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We investigate the quark content of the low-lying states in the IðJPÞ ¼ 1ð0þÞ sector, which are the
quantum numbers of the a0ð980Þ meson, using lattice QCD. To this end, we consider correlation functions
of six different two- and four-quark interpolating fields. We evaluate all diagrams, including diagrams,
where quarks propagate within a time slice, e.g. with closed quark loops. We demonstrate that diagrams
containing such closed quark loops have a drastic effect on the final results and, thus, may not be neglected.
Our analysis, which is carried out at unphysically heavy u and d quark mass corresponding to mπ ¼
296ð3Þ MeV and in a single spatial volume of extent 2.9 fm, shows that in addition to the expected
spectrum of two-meson scattering states there is an additional energy level around the two-particle
thresholds of K þ K̄ and ηþ π. This additional state, which is a candidate for the a0ð980Þ meson, couples
to a quark-antiquark as well as to a diquark-antidiquark interpolating field, indicating that it is a
superposition of an ordinary q̄q and a tetraquark structure. The analysis is performed using AMIAS, a novel
statistical method based on the sampling of all possible spectral decompositions of the considered
correlation functions, as well as solving standard generalized eigenvalue problems.

DOI: 10.1103/PhysRevD.97.034506

I. INTRODUCTION

The mass ordering of the light scalar mesons σ, κ,
f0ð980Þ and a0ð980Þ, as observed in experiments, is
inverted compared to what is expected based on the
conventional quark-antiquark structure. A possible explan-
ation of this mass ordering is to interpret these states as
tetraquarks, i.e., tightly bound diquark-antidiquark pairs.
Assuming such a four-quark structure the expected mass
ordering is consistent with experimental results and the
degeneracy of the f0ð980Þmeson and the a0ð980Þmeson is
straightforward to understand [1].
Several lattice QCD studies of light scalar mesons have

been published in the last couple of years (cf. e.g. [2–10]).
Regarding the a0ð980Þmeson the elaborate study presented
in Ref. [10] using Lüscher’s finite volume approach is of

particular interest. The authors find a resonance close to the
K þ K̄ threshold, which they interpret as the a0ð980Þ
meson. Moreover, cf. Ref. [11], where the same lattice
data has been analyzed using chiral effective field theory.
In this work, we continue our lattice QCD investigation

of the a0ð980Þ meson [12–20] with particular focus on
clarifying its quark structure, i.e., whether it is of quark-
antiquark type or rather a four-quark state. We perform
computations at unphysically heavy u and d quark mass
corresponding to mπ ¼ 296ð3Þ MeV and in a single spatial
volume of extent 2.9 fm, but include all diagrams, where
quarks propagate within a time slice, e.g. diagrams with
closed quark loops, which were neglected in many previous
investigations of scalar mesons. We show that these
contributions are important and lead to the appearance
of an additional qq̄-like state around the two-particle
thresholds of ηs þ π and K þ K̄, which could correspond
to the a0ð980Þ meson. On a technical level, we apply the
Athens model independent analysis scheme (AMIAS), an
analysis method based on statistical concepts for extracting
excited states from correlation functions. AMIAS is a novel
analysis method, which has recently been used in a study of
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the nucleon spectrum [21]. AMIAS utilizes all the infor-
mation encoded in the correlation function with the
particular advantage of exploiting also data at small
temporal separations, where statistical errors are typically
small. In addition to AMIAS, we also use the standard
generalized eigenvalue problem (GEVP) method; i.e., we
solve a generalized eigenvalue problem and extract the
spectrum from effective mass plateaus (cf. e.g. [22] and
references therein). Both GEVP and AMIAS provide
information on the relative importance of the considered
interpolating fields, which include quark-antiquark, four-
quark and two-meson structures. Combining both methods
allows us to check the robustness of our results.
This paper is organized as follows: In Sec. II, we describe

the lattice techniques used and briefly discuss the inclusion
and importance of diagrams, where quarks propagate within
a time slice.We demonstrate that these diagrams are essential
both on a qualitative and quantitative level and, hence, may
not be neglected. In Sec. III, we present the spectral
decomposition of two-point correlation functions and
explain possible complications arising due to the presence
of multiparticle states. A short description of AMIAS is
provided in Sec. IV. In Sec. V, we present the analysis of a
6 × 6 correlation matrix containing various interpolating
fields using both GEVP and AMIAS. In Sec. VI, we
summarize our findings and give our conclusions.

II. LATTICE SETUP AND TECHNIQUES

To investigate the a0ð980Þ meson, which has quantum
numbers IðJPÞ ¼ 1ð0þÞ and a mass around 980 MeV [23],
we consider a 6 × 6 correlation matrix,

CjkðtÞ ¼ hOjðt2ÞOk†ðt1Þi; t ¼ t2 − t1: ð1Þ
The interpolating fields Oj, j ¼ 1;…; 6 have either a two-
quark d̄u or a four-quark d̄us̄s structure. The four-quarks
can be arranged as a meson-meson interpolating field
(either a bound pair of mesons or two separated mesons)
or in a diquark-antidiquark combination. We consider the
interpolating fields

O1 ¼ Oqq̄ ¼ N1

X
x

ðd̄ðxÞuðxÞÞ ð2Þ

O2 ¼ OKK̄;point ¼ N2

X
x

ðs̄ðxÞγ5uðxÞÞðd̄ðxÞγ5sðxÞÞ ð3Þ

O3 ¼ Oηsπ;point ¼ N3

X
x

ðs̄ðxÞγ5sðxÞÞðd̄ðxÞγ5uðxÞÞ ð4Þ

O4 ¼ OQQ̄ ¼ N4

X
x

ϵabcðs̄bðxÞðCγ5Þd̄Tc ðxÞÞ

× ϵadeðuTdðxÞðCγ5ÞseðxÞÞ ð5Þ
O5 ¼ OKK̄;2part ¼ N5

X
x;y

ðs̄ðxÞγ5uðxÞÞðd̄ðyÞγ5sðyÞÞ ð6Þ

O6 ¼ Oηsπ;2part ¼ N6

X
x;y

ðs̄ðxÞγ5sðxÞÞðd̄ðyÞγ5uðyÞÞ; ð7Þ

where C is the charge conjugation matrix. The normaliza-
tion factors Nj are chosen such that Cjjðt ¼ aÞ ¼ 1 (no
sum over j), i.e., in a way that the six interpolating fields
generate trial states with similar norm. All six interpolating
fields couple to the a0ð980Þ and other states with the same
quantum numbers. For example, the interpolating fieldsO5

and O6 mostly generate the two-meson states K þ K̄ and
ηþ π, respectively, which are expected to have masses
close to the a0ð980Þ state. In contrast to O5 and O6, where
the two mesons both have zero momentum, the interpolat-
ing fields O2 and O3 represent two mesons at the same
point in space. Note that the four-quark interpolating fields
generate trial states, which are not perfectly orthogonal. For
example the terms corresponding to x ¼ y in (6) and (7)
also appear in (3) and (4). Similarly, one can relate meson-
meson combinations to diquark-antidiquark combinations
via a Fierz identity; i.e., some of the terms present in (3) and
(4) are also part of (5) and vice versa.
Previous results using these interpolating fields and

Wilson clover fermions can be found in [18–20]. In this
work several significant improvements have been car-
ried out:

(i) we have improved the statistical accuracy of
the correlation matrix CjkðtÞ,

(ii) we include the propagation of strange quarks
within a time slice,

(iii) we consider all 36 elements of the correlation
matrix,

(iv) we analyze the correlation matrix with both the
standard GEVP and the AMIAS method.

We use an ensemble of around 500 gauge link configu-
rations generated with Nf ¼ 2þ 1 dynamical Wilson
clover quarks and the Iwasaki gauge action produced by
the PACS-CS Collaboration [24]. The lattice size is
64 × 323 with lattice spacing a ¼ 0.0907ð14Þ fm, i.e.,
the lattice extent is 2.9 fm. The light quark masses
correspond to a pion mass mπ ¼ 296ð3Þ MeV and a kaon
mass mK ¼ 594ð3Þ MeV. To optimize the coupling of the
interpolating fields to the low-lying energy eigenstates,
quark fields are Gaussian smeared with APE smeared
spatial gauge links (cf. [25,26]; the smearing parameters
are κGauss¼0.5, NGauss ¼ 50, αAPE ¼ 0.45 and NAPE ¼ 20,
where detailed equations are given in [27]).
For each diagram of the correlation matrix CjkðtÞ, we

have implemented and compared various combinations of
techniques including point-to-all propagators, stochastic
time-slice-to-all propagators, the one-end trick and sequen-
tial propagators. Based on the results of these comparisons
we have chosen for each diagram individually the most
efficient combination of techniques for our computation of
CjkðtÞ used in the physics analysis in Sec. V. Two example
diagrams, which form the matrix element C44ðtÞ, are shown
in Fig. 1. For the diagram on the left without closed quark
loops we use four point-to-all propagators, i.e., its compu-
tation is technically simple and the statistical errors are

CONSTANTIA ALEXANDROU et al. PHYS. REV. D 97, 034506 (2018)

034506-2



quite small. Significantly more difficult is the diagram on
the right with closed quark loops. In this case, the use of
four point-to-all propagators is not possible, because of the
two closed quark loops. We found that using three point-to-
all propagators and a stochastic time-slice-to-all propagator
for one of the closed quark loops is the most efficient way
of computing this particular diagram. For an extensive
discussion, we refer to [28], where each diagram of the
6 × 6 correlation matrix is studied in detail. Finding
efficient methods is particularly important for diagrams,
where quarks propagate within a time slice, e.g. diagrams
containing closed quark loops. These diagrams are signifi-
cantly more noisy than their counterparts, where quarks do
not propagate within a time slice: their noise-to-signal ratio
grows exponentially with increasing temporal separation as
discussed in [28].
Considering diagrams, where quarks propagate within a

time slice, is vital for any solid study of a0ð980Þ, because
they lead to nonvanishing correlations between two-quark
and four-quark interpolating fields, i.e., allow for s̄s
creation and annihilation. Moreover, for correlation func-
tions of two four-quark interpolating fields their contribu-
tion is sizable and should not be neglected as it has been
done in the past, e.g. in [6,13]. This is demonstrated by

Fig. 2, where we show C44ðtÞ both with (blue dots) and
without (red dots) closed quark loops. Similar findings
have been reported in Refs. [9,29].

III. CORRELATION FUNCTIONS
ON A PERIODIC LATTICE

A correlation function computed on a lattice with
periodic temporal direction of extension T can be expanded
according to

CjkðtÞ ¼hOjðtÞOk†ð0Þi ¼ 1

Z

X
m;n

e−EmðT−tÞcjm;ne−Entðckm;nÞ�

ð8Þ

with energy eigenstates jmi, corresponding energy eigen-
values Em, cjm;n ¼ hmjOjjni and Z ¼ P

me
−EmT . Using

u ↔ d flavor symmetry, i.e., Em ¼ Emðu↔dÞ, where
mðu ↔ dÞ denotes the state jmi with u flavor and d flavor
exchanged, one can rewrite Eq. (8) according to

CjkðtÞ ¼
1

Z

X
m;n

e−ðEmþEnÞT=2cjm;nðckm;nÞ�eþEm;nðt−T=2Þ

¼ 1

Z

X
m;n

e−ðEmþEnÞT=2 1
2
ðcjm;nðckm;nÞ�eþEm;nðt−T=2Þ

þ cjnðu↔dÞ;mðu↔dÞðcknðu↔dÞ;mðu↔dÞÞ�e−Em;nðt−T=2ÞÞ
ð9Þ

with Em;n ¼ Em − En. For the interpolating fields defined
by Eqs. (2)–(7), one can show

cjnðu↔dÞ;mðu↔dÞðcknðu↔dÞ;mðu↔dÞÞ� ¼ cjm;nðckm;nÞ�; ð10Þ

which follows from
(i) Oj ¼ Oj†

u↔d (Oj
u↔d denotes Oj with u flavor

and d flavor exchanged),
(ii) u ↔ d flavor symmetry,
(iii) CjkðtÞ is real (can be shown using standard

symmetries of Wilson lattice QCD, e.g. γ5
Hermiticity).

Moreover, cjm;nðckm;nÞ� is real and without restriction one
can choose real cjm;n, which we do in the following.
Consequently, Eq. (9) can be simplified to

CjkðtÞ ¼
1

Z

X
m;n

e−ðEmþEnÞT=2cjm;nckm;n coshfEm;nðt − T=2Þg:

ð11Þ

Since the correlators are symmetric with respect to the
reversal of time, CjkðtÞ ¼ CjkðT − tÞ, it is sufficient to

FIG. 1. Diagrams forming the correlation function C44ðtÞ.
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FIG. 2. C44ðtÞ (blue points) compared to the diagram of C44ðtÞ,
where quarks do not propagate within a time slice (diagram on the
left in Fig. 1; red points).
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restrict the following discussion to temporal separations
0 ≤ t ≤ T=2.
For j ¼ k, for sufficiently large T, where Z ≈ e−EΩT ,

and for sufficiently large t, Eq. (11) reduces to

CjjðtÞ ≈ 2ðcj~0;ΩÞ2e−E~0;ΩT=2 coshfE~0;Ωðt − T=2Þg; ð12Þ

if the correlation function is not contaminated by effects
related to multiparticle states as discussed below (jΩi and
j~0i denote the vacuum and the lowest state in the IðJPÞ ¼
1ð0þÞ sector probed by the interpolating fields defined by
Eqs. (2)–(7), respectively). Consequently, the energy differ-
ence E~0;Ω can be extracted by fitting

CjjðtÞ ¼ A coshfE~0;Ωðt − T=2Þg ð13Þ

to the lattice QCD results for the correlation function CjjðtÞ
at sufficiently large t with fitting parameters E~0;Ω and A.
Alternatively, one can solve the equation

CjjðtÞ
Cjjðt − aÞ ¼

coshfEeffðtÞðt − T=2Þg
coshfEeffðtÞðt − a − T=2Þg ð14Þ

with respect to EeffðtÞ, where EeffðtÞ ≈ E~0;Ω ¼ const for
large t. In other words, a plateaulike behavior of EeffðtÞ
indicates the mass E~0;Ω.
A common method to extract several energy levels from

an N × N correlation matrix is to solve the GEVP

CðtÞvmðt; t0Þ ¼ λmðt; t0ÞCðt0Þvmðt; t0Þ ð15Þ

[22], where CðtÞ is the correlation matrix with entries
CjkðtÞ, j; k ¼ 1;…; N, vmðt; t0Þ the eigenvector corre-
sponding to the eigenvalue λmðt; t0Þ and t0 ≥ a a parameter,
where a typical choice is t0 ¼ a. N effective energies
Eeff;mðtÞ can be obtained by solving

λmðt; t0Þ
λmðt − a; t0Þ

¼ coshfEeff;mðtÞðt − T=2Þg
coshfEeff;mðtÞðt − a − T=2Þg ð16Þ

for each eigenvalue λmðt; t0Þ,m ¼ 0;…; N − 1. In practice,
however, effective energies Eeff;mðtÞ often exhibit strong
statistical fluctuations, in particular for large t and m > 0,
rendering difficult a reliable identification of plateaus and
extraction of masses E ~m;Ω [j~0i; j~1i;… denote the lowest
states in the IðJPÞ ¼ 1ð0þÞ sector probed by the interpolat-
ing fields defined by Eqs. (2)–(7)]. Therefore, besides using
the GEVP, we also employ an alternative analysis
approach, AMIAS, which is discussed in detail in Sec. IV.
When low-lying multiparticle states are present in the

investigated sector, the determination of masses becomes
even more difficult. For example in the IðJPÞ ¼ 1ð0þÞ
sector the lowest state is expected to be a two-meson state
composed of an η meson and a π meson. Clearly, the

interpolating fields defined by Eqs. (2)–(7) do not only
generate an ηþ π state, when applied to the vacuum jΩi,
but also yield nonvanishing matrix elements hπjOjjηi and
hηjOjjπðu ↔ dÞi, i.e., annihilate an ηmeson and generate a
π meson and vice versa. Consequently, a significant
contribution to CjkðtÞ is

2

Z
e−ðEπþEηÞT=2cjπ;ηckπ;η coshfEπ;ηðt − T=2Þg
≈ 2e−ðmπþmηÞT=2cjπ;ηckπ;η coshfðmη −mπÞðt − T=2Þg

ð17Þ

[cf. Eq. (11)]. Similarly, a term providing information about
the mass of the ηþ π state is

2

Z
e−ðEηþπþEΩÞT=2cjηþπ;Ωc

k
ηþπ;Ω coshfEηþπ;Ωðt − T=2Þg

≈ 2e−mηþπT=2cjηþπ;Ωc
k
ηþπ;Ω coshfmηþπðt − T=2Þg: ð18Þ

Assuming coefficients jcjπ;ηj ≈ jcjηþπ;Ωj, it is easy to see that,
in the region of t ≈ T=2, the two terms are comparable in
magnitude. Therefore, Eq. (17) needs to be taken into
account, when extracting masses from the correlation
matrix at large temporal separations. Only for sufficiently
small temporal separations t the contribution from Eq. (17)
may be neglected, since the ratio of Eq. (18) and Eq. (17)
grows exponentially ∝ e−2mπðt−T=2Þ with decreasing t. This
is illustrated in Fig. 3, where we show the effective mass
EeffðtÞ defined in Eq. (14) for lattice QCD results for the
correlation function C66ðtÞ corresponding to the interpolat-
ing field Oηsπ;2part. Note that we have neglected closed
quark loops and quark propagation within a time slice for
this computation, to obtain sufficiently precise results at
large temporal separations. We also compare with the
effective mass (14), where CjjðtÞ is the sum of Eqs. (17)

10 20 30
t/a

0.3

0.4

0.5

0.6

a 
E

ef
f

FIG. 3. EeffðtÞ according to Eq. (14) for the lattice QCD results
for the correlation function C66ðtÞ (red points; quark propagation
within a time slice neglected) and the analytical expectations
(green points; Eq. (19).
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and (18), the analytically expected dominating terms at
large temporal separations t, i.e.,

CjjðtÞ ∝ coshfðmη −mπÞðt − T=2Þg
þ coshfmηþπðt − T=2Þg; ð19Þ

withmηa ¼ 0.364,mπa ¼ 0.138 (the ηmeson and π meson
masses in our lattice setup) and mηþπ ¼ mη þmπ , and find
excellent agreement as can be seen in Fig. 3.

IV. BASICS OF THE AMIAS METHOD

In this section, we summarize the basics of the AMIAS
method [21,30,31]. A more detailed description and appli-
cation to the excited nucleon spectrum can be found
in Ref. [21].
Lattice QCD results for correlation functions CjkðtÞ with

Oj, j ¼ 1;…; 6 defined in Eq. (2) to Eq. (7) can be
parameterized according to Eq. (11). After approximating
Z ≈ e−EΩT and truncating the sums

P
m;n to a limited

number of important terms, typically terms corresponding
to small energy differences jEm;nj, one obtains fit functions
of the form

Cfit
jkðtÞ ¼

Xtruncated

m;n

2e−ðEm;ΩþEn;ΩÞT=2cjm;nckm;n

× coshfEm;nðt − T=2Þg; ð20Þ

which are appropriate for sufficiently large t and T (the
factor 2 is included, because of u ↔ d flavor symmetry;
statesm, n and states nðu ↔ dÞ,mðu ↔ dÞ contribute with
identical terms and, thus, should be combined in the fit
functions). In practice it is convenient to use the equivalent
fit functions

Cfit
jkðtÞ ¼

Xtruncated

X

ajXa
k
X coshfEXðt − T=2Þg ð21Þ

instead of Eq. (20), where X is a superindex replacing
fm; ng, aX ≡ ffiffiffi

2
p

e−ðEm;ΩþEn;ΩÞT=4cjm;n and EX ≡ Em;n. The
fit parameters EX and ajX are real. In the following, these fit
parameters are collectively denoted by Ar.
AMIAS determines a probability distribution function

(PDF) ΠðArÞ for each fit parameter Ar. The estimates for
the values of the fit parameters and their uncertainties are
the expectation values and the standard deviations of the
corresponding PDFs,

Ār ¼
Z

dArArΠðArÞ ð22Þ

σðArÞ ¼
�Z

dArðAr − ĀrÞ2ΠðArÞ
�

1=2
: ð23Þ

AMIAS is able to handle a rather large number of
parameters using Monte Carlo techniques, i.e., it is suited
to study several energy eigenstates, if the lattice QCD
results for correlation functions are sufficiently precise.
The PDF for the complete set of fit parameters is

defined by

PðA1;A2;…Þ ¼ 1

N
e−χ

2=2 ð24Þ

with appropriate normalization N and

χ2 ¼
X
j;k

Xtmax

t¼tmin

ðCjkðtÞ − Cfit
jkðtÞÞ2

ðσjkðtÞÞ2
; ð25Þ

which is the well-known uncorrelated χ2 used e.g. in
uncorrelated χ2 minimizing fits. CjkðtÞ denotes the correla-
tion functions computed using lattice QCDwith correspond-
ing statistical errors σjkðtÞ, whileCfit

j;kðtÞ is given by Eq. (20).
In principle, one can also use a correlated χ2. Then, however,
one has to estimate a covariancematrix,which requires rather
precise data and high statistics (cf. e.g. [32] for a detailed
discussion).
To obtain the PDF ΠðArÞ for a specific fit parameterAr,

one has to integrate Eq. (24) over all other parameters. In
particular, the probability for the parameter Ar to be inside
the interval ½a; b� is

Z
b

a
dArΠðArÞ ¼

R
b
a dAr

Rþ∞
−∞

Q
s≠rdAse−χ

2=2Rþ∞
−∞

Q
sdAse−χ

2=2
: ð26Þ

This multidimensional integral can be computed with
standard Monte Carlo methods. We implemented a
parallel-tempering scheme combined with the Metropolis
algorithm as described in detail in Ref. [21]. The parallel-
tempering scheme prevents the algorithm from getting
stuck in a region around a local minimum of χ2 and
guarantees ergodicity of the algorithm.
A common choice for tmin and tmax in Eq. (25) is tmin ¼ a

and tmax ¼ T=2. With AMIAS, one can determine the
maximum number of parameters, to which the lattice QCD
results for the correlation functions are sensitive on, i.e., the
number of terms considered in the truncated sum in
Eq. (21). The strategy is to increase the number of fit
parameters, until there is no observable change in the PDFs
for the low-lying energy eigenstates of interest. For a
detailed example cf. Ref. [21]. For correlation functions
with large statistical errors, it might be helpful to also vary
tmin and tmax and check the stability of the results, as e.g.
done in Sec. V C.
As an example, we show in Fig. 4 the AMIAS analysis of

the correlation function C66ðtÞ corresponding to the inter-
polating field Oηsπ;2part, which we already discussed at the
end of Sec. III. We have found that using tmin ¼ a, tmax ¼
T=2 ¼ 32a and three terms in the truncated sum of the fit
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function [Eq. (20)] allows us to determine two energy
differences rather precisely, E0 corresponding to Eη;πa ¼
ðEη − EπÞa ≈ 0.23 and E1 corresponding to Eηþπ;Ω ¼
ðEηþπ − EΩÞa ≈mη þmπ ≈ 0.50. E2 should not be inter-
preted as a specific energy difference, since it is unstable
under a variation of the number of terms in the trun-
cated sum.

V. ANALYSIS OF THE CORRELATION
MATRIX AND NUMERICAL RESULTS

FOR THE a0ð980Þ MESON

A. Extraction of energy differences and amplitudes

In this section, we analyze the 6 × 6 correlation matrix
discussed in Sec. III and various submatrices using both the
GEVP method and the AMIAS method. The latter has
proven to be particularly suited to study excited states [21].
Both methods yield consistent results, which we consider to
be an important cross-check, in particular due to the fact
that the signal-to-noise ratios of the elements of the
correlation matrix grow rapidly with increasing temporal
separations.
To extract energy differences Em;n with the GEVP

method, effective energies are computed as defined in
Eq. (16) [we always use t0 ¼ a in Eq. (15)]. The plateau
values at sufficiently large temporal separation correspond
to Em;n as determined by fitting constants. The same energy
differences Em;n are computed with the AMIAS method
using the fit function (21) as explained in detail in Sec. IV.
The components of the eigenvectors vmðt; t0Þ obtained

by solving a GEVP (15) provide information about the
structure of the corresponding energy eigenstates,

jmi ≈
X
j

vjmðt; t0ÞOj†jΩi; ð27Þ

for sufficiently large t, where the approximate equality sign
denotes the expansion of the energy eigenstate jmi within
the subspace generated by the interpolating fields via
Oj†jΩi. We always normalize the eigenvectors according
to ðvmðt; t0ÞÞ2 ¼ 1, before plotting them.

One can easily convert the amplitudes ajX extracted with
AMIAS to cjΩ;m introduced in Sec. III via

cjm;n ¼ aX=
ffiffiffi
2

p
e−ðEm;ΩþEn;ΩÞT=4: ð28Þ

Since cjΩ;m ¼ hmjOj†jΩi, these are the coefficients of the
expansions of the trial states Oj†jΩi in terms of the energy
eigenstates jmi, i.e.,

Oj†jΩi ≈
Xtruncated

m

cjΩ;mjmi: ð29Þ

More interesting, however, is inverting Eq. (29) and writing
the extracted energy eigenstates in terms of the trial states,

jmi ≈
X
j

~vjmOj†jΩi: ð30Þ

One can show that the matrix formed by the coefficients ~vjm
is the inverse of the matrix formed by the coefficients cjΩ;m
up to exponentially small corrections, i.e.,

X
j

~vjmc
j
Ω;n ≈ δm;n: ð31Þ

Note that the coefficients ~vjm are equivalent to the eigen-
vector components vjmðt; t0Þ obtained by solving a GEVP
(15) and, thus, the results from the two methods can be
compared in a meaningful way, after choosing the same
normalization ð~vmÞ2 ¼ 1.

B. Neglecting quark propagation within a time slice

At first we neglect diagrams, where quarks propagate
within a time slice. Thus, s̄s pair creation and annihilation
is excluded. Consequently, the quark-antiquark interpolat-
ing field O1 probes a different sector than the four-quark
interpolating fields O2 to O6. Thus, within this subsection,
we restrict the analysis to the 5 × 5 correlation matrix
formed by the interpolating fields O2 to O6. Neglecting
quark propagation within a time slice leads to results with
rather small statistical uncertainties and, thus, allows to
cross-check our analysis methods and to compare with our
previous study [13], where we used a different lattice
discretization and setup. Note, however, that contributions
from diagrams, where quarks propagate within a time slice,
are sizeable (cf. e.g. Fig. 1 and [9,28]) and have to be taken
into account to arrive at full QCD results, which can be
compared to experimental data in a meaningful way.
In Fig. 5, we show effective energies obtained by solving

the GEVP for the 5 × 5 correlation matrix. In the absence of
quark propagation within a time slice, all five effective
energies exhibit convincing plateaus and the corresponding
energy differences can be determined in a straightforward
and precise way by fitting constants at large temporal

0 0.25 0.5 0.75 1 1.25 1.5
a εX

ε0

ε1

ε2

FIG. 4. AMIAS analysis of the correlation function C66ðtÞ,
PDFs for the parameters E0, E1, E2 using three terms in the
truncated sum of the fit function (20) (quark propagation within a
time slice neglected).
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separations, e.g. at t≳ 10a…15a. The plateaus are con-
sistent with the two-particle thresholds,

(i) mηs þmπ ¼ 1085ð4Þ MeV,
(ii) 2mK ¼ 1187ð3Þ MeV,

as shown in Fig. 5 [33], where mηs is the meson mass
obtained from the connected diagram of the correlation
function of the interpolating field s̄γ5s, i.e., where quark
propagation within a time slice is neglected (note that the
light quarks in our lattice setup are unphysically heavy,
corresponding to mπ ¼ 296ð3Þ MeV, mK ¼ 594ð2Þ MeV
and mηs ¼ 790ð2Þ MeV). The lowest momentum excita-
tions are given by

(i) ðm2
ηsþp2

minÞ1=2þðm2
πþp2

minÞ1=2¼1417ð3ÞMeV,
(ii) 2ðm2

K þ p2
minÞ1=2 ¼ 1463ð3Þ MeV,

where pmin ¼ 2π=L denotes one quantum of momentum
and L is the spatial lattice extent. We do not observe any
sign of an additional energy level near the expected mass of
the a0ð980Þ meson, i.e., in the region around 1100 to
1200 MeV, which could be interpreted as the a0ð980Þ
meson [34].
The same energy differences are found, when using the

AMIAS method. The corresponding PDFs, generated with
the fit function given in Eq. (21) and eight terms in the
truncated sum [35], is shown in Fig. 6. To generate
quantitative results including uncertainties we compute
the mean values and widths of the PDFs. We find rather
good agreement with the expected energies of states with
two particles at rest,

(i) E2¼1095ð2ÞMeV
(expectation: mηs þmπ ¼ 1085ð4Þ MeV),

(ii) E3 ¼ 1194ð9Þ MeV
(expectation: 2mK ¼ 1187ð3Þ MeV),

and fair agreement, when these particles have one quantum
of relative momentum,

(i) E4 ¼ 1435ð12Þ MeV (expectation: ðm2
ηs þ

p2
minÞ1=2 þ ðm2

π þ p2
minÞ1=2 ¼ 1417ð3Þ MeV),

(ii) E5 ¼ 1548ð29Þ MeV (expectation: 2ðm2
K þ

p2
minÞ1=2 ¼ 1463ð3Þ MeV).

When including correlation matrix data for temporal sepa-
rations around t ¼ T=2, which has small statistical uncer-
tainties, when quark propagation within a time slice is
neglected, AMIAS also finds two significantly smaller
energy differences E0 and E1 in the region of mK−mK̄¼0
and mηs −mπ. This is expected and has been discussed in
detail in Sec. III.
To support our interpretation of the states corresponding to

Em,m ¼ 2;…; 5, we show the corresponding coefficients ~vjm
in Fig. 6. The states corresponding to E2 and E3 are clearly
two-particle states ηs þ π and K þ K̄ with both mesons at
rest, since the coefficients ~vjm indicate a strong domination of
interpolating fieldsO5 ¼ OKK̄;2part andO6 ¼ Oηsπ;2part. The
states corresponding to E4 and E5 exhibit significant con-
tributions from interpolating fields O2 ¼ OKK̄;point and
O3 ¼ Oηsπ;point, which is consistent with their interpretation
as two-particle states with one quantum of relative momen-
tum. A similar GEVP analysis [20] provides consistent
results, i.e., eigenvector components vjmðt; t0Þ, which are
in agreement with the coefficients ~vjm.

C. Taking into account quark propagation
within a time slice

When including quark propagation within a time slice,
correlation functions of the quark-antiquark interpolating
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FIG. 5. Effective energies obtained with the GEVP method
[quark propagation within a time slice neglected; 5 × 5 correla-
tion matrix with interpolating fields defined by Eqs. (3)–(7)].
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FIG. 6. PDFs for energy differences and corresponding coef-
ficients ~vjm obtained with the AMIAS method [quark propagation
within a time slice neglected; 5 × 5 correlation matrix with
interpolating fields defined by Eqs. (3)–(7)].
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field [Eq. (2)] and the four-quark interpolating fields
[Eqs. (3)–(7)] are nonzero. Thus, all interpolating fields
probe the same sector and the quark-antiquark interpolating
field can be included in the analysis.
In Fig. 7, we show effective energies obtained by solving

the GEVP for two different correlation matrices:
(i) 4 × 4 correlation matrix with interpolating

fields O2 ¼ OKK̄;point, O3 ¼ Oηsπ;point, O5 ¼
OKK̄;2part and O6 ¼ Oηsπ;2part, i.e., the quark-
antiquark and the diquark-antidiquark interpo-
lating fields excluded;

(ii) full 6 × 6 correlation matrix, i.e., interpolating
fieldsO1¼Oqq̄ andO4¼OQQ̄ also considered.

In comparison to the effective energies from Fig. 5, where
quark propagation within a time slice has been neglected,
statistical uncertainties drastically increase. For a detailed
discussion concerning the reason for this increase cf. e.g.
[28], Sec. 4.4.3. The signal is essentially lost for temporal
separations t≳ 7a. For temporal separations t≲ 6a effects

related to multiparticle states, as discussed in Sec. III, are
negligible and, thus, can be ignored throughout this
subsection. Due to the large statistical uncertainties, the
identification of plateaus and energy differences is rather
difficult. Nevertheless, there is a clear qualitative difference
between the results from the 4 × 4 and the 6 × 6 correlation
matrix. In the 4 × 4 plot there seem to be only two low-
lying states around 1100 to 1200 MeV, while the next two
states are significantly above, somewhere in the energy
region of momentum excitations. Thus, the observed
spectrum is consistent with the expected spectrum of
two-meson states. In contrast to that, in the 6 × 6 plot,
i.e., when taking also the quark-antiquark and the diquark-
antidiquark interpolating fields into account, there is an
additional third state around 1200 MeV, which could
correspond to the a0ð980Þ meson. Similar plots have been
obtained for 5 × 5 correlation matrices, where either the
quark-antiquark interpolating field is considered, but not
the diquark-antidiquark interpolating field, or vice versa.
However, the effective energy of the additional state is
somewhat larger and has larger statistical errors, when
O1 ¼ Oqq̄ is excluded. In summary, these results indicate
that in addition to the expected two-meson states there is
another low-lying state in the region of 1100 to 1200 MeV.
This state is predominantly generated by the quark-
antiquark interpolating field, but also receives a non-
negligible contribution from the diquark-antidiquark
interpolating field.
This interpretation is confirmed by the squared eigen-

vector components ðvjmðt; t0ÞÞ2, which are plotted for the
three lowest states in Fig. 8 for t ¼ 5a (within statistical
errors these eigenvector components are independent of t).
The lowest state has a large overlap to the ηþ π two-meson
trial state O6jΩi ¼ Oηsπ;2partjΩi, the second-lowest state to
the quark-antiquark trial state O1jΩi ¼ Oqq̄jΩi and the
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FIG. 7. Effective energies obtained with the GEVP method
(quark propagation within a time slice taken into account). (top)
4 × 4 correlation matrix with interpolating fields O1 ¼ Oqq̄ and
O4 ¼ OQQ̄ excluded. (bottom) Full 6 × 6 correlation matrix.
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third-lowest state to the K þ K̄ two-meson trial state
O5jΩi ¼ OKK̄;2partjΩi. The lowest two states also have
some overlap to the diquark-antidiquark trial
state O4jΩi ¼ OQQ̄jΩi.
To support these findings we have also determined

energy differences from the full 6 × 6 correlation matrix
with the AMIAS method. The corresponding PDFs for
tmin ¼ 2a, tmax ¼ 8a and eight terms in the truncated sum
of the fit function (21) is shown in Fig. 9. There are two
clear peaks consistent with the expected energies of two-
particle ηþ π and K þ K̄ states with both mesons at rest:

(i) E0 ¼ 1039ð39Þ MeV (expectation: mπþ
mηexp ¼ 844ð3Þ MeV < E0 << mπ þ mηs ¼
1085ð4Þ MeV),

(ii) E2 ¼ 1192ð11Þ MeV (expectation: 2mK ¼
1187ð3Þ MeV)

(when quark propagation is taken into account, it is
appropriate to compare to the energy mπ þmη, where η
is the lower state in the η − η0 system;mη is not available for
our lattice setup and its computation is quite challenging;
therefore, we compare to a lower and upper bound, where
mηexp ¼ 548 MeV is the experimental mass of the η meson
and mηs ¼ 790ð2Þ MeV as in Sec. V B). There is another
peak signaling the existence of an additional third state in
the same energy region with

(i) E1 ¼ 1124ð76Þ MeV,

i.e., significantly below the expectation for the lowest
two-particle state with one quantum of relative
momentum Epmin

¼ðm2
ηþp2

minÞ1=2þðm2
πþp2

minÞ1=2, where
1214ð2Þ MeV < Epmin

< 1417ð3Þ MeV.
To clarify the structure of the extracted energy eigen-

states, we also show the corresponding squared coefficients
ðcjΩ;mÞ2, m ¼ 0, 1, 2 in Fig. 9 [36]. The two lowest states
corresponding to the energy differences E0 and E1 con-
tribute to the two-meson trial stateO6jΩi ¼ Oηsπ;2partjΩi as
well as to the quark-antiquark and the diquark-antidiquark
trial states O1jΩi ¼ Oqq̄jΩi and O4jΩi ¼ OQQ̄jΩi. The
second excitation corresponding to the energy difference E2

contributes almost exclusively to the two-meson trial state
O5jΩi ¼ OKK̄;2partjΩi. These AMIAS results are in agree-
ment with the GEVP results discussed above and, thus,
confirm our previous interpretation that there is an addi-
tional state in the energy region of 1100 to 1200 MeV,
which could correspond to the a0ð980Þ meson. This addi-
tional state seems to have both a quark-antiquark and a
diquark-antidiquark component.
One of the advantages of the AMIAS method, compared

to e.g. the GEVP method, is that one can use an arbitrary
selection of correlation matrix elements for an analysis. To
check the correctness and stability of our results, in
particular the existence of an additional low-lying state
with significant quark-antiquark component, we compare
the PDFs for energy differences based on two different
analyses and sets of correlation matrix elements in Fig. 10:

(i) the full 6 × 6 correlation matrix (same data as
in Fig. 9),

(ii) as in (i), but the diagonal element C11ðtÞ is
excluded from the analysis, i.e., j ¼ k ¼ 1 is
omitted in the sum

P
j;k in Eq. (25); this

implies that the correlation of the quark-
antiquark interpolating field O1 ¼ Oqq̄ with
itself is excluded, while correlations with the
other four-quark interpolating fields are still
included.

Figure 10 represents an important check of our results and
confirms our interpretation. The additionally observed state
is not just generated by adding an essentially independent
interpolating field O1 ¼ Oqq̄. This quark-antiquark inter-
polating field O1 couples to the four-quark interpolating
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FIG. 9. PDFs for energy differences and corresponding squared
coefficients ðcjΩ;mÞ2 for the three lowest states obtained with the
AMIAS method (quark propagation within a time slice taken into
account; full 6 × 6 correlation matrix).
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fields O2 to O6 and the additional low-lying state can be
clearly observed, even when C11ð1Þ is excluded from the
analysis.

VI. SUMMARY AND CONCLUSIONS

We have computed the low-lying spectrum of the
IðJPÞ ¼ 1ð0þÞ sector in a finite spatial volume of extent
2.9 fm using lattice QCD. To this end, we have considered a
variety of interpolating fields representing quark-antiquark
and four-quark bound states as well as two-meson scatter-
ing states. In addition to the expected two-meson scattering
states, we found another state in the energy region of
1100 MeV to 1200 MeV, which is a candidate for the
a0ð980Þ meson. This state is predominantly generated by
the quark-antiquark interpolating field, but also receives
sizable contributions from the diquark-antidiquark inter-
polating field; i.e., a likely interpretation is that it is mainly
a quark-antiquark state with a minor tetraquark component.
To some extent this is supported by a computation, where
we have neglected quark propagation within a time slice.
Then the quark-antiquark interpolating field decouples
from the four-quark interpolating fields and an analysis
of the four-quark correlation matrix only yields the
expected two-meson scattering states.
We have cross-checked our results by applying two

different analysis methods, the well-known GEVP method
and the rather new AMIAS method. The latter is particu-
larly suited to handle lattice QCD data with large uncer-
tainties, because it also exploits correlation functions at
small temporal separations.
A current source of systematic error, which we plan to

eliminate in the future, is the unphysically large u and d
quark masses corresponding to mπ ≈ 296 MeV. A reso-
nance study of a0ð980Þ using Lüscher’s finite volume
approach was presented in Ref. [10] using, however, u
and d quark masses corresponding to mπ ≈ 391 MeV. In
Ref. [11], which is an analysis of the same lattice QCD data
using chiral effective field theory, it was pointed out that
lighter u and d quark masses are essential to obtain more
precise results. However, the extension of the method to
lighter u and d quark masses is very demanding, since it
requires the identification of all energy states below that of
the a0ð980Þ. Therefore, the work presented here constitutes
an important preparatory step.

Another obvious direction to extend this research is to
investigate the D�

s0ð2317Þ meson, which is also considered
as a tetraquark candidate. Our techniques and code can be
used with only minor changes, since both a0ð980Þ and
D�

s0ð2317Þ have the same quantum numbers JP ¼ 0þ and
the same flavor structure, i.e., a quark-antiquark pair of
different flavor q̄1q2 and possibly another quark-antiquark
pair of the same flavor q̄3q3. Such an investigation could be
of particular interest, because lattice QCD studies like those
presented in [37–39], which do not include four-quark
interpolating fields, found masses significantly above the
experimental result. Other lattice QCD studies, e.g. [40,41],
which include four-quark interpolating fields found a state
below the DK threshold much closer to the experimental
result. Thus, it would be interesting to further explore the
existence and mass of a D�

s0ð2317Þ state below the DK
threshold, by varying the set of interpolating fields con-
sidered in the analysis, and to investigate its internal
structure, e.g. by employing a variety of four-quark
interpolating fields.
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