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We present a new dual representation for lattice QCD in terms of wordlines and worldsheets. The exact
reformulation is carried out using the recently developed Abelian color flux method where the action is
decomposed into commuting minimal terms that connect different colors on neighboring sites. Expanding
the Boltzmann factors for these commuting terms allows one to reorganize the gauge field contributions
according to links such that the gauge fields can be integrated out in closed form. The emerging constraints
give the dual variables the structure of worldlines for the fermions and worldsheets for the gauge degrees of
freedom. The partition sum has the form of a strong coupling expansion, and with the Abelian color flux
approach discussed here all coefficients of the expansion are known in closed form. We present the dual
form for three cases: pure SU(3) lattice gauge theory, strong coupling QCD and full QCD, and discuss in
detail the constraints for the color fluxes and their physical interpretation.
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I. INTRODUCTION

An important strategy in theoretical physics is to find
different representations of a system, such that after
rewriting a model in terms of new degrees of freedom
different physical aspects are revealed or new methods can
be applied. In the context of lattice field theories exact
transformations to representations in terms of worldlines
for matter fields and worldsheets for gauge degrees of
freedom have been studied in recent years (see, e.g., the
reviews at the annual lattice conferences [1–4]). A strong
motivation for this line of work is the sign problem at finite
chemical potential, which in some models can be overcome
with worldline/worldsheet representations, such that finite
density simulations become accessible. However, recently
also more abstract questions were addressed concerning the
form of the constraints for the dual variables (i.e., world-
lines and worldsheets) for different symmetries of the
conventional representation.
Finding dual representations for theories with Abelian

symmetries is essentially a closed case, see, e.g., the
standard review [5]. For many Abelian systems a second
transformation to yet another set of variables allows one to
solve all constraints and to arrive at a completely dual form

in the Kramers-Wannier sense [6]. However, for non-
Abelian symmetries the situation is far less advanced.
The key technique is strong coupling expansion which
has been explored since the earliest days of lattice field
theory [7–11]. Recently, diagrammatic representations in
terms of worldlines and worldsheets for QCD and QCD-
like lattice field theories have seen a prominent revival, see,
e.g. [12–23], mostly driven by the quest for finding new
representations to solve the aforementioned sign problem
of QCD. However, so far no real and positive finite density
representations were found (including the approach pre-
sented here), and obviously new concepts, such as partial
resummations are needed for possible applications in finite
density simulations.
In this paper we present a dual representation of lattice

QCD in terms of worldlines and worldsheets based on the
recently introduced “Abelian color flux (ACF) approach”
[21–23]. While most approaches to strong coupling rep-
resentations of non-Abelian theories rely on group inte-
grals, often in the form of character expansion, the ACF
approach decomposes the action into its smallest possible
units, which are terms that connect different color indices
on neighboring sites of the lattice. These objects are either
complex numbers for the gauge field action or Grassmann
bilinears for the fermions and thus commute in both cases.
After expanding the individual Boltzmann factors one can
reorder all terms and organize them with respect to links,
such that they can be integrated over with the link-based
Haar measure. No long range interdependencies of the
integrals emerge, and all terms of the ACF form of the
strong coupling expansion are obtained as closed expres-
sions. We stress at this point that some of the weights have a
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negative sign, so without some form of resummation our
representation cannot be directly used in a Monte Carlo
simulation.
In this paper we focus on working out the ACF

formulation for QCD, starting with the simpler cases of
pure SU(3) gauge theory and strong coupling QCD, and
deriving from those two limiting cases the full dual form of
lattice QCD in terms of worldlines and worldsheets. We
discuss in detail the form of the constraints that emerge for
our dual degrees of freedom and show that they have the
form of a conservation law for fluxes of all three colors
(“color conservation constraints”) and a second set of
constraints that ensure the equal distribution of flux among
the colors (“color exchange constraints”). We discuss the
implications and geometrical interpretation of the con-
straints for all three cases we consider, i.e., pure SU(3)
gauge theory, strong coupling QCD and full QCD. For the
case of strong coupling QCDwe discuss the behavior of the
strong coupling baryon loops and show that they are closely
related to free staggered fermions for the baryons,
embedded in a background of local fermion monomials
with positive weights.

II. SU(3) LATTICE GAUGE THEORY

We start the presentation with deriving the worldsheet
representation for pure SU(3) lattice gauge theory. Wework
with the Wilson gauge action

SG½U� ¼ −
β

3

X
x;μ<ν

ReTrUx;μUxþμ̂;νU
†
xþν̂;μU

†
x;ν; ð1Þ

where Ux;μ ∈ SUð3Þ are the dynamical degrees of freedom
of the theory. They live on the links ðx; μÞ of a four-
dimensional lattice with periodic boundary conditions. The
size of the lattice, i.e., the number of sites will be denoted
by V. The partition function Z is obtained by integrating the
Boltzmann factor e−SG½U� with the product of SU(3) Haar
measures

R
D½U� ¼ Q

x;μ

R
SUð3Þ dUx;μ,

Z ¼
Z

D½U�e−SG½U�: ð2Þ

As already outlined in the Introduction, the first step of
our approach consists of writing explicitly the trace and the
matrix multiplications in the action (1) as sums over color
indices for products of gauge link elements Uab

x;μ,

SG½U� ¼ −
β

6

X
x;μ<ν

X3
a;b;c;d¼1

½Uab
x;μUbc

xþμ̂;νU
dc ⋆
xþν̂;μU

ad ⋆
x;ν

þ Uab ⋆
x;μ Ubc ⋆

xþμ̂;νU
dc
xþν̂;μU

ad
x;ν�: ð3Þ

The two products Uab
x;μUbc

xþμ̂;νU
dc ⋆
xþν̂;μU

ad ⋆
x;ν and

Uab ⋆
x;μ Ubc ⋆

xþμ̂;νU
dc
xþν̂;μU

ad
x;ν are the objects we refer to as the

“Abelian color cycles” (ACCs) [21]. They are products of
complex numbers and can be interpreted as paths in color
space closing around plaquettes. In space-time we label the
plaquettes ðx; μνÞ with the site x in their lower left corner
and the two directions μ < ν. The labeling of the ACCs is
then completed by providing the values (a, b, c, d) of the
color indices at the four corners of the plaquette which
determine the path in color space.
To give an example, in Fig. 1 we graphically illustrate

the (1,2,3,3)-ACC which in explicit form is given by
U12

x;μU23
xþμ̂;νU

33 ⋆
xþν̂;μU

13 ⋆
x;ν . The color degrees of freedom are

represented by using a lattice with three layers, which in the
figure we sketch in light grey as three copies of the
plaquette we consider. The terms in the (1,2,3,3)-ACC
then all have a simple graphical representation: The factor
U12

x;μ is represented by an arrow connecting the color index
1 at xwith the color index 2 at xþ μ̂. The factorU23

xþμ̂;ν then
continues from color 2 to color 3 along the link from xþ μ̂
to xþ μ̂þ ν̂. Link matrix elements with a complex con-
jugation are interpreted as running in a negative direction,
such that U33 ⋆

xþν̂;μ leads from color 3 at xþ μ̂þ ν̂ to color 3
at xþ ν̂ and U13 ⋆

x;ν closes the loop leading from color 3 at
xþ ν̂ to color 1 at x.
The rule of reverting the orientation with complex

conjugation implies that the ACCs in the second summand
of (3) run around the plaquette ðx; μνÞ with a mathemati-
cally negative orientation. Since for SU(3) there are three
different possible choices for the color at every corner of
the plaquette there is a total of 34 ¼ 81 different ACCs,
each contributing with both orientations to (3).
The ACC decomposition (3) of the action (1) allows us to

completely factorize the Boltzmann factor and to proceed

x+µx

2

1

3

x+ x+µ+

Ux,
12

μ

Ux+µ,
23

Ux+ ,
33 *

μ

Ux,
13 *

ν

FIG. 1. Graphical representation of the (1,2,3,3)-ACC, which
explicitly is given by U12

x;μU23
xþμ̂;νU

33 ⋆
xþν̂;μU

13 ⋆
x;ν . This ACC closes

around the plaquette ðx; μνÞ running through the sequence
(1,2,3,3) of color indices at the corners of the plaquette. In the
graphical representation the color degrees of freedom are shown
as three distinct layers of the space-time lattice, labeled with 1,2,
and 3 on the lhs of the plot. Each of the matrix elements Uab

x;μ

constituting the ACC is represented by an arrow along the
corresponding link ðx; μÞ connecting color a with color b. For
complex conjugate matrix elements the link is run through with
negative orientation.
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with the dualization of the theory along the lines of the
construction for Abelian gauge fields (see, e.g., [24,25]),

Z ¼
Z

D½U�
Y
x;μ<ν

Y
a;b;c;d

e
β
6
ðUab

x;μUbc
xþμ̂;νU

dc ⋆
xþν̂;μU

ad ⋆
x;ν þc:c:Þ

¼
Z

D½U�
Y
x;μ<ν

Y
a;b;c;d

X∞
nabcdx;μν ¼0

X∞
n̄abcdx;μν ¼0

ðβ/6Þnabcdx;μν þn̄abcdx;μν

nabcdx;μν !n̄abcdx;μν !

× ðUab
x;μUbc

xþμ̂;νU
dc ⋆
xþν̂;μU

ad ⋆
x;ν Þnabcdx;μν ðc:c:Þn̄abcdx;μν : ð4Þ

In the first step we have written all sums in the exponents
as products over the individual Boltzmann weights

e
β
6
Uab

x;μUbc
xþμ̂;νU

dc ⋆
xþν̂;μU

ad ⋆
x;ν and e

β
6
Uab ⋆

x;μ Ubc ⋆
xþμ̂;νU

dc
xþν̂;μU

ad
x;ν for the ACCs

with positive and negative orientation. In the second
step we expand each factor in a Taylor series, thus
introducing two sets of expansion indices assigned to
the plaquettes: nabcdx;μν ∈ N0 and n̄abcdx;μν ∈ N0 where the color
indices a, b, c and d each can have the values 1, 2 or 3. The
variables nabcdx;μν correspond to the units of flux with color
indices a, b, c, d around the plaquette ðx; μνÞ in a positive
orientation, and n̄abcdx;μν is used for flux with negative
orientation.
All the factors in the sums in (4) are products of complex

numbers, such that we can freely commute them and
reorganize them as in the Abelian case. Ordering the terms
with respect to the links ðx; μÞ where we will subsequently

integrate them with the Haar measure, the partition sum
assumes the form

Z ¼
X
fn;n̄g

�Y
x;μ<ν

Y
a;b;c;d

ðβ/6Þnabcdx;μν þn̄abcdx;μν

nabcdx;μν !n̄abcdx;μν !

�

×

�Y
x;μ

Z
dUx;μ

Y
a;b

ðUab
x;μÞNab

x;μðUab ⋆
x;μ ÞNab

x;μ

�
; ð5Þ

where for the sum over configurations of the variables
nabcdx;μν , n̄abcdx;μν ∈ N0 we introduced the short hand notationP

fn;n̄g ¼
Q

x;μ<ν

Q
3
a;b;c;d¼1

P∞
nabcdx;μν ¼0

P∞
n̄abcdx;μν ¼0

. The integer

valued powers Nabcd
x;μν and Nabcd

x;μν collect all nabcdx;μν and n̄abcdx;μν

where the matrix elements Uab
x;μ and Uab⋆

x;μ appear. Explicitly
they are given by

Nab
x;μ ¼

X
ν∶μ<ν

nabssx;μν þ n̄ssbax−ν̂;μν þ
X
ρ∶μ>ρ

n̄assbx;ρμ þ nsabsx−ρ̂;ρμ; ð6Þ

Nab
x;μ ¼

X
ν∶μ<ν

n̄abssx;μν þ nssbax−ν̂;μν þ
X
ρ∶μ>ρ

nassbx;ρμ þ n̄sabsx−ρ̂;ρμ: ð7Þ

The label s introduced here is the short hand notation for an
independent summation over all color indices replaced by
s, e.g., nassbx;ρμ ≡P

c;dn
acdb
x;ρμ .

The Haar measure integration in (5) is now done using an
explicit parametrization for the SU(3) matrices [26],

Ux;μ ¼

0
B@

c1c2eiϕ1 s1eiϕ3 c1s2eiϕ4

s2s3e−iϕ4−iϕ5 − s1c2c3eiϕ1þiϕ2−iϕ3 c1c3eiϕ2 −c2s3e−iϕ1−iϕ5 − s1s2c3eiϕ2−iϕ3þiϕ4

−s2c3e−iϕ2−iϕ4 − s1c2s3eiϕ1−iϕ3þiϕ5 c1s3eiϕ5 c2c3e−iϕ1−iϕ2 − s1s2s3e−iϕ3þiϕ4þiϕ5

1
CA: ð8Þ

The parametrization uses three angles θðjÞx;μ ∈ ½0; π/2�,
j ¼ 1, 2, 3 and five phases ϕðjÞ

x;μ ∈ ½−π; π�, j ¼ 1…5. In (8)

we use the abbreviations cj ¼ cos θðjÞx;μ, sj ¼ sin θðjÞx;μ and

ϕj ¼ ϕðjÞ
x;μ. For the parametrization (8) the normalized Haar

measure is given by

dUx;μ ¼ 16dθ1c31s1dθ2c2s2dθ3c3s3
Y5
j¼1

dϕj

2π
: ð9Þ

We will see below that the integration over the angles

ϕðjÞ
x;μ; j ¼ 1; 2…5 will give rise to constraints for the

variables nabcdx;μν and n̄abcdx;μν . In order to give these constraints
a transparent form it is useful to perform the change of
variables

nabcdx;μν − n̄abcdx;μν ¼ pabcd
x;μν ; pabcd

x;μν ∈ Z; ð10Þ

nabcdx;μν þ n̄abcdx;μν ¼ jpabcd
x;μν j þ 2labcdx;μν ; labcdx;μν ∈ N0; ð11Þ

and instead of summing over the configurations of the nabcdx;μν

and n̄abcdx;μν to sum over configurations of the pabcd
x;μν and labcdx;μν .

The sets of variables pabcd
x;μν ∈ Z and labcdx;μν ∈ N0, which are

both assigned to the plaquettes of the lattice will be the
new dynamical dual degrees of freedom that we use in
the partition sum after integrating out the conventional
fields Ux;μ.
The pabcd

x;μν will be subject to constraints, and for under-
standing these constraints it is important to discuss the
geometrical interpretation of the pabcd

x;μν : From the definition
(10) and the interpretation of the nabcdx;μν (n̄abcdx;μν ) as the
activation numbers for ða; b; c; dÞ-ACCs with a positive
(negative) orientation it is clear that the new variables pabcd

x;μν

activate jpabcd
x;μν j units of flux for the ða; b; c; dÞ-ACC on the

plaquette ðx; μνÞ, with the orientation of the flux given by
the sign of the pabcd

x;μν . We refer to the pabcd
x;μν as “cycle

occupation numbers”. The labcdx;μν are not subject to con-
straints, and we simply refer to them as “auxiliary pla-
quette variables”.
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For further simplification it is convenient to introduce the
link fluxes

Jabx;μ ¼
X
ν∶μ<ν

½pabss
x;μν − pssba

x−ν̂;μν� −
X
ρ∶μ>ρ

½passb
x;ρμ − psabs

x−ρ̂;ρμ�; ð12Þ

and the auxiliary link sums

Sabx;μ ¼
X
ν∶μ<ν

½jpabss
x;μν jþ jpssba

x−ν̂;μνjþ2ðlabssx;μν þ lssbax−ν̂;μνÞ�

þ
X
ρ∶μ>ρ

½jpassb
x;ρμ jþ jpsabs

x−ρ̂;ρμjþ2ðlassbx;ρμ þ lsabsx−ρ̂;ρμÞ�: ð13Þ

We will see that only the fluxes Jabx;μ will appear in the
constraints, and we thus have to extend our geometrical
interpretation of the dual variables to these objects: Jabx;μ is
the total flux from color a on site x to color b on site xþ μ̂.
This flux receives contributions from all the ACCs that are
attached to the link ðx; μÞ and that contain the path from
color a to b along that link. So, if we consider the plaquette
ðx; μνÞ, with μ < ν, we have nine different ACCs that
contribute to that flux, namely the ones corresponding to
the cycle occupation numbers pabef

x;μν , where a and b are the
color indices which we fix at x and xþ μ̂. The colors e and f
determine the ACC at the remaining two corners of ðx; μνÞ.
Both, e and f can be chosen independently from the set
f1; 2; 3g such that we have 32 ¼ 9 possibilities. Since the
flux of the ACCs on the plaquette ðx; μνÞ has a positive
orientation along the link ðx; μÞ, these nine ACCs contribute
with a positive sign in the definition (12) of the fluxes Jabx;μ.
However, Jabx;μ receives contributions from all plaquettes that
contain the link ðx; μÞ, such as the plaquettes ðx; ρμÞ with
ρ < μ. For this case Jabx;μ receives contributions from the nine

ACCs with occupation numbers paefb
x;ρμ , but here the link

ðx; μÞ is run through with a negative orientation, such that
the paefb

x;ρμ contribute with a negative sign. For the remaining
plaquettes that contain the link ðx; μÞ and thus contribute to
Jabx;μ an analogous discussion holds.
In order to illustrate the geometrical interpretation of the

cycle occupation numbers that contribute to a given Jabx;μ, in
Fig. 2 we illustrate the contributions from a plaquette
ðx; ρμÞwith ρ < μ to J12x;μ. The (1,2) flux on the link ðx; μÞ is
fixed and represented with a full arrow pointing in the

positive μ direction. The nine ACCs on the plaquette
ðx; ρμÞ that contribute to this flux are represented with
dashed lines in the figure. Since the ACCs on the plaquette
ðx; ρμÞ have a negative orientation of the flux on the link
ðx; μÞ, they contribute with a negative sign to the flux J12x;μ.
Having introduced the fluxes Jabx;μ and the auxiliary sums

Sabx;μ we can rewrite the integers Nab
x;μ and Nab

x;μ that denote
the powers of Uab

x;μ and Uab⋆
x;μ in (5) in terms of the Jabx;μ and

Sabx;μ as

Nab
x;μ ¼

Sabx;μ þ Jabx;μ
2

; Nab
x;μ ¼

Sabx;μ − Jabx;μ
2

: ð14Þ

Since in (5) the matrix elements Uab
x;μ appear in the

combination ðUab
x;μÞNab

x;μðUab ⋆
x;μ ÞNab

x;μ the form (14) separates
the moduli and the phases of the matrix elements in a
natural way.
However, an additional step is still required before we

arrive at the final form of the terms in (5) where we can
perform the Haar measure integration at each link. The
problem is that some of the elements Uab

x;μ of the matrix (8)

are not in the simple form Uab
x;μ ¼ rabx;μeiφ

ab
x;μ , but are sums

Uab
x;μ ¼ ρabx;μeiα

ab
x;μ þ ωab

x;μeiβ
ab
x;μ . More specifically, in the para-

metrization (8) the ða; bÞ ¼ ð2; 1Þ; ð2; 3Þ; ð3; 1Þ and (3,3)
matrix elements are sums of two terms. For these entries we
use the binomial theorem ðxþ yÞn ¼ P

n
k¼0ðnkÞxn−kyk and

rewrite their contribution in the integrand of (5) as

ðUab
x;μÞNab

x;μðUab ⋆
x;μ ÞNab

x;μ ¼ ðρabx;μeiαabx;μ þ ωab
x;μeiβ

ab
x;μÞNab

x;μðρabx;μe−iαabx;μ þ ωab
x;μe−iβ

ab
x;μÞNab

x;μ

¼
XNab

x;μ

mab
x;μ¼0

XNab
x;μ

mab
x;μ¼0

�
Nab

x;μ

mab
x;μ

��
Nab

x;μ

mab
x;μ

�
ðρabx;μÞsabx;μðωab

x;μÞSabx;μ−sabx;μeiαabx;μjabx;μeiβabx;μðJabx;μ−jabx;μÞ

with mab
x;μ ¼ 0; 1…Nab

x;μ; mab
x;μ ¼ 0; 1…Nab

x;μ;

and jabx;μ ≡mab
x;μ −mab

x;μ; sabx;μ ≡mab
x;μ þmab

x;μ: ð15Þ

2

1

3

x

x + µ

x + ρ

-p x,
1ss2

FIG. 2. Graphical illustration of the sum −p1ss2
x;ρμ contributing to

the flux J12x;μ.
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Note that the new auxiliary variables mab
x;μ and m̄ab

x;μ which
we use for the binomial decomposition of the matrix
elements with ða; bÞ ¼ ð2; 1Þ, (2,3), (3,1) and (3,3) live
on the links of the lattice.

To obtain the final result for the partition function we
substitute the parametrization (8) and the Haar measure (9)
in (5) and use the binomial decomposition (15). For the
partition function we then obtain

Z ¼ 24V
X
fp;lg

X
fm;mg

�Y
x;μ<ν

Y
a;b;c;d

ðβ/2Þjpabcd
x;μν jþ2labcdx;μν

ðjpabcd
x;μν j þ labcdx;μν Þ!labcdx;μν !

��Y
x;μ

ð−1ÞS23x;μþS31x;μþs21x;μþs33x;μ

��Y
x;μ

Y
a¼2;3

Y
b¼1;3

�
Nab

x;μ

mab
x;μ

��
Nab

x;μ

mab
x;μ

��

×
Y
x;μ

2

Z
π/2

0

dθð1Þx;μðcos θð1Þx;μÞ3þS11x;μþS13x;μþS22x;μþS32x;μðsin θð1Þx;μÞ1þS12x;μþs21x;μþs23x;μþs31x;μþs33x;μ

× 2

Z
π/2

0

dθð2Þx;μðcos θð2Þx;μÞ1þS11x;μþs21x;μþS23x;μ−s23x;μþs31x;μþS33x;μ−s33x;μðsin θð2Þx;μÞ1þS13x;μþS21x;μ−s21x;μþs23x;μþS31x;μ−s31x;μþs33x;μ

× 2

Z
π/2

0

dθð3Þx;μðcos θð3Þx;μÞ1þs21x;μþS22x;μþs23x;μþS31x;μ−s31x;μþS33x;μ−s33x;μðsin θð3Þx;μÞ1þS21x;μ−s21x;μþS23x;μ−s23x;μþs31x;μþS32x;μþs33x;μ

×
Z

2π

0

dϕð1Þ
x;μ

2π
eiϕ

ð1Þ
x;μ½J11x;μ−J23x;μ−J33x;μþj21x;μþj23x;μþj31x;μþj33x;μ�

Z
2π

0

dϕð2Þ
x;μ

2π
eiϕ

ð2Þ
x;μ½J22x;μ−J31x;μ−J33x;μþj21x;μþj23x;μþj31x;μþj33x;μ�

×
Z

2π

0

dϕð3Þ
x;μ

2π
eiϕ

ð3Þ
x;μ½J12x;μ−j21x;μ−j23x;μ−j31x;μ−j33x;μ�

Z
2π

0

dϕð4Þ
x;μ

2π
eiϕ

ð4Þ
x;μ½J13x;μ−J21x;μ−J31x;μþj21x;μþj23x;μþj31x;μþj33x;μ�

×
Z

2π

0

dϕð5Þ
x;μ

2π
eiϕ

ð5Þ
x;μ½J32x;μ−J21x;μ−J23x;μþj21x;μþj23x;μþj31x;μþj33x;μ�; ð16Þ

where we introduced the short hand notation

X
fpg

¼
Y
x;μ<ν

Y
a;b;c;d

X∞
pabcd
x;μν ¼−∞

;
X
flg

¼
Y
x;μ<ν

Y
a;b;c;d

X∞
labcdx;μν ¼0

; ð17Þ

for the sums over configurations of the cycle occupation
numbers pabcd

x;μν ∈ Z and the auxiliary plaquette variables
labcdx;μν ∈ N0, as well as

X
fm;mg

¼
Y
x;μ

Y
a¼2;3

Y
b¼1;3

XNab
x;μ

mab
x;μ¼0

XNab
x;μ

mab
x;μ¼0

; ð18Þ

for the sums over configurations of the link based
auxiliary variables mab

x;μ and m̄ab
x;μ used in the binomial

decomposition (15).
A key step of our approach is that now, after expanding

the Boltzmann factors for the individual ACCs and reor-
ganizing all contributions with respect to links, in (16) we
can solve all Haar measure integrals in closed form. The

integrals over the angles θðjÞx;μ give rise to beta functions,

2

Z
π/2

0

dθðcosθÞnþ1ðsinθÞmþ1 ¼B

�
n
2
þ1

����m2 þ1

�
: ð19Þ

The integrals over the phase factors ϕðjÞ
x;μ in (16) give rise to

Kronecker deltas [we use the notation δðnÞ≡ δn;0] which
impose constraints on the dual variables.

Putting together all terms we can write the dual form of
the partition function of pure SU(3) lattice gauge theory in
the form

Z ¼
X
fpg

WG½p�CG½p�; ð20Þ

where we have defined the link-based gauge constraints
CG½p� that are given by

CG½p� ¼
Y
x;μ

δðJ12x;μ þ J13x;μ − J21x;μ − J31x;μÞ

× δðJ21x;μ þ J23x;μ − J12x;μ − J32x;μÞ
× δðJ11x;μ þ J12x;μ − J23x;μ − J33x;μÞ
× δðJ31x;μ þ J33x;μ − J12x;μ − J22x;μÞ: ð21Þ

At every link ðx; μÞ we have four individual constraints that
come from integrating the four phases ϕðjÞ

x;μ; j ¼ 1, 2, 4, 5 of
the representation (8) giving rise to the four Kronecker
deltas shown in (21). Here we have already taken into

account another constraint generated by the ϕð3Þ
x;μ integral in

(16) which implements the relation

j21x;μ þ j23x;μ þ j31x;μ þ j33x;μ ¼ J12x;μ; ð22Þ

that connects J12x;μ to the auxiliary currents jabx;μ ¼
mab

x;μ − m̄ab
x;μ for the variables mab

x;μ; m̄ab
x;μ introduced in
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(15) for the binomial decomposition for the (2,1),
(2,3), (3,1) and (3,3) matrix elements. To obtain (21)
we have used (22) to replace the combination
j21x;μ þ j23x;μ þ j31x;μ þ j33x;μ by J12x;μ in the integrals over

ϕðjÞ
x;μ; j ¼ 1, 2, 4, 5 in (16). In the final form (21) of

CG½p� we show only the corresponding four constraints,

while the constraint (22) is included in the weight fac-
tor WG½p�.
The weight factor WG½p� in (20) is itself a sum

P
fl;m;m̄g

over configurations of the auxiliary plaquette variables
labcdx;μν and the link-based auxiliary variables mab

x;μ and m̄ab
x;μ

used for the binomial decomposition in (15),

WG½p� ¼ 24V
X

fl;m;mg

�Y
x;μ

δðJ12x;μ − j21x;μ − j23x;μ − j31x;μ − j33x;μÞ
��Y

x;μ

ð−1ÞJ12x;μþJ23x;μþJ31x;μ−j23x;μ−j31x;μ

�

×

�Y
x;μ

Y
a¼2;3

Y
b¼1;3

�
Nab

x;μ

mab
x;μ

��
Nab

x;μ

mab
x;μ

���Y
x;μ<ν

Y
a;b;c;d

ðβ/2Þjpabcd
x;μν jþ2labcdx;μν

ðjpabcd
x;μν j þ labcdx;μν Þ!labcdx;μν !

�

×

�Y
x;μ

B

�
S11x;μ þ S13x;μ þ S22x;μ þ S32x;μ

2
þ 2

���� S
12
x;μ þ s21x;μ þ s23x;μ þ s31x;μ þ s33x;μ

2
þ 1

�

× B
�
S11x;μ þ s21x;μ þ S23x;μ − s23x;μ þ s31x;μ þ S33x;μ − s33x;μ

2
þ 1

���� S
13
x;μ þ S21x;μ − s21x;μ þ s23x;μ þ S31x;μ − s31x;μ þ s33x;μ

2
þ 1

�

× B

�
s21x;μ þ S22x;μ þ s23x;μ þ S31x;μ − s31x;μ þ S33x;μ − s33x;μ

2
þ 1

���� S
21
x;μ − s21x;μ þ S23x;μ − s23x;μ þ s31x;μ þ S32x;μ þ s33x;μ

2
þ 1

��
: ð23Þ

The configurations of the mab
x;μ and m̄ab

x;μ are restricted by
the Kronecker delta constraints, which implement (22) at
every link ðx; μÞ. In WG½p� we collect all weights from the
expansion of the individual Boltzmann factors and the beta
functions resulting from the Haar measure integrals. These
weight factors are organized with respect to powers of the
inverse gauge coupling β, i.e., the dual formulation in terms
of ACC cycle occupation numbers which we develop here
is a strong coupling expansion. A major advantage of the
strong coupling series in terms of ACCs is that all weight
factors at arbitrary orders of β are known in a closed form:
They are given in terms of factorials, binomial coefficients
and beta functions (which can also be rewritten as fractions
of factorials). We stress that in the form (23) there is an
explicit sign factor. This factor comes from the minus signs
in the parametrization (8) used for the SU(3) group
elements. This implies that for a Monte Carlo simulation
of the ACC dual form a strategy for partial resummation
needs to be found.
Let us now come to the announced discussion of the

constraints in (21). Understanding how the SU(3) sym-
metry of the conventional representation becomes manifest
in terms of constraints for the dual variables is one of the
key points of this paper. In (21) at each link ðx; μÞ the fluxes
Jabx;μ are related to each other by four constraints imple-
mented by Kronecker deltas. These relations read

J12x;μ þ J13x;μ ¼ J21x;μ þ J31x;μ; ð24Þ

J21x;μ þ J23x;μ ¼ J12x;μ þ J32x;μ; ð25Þ

J11x;μ þ J12x;μ ¼ J23x;μ þ J33x;μ; ð26Þ

J31x;μ þ J33x;μ ¼ J12x;μ þ J22x;μ: ð27Þ

The relations (24)–(27) describe how the SU(3) gauge
invariance of the conventional representation is encoded in
constraints for the fluxes Jabx;μ. These relations can be
combined and reorganized in a way that makes the flow
between the different color indices a, b more transparent.
On both sides of (24) we may add J11x;μ and on both sides of
(25) we add J22x;μ. Furthermore we can subtract (25) from
(24) and add J33x;μ on both sides. This gives the following
three relations:

J11x;μ þ J12x;μ þ J13x;μ ¼ J11x;μ þ J21x;μ þ J31x;μ; ð28Þ

J21x;μ þ J22x;μ þ J23x;μ ¼ J12x;μ þ J22x;μ þ J32x;μ; ð29Þ

J31x;μ þ J32x;μ þ J33x;μ ¼ J13x;μ þ J23x;μ þ J33x;μ: ð30Þ

The first relation (28) implies that for all links ðx; μÞ the
flux out of color 1 at x equals the flux into color 1 at xþ μ̂.
The other two relations imply the same conservation law
for color 2 and color 3. Thus for all three colors a ¼ 1, 2, 3
we have the constraint that along each link the flux out of
color a has to match the flux into that color a. Consequently
the constraints (28)–(30) imply that for each color a the
flux that runs through a is the same at all sites. Thus we
refer to (28)–(30) as the “color conservation constraints”.
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These three constraints are illustrated in the first three plots
of Fig. 3.
A second type of constraints among the Jabx;μ is obtained

by adding J13x;μ on both sides of (26) and adding J32x;μ on both
sides of (27). The right-hand sides of the resulting two
equations are then replaced using (29) and (30), and we can
summarize the resulting relations as

J11x;μ þ J12x;μ þ J13x;μ ¼ J21x;μ þ J22x;μ þ J23x;μ

¼ J31x;μ þ J32x;μ þ J33x;μ: ð31Þ

This constraint implies that the flux that flows out of a color
a along a link ðx; μÞ is the same for all three colors a. Thus
if flux is exchanged between the colors along some link, the
exchanged flux has to be the same for all three colors. We
refer to (31) as “color exchange constraints”.
The relations (28)–(31) enforce constraints among the

fluxes Jabx;μ that have to be obeyed at every link ðx; μÞ. The
fluxes Jabx;μ defined in (12) depend only on the cycle
occupation numbers pabcd

x;μν ∈ Z, and thus only this set of
dual variables is subject to the constraints—the auxiliary
plaquette variables labcdx;μν ∈ N0 are unconstrained. Thus the
three color conservation constraints (28)–(30) and the color
exchange constraint (31) implement the original SU(3)
symmetry as a set of constraints that govern the flux of the
colors in the dual form of the theory. Identifying these
constraints is one of the key goals of this paper.
We stress at this point that the form (28)–(31) of the

constraints is overcomplete, since it contains six relations

constructed out of the original four relations (24)—(27).
However, the overcomplete final form (28)–(31) where the
constraints are not all independent better illustrates the
complete symmetry among the three colors.
The constraints imply matching conditions for the color

flux along the links of the lattice, where originally this flux
comes from nonzero cycle occupation numbers pabcd

x;μν . Thus
at links where plaquettes touch, the corresponding cycle
occupation numbers have to be matched such that con-
straints are obeyed.
For this matching two cases can be distinguished: The

trivial case where cycle occupation numbers that sit on the
same plaquette together obey the constraints. Obviously
this is only a local contribution and does not contribute to
the long range physics.
Relevant for the long range physics and thus the

continuum limit are the contributions where neighboring
plaquettes share a link such that the cycle occupation
numbers at neighboring plaquettes are correlated by the
constraints. This gives rise to generalized surfaces which
we refer to as “worldsheets”. To see the worldsheet nature
of nonlocal admissible configurations we start with setting
a single cycle occupation number to pabcd

x;μν ¼ 1. Clearly this
violates the constraints along the four links of the plaquette
ðx; μνÞ. If one now takes a neighboring plaquette and
selects the corresponding cycle occupation number such
that at the joint link the constraints are obeyed, then we
have a surface consisting of two plaquettes and the contour
of links with violated constraints contains six links. One
can keep attaching plaquettes with suitably chosen pla-
quette occupation numbers to grow the 2D surface further,
and the constraints will always be violated along the
boundary of that surface. Thus the only way to obtain a
nonlocal configuration of nontrivial cycle occupation
numbers, such that all constraints are obeyed, is to create
a closed surface. Thus the constraints lead to a structure of
closed worldsheets for admissible configurations of cycle
occupation numbers. And since the ACCs are already
Abelian, the corresponding cycle occupation numbers
are additive, and the worldsheet picture also holds for
cycle occupation numbers with jpabcd

x;μν j > 1.
Before we come to generalizing the ACC approach to

including also fermions, let us briefly summarize the dual
worldsheet representation we have constructed for pure
SU(3) lattice gauge theory. The partition function of pure
SU(3) lattice gauge theory is exactly rewritten as a sum
over configurations of the cycle occupation numbers
pabcd
x;μν ∈ Z. At each link ðx; μÞ the fluxes Jabx;μ defined in

(12) collect the flux of the cycle occupation numbers that
connect color a at x to color b at xþ μ̂. These fluxes are
subject to the color conservation constraints (28)–(30) and
the color exchange constraint (31). These constraints
restrict the admissible configurations of the cycle occupa-
tion numbers, and the long range contributions have the
interpretation of worldsheets.

FIG. 3. Schematic representation of the three color conserva-
tion constraints (28)–(30) (top three plots) and the color
exchange constraint (31) (bottom plot). They impose relations
between the fluxes Jabx;μ and admissible configurations of the cycle
occupation numbers pabcd

x;μν have to respect these constraints.
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The configurations of the cycle occupation numbers
come with weight factors W½p� that are themselves sumsP

fl;m;m̄g over configurations of the auxiliary plaquette
variables labcdx;μν and the link-based auxiliary variables mab

x;μ

and m̄ab
x;μ. In these sums the constraint (22) restricts the

configurations of the mab
x;μ and m̄ab

x;μ by connecting their
differences jabx;μ ¼ mab

x;μ − m̄ab
x;μ to J12x;μ. The contributions to

WG½p� collect all terms from expanding the Boltzmann
factors, as well as combinatorial factors and the beta
functions coming from the Haar measure integration.
Note that these contributions come with signs going back
to the signs in the parametrization of the SU(3) matrices (8).
All terms in the dual representation are organized with

respect to powers of β, such that the dual form (20), (21),
(23) constitutes a strong coupling series. We stress again
that in this form of the strong coupling series all expansion
coefficients are known in closed form. In the following
section we introduce the matter fields and show that the
ACC approach can be generalized further to obtain a dual
form of full QCD.

III. QCD AT STRONG COUPLING

The next step towards a full dual worldline/worldsheet
representation of QCD is the generalization of the ACC
approach to matter fields. In order to simplify the presen-
tation we start with an intermediate step where we consider
the strong coupling limit. In this limit we have β ¼ 0,
i.e., the gauge action is absent. Note that in the strong
coupling regime a continuum limit cannot be performed.
Nevertheless, the strong coupling limit of QCD shares

some nonperturbative properties with full QCD, such that it
is an interesting toy model per se.
For the discussion of the structure of dual worldline

representations, which is the main goal of this paper, also
strong coupling QCD is an interesting theory: Integrating
out the SU(3) link variables will again lead to constraints
for the color fluxes along the links, but in strong coupling
QCD these fluxes are generated by the fermions, instead of
the cycle occupation numbers of pure gauge theory. Wewill
see that structurally the constraints are the same, but for
strong coupling fermion loops the constraints are simpler in
their interpretation because of the additional restrictions
from the Pauli principle.
For simplicity we will consider the derivation for a

theory with only one flavor of staggered quarks, but stress
that the generalization to an arbitrary number of flavors is
trivial. The fermionic partition function in a background of
gauge links is given by

ZF½U� ¼
Z

D½ψ̄ ;ψ �e−SF ½U;ψ ;ψ̄ �; ð32Þ

where ψx and ψ̄x are 3-component vectors of Grassmann
numbers assigned to the sites x of our four-dimensional
lattice. They obey antiperiodic boundary conditions in
the Euclidean time direction (ν ¼ 4) and periodic boundary
conditions in space. The integration measure in (32) is
a product over Grassmann measures

R
D½ψ̄ ;ψ � ¼Q

x

Q
3
a¼1

R
dψ̄a

xdψa
x . We work with the staggered fermion

action given by

SF½U;ψ ; ψ̄ � ¼
X
x

�
mψ̄xψx þ

X
ν

ηx;ν
2

ðψ̄xUx;νψxþν̂eμδν;4 − ψ̄xþν̂U
†
x;νψxe−μδν;4Þ

�

¼
X
x

�
m
X3
a¼1

ψ̄a
xψ

a
x þ

X
ν

ηx;ν
2

X3
a;b¼1

ðψ̄a
xUab

x;νψ
b
xþν̂e

μδν;4 − ψ̄b
xþν̂U

ab ⋆
x;ν ψa

xe−μδν;4Þ
�
; ð33Þ

where ηx;1 ¼ 1, ηx;2 ¼ ð−1Þx1 , ηx;3 ¼ ð−1Þx1þx2 and ηx;4 ¼
ð−1Þx1þx2þx3 are the staggered sign factors. In (33) we also
introduce a chemical potential μ, which gives a different
weight to forward and backward hopping in the euclidean
time direction. The chemical potential will later be useful to
identify the particle number in the dual representation in
terms of worldlines. In the strong coupling limit we are
considering in this section, the full partition function is
obtained by integrating the fermionic partition sum with the
product Haar measure of the previous section, i.e.,
Z ¼ R

D½U�ZF½U�.

In the first line of (33) we used matrix-vector notation
for color, while in the second line the sums over color
indices were written explicitly. Also for the theory
with fermions this decomposition of the action is the
crucial step towards the dualization. It allows one to
completely factorize the Boltzmann weight such that every
term in the last line of (33) is a single bilinear in the
Grassmann variables, and thus all terms commute with
each other.
Using this decomposition of the fermion action we write

the partition function as
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ZF ¼
Z

D½ψ̄ ;ψ �
Y
x

Y3
a¼1

e−mψ̄a
xψ

a
x

Y
x;ν

Y3
a;b¼1

e−
ηx;ν
2
ψ̄a
xUab

x;νψ
b
xþν̂e

μδν;4e
ηx;ν
2
ψ̄b
xþν̂U

ab ⋆
x;ν ψa

xe
−μδν;4

¼
Z

D½ψ̄ ;ψ �
Y
x

Y3
a¼1

X1
sax¼0

ðmψa
xψ̄

a
xÞsax

Y
x;ν

Y3
a;b¼1

X1
kabx;ν¼0

�
−ηx;ν
2

ψ̄a
xUab

x;νψ
b
xþν̂e

μδν;4

�
kabx;ν X1

k̄abx;ν¼0

�
ηx;ν
2

ψ̄b
xþν̂U

ab⋆
x;ν ψ

a
xe−μδν;4

�
k̄abx;ν

¼
�
1

2

�
3V X

fs;k;k̄g
ð2mÞ

P
x;a
sax eμ

P
x;ab

½kab
x;4̂
−k̄ab

x;4̂
�Y
x;ν

Y
a;b

ð−1Þkabx;νðηx;νÞkabx;νþk̄abx;νðUab
x;νÞkabx;νðUab⋆

x;ν Þk̄abx;ν

×
Z

D½ψ̄ ;ψ �
Y
x;a

ðψa
xψ̄

a
xÞsax

Y
x;ν

Y
a;b

ðψ̄a
xψ

b
xþν̂Þk

ab
x;νðψ̄b

xþν̂ψ
a
xÞk̄abx;ν : ð34Þ

In the first line we rewrote the Boltzmann weight as a
product over local exponential factors, which we then
Taylor expanded in the second step. Note that here the
Taylor series terminate after the linear term due to the
nilpotency of the Grassmann variables. We introduce three
types of expansion indices (one for every bilinear of the
action) that will be the new dual variables for the fermions:
sax ¼ 0, 1 is the dual variable for expanding the color
component a of the mass term contribution at site x.
kabx;ν ¼ 0, 1 generates the forward hop from color a to
color b on the link ðx; νÞ, and k̄abx;ν ¼ 0, 1 the backward hop
on the same link. When they assume the nontrivial value 1,
the three types of variables activate the corresponding
fermion bilinears: The “monomer” variable sax activates the
mass term component with color a. The dual variables kabx;ν
and k̄abx;ν that live on links activate the forward and backward
nearest neighbor bilinears ψ̄a

xψ
b
xþν̂ and ψ̄

b
xþν̂ψ

a
x that connect

color a and b along the link. We refer to these terms as
“Abelian color fluxes”.

In Fig. 4 we adapt the graphical representation which we
developed for the ACCs now also to the fermionic dual
variables sax , kabx;ν and k̄abx;ν. Again we use a lattice with three
layers for the three colors. The monomers that are activated
by sax sit on a single site x and are represented by a circle
around the color a they refer to. The “link-fluxes” kabx;ν and
k̄abx;ν connect colors a and b along the link ðx; νÞ, and we
represent them with a forward (backward) oriented arrow
that connects the color indices a and b.
In the last step of Eq. (34) we have already reorganized

the terms: We have collected an overall factor of ð1/2Þ3V
and introduced the notation

P
fs;k;k̄g for the sum over all the

possible configurations of the fermion dual variables.
Finally we write all factors that do not depend on the
Grassmann variables in front of the Grassmann integral.
This Grassmann integral in the last line of (34) is either
vanishing or �1, depending on the values of the dual
variables sax , kabx;ν and k̄abx;ν. In particular, it will be

FIG. 4. Graphical representation of the dual variables for the fermions. As before we use a lattice with three layers to represent the
color indices. In the first column of diagrams we show the monomers sax , while the arrows in the other columns represent the dual
variables kabx;ν and k̄abx;ν for the forward and backward hopping, respectively. With these link variables it is possible to build dimers and
oriented loops which, together with the monomers, constitute the admissible configurations for fermions.
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nonvanishing only if each Grassmann variable ψa
xψ̄

a
x

appears exactly once, and we refer to this case as “satu-
rated Grassmann integral”.
We may formulate the condition of a saturated

Grassmann integral as a constraint for the configurations
of the dual variables sax , kabx;ν and k̄abx;ν, which can be written
in the form

CF½s; k; k̄�

¼
Y
x;a

δ

�
1 − sax −

1

2

X
ν;b

½kabx;ν þ k̄abx;ν þ kbax−ν̂;ν þ k̄bax−ν̂;ν�
�
:

ð35Þ

The admissible configurations are known to have a simple
structure. Here, for the case where we consider a lattice with
three layers, the admissible configurations are such that in
all three layers of the four-dimensional lattice each site has
to be either occupied by a monomer (sax ¼ 1), be the end
point of a dimer (kabx;ν ¼ k̄abx;ν ¼ 1), or be run through by a
loop L, which is defined as a closed chain of kabx;ν ¼ 1

and k̄abx;ν ¼ 1.
Having discussed the monomer, dimer and loop structure

of admissible fermion configurations we still need to
determine the signs of the configurations. Monomers
ψa
xψ̄

a
x are activated by setting sax ¼ 1. It is evident from

the last equality in Eq. (34) that monomers simply come
with a factor of 2m, and the Grassmann variables are
already in the canonical order we choose for the Grassmann
integral (ψa

x left of ψ̄a
x). Thus monomers always contribute

to admissible configurations with the explicitly positive
factor of 2m.
Dimers are constructed by setting kabx;ν ¼ k̄abx;ν ¼ 1. For

the Grassmann integral this corresponds to activating the
factor

ψ̄a
xψ

b
xþν̂ψ̄

b
xþν̂ψ

a
x ¼ −ψa

xψ̄
a
xψ

b
xþν̂ψ̄

b
xþν̂: ð36Þ

The minus sign on the right-hand side of (36) results from
the reordering of the Grassmann variables into the canoni-
cal order. However, this minus sign is compensated by the
explicit minus sign for the forward hop, which in (34) is
taken into account in the factor ð−1Þkabx;ν ¼ ð−1Þ1 ¼ −1.
Also the staggered sign factor contribution is always
positive for dimers, since ðηx;νÞkabx;νþk̄abx;ν ¼ ðηx;νÞ2 ¼ 1.
Finally, also a possible minus sign from the antiperiodic
temporal boundary conditions for the fermions is irrelevant
since for a dimer such a sign would appear twice. Thus,
dimers always come with a positive sign, and only loops
can generate negative signs.
The overall sign of a loop receives several contributions.

Each loop L picks up a minus sign from commuting the
Grassmann variables into the canonical order. Moreover,
each forward hop of the loop will contribute with a minus

sign. Hence, if jLj denotes the length of the loop L, the sign
coming from the forward hops is ð−1ÞjLj/2, since half of the
hops in a closed loop are in forward direction. An exception
are loops that wind around the compact boundaries, but we
may restrict ourselves to choosing lattice extents that are a
multiple of 4, in which case ð−1ÞjLj/2 is correct also for
loops that wind. Related to the winding of the loops is also
the sign that is generated by the antiperiodic temporal
boundary conditions. For every crossing of the last tem-
poral link an additional factor of −1 has to be taken into
account, such that the sign factor ð−1ÞWL emerges, where
WL is the temporal winding number of the loop L.
Finally we have to determine the sign that comes from

the staggered sign factors along the links of the loop. Let us
first consider a loop around a single plaquette ðx; ρνÞ.
Around the plaquette the contribution from the staggered
signs is given by

ηx;ρηxþρ̂;νηxþν̂;ρηx;ν ¼ −1; ð37Þ

and moreover this factor of −1 is independent of the
position and orientation of the plaquette. If we then
consider two adjacent plaquettes, the staggered sign on
the common link will cancel out from the product of
staggered factors because it gets squared. Thus the sign of
two adjacent plaquettes is also the sign from the staggered
factors for the loop along the boundary of the two
plaquettes. This mechanism can be iterated to construct
a loop of any shape, and the sign coming from the staggered
factor can be expressed as ð−1ÞPL , where PL is the number
of plaquettes in the surface bounded by the loopL. Because
of the fact that we have three layers of colors, the
admissible configurations may also contain loops that wind
around the same contour up to 3 times (see Fig. 7 for a
simple example of such a loop). For these cases we need a
multiply covered surface (e.g., a surface that is covered 3
times for the example in the bottom plot of Fig. 7), and the
total number PL of plaquettes in the surface spanned by the
loop is understood in the sense that it also takes into
account multiple coverings. We finally remark that the
surface that has a loopL as its boundary is not unique, but it
is easy to see that different surfaces with the same boundary
differ by an even number of plaquettes, such that the sign
factor ð−1ÞPL remains unchanged.
We can summarize our discussion of the admissible

fermion configurations as follows: Admissible configura-
tions are those where every site in our 3-layer lattice is
either occupied by a monomer, is the end point of a dimer,
or is run through by a loop. Monomers (sax ¼ 1) come with
a factor of 2m. Dimers (kabx;ν ¼ k̄abx;ν ¼ 1) come with a factor
of 1, but also activate the SU(3) matrix elements along the
link, i.e., they activate the factor Uab

x;νUab ⋆
x;ν , that will

contribute in the Haar measure integration. Finally loops
L come with a sign factor, which, following the discussion
above, is given by
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signðLÞ ¼ ð−1Þ1þjLj/2þPLþWL ; ð38Þ

where jLj is the length of the loop L, PL is the number of
plaquettes necessary to cover the surface bounded by the
loop L, and WL is the number of temporal windings of L.
To obtain the full strong coupling partition sum

Z ¼ R
D½U�ZF½U�, we still have to integrate the fermionic

partition function ZF½U� over the product of SU(3) Haar
measures. We find

Z ¼
X
fs;k;k̄g

CF½s; k; k̄�WF½s; k; k̄�

×
Z

D½U�
Y
x;ν

Y
a;b

ðUab
x;νÞkabx;νðUab ⋆

x;ν Þk̄abx;ν ; ð39Þ

where we introduced the weight for the fermion configu-
rations WF½s; k; k̄� defined as

WF½s; k; k̄�

¼
�
1

2

�
3VY

L

signðLÞ
Y
x

�Y
a

ð2mÞsax
��Y

ab

eμ½k
ab
x;4−k̄

ab
x;4�
�

¼
�
1

2

�
3VY

L

signðLÞeμβWL

�Y
x;a

ð2mÞsax
�
: ð40Þ

In the last step we have simplified the term that couples to
the chemical potential μ: The chemical potential multiplies
the difference kabx;4 − k̄abx;4 of the temporal forward and
backward fluxes. For dimers this difference is zero such
that they do not couple to μ. Thus only fermion loops
contribute to the μ-dependence. The fermion loops are
made from chains of kabx;ν and k̄abx;ν where at each site the flux
is conserved. Consequently only loops that wind around
the compact time direction can have nonvanishingP

x

P
abðkabx;4 − k̄abx;4Þ, and it is obvious that for a loop L

this sum is given by NtWL, where Nt is the temporal extent
of the lattice andWL is the temporal winding number of the
loop L. Using the fact that the inverse temperature β in
lattice units is given by Nt we end up with the expression
for the coupling to μ given in the last line of (40).
Comparing the μ-dependence in the last line of (40) with

the usual form eμβN for the coupling of the chemical
potential, whereN is the net-particle number, we conclude
that the net particle number is given byN ¼ P

LWL. Thus
we find a nice geometrical interpretation of the net particle
number N in the worldline formulation: N is given by the
total temporal net-winding number of all fermion loops.
We stress that this identification of the net particle

number as a topological quantity, i.e., the total temporal
net winding number of the loops, is quite different from the
manifestation of the particle number in the conventional
representation: There the net particle number is given by
the discretized integral over the zero component of the

conserved vector current, clearly a quantity that is chal-
lenging to determine and usually not an integer. In the
worldline representation, on the other hand, the temporal
winding number is a simple quantity, and it is very easy to
define the canonical ensemble by the class of configura-
tions with a fixed temporal net winding number of the
fermion loops. We consider this to be one of the most
beautiful geometrical aspects of the worldline formulation
of QCD. Furthermore, in a toy model it was demonstrated
recently that the simple form of the net particle number can
be used to implement worldline simulations of the canoni-
cal ensemble [27,28].
Having completed the discussion of the fermionic part let

us now continue with the remaining gauge integration.
The integral over the gauge fields in the last line of (39) can
be done in the same way as the corresponding integrals in
the pure gauge theory case discussed in the previous
section. We insert the path integral measure D½U� and
the explicit parametrization (8) for the matrix elements
Uab

x;ν. For those matrix elements that are sums of complex
numbers we use again the binomial representation (15).
However, since kabx;ν, k̄abx;ν, mab

x;ν, mab
x;ν ∈ f0; 1g all binomial

factors ðkabx;μmab
x;μ
Þ and ð k̄abx;μmab

x;μ
Þ are equal to 1, and we can drop them

here. Hence, for the partition function of strong coupling
QCD we obtain

Z ¼
X
fs;k;k̄g

CF½s; k; k̄�WF½s; k; k̄�CG½k; k̄�WG½k; k̄�: ð41Þ

The gauge field integration in (39) has generated a link
based gauge constraint CG½k; k̄� and a gauge field weight
factorWG½k; k̄�. To represent the constraints and the weight
factor in a transparent way, we introduce combinations of
the dual variables kabx;ν, k̄abx;ν and the auxiliary variables mab

x;ν,
mab

x;ν for ða; bÞ ¼ ð2; 1Þ, (2, 3), (3, 1), (3, 3) as follows:

Kab
x;ν ¼ kabx;ν − k̄abx;ν; Pab

x;ν ¼ kabx;ν þ k̄abx;ν;

jabx;ν ¼ mab
x;ν −mab

x;ν; sabx;ν ¼ mab
x;ν þmab

x;ν: ð42Þ

Again constraints are generated by the integration over the

phases ϕðjÞ
x;ν of the representation (8), and as in the pure

gauge case we can organize them such that four of them
give rise to relations among the fluxes Kab

x;ν. These gauge
field constraints are denoted by CG½k; k̄� in (41) and are
explicitly given by

CG½k; k̄� ¼
Y
x;ν

δðK12
x;μ þ K13

x;ν − K21
x;ν − K31

x;νÞ

× δðK21
x;ν þ K23

x;ν − K12
x;ν − K32

x;νÞ
× δðK11

x;ν þ K12
x;ν − K23

x;ν − K33
x;νÞ

× δðK31
x;ν þ K33

x;ν − K12
x;ν − K22

x;νÞ: ð43Þ
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The weight factor WG½k; k̄� is given as a sum over configurations of the mab
x;ν, mab

x;ν and contains another constraint,

K12
x;ν ¼ j21x;ν þ j23x;ν þ j31x;ν þ j33x;ν; ð44Þ

which comes from integrating over ϕð3Þ
x;ν and connects the sum of auxiliary variables jabx;ν to K12

x;ν. Explicitly the weight factor
is given by

WG½k; k̄� ¼ 24V
X
fm;mg

�Y
x;ν

δðK12
x;ν − j21x;ν − j23x;ν − j31x;ν − j33x;νÞ

��Y
x;ν

ð−1ÞK12
x;νþK23

x;νþK31
x;ν−j23x;ν−j31x;ν

�

×
�Y

x;ν

B
�
P11
x;ν þP13

x;ν þP22
x;ν þP32

x;ν

2
þ 2

����P
12
x;ν þ s21x;ν þ s23x;ν þ s31x;ν þ s33x;ν

2
þ 1

�

×B

�
P11
x;ν þ s21x;ν þP23

x;ν − s23x;ν þ s31x;ν þP33
x;ν − s33x;ν

2
þ 1

����P
13
x;ν þP21

x;ν − s21x;ν þ s23x;ν þP31
x;ν − s31x;ν þ s33x;ν

2
þ 1

�

×B

�
s21x;ν þP22

x;ν þ s23x;ν þP31
x;ν − s31x;ν þP33

x;ν − s33x;ν
2

þ 1

����P
21
x;ν − s21x;ν þP23

x;ν − s23x;ν þ s31x;ν þP32
x;ν þ s33x;ν

2
þ 1

��
; ð45Þ

where we have defined

X
fm;mg

¼
Y
x;ν

Y
a¼2;3

Y
b¼1;3

Xkabx;ν
mab

x;ν¼0

Xk̄abx;ν
mab

x;ν¼0

: ð46Þ

Having completed the derivation of the dual representation
for strong coupling QCD collected in Eqs. (41), (43) and
(45), it is highly instructive to discuss the structural
similarity with the dual representation of the pure gauge
theory case in Eqs. (20), (21) and (23).
In both, the pure gauge theory and the strong coupling

QCD cases, we have color flux that lives on the links of the
lattice and connects the three different color labels on both
ends of the link. In pure gauge theory this flux is generated
by the plaquette-based cycle occupation numbers pabcd

x;μν ,
which contribute to the fluxes on all four links of the
plaquette. Consequently the pure gauge theory partition
sum (20) is a sum over all configurations of the cycle
occupation numbers. In the strong coupling QCD case the
color flux on the links is generated by fermion loops. These
fermion loops are described by the dual fermion variables
kabx;μ and k̄abx;μ, which together with the monomer variables sax
have to obey the fermion constraints CF½s; k; k̄� in (35). The
fermion constraints force the variables kabx;μ and k̄abx;μ to form
closed loops of color flux. These fluxes around closed
loops may be viewed as generalizations of the fluxes in
pure gauge theory which generated by nonzero cycle
occupation numbers pabcd

x;μν and thus are only around single
plaquettes.
Having understood that in both cases we deal with link

based fluxes around closed loops (plaquettes or general
loops), we can now compare the gauge field weight factors
and the constraints. A comparison of the weight factor

WG½p� of the pure gauge theory in Eq. (23) and the weight
factor WG½k; k̄� for strong coupling QCD in (45) shows
their structural similarity. Both are sums over configura-
tions of the auxiliary variables mab

x;ν and m̄ab
x;ν needed for the

binomial decomposition. In both cases the same auxiliary
constraint connects the configurations of these via the
combination jabx;ν ¼ mab

x;ν − m̄ab
x;ν to the K12

x;ν color flux at
every link. Furthermore, the same sign factors appear in the
summands of both weight factors. Because of the Pauli
principle, the fluxes in the strong coupling case are
restricted to the values 0,1 and −1, such that all binomial
coefficients are equal to 1, while in the pure gauge theory
weight WG½p� in Eq. (23) the binomial coefficients can
have nontrivial values. Furthermore, in the pure gauge
theory weight WG½p� we have plaquette based weight
factors from the expansion of the gauge action which also
depend on the auxiliary plaquette variables labcdx;μν . Clearly
these terms are absent in strong coupling QCD where we
have no gauge action.
However, the weight factors that come from the Haar

measure integration, and thus (together with the con-
straints) are responsible for implementing the SU(3)
symmetry in the worldline representation, are identical in
the two cases: They are given as the product of the three
beta functions that appear in (23) and in (45) and come

from integrating the three angles θðjÞx;ν with the correspond-
ing Haar measure contributions. Obviously, in (23) and in
(45) these weights also couple to the same color flux
components.
Also the second ingredient that is necessary to imple-

ment the SU(3) symmetry of the conventional representa-
tion, i.e., the constraints, are the same for the pure gauge
theory and strong coupling QCD. From (43) we read off the
relations
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K12
x;ν þ K13

x;ν ¼ K21
x;ν þ K31

x;ν; ð47Þ

K21
x;ν þ K23

x;ν ¼ K12
x;ν þ K32

x;ν ð48Þ

K11
x;ν þ K12

x;ν ¼ K23
x;ν þ K33

x;ν; ð49Þ

K31
x;ν þ K33

x;ν ¼ K12
x;ν þ K22

x;ν; ð50Þ

which are structurally identical to those for the fluxes Jabx;ν
of pure gauge theory in (24)–(27). Thus we can recombine
them in the same way and bring them to the form of (28)–
(31), giving rise to the same geometrical interpretation
which we illustrated in Fig. 3.
The structural similarity for the constraints and the

weights we have discussed constitutes the essence of the
dual worldline/worldsheet representation for systems with
SU(3) gauge fields. Other aspects, such as implications of
the constraints for the matter field worldlines are specific
for the type of matter the gauge links couple to. Let us now
address this aspect in more detail for the case of strong
coupling QCD and discuss the structure of strong coupling
fermion loops.

IV. STRONG COUPLING BARYON FLUXES

For the case of strong coupling QCD, only the dual
fermion variables kabx;ν and k̄abx;ν generate color flux. Since
these variables can only be 0 or 1, the corresponding color
flux variables Kab

x;ν ¼ kabx;ν − k̄abx;ν that enter the constraints
(47)–(50) are restricted to the values −1, 0, 1, where Kab

x;ν ¼
þ1 corresponds to a unit flux from color a at x into color b
at xþ ν̂ and Kab

x;ν ¼ −1 to the corresponding flux in the
opposite direction. Thus we have only a small number of
possible color flux configurations on a link ðx; νÞ which are
further restricted by the constraints in Eqs. (47)–(50).
Also the auxiliary variables mab

x;ν and m̄ab
x;ν for the

binomial decomposition which we sum over in the gauge
field weight WG½k; k̄� in (45) are highly restricted since
0 ≤ mab

x;ν ≤ kabx;ν ≤ 1 and 0 ≤ m̄ab
x;ν ≤ k̄abx;ν ≤ 1. Furthermore,

via jabx;ν ¼ mab
x;ν − m̄ab

x;ν they are restricted further by the
constraint

j21x;ν þ j23x;ν þ j31x;ν þ j33x;ν ¼ K12
x;ν; ð51Þ

that appears in the gauge field weight WG½k; k̄� in (45).
Since both, the dual fermion variables kabx;ν, k̄abx;ν, as well as
the auxiliary variables mab

x;ν, m̄ab
x;ν are highly restricted in

strong coupling QCD, we can completely list all flux
combinations that are admissible at a given link. In addition
we can determine the corresponding sign that appears in the
weight WG½k; k̄�, which for a link ðx; νÞ is given by

ð−1ÞK12
x;νþK23

x;νþK31
x;ν−j23x;ν−j31x;ν : ð52Þ

The admissible combinations of the strong coupling
fluxesKab

x;ν at a single link come in two types: Three lines of
flux that run in the same direction (see Fig. 5), or six lines
of flux that form a closed loop on a single link (Fig. 6).
Obviously only the first type allows for long distance
propagation and we refer to these strong coupling elements
as “strong coupling baryon fluxes”. The locally closing
ones are referred to as “one link loops”.
For the discussion of the complete list of strong coupling

baryon fluxes we start with solutions of the constraint
equations (47)–(50) where we allow only the values
Kab

x;ν ¼ 1, 0, i.e., we consider forward propagation. In
addition to the gauge constraints also the fermion con-
straints have to be obeyed, which imply that from a node
with fixed space time x and fixed color a only a single
forward arrow may origin. One finds exactly six solutions,
and Fig. 5 shows the admissible strong coupling baryon
fluxes for forward propagation. The six strong coupling
baryon fluxes for backward propagation are obtained by
reverting the arrows, which corresponds to Kab

x;ν → −Kab
x;ν.

The signs (52) are easy to determine for these six
configurations. Let us discuss two examples: For the top
left example in Fig. 5 we have the nonvanishing fluxes
K11

x;ν ¼ K22
x;ν ¼ K33

x;ν ¼ 1. Since K23
x;ν ¼ K31

x;ν ¼ 0, also j23x;ν
and j31x;ν must vanish, such that the sign (52) is þ1.
The top center example in Fig. 5 has the nonvanishing

fluxes K12
x;ν ¼ K23

x;ν ¼ K31
x;ν ¼ 1, and these three terms alone

give a minus sign in (52). However, sinceK12
x;ν ¼ 1we must

also have one of the j21x;ν, j23x;ν, j31x;ν, or j33x;ν to be set to 1, in
order to obey the additional constraint (51). Since only K23

x;ν

and K31
x;ν are nonzero, either j23x;ν or j31x;ν must be 1, and either

choice brings the total sign in (52) back to þ1.
In a similar way one may analyze the sign for all strong

coupling baryon fluxes, and one finds the simple result

FIG. 5. Baryon loop elements in the strong coupling limit. Only
the six combinations shown here are admissible and propagating
fluxes in the strong coupling limit. The elements with an odd
number of color flux crossings come with an explicit minus sign.
For the negative direction the same fluxes are admissible and
have the same signs. The corresponding diagrams are obtained by
reverting the arrows.
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ð−1ÞK12
x;νþK23

x;νþK31
x;ν−j23x;ν−j31x;ν ¼ ð−1Þ crossings of K-flux: ð53Þ

In Fig. 5 the strong coupling baryon fluxes where this sign
is negative are marked with −1. In addition one may
evaluate the weight given by the product of beta functions
in (45), and a simple calculation shows that this weight has
the value of 1/12 for all six strong coupling baryon fluxes
shown in Fig. 5.
The second class of solutions of (47)–(50), i.e., the one

link loops are obtained by now allowing all values
Kab

x;ν ¼ −1, 0, þ1 and enforcing the fermion constraints,
such that each node is run through by a loop. The
corresponding solutions are depicted in Fig. 6, and it is
easy to see that they are obtained by combining one of the
forward baryon fluxes from Fig. 5 with a matching back-
ward baryon flux such that the fermion constraints are
obeyed. One finds that only the fluxes with the same sign in
Fig. 5 can be combined among each other, such that the
total sign from (52) is always þ1. According to (38) the
emerging loops also have a positive fermion loop sign:
There is an overall minus sign and a factor ð−1Þ3 for the
three forward hops. Thus one link loops always come with
a positive weight which is given by the products of beta
functions in (45). These weights can be summed, and all
possible one link loops may be combined into a dual
element that plays a similar role as the monomers and
dimers: They are all local fermionic monomials that can be
used to saturate the fermion constraints on the sites not
occupied by a strong coupling baryon loop.
We now conclude the discussion of strong coupling

QCD, by showing that the loop signs (38), the gauge signs
(52) and the constraints (47)–(50) conspire in such a way,
that the remaining strong coupling baryon loops again obey
the sign formula (38) for staggered fermions.
For this proof we start with a strong coupling baryon

loop made out of only the top left flux elements of Fig. 5,
i.e., only flux elements with parallel fluxes for all three
colors are used. A very simple example of such a loop
around a single plaquette is shown in the top plot of Fig. 7.
Obviously such a loop is made out of three copies of the

same quark loop. Each one of these loops L has the sign
factor sign(L) for staggered fermion loops as given in (38).
Thus for the strong coupling baryon loop made out of only
the top left flux combinations in Fig. 5, we find the sign

signðLÞ3 ¼ signðLÞ: ð54Þ

Note that this identity also holds for temporally winding
loops where an additional sign is picked up from the
antiperiodic boundary conditions. Now we can replace
the top left flux elements of Fig. 5 by one of the other
strong coupling baryon flux elements where color fluxes
cross. An example with an element with one crossing is
shown in the middle plot of Fig. 7, and in the bottom plot we
have replaced one of the parallel elements with a strong
coupling baryon flux with two crossings. However, every
crossing of flux also changes the connectivity properties of
the loop: Inserting one crossing either connects two fermion
loops into one, see, e.g., the example in the middle of Fig. 7,
or splits a loop into two components. Thus every crossing
changes the number of loops by one, and since every loop

FIG. 7. Examples of simple strong coupling baryon loops with
different connectivity properties.

FIG. 6. Closed, nonpropagating one-link loops at strong cou-
pling. All of these loops come with a positive weight. Also the
opposite orientation is possible, which is obtained by reverting all
arrows.
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comes with an overall minus sign, inserting one crossing
changes the fermion sign. However, we have shown that the
gauge sign in Eq. (53) changeswith the number of crossings,
such that the gauge sign and the fermion sign cancel.
Consequently the sign of the baryon loops is always given
by (54), i.e., the signs of the strong coupling baryon loops are
the signs for loops of a single free staggered fermion.
We can make the identification of the strong coupling

baryon loops with the loops of a free staggered fermion
complete by using the fact that all the strong coupling flux
elements in Fig. 5 come with the same weight 1/12. Thus at
every link of the loop we can sum over all six possible
fluxes and obtain a total link weight of 1/2. We conclude
that the dual form of strong coupling QCD is a gas of free
staggered fermion loops with a link weight of 1/2. These
loops describe baryons and are embedded in a background
of monomers, dimers and local link loops, such that the
fermion constraints are obeyed.
We are currently exploring the possibility of updating

our form of strong coupling QCD with fermion bags
[29–31]: One can sum up the weights of all local link
loops in Fig. 6 and all combinations of three dimers that
saturate the fermion constraints on a single link. All these
terms give rise to an effective baryon dimer with a weight
larger than 1/4, which is the weight of a dimer from
staggered fermions with a link factor 1/2. Splitting the
overall weight of the effective baryon dimer in the form
1/4þ g, we may treat the part with a factor g as an
interaction for the free staggered fermions used for the
baryons, together with the remaining configurations not yet
taken into account, i.e., mixed contributions of monomers
and dimers on a link and closed chains of single and double
dimer links. These interaction terms come with positive
factors and can be activated according to their weight, such
that activated terms delimit the fermion bags inside which
the free staggered fermions for the baryons may propagate.

V. FULL QCD

We complete the presentation of the dual representation
in terms of worldlines and worldsheets with discussing the
case of full QCD. The partition function of full QCD can be
written as

Z ¼
Z

D½U�ZF½U�e−SG½U�; ð55Þ

i.e., the fermionic partition function ZF½U� given in Eq. (32)
is now integrated over with the Boltzmann factor for the
gauge action SG½U� (1).
In Sec. III we have obtained the intermediate result (39)

where the fermionic partition function ZF½U� in a fixed
gauge background is already expressed as a sum over
configurations of the dual fermion variables sax , kabx;ν and
k̄abx;ν. The dual variables kabx;ν and k̄abx;ν for fermion hopping
activate the corresponding link matrix elements Uab

x;ν and

Uab⋆
x;ν which in the strong coupling expression (39) simply

were integrated over with the gauge field measureR
D½U� ¼ Q

x;ν

R
dUx;ν.

In full QCD the gauge field integral now also has to take
into account the gauge field Boltzmann factor, such that the
resulting integral reads

�Y
x;ν

Z
dUx;ν

�
e−SG½U�Y

x;ν

Y
a;b

ðUab
x;νÞkabx;νðUab ⋆

x;ν Þk̄abx;ν : ð56Þ

The Boltzmann factor e−SG½U� can again be treated as in
Sec. II, i.e., we expand in Abelian color cycles and organize
the terms with respect to the links ðx; νÞ and color indices
a, b. Thus the remaining gauge field integral reads

�Y
x;ν

Z
dUx;ν

�Y
a;b

ðUab
x;νÞNab

x;νþkabx;νðUab ⋆
x;ν ÞNab

x;νþk̄abx;ν ; ð57Þ

where Nab
x;ν and Nab

x;ν are the same combinations as defined
in (14). This is the same integral as in the intermediate
result (5), only the Nab

x;ν and Nab
x;ν are now replaced by

Nab
x;ν þ kabx;ν and Nab

x;ν þ k̄abx;ν. Consequently we can simply
follow the steps in Sec. II. We again write the exponents
Uab

x;ν and Uab ⋆
x;ν in the form

Nab
x;μ þ kabx;μ ¼

Qab
x;μ þ Lab

x;μ

2
; Nab

x;μ þ k̄abx;μ ¼
Qab

x;μ − Lab
x;μ

2
;

ð58Þ
where

Lab
x;μ ¼ Jabx;μ þ Kab

x;μ; Qab
x;μ ¼ Sabx;μ þ Pab

x;μ; ð59Þ
where Jabx;μ and Sabx;μ defined in (12) and (13) collect the
fluxes and weight arguments for the gauge fields, and Kab

x;μ

and Pab
x;μ defined in (42) those for the fermions. Again we

use mab
x;ν and m̄ab

x;ν with ða; bÞ ¼ ð2; 1Þ, (2,3), (3,1), (3,3) as
the auxiliary variables for the binomial decomposition,
which now run from 0 to Nab

x;ν þ kabx;ν and Nab
x;ν þ k̄abx;ν,

respectively.
Putting things together we find that the dual form

of the partition function of full QCD is a sum over
configurations

P
fs;k;k̄;pg of the fermion dual variables

sax; kabx;ν; k̄abx;ν ∈ f0; 1g, as well as the cycle occupation
numbers pabcd

x;μν ∈ Z,

Z ¼
X

fs;k;k̄;pg
CF½s; k; k̄�WF½s; k; k̄�CG½k; k̄; p�WG½k; k̄; p�:

ð60Þ
The fermion constraint CF½s; k; k̄� is again given by (35)
i.e., the admissible worldline configurations are such that
every site of the 3-layer lattice is either occupied by a
monomer, is the end point of a dimer or is run through by a
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loop L. Also the fermion weights WF½s; k; k̄� are the ones
already discussed in (40), i.e., monomers contribute a factor
of 2m, loops comewith a sign signðLÞ given in (38) and the
chemical potential couples to the temporal winding number
WL of the loops.
The gauge constraints CG½k; k̄; p� are given by

CG½k; k̄; p� ¼
Y
x;μ

δðL12
x;μ þ L13

x;μ − L21
x;μ − L31

x;μÞ

× δðL21
x;μ þ L23

x;μ − L12
x;μ − L32

x;μÞ
× δðL11

x;μ þ L12
x;μ − L23

x;μ − L33
x;μÞ

× δðL31
x;μ þ L33

x;μ − L12
x;μ − L22

x;μÞ: ð61Þ

Structurally these are of course the same constraints
as for pure gauge theory and strong coupling QCD—
after all they are generated by integrating the SU(3) link
matrices—but here in full QCD they link the color flux
contributions from both, the gauge fields via the cycle
occupation numbers pabcd

x;μν and the fermion loops via kabx;ν
and k̄abx;ν.
The gauge field weights are structurally identical to those

of pure gauge theory, but again also the fluxes from the
fermions contribute through the combined variables Qab

x;ν.
The weights are again a sum

P
fl;m;m̄g over configurations

of the auxiliary plaquette variables labcdx;μν ∈ N0 and the
auxiliary binomial variables mab

x;ν and m̄ab
x;ν,

WG½k; k̄; p� ¼ 24V
X

fl;m;mg

�Y
x;μ

δðL12
x;μ − j21x;μ − j23x;μ − j31x;μ − j33x;μÞ

��Y
x;μ

ð−1ÞL12
x;μþL23

x;μþL31
x;μ−j23x;μ−j31x;μ

�

×

�Y
x;μ

Y
a¼2;3

Y
b¼1;3

�
Nab

x;μ þ kabx;μ

mab
x;μ

��
Nab

x;μ þ k̄abx;μ

mab
x;μ

���Y
x;μ<ν

Y
a;b;c;d

ðβ/2Þjpabcd
x;μν jþ2labcdx;μν

ðjpabcd
x;μν j þ labcdx;μν Þ!labcdx;μν !

�

×
�Y

x;μ

B
�
Q11

x;μ þQ13
x;μ þQ22

x;μ þQ32
x;μ

2
þ 2

����Q
12
x;μ þ s21x;μ þ s23x;μ þ s31x;μ þ s33x;μ

2
þ 1

�

× B

�
Q11

x;μ þ s21x;μ þQ23
x;μ − s23x;μ þ s31x;μ þQ33

x;μ − s33x;μ
2

þ 1

����Q
13
x;μ þQ21

x;μ − s21x;μ þ s23x;μ þQ31
x;μ − s31x;μ þ s33x;μ

2
þ 1

�

× B

�
s21x;μ þQ22

x;μ þ s23x;μ þQ31
x;μ − s31x;μ þQ33

x;μ − s33x;μ
2

þ 1

����Q
21
x;μ − s21x;μ þQ23

x;μ − s23x;μ þ s31x;μ þQ32
x;μ þ s33x;μ

2
þ 1

��
;

ð62Þ

where we again used the abbreviations jabx;μ ≡mab
x;μ − m̄ab

x;μ
and sabx;μ ≡mab

x;μ þ m̄ab
x;μ from Eq. (15).

We conclude this section on full QCD with addressing
two important aspects of the new representation: As in the
case of pure SU(3) lattice gauge theory, our dual form of the
partition sum has the structure of a strong coupling
expansion, and again, our approach allows one to compute
all coefficients of this expansion in closed form.
Furthermore, it is obvious how to generalize the con-

struction to several flavors: One simply uses multiple sets
of dual fermion variables, which all couple in the same way
to the gauge fields. Thus instead of the variables kabx;ν and
k̄abx;ν one has flavor sums over such variables, and the color
fluxes at each link have contributions from all flavors.
These flavor sums over the dual fermion variables enter the
constraints and weights, which otherwise have the same
form as presented in this section.

VI. SUMMARY AND CONCLUSIONS

In this paper we have presented a new dual worldline/
worldsheet representation of lattice QCD based on the

Abelian color flux approach, where both, the fermion as
well as the gauge action are decomposed into minimal
terms, the Abelian color fluxes, that connect different color
indices at neighboring sites. After expanding the corre-
sponding Boltzmann factors the contributions are organ-
ized according to links and the non-Abelian gauge field
integrals can be solved in closed form. These integrals lead
to weight factors for the fluxes, as well as to constraints
sitting on the links.
The approach here is presented for three cases: Pure

SU(3) lattice gauge theory, strong coupling lattice QCD
and full lattice QCD (the latter two for one flavor of
staggered fermions). In the pure SU(3) case the Abelian
color fluxes are generated from Abelian color cycles, which
are loops in color space closing around plaquettes. The
constraints restrict the possible configurations of Abelian
color cycles, and we show that the degrees of freedom
responsible for long distance physics are closed world-
sheets living on a space-time lattice with three layers for the
three colors.
One of the key results is the identification of the

constraints of the color fluxes, which are collected in
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Eqs. (28)–(31) and illustrated in Fig. 3. The constraints
Eqs. (28)–(30) enforce the individual conservation of flux
for all three colors (color conservation constraints), while
the constraints (31) ensure the equal distribution of flux
among the colors (color exchange constraints). All con-
straints are structurally the same for the three systems
studied here, i.e., pure SU(3) gauge theory, strong coupling
QCD and full QCD, although the sources of color flux are
different: Plaquette based cycle occupation numbers for the
worldsheets of gauge degrees of freedom and link based
color fluxes for the fermion worldlines. However, in both
cases the constraints (28)–(31) are the dual manifestation of
the original SU(3) symmetry of the conventional repre-
sentation. We remark again that the dual representation has
weight factors with negative signs, and a Monte Carlo
simulation might be possible only after finding a suitable
resummation scheme.
In strong coupling QCD the Abelian color fluxes are

generated by loops and dimers of fermions, which together
with monomers for the mass terms constitute the admissible
configurations for the fermions. Again the gauge link
integrals generate constraints for the color fluxes which
are structurally identical to the ones in pure SU(3) gauge
theory. Combining the constraints for the color fluxes with
the fermion constraints we show that here the degrees of
freedom that are relevant for long distance physics are
strong coupling baryon loops, and the chemical potential
couples to 3-times their temporal winding number. The
interplay of the signs for the quark loops with the signs
from the SU(3) parametrization conspires to give the
baryon loops the same signs as for a single staggered
fermion. The form we obtain exactly reproduces the strong
coupling representation by Karsch and Mütter [11]. We
conjecture that our representation of strong coupling QCD
admits a fermion bag simulation, and we are currently
exploring this idea.
Finally, in full QCD the color fluxes on the links receive

contributions from the fermion loops and dimers, as well as
the Abelian color cycles that represent the gauge degrees of

freedom. Consequently also the constraints and the gauge
weights couple to the combination of these two types of
dual degrees of freedom. In full QCD, as well as in pure
SU(3) gauge theory, the dual representation has the
structure of a strong coupling expansion and the Abelian
color flux approach allows one to calculate all coefficients
of the expansion in closed form.
We conclude with stressing again that the focus of this

work is on analyzing the structure of the constraints in the
worldline/worldsheet representation, since this provides
the manifestation of the original SU(3) gauge symmetry in
the dual language. The Abelian color flux approach,
combined with the binomial decomposition of the matrix
elements that are sums, is a strategy that can be generalized
to arbitrary non-Abelian gauge groups and several flavors
of fermions. The dual worldline/worldsheet form of such
systems of fermions coupled to non-Abelian gauge fields
highlights different properties than the conventional rep-
resentation in terms of fields, such as the manifestation of
the net-particle number as the temporal winding number
of the matter loops. The dual representation provides
new strategies for further understanding the dynamics
of non-Abelian theories and, e.g., the question how
topological properties of the non-Abelian gauge fields
manifest themselves in a worldsheet representation is
a problem that will be addressed in the formulation
presented here.
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