ky)) + frcos(k)
+fgcos(2ky) + focos(ky +kz)
+f10(2+cos(2k,)].

Then (28) can be evaluated using FFT calculations in the

momentum space when use is made of 10 numerical

coupling constants. The results are shown for typical three
b values in Table II. Again, the ratio /6/6ppys is around

TABLE II. /0 /0pnys evaluated from the effective action on
the b lattice at three typical b values. Error bars of at most a few
percent order exist but are not shown explicitly.

b ﬂ n V Ucl/gphys
1.4912 3.0 4 1.25
2.9824 3.0 8 1.25
4.4736 3.0 12 1.31

30% larger at these b values. Hence we see that better
agreement can not be gotten with the 10 simple quadratic
monopole interactions alone.

E. The lowest scalar glueball mass

We consider here the following U(1) singlet and Weyl
invariant operator:

V(1) = L7) Re(Wio + Wo3 + W31 ) (X 1) (29)

on the a-lattice at timeslice 7. Here ¥;;(X, ) is an na x na
Abelian Wilson loop and L stands for the linear size of the
lattice. One can check easily that this operator carries 0"
quantum number [25]. Then we evaluate the connected
two-point correlation function of W by using the string
model just as done in the case of the calculations of the
string tension. It turns out that the quantum correction is
also negligibly small for large b. Refer to the paper [8] for
details. Assuming the lowest mass gap obtained by the ¥
operator (29) for finite b is the scalar glueball mass, we get
the lowest scalar glueball mass as M+ = 2m,. In the best-
fit parameters listed in Table I, we have fixed m, so to
reproduce M+ /opnys ~ 3.7 which is consistent with the
direct calculations done in Ref. [12].

F. Monopole density distribution

As shown in our previous work [2], the monopole
density

> (Ki(s)*  (30)

S a

shows beautiful scaling behaviors in smooth gauges such as
MCG, where V is the lattice volume. Namely the monopole
density (30) can be written in terms of a unique function
r(b) of b = na(p). But in the paper [2], the meaning of
r(b) has not been clarified.

Now we have derived the infrared effective monopole
action showing also beautiful scaling. It is interesting to
evaluate the monopole density from the effective action
analytically. Since the square-root operator is rather diffi-
cult to evaluate analytically, we consider the squared
monopole density defined as

ROV = g S (Swor). e

The effective monopole action on the coarse lattice is
written as (15). Then the squared monopole density (31)
can be expressed by evaluating the partition function
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Z(n) = i eXp{ ZK +lZf7,4(S }
o ko
= [“or / DO S AF6) = Kl exp{ =R ID (s = SIALS)

K}A(S)z_

5,8
y%%

+zZF $) + (s )]}

[Se]

— [Top) 3 exp{ §200,606) 4 20L,5) + (IR - D) + 20 (5) £ ) 62)

I l,u(s):_oo )”‘

Performing BKT transformation and Hodge decomposition, we obtain

L,(s) = s,(s) + 0,r(s) = 8”{—ZAL3 L0ls,(s") r,,(s/)} + Za;A;;J,%(sf), (33)

N

where 6,,(s) = 0},s,) is the closed string variable satisfying the conservation rule (19). The compact field ¢(s) is absorbed
into a noncompact field ¢nc(s). Integrating out the auxiliary noncompact field, we see

zZ= Y exp{—s<o>—mem(s)—}ijsw;;(s—s/m(s/)},

oy (s)=—00
O[aﬂm/](s):o

= ”22 $)0a05' Dy} (s = 1) AL (51 = 5")0,5(5")

%

X,(s) = zzZam(s)GyAzl(s’ - s”)D;”l (s" =s). (34)

o 5"

va

Then the squared monopole density (31) is evaluated as

1000 T T T T T
| 82 3 };< flr\/lCGhsquar'ed 1monopolei density :—g
R(b) — — 7 2 p-l0) - b ¥ om theoretical monopole action
100 :
(35) 5 Squared monopole density
0(b) = 4ng Zm exp(=S(o Zx (36) g v .
Va) (=0 g
3
where D7;'(0) denotes the term of the inverse of the C 3

K
& =3
+x
4+
4+
4+
S,

propagator D, (s — s') in (15).
The quantum part Q(b) (36) is expected to be small for
large b strong-coupling regions and hence we evaluate the 0.1

0 05 1 15 2 25 3 35 4 45
first part in (35) alone. The self-coupling termD (0 0,0,0) b=na(B)

is calculated explicitly in Eq. (D2) of Appendlx D.

The squared density R(b) is plotted in Fig. 15 in  FIG.15. Comparison of monopole density in unit of aglfy/sz from
comparison with that calculated numerically with the help ~ MCG numerical data and that from the perfect action.
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of the MCG data obtained in Ref. [2]. One can see from

Fig. 15 a rough agreement for b = na(f) > 1.2(0;}11;3).
The difference may come again from the simple
assumption of 10 quadratic interactions alone adopted
here. Anyway, the features are new, found in the global

color-invariant smooth gauge like in MCG.

G. Discussions about the disagreement between
analytical calculations and numerical data

As shown above, we have obtained around 30%
larger theoretical values with respect to both the string
tension and the monopole density. Let us discuss the
disagreement, comparing the forms of the effective
monopole action. First of all, the assumption of adopting
quadratic interactions alone leads us to the type-2
dual superconductor as seen from (23). But as found
numerically in the previous paper [4], the dual Meissner
effect shows that the confined vacuum is near the
border between the type-1 and the type-2 dual super-
conductor. Hence only from this fact, the assumption that
the action form composed of simple quadratic inter-
actions alone is insufficient. To be noted that both the
string tension and the monopole density depend on the
inverse of the propagator of the effective monopole
action on the coarse b lattice as seen from (28) and
(35). The self-coupling term is dominant in the propa-
gator and so let us compare the self-coupling term
starting from (1) the simplest 10 quadratic case and
(2) the 27 quadratic plus higher four- and six-point
interactions case. See an example shown in Table V of
Appendix C for f=3.2,n=4(b = 1.054(c,pys) /%)

Since analytic calculations including four- and
six-point interactions are too difficult to perform exactly
as discussed in Ref. [26], we adopt a simple mean-field
assumption using the averaged monopole density RQ
evaluated from the numerical squared monopole density
R(b), ie., RQ=((K%)?)=R(b)/3. Then using the
form of four- and six-point interactions defined in
Table IV, we get the effective self-coupling term of the
case (2) as

(T 228 ()=o) (LB, (5).0) OulK] exp (=32, F (i) Si[K])

32RQ

2
F(1) + =57 F(28) + [28RQ

F(l)effective = F(29)

In the typical example shown in Table V where
R(b=1.052) = 1.04(c,/?), we get F(1) = 0.902 in the
case (1), whereas in the case (2)

F(1) = 1.56 — 0.0455 % 32 « 1.04/3

+0.00123 % 128 % 1.042/3 = 1.112.

effective

This is 23% larger than that of F(1) of the simple 10
quadratic case (1). Hence the above 30% discrepancies are
mostly due to the too-simple assumption of 10 quadratic
monopole actions alone.
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APPENDIX A: THE INVERSE MONTE
CARLO METHOD

The effective monopole action S(k) is derived following
the Swendsen’s method [6,19]. The effective monopole
action S(k) is assumed to be a sum of independent Lorentz
invariant monopole current interactions summed over all
space-time links. Define these operators adopted as S;[k].
Then S[k] = > ,F(i)S;[k], where F(i) are coupling con-
stants which should be determined by the Swendsen
method.

Let us consider the expectation value of an opera-
tor O, [k]:

(OulK]) =

~!

oo - (A1)
IL. Zky(x):—oo exp(—>_;F (i)S;[k])
Now notice one plaquette (s, 2/,2’) on the dual lattice and the monopole currents around the plaquette:
{ku (s). Ky (8" + ), Ky (8" + ') Ky (s7) (A2)

Define a part of the monopole action containing the currents (A2) as § [k]. Then we get:
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(H f: ><1:[53rﬂky(s>_0>(’)a[k}exp{—ZF(i)S,-[k]}

s/,tk ),

~(IL, 3 ) (T ansioo) ewd -Sorasi -5

k,(s)=—00

X{ Z Z Z Z 8,k (5).000,k, (s +).000, &, (s'+/).000 &, (s +¢ +).0Oa [K]
k(s

L (8")=—00 ks (' +")=—00 ks (s'+1)=—00 k,(s")=—0c0
X exp{—ZF(i)S‘,» (k] } } (A3)

where [ [’ means the product excluding the sites and the links in the plaquette considered. Using the current conservation
rule, we can rewrite one ¢ function among four J functions around the plaquette as

50}, kyy (8" 40k, (s +1 )+ k, (8 4+ )40k, (s"+0/+27),0+ (A4)

Now let us note that the § function does not contain any monopole currents (A2). Then we get

!/
< H z > < H 60,’419,(‘?).0) O, () 0k (5'+ )+, e (5'+8 )+ Lk, (5'+i +/).0

Y}lk

x{(Zﬁ)k O, [k, {k}'] exp{ ZF R34 }}exp{ ZF [k])}, (A5)

where {k}’ denotes the monopole currents excluding those on the plaquette (A2), and () ); is given by

(Zo)= X 3 33 e (a6

N=—oc0 ky s’+;4’):—ook /(5" )=—00 k (s')=—c0

l

Now define a new operator O,[{k}'] as

(32 0)iOulk. {k} T exp{=37,F (i) Sifk. {k}']}

Ol ) = e F S () (A7

we get
(0,5 (sl S} £ ) [ Jostr] o]
(A8)

Now consider further O,[{k}']. Noting that the monopole current conservation holds good on every site in Eq. (A5), we
see

a;l],%II(S/) = alltkﬂ(sl) + ]AC//(S/) + I}v’(sl) - kﬂ’(sl) - kl/(sl) = ]}ﬂ’(sl) + ]Acl/(sl) - kﬂ’<s/) - kv’(s/)7 (A9)

and
O, (s + ) = k(5" + 1) =k (s) = ks (5" + 1) + Ky ('), (A10)
Ok, (s") + Ok, (s' +0) = o (s' +U) + ky(s') =Ky (s' +U) - ky(s'). (A11)
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Also using a relation

> Ok (') ks ()+ = 1 (A12)
M=-c
where M is an integer, we get
(Eoriwn=-5 8 5 55 sumewhuis
k M:—ook s/):—ook/ s'Hp)=—00 ky (s'4+V )=—00 ks (s')=—c0
X 6

ko (s7+0) ko (57 +0) = —m% L (5")ky (s") =M
Flley (s) ks (s + i), oy (57 + 0/) Ky (57), {k)]

= " Flho(s) + Mok (s + 0) + Mk (5" + 0) = Mo ky (5') = M. {RY], (A13)
M=—c0

where F[k, {k}'] is any function of k.
The value of the lattice monopole current defined by DeGrand and Toussaint [3] is restricted to the region [—2, +2], so

that the type-2 n extended monopole defined by [5] can take the value in the region [—(3n> — 1), 31 — 1]. Hence the sum
with respect to M is restricted to the region between m; and m, defined below:

my = —(3n% = 1) — min{k, (s), k, (s + @), =k, (s" + V), =k, (s")},
my = (3n2 = 1) —max{ky (s"), k(s + ), =k, (s' + /), =k (s')}. (A14)

Finally we find O, [k] is rewritten by

» vim, Oalk] exp{=3_,F(i)Si[k]}
O,lk] = o = .
LS e SOOI A1)
Here
]_cﬂzkﬂ(s)—’_M(éS s’éyu +‘va+ﬂ’6/u/_6s x’+u’6ﬂﬂ ds. x’5;4u) (A16)
Then
8k (s). k] ex F(i = 3 Sk (10 | Oulklex F(i)S;[k
(1, 22 ) ([scon ool -SZrinsis=(1, 32 ) (LFoosin )bt -3rt0sia}
(A17)
The final expression is the following:
(Oulk]) = (Ou[K]). (A18)

As an arbitrary operator O, (k), we adopt S, (k) in the monopole action. When we consider here only quadratic monopole
interactions, we can get

Si(k kYY) = dPM? + alV M + (k). (A19)
Then Eq. (A18) is reduced to

<Z ula (Z)Mz-l-a( M) exp[— (Z] (J ) ) (ZJF( )a 5l))1‘4]> =0.

A20
exp[—(Y2,F())a?)M? - (,F <>a1>M] (420
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Using this identity (A20), we can estimate the monopole
action S[k| iteratively. For that purpose, we define an
operator O,[k] where the coupling constants are replaced
by a trial set {F;} in Eq. (A15):

o S R exp{ =X F SR
O = S S F S

(A21)

If F(i) are not equal to F; for all i, we expand (O, — O,)
up to the first order of {F(i) — F;} and get

(0= 04) = (0u8y = OuS,)(F(b) = F}).  (A22)
b

Practically, we take a set of trial coupling constants {F,}
and evaluate the expectation value (O, — ©,) using the
thermalized monopole vacua. If (O, — O,) become zero
for all a, then {F,} can be regarded as the real coupling
constants Otherwise, we solve the Eq. (A22) numerically
and adopt the solution { F(a)} as a new trial set of coupling
constants. This is the way to get the effective monopole
action iteratively.
Eq. (A22) can be expressed as

<a§2)M2+a§‘)M>

=> @M +a'm) (o M? + 0 b))
J

(@M M) M) - )
(A23)

APPENDIX B: THE FORM OF THE EFFECTIVE
MONOPOLE ACTION

As the form of the effective monopole action, we assume
that only local and short-ranged interactions are dominant.

The quadratic interactions for each color a used for the
modified Swendsen method are shown in Table III. Only
the partners of the current multiplied by kg (s) are listed. All
terms in which the relation of the two currents is equivalent
should be added to satisfy translation and rotation
invariances.

To check the dominance of quadratic interactions, we
include the following four-point and six-point interactions
among monopoles of the same color component listed in
Table IV. The six-point interaction is included, since the
coefficient of the four-point interaction is found to be
negative numerically.

In the case of four and six-point interactions, there may
exist color-mixing interactions via interactions with the
gauge fields. We discuss the following color-mixed inter-
actions as a simple example:

59 (k) = Z(Z Z(kz<s>>2<k£<s>>2)

s u=—4 a#b
©) 4 4 4
— 1 2 2 2 3 2
SHCE S ONCID WD WECIE
s u=—4 pu=—4 p=—4
35 \3 T T
27 monopole NF2=27
3L 3; monopole NF2=27 =X |
Seftcouping F1) e NI
25 F %‘{ g3 monopole NF2=27 -
23 monopole NF2=10
% 33 monopole NF2=10
—_ 2F @, 4 monopole NF2=10 b
o) K 6 monopole NF2=10
= 15k 8° monopole NF2=10 —v— |
1F ’ 8 .
I & ]
0.5 "
@
0 1 1 1 1 . W - !
0 0.5 1 15 2 25 3 35
b=a(B)
T T T
14 + 23 monopole NF2=27 —+—
33 monopole NF2=27 75
2L 43 monopole NF2=27 FK— |
. 6; monopo%e NF2=27 HE+
87 monopole NF2=27
1r 23 monopole NF2=10 —O— -
3; monopole NF2=10
~ L 4° monopole NF2=10 i
q 08 6 monopole NF2=10 A
= 06 8 monopole NF2=10 =V
04l 8 Nearest-neighbor coupling F(2) |
02 *] .qﬂ .
e g
0 1 1 1 1 ' .
0 0.5 1 L5 2 25 3 35
b=a(B)
T T T
14 + 23 monopole NF2=27 —+— |
33 monopole NF2=27 75—
2L 43 monopole NF2=27 FK— |
: 6; monopo%e NF2=27
87 monopole NF2=27
1r 23 monopole NF2=10 —O— -
37 monopole NF2=10
~ o8t 4 monopole NF2=10 i
U 6 monopole NF2=10
= 06 8 monopole NF2=10 =V
04 Nearest-neighbor coupling F(3)
02 [ 3 1
LR
0 1 1 1 . m 1 .m ! .
0 0.5 1 15 2 25 3 35

b=a(p)

FIG. 16. Comparison of the coupling constants of the self and
two nearest-neighbor interactions between the actions composed
of 27 (NF2 =27) and 10 (NF2 = 10) quadratic interactions
alone. The data are taken on 48* in MCG.
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08 T T T
23 monopole NF2=27 ——
07+ 33 monopole NF2=27 F25— |
4; monopole NF2=27
L 62 monopole NF2=27 |
0.6 i 8° monopole NF2=27 H1lH—
23 monopole NF2=10
05 3; monopole NF2=10 .
—_ + 4° monopole NF2=10
I 04t 62 monopole NF2=10 &
- 8° monopole NF2=10 H—v—
03F @y 4
§ Next nearest-neighbor coupling F(4)
02 1
0.1 & .
L T THIeg g g
0 0.5 1 15 2 2.5 3 35
b=a(B)
0.8

T T T
23 monopole NF2=27 =1
07 F 33 monopole NF2=27 F25—
4; monopole NF2=27 K~

67 monopole NF2=27 |
8% monopole NF2=27 1l
23 monopole NF2=10

0.6 +

0.5 % 33 monopole NF2=10
+
X

4 monopole NF2=10

04 r 62 monopole NF2=10 A
® 83 monopole NF2=10 —v—

03 | U |
Q@ Next nearest-neighbor coupling F(5)

F(5)

02 3

0.1

“b-a(p)

FIG. 17. Comparison of the coupling constants of the two
next nearest-neighbor interactions between the actions composed
of 27 (NF2 =27) and 10 (NF2 = 10) quadratic interactions

alone.

APPENDIX C: COMPARISON OF THE
EFFECTIVE MONOPOLE ACTIONS FROM
NUMERICAL ANALYSES

Various combinations of monopole interactions are
tested numerically.
(1) Color mixing effects are checked first by adopting

S = i F(i)SP (k) + F(11)S@ (k) + F(12)8 (k)
i—1

+ F(13)SO (k) + F(14)S'9 (k),

where the first 10 quadratic interactions S (k)
alone in Table III are used for simplicity.
Unfortunately we have not obtained convergent
results in this case. This may be due to necessity of
introducing nonlocal color-mixed interactions. Since
considering nonlocal interactions is complicated and
difficult, we have neglected any color-mixing effect
in the extensive studies done in this paper.
(2) Under the condition of no color-mixing, we study
four cases of effective monopole actions:
(a) Twenty-seven quadratic interactions in Table III
plus higher interactions in Table IV.
(b) First 10 quadratic interactions with lattice dis-
tance R < 2 plus higher interactions in Table I'V.
(c) Twenty-seven quadratic interactions in Table III
alone.
(d) First 10 quadratic interactions with lattice dis-
tance R <2 in Table III alone.
An example for f = 3.2 and n = 4 blocking is shown in
Table V. The comparison can be done only for n < 8 due to
boundary effects, since the reduced lattice volume in n = §
is 6* and 4* in n = 12 blocking. Similar behaviors are
found for all n < 8 and all f.

TABLE III. The quadratic interactions used for the modified Swendsen method. Color index a of the monopole current

ky is omitted.

Coupling {F(i)} Distance Type Coupling {F(i)} Distance Type

F(1) (0,0,0,0) k,(s) F(15) (2.1,1,0) k(s + 2+ 0+ p)
F(2) (1,0,0,0) k, (s + f2) F(16) (1,2,1,0) k(s + i+ 20+ p)
F(3) (0,1,0,0) k(s + D) F(17) 0.2,1,1) k(s + 20+ p + 6)
F(4) (1,1,0,0) k(s + o+ D) F(18) @.1,1,1) k(s + 20+ 0+ p+6)
F(5) 0,1,1,0) k(s + 0+ ) F(19) (1.2,1,1) k(s + i+ 20+ p +6)
F(6) (1,1,1,0) k(s +p+0+p) F(20) (2.2,0.0) k, (s + 21 +20)
F(7) 0,1,1,1) k(s +D+p+6) F(21) (0.2,2,0) k, (s + 20 + 2p)
F(8) (2,0,0,0) k, (s +20) F(22) (3.0,0,0) k(s +37)

F(9) (1,1,1,1) k(s +a+0+p+6) F(23) (0,3,0,0) k, (s + 30)
F(10) (0,2,0,0) k(5 +20) F(24) 2.2,1,0) k(5 + 20 + 26 + )
F(11) (2.1,0.0) k, (s + 21 + D) F(25) (1.2,2.0) k(s + i + 20 +2p)
F(12) (1,2,0,0) k(s + fu + 20) F(26) 0.2.2,1) k(s + 20+ 2 + 6)
F(13) 0.2,1,0) k(s + 20+ p) F(27) 2.,1,1,0) ky(s + 20 + 20+ p)
F(14) (2,1,0,0) k, (s + 24 + D)
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FIG. 18. Comparison of the coupling constants of the self and

two nearest-neighbor interactions versus b = na(f3) between the
actions of 10 two-point interactions with and without higher
interactions on 48* in MCG.

(a) The coupling constants of four- and six-point
interactions are very small, but they have non-
negligible large effects on the most important
quadratic self interaction F(1) as seen from
the data in the second and the fourth rows in
Table V.

(b) The coupling constant F(28) of the four-point
interaction is negative, whereas that of the six-point

TABLE IV. The higher order interactions used for the modified
Swendsen method.

Coupling Distance Type
4-point (0,0,0,0) S® =35 ( ﬁ:—4(k;‘3)2(5))2
6point (0000 5O =3, 5, (i (k)(5)’

interaction F'(29) is positive. This is similar to the
results observed previously in MA gauge [8].

(c) The first and the second rows in Table V show
the comparison of both quadratic actions in (3)
and (4). The most important self and the nearest-
neighbor interactions are much the same. The
couplings of the first five quadratic interactions
are compared in Figs. 16 and 17.

(d) The differences of the cases (2) and (4) with and
without higher interactions are shown in Figs. 18
and 19. All data satisfy the scaling, but the
differences are not negligible, especially in the
self-coupling case. The coupling constants of
higher interactions in the case (2) are plotted in
Fig. 20. Also scaling is seen beautifully.

(e) In the main part of this paper, we focus on the
most simple case (4), i.e., the action composed of
first 10 quadratic interactions alone, since then
even n = 12 could be studied in the renormali-
zation-group flow and the comparison between
numerical data and analytic results from the
blocking from the continuum is easy. Namely
we will study the projection on to the coupling
constant plane composed of the 10 quadratic
interactions of the renormalized action.

APPENDIX D: EVALUATION OF THE
SELF-COUPLING TERM D;1(0)

The 10 quadratic interactions of D, (s, s") are explicitly
written from Table III for each color component as

Dy, (s.s") = ZF(i)(Si)W(S»S’% (D1)

where F'(i) are coupling constants, and the operators S; are
shown as follows:

Sl - 53/’35

jTR
1
Sz = 5 [a\*’.erﬂ + 6‘\‘/#—#}5%”
1
Sy = 2 Z [0 s+a + 05 s—alBus
a(#u)
1
Sy = 4 Z 05 s+pta + 05 s4u—a
al#u)

+ 55’,s—ﬂ+a + 5s’,s—ﬂ—a]5u,1/
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FIG. 19. Comparison of the coupling constants of two next
nearest-neighbor interactions versus b = na(f) between the
actions of 10 two-point interactions with and without higher
interactions on 48* in MCG.

1
SS = Z [5s’,s+a+ﬂ + 55’,s‘+a—ﬂ
aP(Fu)
+ 6s',s—(l+/} + 53",3‘—{1—/3]6/4,11

1
SS = E [55’,s+2;4 + 55’,5—2[!}5[!,1/

1
SlO = 5 Z [ax",erZ(l + 6‘\'/,‘&'—2(1]5;4,1/'
al(#p)

Here irrelevant terms Sg, S;, So are not written explicitly.
As shown in Table V, the self-coupling F (1) is much larger
than other coupling constants. Hence the inverse propaga-
tor D;;)(s,s") can be evaluated by the expansion with
respect to F(1). It is easy to see the self-coupling term
contribution to the inverse propagator comes only from the
quadratic terms of S; in the expansion. Considering the
numerical data showing F(1)> F(2) ~ F(3) > F(4)~
F(5) > higher terms, the relevant non-negligible operators
are 3,583,587, 52,53, 5553, 53. These operators are evalu-
ated explicitly as

04| ‘ 2pt+4£)t+6pt +‘—+—4 i

02+

F(11)
(==}
T
E
3
4
.|_
4-
+

04
4pt coupling F(11)
206 F i

Il Il Il Il Il Il Il Il
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b=na(B)
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+

003 F+ 6pt coupling F(12) 1
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FIG. 20. The coupling constants of four- and six-point inter-
actions versus b = na(f) in the action of 10 two-point inter-
actions with higher interactions on 48* in MCG.

, 1 1
52:5S1+§S8,
3 1
Sg:isl+58+5510,
3 1 3
Si=1S1+58s+ S+
3 3
S5 = 451+4510+
3
St =185,
273 +-
3
$385==8, +
2 T+
25
S3==S5
g o1t
Hence we get
1 3F(3 3F(4)> 3F(5)?
D:(0)= +()+ ()+ ()3+ (5)
F(1) 2F(1)® "2F(1)3 "4F(1)® " 4F(1)
3F(2)* 2)2F(3)2 25F(3)*
3 TP SO o
8F(1) 2F(1) 8F(1)
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TABLE V. Comparison of the monopole actions: an example of n = 4 and f = 3.2 (b = 1.052(c

-1/2

oye ) on 48 lattice in MCG gauge.

S%O Error S§7 Error S%O + 544 80 Error S%7 + 544 56 Error
F(1) 9.02E-01 4.13E-04 9.22E-01 8.45E-05 1.49E + 00 1.16E-02 1.56E + 00 7.06E-03
F(2) 2.96E-01 2.41E-03 3.20E-01 9.50E-05 2.47E-01 5.99E-04 2.74E-01 1.10E-04
F(3) 2.11E-01 1.37E-03 2.50E-01 1.05E-05 1.91E-01 1.25E-03 2.32E-01 7.58E-04
F4) 7.75E-02 1.15E-03 9.96E-02 1.23E-04 6.74E-02 8.83E-04 9.30E-02 1.73E-03
F(5) 5.79E-02 1.24E-03 9.11E-02 1.22E-04 5.01E-02 1.26E-03 8.59E-02 1.60E-03
F(6) 2.85E-02 2.85E-04 5.18E-02 1.12E-04 1.65E-02 5.70E-04 4.76E-02 9.68E-04
F(7) 2.02E-02 8.86E-04 4.01E-02 9.13E-07 1.32E-02 2.94E-04 3.81E-02 3.17E-04
F(8) 1.64E-02 2.05E-03 2.54E-02 1.99E-06 1.01E-02 7.24E-05 2.33E-02 1.28E-04
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