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We calculate the one- and two-point correlation functions of the energy density and the divergence of the
Chern-Simons current in the nonequilibrium glasma state formed in a high-energy nuclear collision. We
show that the latter depends on the difference of the total and linearly polarized gluon transverse
momentum distributions. Since the divergence of the Chern-Simons current provides the source of axial
charge, we infer information about the statistical properties of axial charge production at early times. We
further develop a simple phenomenological model to characterize axial charge distributions in terms of
distributions of the energy density.

DOI: 10.1103/PhysRevD.97.034034

I. INTRODUCTION

Novel transport phenomena associated with the chiral
magnetic [1–3] and related effects have recently caused an
excitement across different fields of physics. In the high-
energy QCD context, experimental measurements at the
Relativistic Heavy-Ion Collider (RHIC) and at the Large
Hadron Collider (LHC) have provided intriguing hints at
possible signatures of such anomalous transport phenom-
ena [4–7]. However, the interpretation of these experimen-
tal results remains inconclusive [8,9] due to the presence of
large background effects [10–14]. Despite significant
progress on the theory side in developing different micro-
scopic [15–20] and macroscopic [21–23] descriptions of
the coupled dynamics of vector and axial charges, a first
principles description of the effects in high-energy heavy-
ion collisions remains an outstanding challenge. Present
phenomenological predictions [24–27] have to rely to a
varying extent on modeling assumptions. Most importantly,
all phenomenological descriptions based e.g. on anomalous
hydrodynamics [21–23] require information about the early
time dynamics as an initial condition for the subsequent
space-time evolution. Even though significant progress has
been achieved in understanding the early time dynamics of
the conserved energy-momentum tensor, both from a
theoretical perspective [28,29] as well as through

sophisticated model/data comparisons [30,31], achieving
a similar level of understanding of the space-time dynamics
of axial charge production and anomalous transport proc-
esses during the very early preequilibrium stages (≲1 fm/c)
remains a key challenge.
One important difference between the dynamics of

vector and axial charges, is the fact that the density of
axial charge is not conserved. This is due to the axial
anomaly, which for Nf flavors of (approximately) massless
fermions takes the form

∂μj
μ
ð5Þ ¼ −

g2Nf

8π2
trðFμνF̃μνÞ ¼ −

g2Nf

16π2
Fa
μνF̃a;μν; ð1:1Þ

where Fμν denotes the field strength and F̃μν ¼ 1
2
εμνρσFρσ

its dual. Hence understanding the dynamics of axial
charges and currents in a QCD plasma inevitably requires
some knowledge about the structure of non-Abelian gauge
fields entering on the right-hand side of Eq. (1.1). Even
though it is understood that in the long time and long
wavelength limit, topological (sphaleron) transitions domi-
nate the production/dissociation of axial charge (see e.g.
[32] and references therein), it is not clear to what extent
these considerations apply to the typical time and length
scales relevant during the early stages of high-energy
heavy-ion collisions [33]. Despite the fact that the rate
of topological transitions can be significantly enhanced
during the early time preequilibrium stage [33], various
kinds of short distance field strength fluctuations can also
contribute significantly to axial charge production at early
times. Consequently, it is of crucial importance to under-
stand different mechanisms of axial charge production in
order to estimate the magnitude and features and isolate the
most relevant effects.
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One more direct way to study the strong gauge fields
that dominate the initial stages of heavy ion collisions is
to probe them with a dilute probe, such as in high energy
deep inelastic scattering. The experimental program at a
future electron-ion collider [34] will be able to character-
ize the spacetime structure of partons inside nucleons and
nuclei in a variety of ways. Out of these the linearly
polarized gluon transverse momentum distribution
[35,36] has recently been of particular interest to the
small-x community. Based on the color glass condensate
(CGC) picture it has been shown [37–39] that the linearly
polarized gluon distribution can be related to, and
ultimately calculated from, the same Wilson line corre-
lators that characterize unpolarized gluon distributions.
We will show in this paper that the correlation structure
of the gauge fields at the earliest times after a heavy ion
collision is sensitive to both the linearly polarized and
unpolarized gluon distributions. It turns out that the
correlations and fluctuations of axial charge are particu-
larly sensitive to the polarized distributions. Whereas for
energy density fluctuations the polarized and unpolarized
contributions add up, for the axial charge they appear
with a different sign. This observation opens up a
fascinating new connection between correlation studies
in deep inelastic scattering and local CP-violating fluc-
tuations in hadronic collisions.
The aim of this paper is to calculate the statistical

properties of axial charge production at the earliest stages
of a high energy heavy ion collision. The calculation is
based on the description of the early time dynamics in the
color glass condensate framework [40–43], which leads to
the presence of longitudinal chromoelectric and chromo-
magnetic fields at very early times after the collision. We
start with a brief discussion of the space-time structure of
chromoelectric and chromomagnetic fields at very early
times in Sec. II. We then review in Sec. III the structure of
the linearly polarized and unpolarized Weiszäcker-
Williams (WW) gluon distributions in the CGC framework.
With a Gaussian approximation for the field correlators (the
“glasma graph” approximation) we then perform an ana-
lytic calculation of the one- and two-point correlation
functions of the energy density εðxÞ and the divergence
of the Chern-Simons current ̇νðxÞ in terms of the WW
correlators. Here our calculation generalizes the closely
related earlier work of [44]. We then in Sec. IV give a
diagrammatical momentum space interpretation of our
calculation, which is related in Appendix B to works
studying two-gluon correlations using the glasma graph
approximation. We finally discuss the implications of our
results for the basic phenomenological properties of axial
charge production in the glasma in Sec. V, developing a
simple algorithm for using our results in anomalous
hydrodynamical calculations. We conclude in Sec. VI with
a summary of our results and perspectives for future
studies.

II. GLASMA FLUX TUBES AND
AXIAL CHARGE PRODUCTION

The CGC effective theory description of a high energy
nucleon or nucleus is based on a a separation of scales.
Degrees of freedom carrying a large fraction of the energy
of the projectile/target are described as a color charge,
which acts as a source for the small-x gluons. The color
field of a single nucleus can be expressed analytically in
terms of the color charges. When transformed to light cone
gauge, these fields (which we denote here by αi and βi for
the two nuclei) are “transverse pure gauge” fields [45,46]

αix ¼ i
g
Ux∂iU†

x; βix ¼ i
g
Vx∂iV†

x: ð2:1Þ

Here Ux and Vx are lightlike Wilson lines, which are
scattering amplitudes for the eikonal interaction of a color
charge passing through the color field.
Based on this picture, a high-energy heavy ion collision

is realized when two such systems pass through each other.
In this case the color fields of the projectile and target
interact with each other, leading to the formation of a
nonequilibrium “glasma” [47] state. By requiring that the
fields be continuous over the future light cone one obtains
[48,49] the gauge fields immediately after the collision at
τ ¼ 0þ as

Ai
x ¼ αix þ βix; Aη ¼ ig

2
½αix; βix�: ð2:2Þ

In terms of the field strength tensor these correspond to
longitudinal color electric and color magnetic fields
[28,47–51]

Eη
x ¼ −igδij½αix; βjx�; Bη

x ¼ −igεij½αix; βjx�: ð2:3Þ

We use the sign convention Dμ ¼ ∂μ þ igAμ for the
covariant derivative and take the electric and magnetic
fields in the usual Minkowski coordinates to be Ei ≡ F0i

and Bi ¼ − 1
2
εijkFjk. For the components in proper-time

rapidity coordinates we define Eη ≡ 1
τ Fτη, Ei ¼ Fτi,

Bη ≡ − 1
2
εijFij, and Bi ¼ −εij 1τ Fjη, which at midrapidity

reduce to the fields in Minkowski coordinates Eηjη¼0 ¼
Ez ≡ Ftz, etc.
The subsequent dynamics at very early times has been

studied in great detail analytically e.g. based on small
proper time expansions [52,53], as well as numerically
through real-time lattice simulations [54–60]. On a time
scale τ ∼ 1/Qs the classical Yang-Mills dynamics leads to
the decoherence of the longitudinal fields building up
transverse field strengths Ei and Bi. Eventually the longi-
tudinal expansion leads to a significant reduction of the
field strength, where the semiclassical description becomes
inapplicable [61–63] and the system undergoes a kinetic

TUOMAS LAPPI and SÖREN SCHLICHTING PHYS. REV. D 97, 034034 (2018)

034034-2



regime before approaching local thermal equilib-
rium [64,65].
Even though the structure of the boost-invariant fields in

Eq. (2.3) is topologically trivial [66], the strong longi-
tudinal chromoelectric and chromomagnetic fields at early
times can still contribute significantly to axial charge
production. Despite the fact that the axial charge is of
course carried by the fermionic degrees of freedom, an
estimate of this effect can be immediately deduced from the
axial anomaly relation. In this spirit, a first estimate of the
fluctuations of the net axial charge density per unit rapidity

dN5

dη
≡
Z

d2xτjτð5ÞðxÞ ð2:4Þ

was provided in Ref. [66] based on explicit numerical
simulations of the early time dynamics (see also [24] for a
parametric estimate used in phenomenological studies). We
will follow a different approach and estimate the fluctua-
tions of the axial charge directly from the analytic expres-
sions for the initial fields in Eq. (2.3), including also the
structure of fluctuations of the axial charge density in the
transverse plane. Starting from the explicit form of the axial
anomaly relation (1.1) in Bjorken coordinates1 and defining
a shorter notation ̇νðxÞ≡ trE · B for the divergence of the
Chern-Simons current�

∂τ þ
1

τ

�
jτð5ÞðxÞ þ ∂ijið5ÞðxÞ þ ∂ηj

η
ð5ÞðxÞ

¼ −
g2Nf

8π2
trFμνF̃μν ¼ g2Nf

2π2
̇νðxÞ; ð2:5Þ

we first note that the term ∂ηj
η
ð5Þx vanishes by virtue of the

boost invariance assumption. Next we note that—at suffi-
ciently early times—we can neglect the effect of the axial
currents ∂ijið5ÞðxÞ, such that the source term on the right-

hand side

̇νðxÞ ¼ tr½Eηðτ ¼ 0þ;xÞBηðτ ¼ 0þ;xÞ� þOðτ2Þ ð2:6Þ

leads to local production of axial charge imbalance before
the axial charge starts to diffuse in the transverse plane.
Based on this approximation one can then estimate the local
density of axial charge per unit rapidity at each point in the
transverse plane according to

dN5

d2xdη

����
τ≲1/Qs

≈
τ2

2

g2Nf

2π2
̇νðx; τ ¼ 0þÞ: ð2:7Þ

This allows us to compute axial charge production directly
from the correlation functions of lightlike Wilson lines. As
we will discuss shortly the expectation value of the quantity
̇νðxÞ vanishes in accordance with the fact that there is no
CP violation in the process. Nevertheless, there can be
sizable fluctuations on an event-by-event basis, which are
characterized by the correlation function ḣνðxÞ̇νðyÞi at two
different points x, y in the transverse plane. Since ̇νðxÞ is a
dimension four operator, it is most naturally compared to
the energy density εðxÞ of the system, and we will also
compute the correlation functions of the energy-density
hεðxÞεðyÞi for comparison.

III. ENERGY DENSITY AND CHERN-SIMONS
CURRENTS IN THE GLASMA

Before we turn to the evaluation of correlation functions
of the energy density and the divergence of the Chern-
Simons current, we will briefly review the calculation of
the corresponding one-point functions. Even though the
results are well established in the literature [52,53,67] this
exercise is nevertheless useful to illustrate the procedure
and fix our notations.

A. Expectation values of one-point functions

Based on the analytic expressions for the color
electric and color magnetic fields at τ ¼ 0þ we can
immediately compute the expectation value of the local
energy density εðxÞ and the divergence of the Chern-
Simons current ̇νðxÞ as

hεðxÞi ¼ htrðEη
xE

η
x þ Bη

xB
η
xÞi ¼ ð−igÞ2ðδijδkl þ εijεklÞ

× htrð½αix; βjx�; ½αkx; βlx�Þi; ð3:1Þ

ḣνðxÞi ¼ htrðEη
xB

η
xÞi ¼ ð−igÞ2δijεklhtrð½αix; βjx�; ½αkx; βlx�Þi:

ð3:2Þ

Evaluating the color structures by decomposing α, β over

the Lie algebra, noting that tr½tctc0 � ¼ δcc
0

2
and separating the

averages over projectile and target fields, we obtain

hεðxÞi ¼ ð−igÞ2ðδijδkl þ εijεklÞ 1
2
ifabcifa

0b0c

× hαi;ax αk;a
0

x ihβj;bx βl;b
0

x i; ð3:3Þ

ḣνðxÞi ¼ ð−igÞ2δijεkl 1
2
ifabcifa

0b0chαi;ax αk;a
0

x ihβj;bx βl;b
0

x i:
ð3:4Þ

Since only color singlet expectation values are nonvanish-
ing, such that

1Note that the transformation to comoving coordinates can
be performed by expressing the left-hand side as ∇μjμ ¼
1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp

jμÞ, where ∇μ is the covariant (under coordinate
transformations) derivative and the current jμ transforms as
contravariant vector. Similarly, the right-hand side can be ex-
pressed as 1ffiffiffiffi−gp ϵμναβFμνFαβ, where the field strength Fμν ¼
∇μAν−∇νAμþ ig½Aμ;Aν� and the Levi-Cività symbol 1ffiffiffiffi−gp ϵμναβ

transform as covariant and contravariant tensors, respectively.
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hαi;ax αk;by i ¼ Wik
ðUÞðx; yÞδab; ð3:5Þ

we can evaluate the color structure as fabcfabc ¼
NcðN2

c − 1Þ. Upon factorization of the averages of the
projectile and target fields we obtain

ð−igÞ2htrð½αix; βjx�½αkx; βlx�Þi

¼ g2
NcðN2

c − 1Þ
2

Wik
ðUÞðx;xÞWjl

ðVÞðx;xÞ; ð3:6Þ

where Wik
ðU/VÞðxyÞ are the Weizsäcker-Williams gluon

distributions of the two nuclei

Wik
ðUÞðx; yÞ ¼

1

N2
c − 1

hαi;ax αk;ay i: ð3:7Þ

Generally speaking, the Weizsäcker-Williams distribution
can be further decomposed into various different tensor
structures. We start from the usual momentum space
decomposition into unpolarized Gð1Þ and linearly polarized

hð1Þ⊥ gluon distributions2 in an unpolarized hadron3,4

W̃ijðb;kÞ ¼ 1

2
δijGð1Þðb; jkjÞ

−
1

2

�
δij − 2

kikj

k2

�
hð1Þ⊥ ðb; jkjÞ; ð3:8Þ

where W̃ijðb;kÞ ¼ R d2rWij
ðUÞðbþ r/2;b − r/2Þe−ikr. The

corresponding tensor decomposition in coordinate space
takes the form

Wij
ðUÞðx; yÞ ¼

1

2
δijGð1Þðx; yÞ

þ 1

2

�
δij − 2

ðx − yÞiðx − yÞj
jx − yj2

�
hð1Þ⊥ ðx; yÞ;

ð3:9Þ

where the coordinate space functions Gð1Þðx; yÞ and

hð1Þ⊥ ðx; yÞ are given by

Gð1Þðx; yÞ ¼ 1

2π

Z
djkjjkjJ0ðkjx − yjÞGð1Þ

�
xþ y
2

; jkj
�
;

ð3:10Þ

hð1Þ⊥ ðx; yÞ ¼ 1

2π

Z
djkjjkjJ2ðkjx − yjÞhð1Þ⊥

�
xþ y
2

; jkj
�
:

ð3:11Þ
Note that due to the angular structure of the integration,

hð1Þ⊥ ðx; yÞ is not simply the Fourier transform of the linearly

polarized gluon distribution hð1Þ⊥ ðb; jkjÞ, but involves a
Bessel function of order two.
The Weizsäcker-Williams distribution Wij is a 2 × 2

matrix with eigenvalues Gð1Þ � hð1Þ⊥ . As expectation values
of positive definite operators, both Wij

ðUÞðx;xÞ (at the same

coordinate x ¼ y) and the impact parameter averaged
W̃ijðkÞ (for general k) should be positive definite. This
leads to positivity constraints [35] in both coordinate and

momentum space, which in our notation read Gð1Þðx;xÞ ≥
jhð1Þ⊥ ðx;xÞj and Gð1ÞðkÞ ≥ jhð1Þ⊥ ðkÞj. Note that even if the
momentum space distributions saturate the positivity bound

[Gð1ÞðjkjÞ ¼ hð1Þ⊥ ðjkjÞ in our normalization] as is expected
at high transverse momentum, this is not true for the
coordinate space functions due to the behavior of the Bessel
functions near the origin, which will be important for our
discussion in the following.
Collecting everything and expressing the result in terms

of the Gð1Þ and hð1Þ we obtain the following expression for
the local operator expectation values:

hεðxÞi ¼ g2NcðN2
c − 1Þ

2
Gð1Þ

ðUÞðx;xÞGð1Þ
ðVÞðx;xÞ;

ḣνðxÞi ¼ 0; ð3:12Þ

where the index contractions lead to a vanishing result for
the expectation value of the CP odd operator ̇ν. We see that
the linearly polarized distribution does not contribute to the
expectation value.5

B. Saturation models for
Weiszsäcker-Williams distribution

In order to provide explicit results for the one- and two-
point correlation functions, we need to specify a model for

2We follow here the notation of Ref. [39]; in particular, the
superscript (1) refers, following [68], to the Weizsäcker-Williams
as opposed to the dipole (2) distribution.

3Note that taking into account impact parameter b dependence
the most general decomposition requires additional tensor struc-
tures involving b as well as combinations of b and k. However,
since we are only interested in the application to the collisions of
large nuclei, we will ignore these subtleties and proceed as usual.
We refer the interested reader to Refs. [52,53] for a detailed
discussion on the implications for energy density correlators in
the glasma.

4Normalization conventions for the Weizsäcker-Williams dis-
tributions vary; for example the one introduced in [69] is related
to the one here by

F ð3Þ
gg ðkÞ ¼ N2

c − 1

4π3

Z
d2bGð1Þðb; jkjÞ:

5Note that Ref. [67] assumes the case of a full linear
polarization Gð1ÞðkÞ ¼ hð1ÞðkÞ, which is true in the MV model
at large transverse momentum (see the discussion in Sec. III B
and in Appendix B). Our present result shows that this simplify-
ing assumption did not affect the final result.
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the Weiszsäcker-Williams gluon distribution. We follow
previous works and exploit the fact [70,71] that in Gaussian
models the Weiszsäcker-Williams gluon distribution can be
related to the Dipole gluon distribution for which a number
of phenomenologically useful parametrizations exist.
Based on this standard procedure, described for complete-
ness in Appendix A, we obtain

Wik
ðUÞðx; yÞ ¼

1

g2Nc

�∂i
x∂k

y lnðDðUÞ
xy Þ

lnðDðUÞ
xy Þ

��
ðDðUÞ

xy Þ
2N2

c
N2
c−1 − 1

�
;

ð3:13Þ

where DðUÞ
xy ¼ 1

Nc
htrðUxU

†
yÞi is the expectation value

of the dipole operator. From this it is relatively easy,
assuming that the dipole distribution only depends on
the distance r≡ jx − yj, to extract the individual distribu-
tions as

Gð1ÞðrÞ ¼ 1

g2Nc

1− ðDðUÞðrÞÞ
2N2

c
N2
c−1

ln ðDðUÞðrÞÞ

�
∂2
r þ

1

r
∂r

�
ln ðDðUÞðrÞÞ;

ð3:14Þ

hð1Þ⊥ ðrÞ ¼ 1

g2Nc

1− ðDðUÞðrÞÞ
2N2

c
N2
c−1

ln ðDðUÞðrÞÞ

�
∂2
r −

1

r
∂r

�
ln ðDðUÞðrÞÞ:

ð3:15Þ

We can explicitly evaluate the correlation function in a
number of simple models. One finds for instance that in the
Golec-Biernat Wusthoff (GBW) model [72] for the dipole
amplitude

DGBW
xy ¼ exp

�
−
Q2

s

4
ðx − yÞ2

�
ð3:16Þ

the linearly polarized gluon distribution vanishes identi-
cally, hð1Þ⊥;GBWðx; yÞ ¼ 0, and the unpolarized gluon distri-
bution is simply given by

Gð1Þ
GBWðx; yÞ ¼

Q2
s

g2Nc

1 − e
− 2N2

c
N2
c−1

Q2
s
4
ðx−yÞ2

Q2
s
4
ðx − yÞ2

ð3:17Þ

such that in the limit y → x, it is relevant for the expectation
value of the local energy density

Gð1Þ
GBWðx;xÞ ¼

Q2
s

g2CF
: ð3:18Þ

Conversely, in the (screened) McLerran-Venugopalan
(MV) model the dipole amplitude is given by

DMV
xy ¼ exp

�
g4μ20
4πm2

ðmjx− yjK1ðmjx− yjÞ− 1Þ
�
; ð3:19Þ

such that the unpolarized and linearly polarized distribu-
tions become

Gð1Þ
MVðx; yÞ ¼ þ g4μ20

4πg2Nc
ðmjx − yjK1ðmjx − yjÞ − 2K0ðmjx − yjÞÞ 1 − e

2N2
c

N2
c−1

g4μ2
0

4πm2ðmjx−yjK1ðmjx−yjÞ−1Þ

g4μ2
0

4πm2 ðmjx − yjK1ðmjx − yjÞ − 1Þ
; ð3:20Þ

hð1Þ⊥;MVðx; yÞ ¼ −
g4μ20

4πg2Nc
mjx − yjK1ðmjx − yjÞ 1 − e

2N2
c

N2
c−1

g4μ2
0

4πm2ðmjx−yjK1ðmjx−yjÞ−1Þ

g4μ2
0

4πm2 ðmjx − yjK1ðmjx − yjÞ − 1Þ
: ð3:21Þ

At fixed coupling g the function Gð1Þ
MVðx; yÞ is logarithmically divergent in the limit y → x,

lim
y→x

Gð1Þ
MVðx; yÞ ¼ −

g4μ20Nc

2πg2ðN2
c − 1Þ

�
1þ 2γE þ ln

�
m2jx − yj2

4

��
; ð3:22Þ

whereas hð1Þ⊥;MVðx; yÞ remains finite,

lim
y→x

hð1Þ⊥;MVðx; yÞ ¼ þ g4μ20Nc

2πg2ðN2
c − 1Þ : ð3:23Þ

We will take the suggestion of some previous works (e.g.
[73]) and regulate the logarithmic divergence by introduc-

ing a running of the coupling via the following replacement
in Eqs. (3.20) and (3.21):

g4μ20 → g2ðμ2Þg2
�

1

jx − yj2
�
μ2; ð3:24Þ

with the coordinate space running coupling
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g2
�

1

jx − yj2
�

¼ g2ðμ2Þ lnðμ2Λ2Þ
lnð 4e−2γe

Λ2jx−yj2 þ eÞ : ð3:25Þ

We then absorb the superfluous parameters into physical
ones by expressing the correlators in terms of the physical
momentum scale of the problem, the saturation scale Qs.
This can be done by taking the limit Λ ∼m ≪ μ ∼Qs, in
which the unpolarized distribution becomes

lim
y→x

Gð1Þ
MVðx; yÞ ≈

g2ðμ2Þμ2
4πCF

ln

�
μ2

m2

�
: ð3:26Þ

We then require that this has the same normalization in
terms of the saturation scale Qs as in the GBW para-
metrization; see Eq. (3.18). This can be achieved by setting

Q2
s ¼

g4ðμ2Þμ2
4π

ln

�
μ2

m2

�
:

Expressed in terms of Qs we now have the same short
distance behavior as in the GBW model

lim
y→x

Gð1Þ
MVðx; yÞ ¼

Q2
s

g2CF
; lim

y→x
hð1Þ⊥;MVðx; yÞ ¼ 0; ð3:27Þ

and we will employ this prescription in the following when
presenting numerical results.
It is interesting to note that for a dipole parame-

trization that has an UV anomalous dimension, i.e.

lnDxy ∼ −ðx − yÞ2γ , corresponding to hð1Þ⊥ ðjkjÞ∼
Gð1ÞðjkjÞ ∼ jkj−2γ, the limiting behavior at a small distance

is given by limy→x
hð1Þ⊥ ðx;yÞ
Gð1Þðx;yÞ ¼

1−γ
γ . Fits to HERA data using

the Balitsky-Kovchegov (BK) equation favor values γ ≳ 1
for the initial condition, which evolves to γ ≲ 1 during the
evolution. All of these are in the region γ ≥ 1/2 required by

the positivity boundGð1Þðx;xÞ ≥ hð1Þ⊥ ðx;xÞ. At the limiting
value γ ¼ 1 of the MV model the analytical structure

changes: hð1Þ⊥ changes sign and for γ ≥ 1 the convergence of
the Fourier integral for the coordinate space distribution
Gð1Þ in terms of the momentum space one starts to require
regularization; see the related discussion in [74].

C. Expectation values of two-point correlation functions

We now turn to the evaluation of correlation functions of
εðxÞεðyÞ and ̇νðxÞ ̇νðyÞ characterizing local fluctuations of
the energy density and divergence of the Chern-Simons
current in the transverse plane. By performing the same steps
as outlined above, we obtain for the correlation functions

εðxÞεðyÞ ¼ htrðEη
xE

η
x þ Bη

xB
η
xÞtrðEη

yE
η
y þ Bη

yB
η
yÞi; ð3:28Þ

̇νðxÞ ̇νðyÞ ¼ htrðEη
xB

η
xÞtrðEη

yB
η
yÞi; ð3:29Þ

the following expressions:

εðxÞεðyÞ ¼ ð−igÞ4ðδijδkl þ εijεklÞðδi0j0δk0l0 þ εi
0j0εk

0l0 Þ
× htrð½αix; βjx�½αkx; βlx�Þtrð½αi0y ; βj

0
y �½αk0y ; βl0y �Þi;

̇νðxÞ ̇νðyÞ ¼ ð−igÞ4δijεklδi0j0εk0l0

× htrð½αix; βjx�½αkx; βlx�Þtrð½αi0y ; βj
0
y �½αk0y ; βl0y �Þi:

ð3:30Þ
We now have to evaluate correlation functions of the
gluon field

htrð½αix; βjx�½αkx; βlx�Þtrð½αi0y ; βj
0
y �½αk0y ; βl0y �Þi ¼

1

4
ifabeifcdeifa

0b0e0 ifc
0d0e0 hαi;ax αk;cx αi

0;a0
y αk

0;c0
y ihβj;bx βl;dx βj

0;b0
y βl

0;d0
y i: ð3:31Þ

Even though it is in principle possible to evaluate such objects numerically in Gaussian models as discussed e.g. in [75], we
will follow a different approach in order to obtain some analytic insight. Namely, we will assume that the four-point
correlation functions of the gluon fields can be factorized into products of two-point correlation functions such that

hαi;ax αk;cx αi
0;a0
y αk

0;c0
y i ¼ δacδa

0c0Wik
ðUÞðx;xÞWi0k0 ðy; yÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{disconnected

þ δaa
0
δcc

0
Wii0

ðUÞðx; yÞWkk0
ðUÞðx; yÞ þ δac

0
δca

0
Wik0

ðUÞðx; yÞWki0
ðUÞðx; yÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

connected

; ð3:32Þ

and similarly for the second nucleus

hβj;bx βl;dx βj
0;b0
y βl

0;d0
y i ¼ δbdδb

0d0Wjl
ðVÞðx;xÞWj0l0

ðVÞðy; yÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{disconnected

þ δbb
0
δdd

0
Wjj0

ðVÞðx; yÞWll0
ðVÞðx; yÞ þ δbd

0
δdb

0
Wjl0

ðVÞðx; yÞWlj0
ðVÞðx; yÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

connected

: ð3:33Þ
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Stated differently, this procedure corresponds to a factorization of the relevant double parton distribution into all possible
products of single parton distributions. We note that this approximation scheme has been frequently employed in the
literature e.g. in the context of di-hadron correlations (glasma graphs) [76–82] and the quality of approximation has been
investigated e.g. in [83].
Based on the above expression for the four-point correlation functions of the gluon fields, we can then proceed to evaluate

the color structures in the expressions. Distinguishing the terms by connected and disconnected contractions as indicated in
Eqs. (3.32) and (3.33), the relevant color factors are given by
disconnected-disconnected:

ifabeifcdeifa
0b0e0 ifc

0d0e0δacδa
0c0δbdδb

0d0 ¼ fabefabefa
0b0e0fa

0b0e0 ¼ N2
cðN2

c − 1Þ2; ð3:34Þ

disconnected-connected:

ifabeifcdeifa
0b0e0ifc

0d0e0δacδa
0c0δbb

0
δdd

0 ¼ fabefadefa
0be0fa

0de0 ¼ N2
cðN2

c − 1Þ; ð3:35Þ

ifabeifcdeifa
0b0e0ifc

0d0e0δacδa
0c0δbd

0
δdb

0 ¼ fabefadefa
0de0fa

0be0 ¼ N2
cðN2

c − 1Þ; ð3:36Þ

connected-disconnected:

ifabeifcdeifa
0b0e0 ifc

0d0e0δaa
0
δcc

0
δbdδb

0d0 ¼ fabefcbefab
0e0fcb

0e0 ¼ N2
cðN2

c − 1Þ; ð3:37Þ

ifabeifcdeifa
0b0e0 ifc

0d0e0δac
0
δca

0
δbdδb

0d0 ¼ fabefcbefcb
0e0fab

0e0 ¼ N2
cðN2

c − 1Þ; ð3:38Þ

connected-connected:

ifabeifcdeifa
0b0e0 ifc

0d0e0δaa
0
δcc

0
δbb

0
δdd

0 ¼ fabefcdefabe
0
fcde

0 ¼ N2
cðN2

c − 1Þ; ð3:39Þ

ifabeifcdeifa
0b0e0ifc

0d0e0δaa
0
δcc

0
δbd

0
δdb

0 ¼ fabefcdefade
0
fcbe

0 ¼ 1

2
N2

cðN2
c − 1Þ; ð3:40Þ

ifabeifcdeifa
0b0e0ifc

0d0e0δac
0
δca

0
δbb

0
δdd

0 ¼ fabefcdefcbe
0
fade

0 ¼ 1

2
N2

cðN2
c − 1Þ; ð3:41Þ

ifabeifcdeifa
0b0e0 ifc

0d0e0δac
0
δca

0
δbd

0
δdb

0 ¼ fabefcdefcde
0
fabe

0 ¼ N2
cðN2

c − 1Þ; ð3:42Þ

where we used the identities tr½Ta
adjT

b
adj� ¼ Ncδ

ab and tr½Ta
adjT

b
adjT

a
adjT

c
adj� ¼ 1

2
N2

cδ
bc to evaluate the final expressions.

Collecting all the different terms we then obtain for the correlation function

htrð½αix; βjx�; ½αkx; βlx�Þtrð½αi0y ; βj
0
y �; ½αk0y ; βl0y �Þi

¼ þN2
cðN2

c − 1Þ2
4

½Wik
ðUÞðx;xÞWi0k0 ðy; yÞWjl

ðVÞðx;xÞWj0l0
ðVÞðy; yÞ�

þ N2
cðN2

c − 1Þ
4

½Wik
ðUÞðx;xÞWi0k0 ðy; yÞðWjj0

ðVÞðx; yÞWll0
ðVÞðx; yÞ þWjl0

ðVÞðx; yÞWlj0
ðVÞðx; yÞÞ�

þ N2
cðN2

c − 1Þ
4

½ðWii0
ðUÞðx; yÞWkk0

ðUÞðx; yÞ þWik0
ðUÞðx; yÞWki0

ðUÞðx; yÞÞWjl
ðVÞðx;xÞWj0l0

ðVÞðy; yÞ�

þ N2
cðN2

c − 1Þ
4

�
Wii0

ðUÞðx; yÞWkk0
ðUÞðx; yÞ

�
Wjj0

ðVÞðx; yÞWll0
ðVÞðx; yÞ þ

1

2
Wjl0

ðVÞðx; yÞWlj0
ðVÞðx; yÞ

�

þWik0
ðUÞðx; yÞWki0

ðUÞðx; yÞ
�
1

2
Wjj0

ðVÞðx; yÞWll0
ðVÞðx; yÞ þWjl0

ðVÞðx; yÞWlj0
ðVÞðx; yÞ

��
; ð3:43Þ

where we note that—as usual—all terms involving a connected contraction are suppressed by a factor 1/ðN2
c − 1Þ relative to

the fully disconnected contribution.
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By performing also all of the contractions of the transverse tensors, we obtain after some algebra our result for the two
point correlation function of the energy density

hεðxÞεðyÞi − hεðxÞihεðyÞi ¼ g4N2
cðN2

c − 1Þ
4

Gð1Þ
ðUÞðx;xÞGð1Þ

ðUÞðy; yÞ½ðGð1Þ
ðVÞðx; yÞÞ2 þ ðhð1Þ⊥ðVÞðx; yÞÞ2�

þ g4N2
cðN2

c − 1Þ
4

Gð1Þ
ðVÞðx;xÞGð1Þ

ðVÞðy; yÞ½ðGð1Þ
ðUÞðx; yÞÞ2 þ ðhð1Þ⊥ðUÞðx; yÞÞ2�

þ g4N2
cðN2

c − 1Þ
4

½ðGð1Þ
ðUÞðx; yÞÞ2ðGð1Þ

ðVÞðx; yÞÞ2 þ ðhð1Þ⊥ðUÞðx; yÞÞ2ðhð1Þ⊥ðVÞðx; yÞÞ2�

þ g4N2
cðN2

c − 1Þ
8

½ðGð1Þ
ðUÞðx; yÞÞ2ðhð1Þ⊥ðVÞðx; yÞÞ2 þ ðhð1Þ⊥ðUÞðx; yÞÞ2ðGð1Þ

ðVÞðx; yÞÞ2�; ð3:44Þ

which receives three distinct contributions, related to the
disconnected-connected, connected-disconnected, and
connected-connected contributions.6 In contrast for the
Chern-Simons correlator, all disconnected contractions
vanish identically and only the connected-connected con-
tractions give rise to a nonvanishing contribution. Our final
result and the central result of this paper reads

ḣνðxÞ̇νðyÞi ¼ 3g4N2
cðN2

c − 1Þ
32

½ðGð1Þ
ðUÞðx; yÞÞ2ðGð1Þ

ðVÞðx; yÞÞ2

− ðhð1Þ⊥ðUÞðx; yÞÞ2ðhð1Þ⊥ðVÞðx; yÞÞ2�: ð3:45Þ

We note that the unpolarized and linearly polarized dis-
tributions contribute with different relative signs. However,
as discussed in Sec. III B, at sufficiently small distances
jx − yj the unpolarized contribution dominates and the
correlation function is manifestly positive. Of course, the
calculation outlined above can also be performed more or
less entirely using modern computer algebra tools such as
FEYNCALC [84,85] or FORM [86], and we have cross-
checked our results in this way.

IV. DIAGRAMMATIC ANALYSIS
IN MOMENTUM SPACE

Even though we have performed the entire calculation
above in coordinate space, our calculation is in fact closely
related to the glasma graph analysis of double inclusive
particle production. In order to illustrate the similarities and
differences it is useful to generalize our previous expres-
sions to finite time by approximating the dynamics in the

forward light cone ðτ > 0Þ in terms of the free field
evolution. This approximation is reasonable for up to
proper times τ ≳ 1/Qs, where the phase space density of
gluons is still high enough to justify the classical field
approximation, but the dynamics of the classical fields
begins to resemble free streaming gluons. The situation is
more complicated for low transverse momentum modes at
the plasmon energy scale, and at later times τ ≫ 1/Qs the
system begins to isotropize and the phase space density
falls below what is required for the classical approximation.
However linearizing the equations of motion is the correct
approximation to make a connection with calculations of
gluon momentum spectra. Based on the linearized evolu-
tion equations for Abelian gauge fields

∂τ
1

τ
∂ττ

2Aη ¼ τ∇2Aη; ∂ττ∂τAi ¼ τðδij∇2 − ∂i∂jÞAj

ð4:1Þ

the dynamics of the two independent polarizations
corresponding to nonzero Eη and respectively Bη at
τ ¼ 0þ decouples from each other. By matching the
general solution of Eq. (4.1) in Fourier space AμðkÞ ¼R
d2xe−ik·xAμðxÞ to the relevant initial conditions in

Eqs. (2.2) and (2.3), we can immediately obtain a solution
of the form (cf. [87])7

Aηðτ;kÞ ¼ −τ2Aη ¼ τ

jkjE
ηðτ ¼ 0þ;kÞJ1ðjkjτÞ; ð4:2Þ

Aiðτ;kÞ ¼ Aið0;kÞJ0ðjkjτÞ

¼ −iεij
kj

jkj2 B
ηðτ ¼ 0þ;kÞJ0ðjkjτÞ: ð4:3Þ

Staying consistently at lowest order in the Abelian
approximation to the dynamics in the forward light cone,
the non-Abelian field strength can be determined as

6We note that the above expression corrects the earlier result of
[44], where the connected-connected term in the last two lines
was given incorrectly. We have checked the calculation of
Ref. [44] step-by-step. In the notation of the reference, we find
that the prefactor of the fully connected contribution toM1 should
be 3/16 instead of 3/8 and that M5 þM6 þM8 þM9 ¼
g4

16
N2

cðN2
c − 1Þ½G2ðx − yÞ − E2ðx − yÞ − F2ðx − yÞ� featuring a

relative minus sign between the unpolarized and linearly polar-
ized contributions.

7By construction this solution satisfies the Coulomb type
gauge condition k ·Aðτ;kÞ ¼ 0. It is thus a gauge transformation
of the usual initial gauge potentials (2.2).
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Eηðτ;kÞ ¼ 1

τ
∂τAηðτ;kÞ ¼ Eηðτ ¼ 0þ;kÞJ0ðjkjτÞ; ð4:4Þ

Eiðτ;kÞ ¼ ∂τAiðτ;kÞ ¼ −iεij
kj

jkjB
ηðτ ¼ 0þ;kÞJ1ðjkjτÞ;

ð4:5Þ

Bηðτ;kÞ ¼ −iεijkiAjðτ;kÞ ¼ Bηðτ ¼ 0þ;kÞJ0ðjkjτÞ;
ð4:6Þ

Biðτ;kÞ ¼ −iεijkjAηðτ;kÞ/τ

¼ −iεij
kj

jkjE
ηðτ ¼ 0þ;kÞJ1ðjkjτÞ: ð4:7Þ

One subtle issue is that the quality of the Abelian
approximation for the dynamics in the forward light cone
depends on the gauge choice. Even though the above
expressions show that dynamics in the Abelian approxi-
mation can be entirely formulated in terms of correlation
functions of chromoelectric and chromomagnetic fields,
objects such as Eaðτ ¼ 0þ;xÞEbðτ ¼ 0þ; yÞ are in fact not
gauge invariant. One natural gauge choice is the transverse
Coulomb gauge ∂iAiðτ ¼ 0þ;xÞ ¼ 0 which minimizes
the transverse gauge field amplitudes, and it has been

established from numerical simulations in [88] that the
effects of final state interactions at τ > 0 become small in
this gauge.
It is not generally known how to find the gauge trans-

formation to Coulomb gauge analytically. However, the
problem becomes considerably simpler in the case where
either the projectile or target can be considered as dilute
[89,90]. Specifically, if this is the case for the second
nucleus [Vx ¼ 1þ igAðVÞðxÞ], a gauge transformation
with V†U† yields the desired result to leading order in
the dilute expansion. One finds that in this case, the
nonvanishing components of the field strength tensor are
given by

Eηðτ ¼ 0þ;xÞjCoul gauge ¼ −igδijU†
x½αix; βjx�Ux þOðA2

ðVÞÞ;
ð4:8Þ

Bηðτ ¼ 0þ;xÞjCoul gauge ¼ −igϵijU†
x½αix; βjx�Ux þOðA2

ðVÞÞ:
ð4:9Þ

Expressing U†
x½αix; βjx�Ux ¼ βj;ax ð∂iUab

x Þtb and performing
the transformation to Fourier space, the field-strength
bilinears εðτ;xÞ and ̇νðτ;xÞ can be compactly expressed as

εðτ;xÞ ¼ ð−igÞ2
Z
p;p̄

Z
k;k̄

ðδijδkl þ εijεklÞ β
j;a
k ðipiÞUab

p ðip̄kÞU†ba0
p̄ βl;a

0
k̄

2
eiðpþkþp̄þk̄Þx

×

�
J0ðjpþ kjτÞJ0ðjp̄þ k̄jτÞ − ðpþ kÞ · ðp̄þ k̄Þ

jpþ kjjp̄þ k̄j J1ðjpþ kjτÞJ1ðjp̄þ k̄jτÞ
�
; ð4:10Þ

̇νðτ;xÞ ¼ ðigÞ2
2

Z
p;p̄

Z
k;k̄

ðδijεkl þ εijδklÞ β
j;a
k ðipiÞUab

p ðip̄kÞU†ba0
p̄ βl;a

0
k̄

2
eiðpþkþp̄þk̄Þx

×

�
J0ðjpþ kjτÞJ0ðjp̄þ k̄jτÞ − ðpþ kÞ · ðp̄þ k̄Þ

jpþ kjjp̄þ k̄j J1ðjpþ kjτÞJ1ðjp̄þ k̄jτÞ
�
; ð4:11Þ

where
R
k stands for

R
d2k
ð2πÞ2. Similarly, the two-point correlation functions of interest take the following form:

εðτ;xÞεðτ; yÞ ¼ ðigÞ4
Z
p;p̄

Z
k;k̄

Z
qq̄

Z
l;l̄
ðδijδkl þ εijεklÞðδi0j0δk0l0 þ εi

0j0εk
0l0 Þ

×

	�
βj;ak ðipiÞUab

p ðip̄kÞU†ba0
p̄ βl;a

0
k̄

2

��
βj

0;c
l ðiqi0 ÞUcd

q ðiq̄k0 ÞU†dc0
q̄ βl

0;c0
l̄

2

�


×

�
J0ðjpþ kjτÞJ0ðjp̄þ k̄jτÞ − ðpþ kÞ · ðp̄þ k̄Þ

jpþ kjjp̄þ k̄j J1ðjpþ kjτÞJ1ðjp̄þ k̄jτÞ
�

×

�
J0ðjqþ ljτÞJ0ðjq̄þ l̄jτÞ − ðqþ lÞ · ðq̄þ l̄Þ

jqþ ljjq̄þ l̄j J1ðjqþ ljτÞJ1ðjq̄þ l̄jτÞ
�

× eiðpþkþp̄þk̄Þxeiðqþlþq̄þl̄Þy; ð4:12Þ
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̇νðτ;xÞ ̇νðτ; yÞ ¼ ðigÞ4
Z
p;p̄

Z
k;k̄

Z
qq̄

Z
l;l̄
ðδijεkl þ εijδklÞðδi0j0εk0l0 þ εi

0j0δk
0l0 Þ

×

	�
βj;ak ðipiÞUab

p ðip̄kÞU†ba0
p̄ βl;a

0
k̄

2

��
βj

0;c
l ðiqi0 ÞUcd

q ðiq̄k0 ÞU†dc0
q̄ βl

0;c0
l̄

2

�


×

�
J0ðjpþ kjτÞJ0ðjp̄þ k̄jτÞ − ðpþ kÞ · ðp̄þ k̄Þ

jpþ kjjp̄þ k̄j J1ðjpþ kjτÞJ1ðjp̄þ k̄jτÞ
�

×

�
J0ðjqþ ljτÞJ0ðjq̄þ l̄jτÞ − ðqþ lÞ · ðq̄þ l̄Þ

jqþ ljjq̄þ l̄j J1ðjqþ ljτÞJ1ðjq̄þ l̄jτÞ
�

× eiðpþkþp̄þk̄Þxeiðqþlþq̄þl̄Þy : ð4:13Þ

At early times τ ≲ 1/Qs the products of Bessel functions are
dominated by J20 ≈ 1, corresponding to the limit discussed
in Sec. III. Beyond early times only the disconnected
contribution has a delta function setting p̄ ¼ −p, k̄ ¼ −k,
etc., in such a way that the Bessel functions are arranged
into combinations J20ðxÞ þ J21ðxÞwith the same argument x.
Based on the approximate relation J20ðxÞ þ J21ðxÞ ≈ 2/ðπxÞ
one then obtains the usual behavior of the energy density as
εðτÞ ∼ 1/τ. On the other hand, simplifications of this nature
do not occur for the connected contributions, and the Bessel
functions oscillate out of phase. Hence, we expect the
correlation signal for the energy density and the divergence
of the Chern-Simons current in coordinate space to vanish
for τ ≳ 1/Qs. This decorrelation is very different from what
happens to a momentum-space two gluon correlation,
where our calculation can be directly related to what are
known as “glasma graph” [80] correlations. This relation is
made more explicit in Appendix B.

V. DISCUSSION

We now return to the central objective of this paper—to
characterize axial charge production in the glasma. Based
on our calculation in Sec. III C, we find that the expectation
value of the divergence of the Chern-Simons current
ḣνðxÞi ¼ 0 vanishes identically, such that on average no

imbalance axial charge imbalance is created. However, the
variance ḣνðxÞ̇νðyÞi is finite, such that local fluctuations of
the axial charge density should be expected on an event-by-
event basis. Specifically, in the GBW saturation model, we
obtain the following result for the correlation functions:

hεðxÞεðyÞi
hεðxÞihεðyÞi − 1 ¼ 3

N2
c − 1

�
1

3

�
1 − e−

Nc
4CF

Q2
s jx−yj2

Nc
4CF

Q2
s jx − yj2

�4

þ 2

3

�
1 − e−

Nc
4CF

Q2
s jx−yj2

Nc
4CF

Q2
s jx − yj2

�2�
; ð5:1Þ

ḣνðxÞ̇νðyÞi
hεðxÞihεðyÞi ¼

3

8ðN2
c − 1Þ

�
1 − e−

Nc
4CF

Q2
s jx−yj2

Nc
4CF

Q2
s jx − yj2

�4

; ð5:2Þ

which is depicted in the left panel of Fig. 1. We note that
except for the 1/ðN2

c − 1Þ suppression factor characteristic
for fluctuations, there is no parametric suppression of
ḣνðxÞ̇νðyÞi compared to the energy density hεðxÞi, indicat-
ing that locally glasma flux tubes can induce a significant
imbalance of the axial charge density. However, it is also
evident from Fig. 1 that the correlation length of these
glasma flux tubes in the transverse plane is microscopically
small ∼1/Qs—such that a large number of uncorrelated
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FIG. 1. Comparison of the correlation functions of the energy density hεðxÞεðyÞi and the divergence of the Chern-Simons current
ḣνðxÞ ̇νðyÞi in the GBW model (left) and MV model (right).
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domains should be expected in a realistic event. Besides the
analytic results obtained in the GBW saturation model, the
right panel of Fig. 1 shows the same quantities calculated in
the MV model (see Sec. III B for details).
Based on the above results for the source for axial charge

production, we can also estimate local fluctuations of the
axial charge density. Using our approximate treatment in
Eq. (2.7) we find that for times τ ≲ 1/Qs the local
fluctuations can be estimated as

	
dN5

d2xdη
dN5

d2ydη



≈

3α2sN2
f

8π2ðN2
c − 1Þ hεðxÞihεðyÞiτ

4

×

�
1 − e−

Nc
4CF

Q2
s jx−yj2

Nc
4CF

Q2
s jx − yj2

�4

; ð5:3Þ

whereas fluctuations of the global amount of axial charge
are suppressed by the overall number of glasma flux tubes
1/Q2

sS⊥ and approximately given by

	Z
x

dN5

d2xdη

Z
y

dN5

d2ydη



≈ κ

α2sN2
f

2π2N2
c

ε2τ4S2⊥
Q2

sS⊥
; ð5:4Þ

where κ ¼ πð44 lnð2Þ − 27 lnð3ÞÞ ≈ 2.6262 and S⊥ denotes
the transverse size of the overlap area.
We also note that our result in Eq. (5.3) can directly be

used to model the initial conditions of the axial charge
density dN5

d2xdη in anomalous hydrodynamics or other calcu-
lations that attempt to relate anomalous transport phenom-
ena to experimental measurements. We start from the
assumption that on an event-by-event basis one knows
the average energy density profile hϵðxÞi as a function of
the transverse coordinates, e.g. from a Monte Carlo
Glauber model. This energy density profile should be
thought of as the “average” energy density in the sense
that color charge fluctuations at the scale Qs are not
included. The fluctuations at longer length scales, such
as those resulting from fluctuations of the positions of
nucleons inside the nucleus, should be averaged over
separately as an external input to our calculation.
Assuming that the energy density profile is sampled at a
discrete set of points x in the transverse plane, one
straightforward way to generate configurations of the axial
charge distribution with a given two-point correlation
function 	

dN5

d2xdη
dN5

d2ydη



¼ Cðx; yÞhϵðxÞihϵðyÞi ð5:5Þ

as in Eq. (5.3) is to perform a Cholesky decomposition of
the correlation function

Cðx; yÞ ¼
X
z

Lðx; zÞLTðz; yÞ: ð5:6Þ

By sampling individual configurations of the axial charge
distribution according to

dN5

d2xdη
¼ hϵðxÞi

X
z

ξðzÞLðx; zÞ; ð5:7Þ

where ξðzÞ are uncorrelated random numbers with zero
mean hξðzÞi ¼ 0 and unit variance hξðzÞξðz0Þi ¼ δz;z0 , it is
then straightforward to verify that the correlation function
is correctly reproduced on average. Similarly, our result in
Eq. (5.1) can also be used to include additional subnu-
cleonic Qs-scale fluctuations of the energy density
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FIG. 2. Energy density and axial charge profiles for a peripheral
Pbþ Pb event (b ¼ 11.4 fm jNpart ¼ 56)—the typical correla-
tion length of axial charge distribution is on the order of the
inverse saturation scale chosen as Q2

s ¼ 2 GeV2.
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hϵðxÞϵðyÞi − hϵðxÞihϵðyÞi on top of the average energy
density profile hϵðxÞi by following the same procedure
outlined above. This provides a simplistic way to include
the kind of Qs-scale energy density fluctuations that are
present in the IP-Glasma model [28,51], although the
analytic expressions used here are just approximations of
the full numerical result. We emphasize that the procedure
can be applied to any model or parametrization for the
initial energy density at very early times τ ≪ 1/Qs. Even if
the initial average energy density does not come from an
explicit saturation model calculation, one can estimate the
corresponding saturation scale by solving for Qs from the

initial energy density hεi ≈ 1
g2

N2
c

CF
Q4

s.

We illustrate this procedure in Fig. 2, with the example of
a peripheral Pbþ Pb event. Based on the average energy
density profile obtained from the TRENTO event generator
[91] shown in the first panel of Fig. 2, we include
fluctuations of the energy density and axial charge dis-
tribution following the above procedure. Despite the fact
that average energy density profile is rather smooth, with
typical variations on size scales ∼fm, subnucleonic fluc-
tuations give rise to fluctuations of the energy density at
length scales ∼1/Qs as can be seen from the central panel of
Fig. 2. Similarly, variations of the axial charge distribution
due to glasma flux tubes occur on microscopic length scales
with a characteristic size ∼1/Qs. However, because of the
approximate boost invariant nature of the glasma fields,
these structures are elongated in rapidity. It will be
interesting to see from phenomenological calculations
whether such small structures can have a sizable effect
on hadronic observables. In order to facilitate the use of our
result in this context, we provide the source code for
generating axial charge distributions as in Fig. 2 as
supplementary material.

VI. CONCLUSIONS AND PERSPECTIVES

Based on known analytic solutions for the glasma fields
we calculated energy and axial charge fluctuations at early
times τ ≲ 1/Qs after the collision of heavy nuclei at high
energies. Our calculation generalizes the earlier work of
[44] to a more general structure for the gluon distribution
and, more importantly, to derive an expression for the
Chern-Simons correlator. Generally, we find that the
expressions for energy and axial charge fluctuations in
Eq. (3.30) involve the correlation function of two WW
gluon distributions, represented as a correlator of eight
lightlike Wilson lines for each nucleus. We evaluated this
correlation function in the glasma graph approximation,
where the relevant double parton distribution is factorized
into a product of single parton distributions. Based on
previous calculations [83], we expect the glasma graph
approximation to be quite close to the full result. Extending
this calculation to the full nonlinear Gaussian treatment
would require working out an eight-point function of

Wilson lines in the similar way as the four-point function
in Appendix A 2. Based on the complexity of the
expressions it appears unlikely that this could be done
analytically, but a numerical evaluation similar to the
recent one in [75] should certainly be feasible. We also
note that, based on our primary interest of applications to
the collision of large nuclei, we neglected some more
subtle effects related to position-momentum correlations
in the gluon distribution (see e.g. [92,93]), which may be
interesting to investigate in further applications to small
systems.
Our result in Eqs. (3.44) and (3.45) expresses fluctua-

tions of the energy density and axial charge in terms of the
Bessel moments of the unpolarized (Gð1Þ) and linearly

polarized (hð1Þ⊥ ) transverse momentum dependent gluon
distributions. Interestingly, we find that the spin structure
enters in a different way in the final expressions. In
particular, the two-point correlator of the Chern-Simons
term is sensitive to the difference of Bessel moments of
unpolarized and linearly polarized distributions. Evaluating
the Weiszäcker-Williams distributions in a simple satura-
tion model (GBW), we also provided explicit estimates in
Eqs. (5.1) and (5.3) for energy density and axial charge
fluctuations at early times.
In view of possible phenomenological applications of

our result, we provided a practical algorithm to use our
result to implement quantitatively the axial-charge density
fluctuations in the glasma. Of course, this relation relies on
a rough treatment of the time dependence of the Chern-
Simons charge in the glasma (cf. Sec. II) and ultimately a
full classical Yang-Mills calculation including dynamical
fermions along the lines of [19,94,95] as well as a realistic
geometry will be needed. Even with this approximation our
result should, however, enable a better control of the initial
conditions for anomalous hydrodynamics simulations or
other calculations that are needed to relate these ideas to
experimental measurements. We caution, however, that
axial charge changing processes e.g. due to sphaleron
transitions or thermal fluctuations of the field strength
tensor continue to take place throughout the entire space-
time evolution of the quark-gluon plasma. Clearly such
effects should also be included in realistic model calcu-
lations and further theoretical progress will be required.
We finally note that several calculations similar to ours

have been performed for momentum space gluon correla-
tions based on the Glasma graph approximation [76–82].
However, these calculations are performed in the dilute
limit and do not give access to the linear polarization
structure of the gluon distribution. Focusing only on the
coordinate space correlation structures of the fields at τ ≲
1/Qs enables us to do a calculation in a manifestly gauge
invariant way and more cleanly elucidate the role of the
gluon polarization. The relation between our present work
and the glasma graph calculations of ridge correlations is
explained in more detail in Sec. IV.
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APPENDIX A: EVALUATION OF
WEISZÄCKER-WILLIAMS DISTRIBUTION

IN GAUSSIAN MODELS

We start by decomposing the gluon fields αix over the Lie
algebra

αix ¼ i
g
Ux∂iU†

x; αix ¼ αi;ax ta; αi;ax ¼ 2i
g
trðtaUx∂iU†

xÞ

ðA1Þ

such that the Weizsäcker-Williams distribution is given by

g2ðN2
c − 1Þ
2

Wik
ðUÞðx; yÞ ¼ 2htrðtaUxi∂iU†

xÞtrðtaUyi∂kU†
yÞi:
ðA2Þ

By reexpressing the derivatives in terms of new coordinates
x̄; ȳ and making use of the SUðNcÞ Fierz identity

taijt
a
kl ¼

1

2
δilδjk −

1

2Nc
δijδkl ðA3Þ

the relevant correlation function of Wilson lines then take
the form

g2ðN2
c − 1Þ
2

Wik
ðUÞðx; yÞ ¼ i∂i

x̄i∂k
ȳ

	
trðUxU

†
x̄UyU

†
ȳÞ −

1

Nc
trðUxU

†
x̄ÞtrðUyU

†
ȳÞ

����

x̄¼x;ȳ¼y
: ðA4Þ

Clearly the second term vanishes upon taking the derivative
and setting coordinates x̄ ¼ x and ȳ ¼ y equal to each, as
Ux∂iU†

x are elements of the Lie algebra and thus traceless.
We are then left with evaluating the first term involving the
quadrupole correlator.

1. Evaluation of the Wilson line correlators
in Gaussian model

We perform the Gaussian averaging of the correlators of
the Wilson line, by expressing the usual Gaussian integral
over color charges in terms of a stochastic process in the
evolution variable z ∈ ½0; 1� such that the Wilson lines at
z ¼ 0 are given by Vxðz ¼ 0Þ ¼ 1 and in each step

∂zVx ¼ VxðþigtaξaxðzÞÞ; ðA5Þ

where ξax are stochastic variables with

hξaxðzÞξbyðz0Þi ¼
1

g2CF
δabλxyδðz − z0Þ; ðA6Þ

where CF ¼ ðN2
c − 1Þ/ð2NcÞ is the fundamental Casimir.

Starting for simplicity with the dipole operator, we can then
evaluate

∂z

	
1

Nc
trðUxU

†
x̄Þ



¼ Gxx̄htrðUxU
†
x̄Þi; ðA7Þ

where we introduced the correlation functions

Gxx̄ ¼ λxx̄ −
1

2
λxx −

1

2
λx̄ x̄; ðA8Þ

such that the dipole correlator is simply given by

Dxx̄ ¼ 1

Nc
htrðUxU

†
x̄Þi ¼ expðGxx̄Þ: ðA9Þ

2. Quadrupole and dipole-dipole correlators

Similarly for the quadrupole, we obtain upon use of the
SUðNcÞ Fierz identity the evolution equation

∂ztrðUxU
†
x̄UyU

†
ȳÞ

¼
�
Gxx̄ þ Gyȳ −

1

N2
c − 1

Txx̄;yȳ

�
trðUxU

†
x̄UyU

†
ȳÞ

þ 1

2CF
Txx̄;yȳtrðUxU

†
ȳÞtrðU†

x̄UyÞ; ðA10Þ

where the transition function Txx̄;yȳ is given by

Txx̄;yȳ ¼ λxȳ þ λyx̄ − λxy − λx̄ ȳ ¼ Gxȳ þ Gyx̄ −Gxy −Gx̄ ȳ:

ðA11Þ

This has to be supplemented with the evolution equation for
the dipole-dipole correlator
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∂ztrðUxU
†
ȳÞtrðU†

x̄UyÞ ¼
�
Gxȳ þ Gyx̄ −

1

N2
c − 1

Txȳ;yx̄

�
trðUxU

†
ȳÞtrðU†

x̄UyÞ

þ 1

2CF
Txȳ;yx̄trðUxU

†
x̄UyU

†
ȳÞ; ðA12Þ

with the transition function Txȳ;yx̄ given by

Txȳ;yx̄ ¼ Gxx̄ þ Gyȳ −Gxy − Gx̄ ȳ: ðA13Þ

We obtain the coupled set of evolution equations

∂z

 
trðUxU

†
ȳÞtrðU†

x̄UyÞ
trðUxU

†
x̄UyU

†
ȳÞ

!
¼ Mðx; x̄; y; ȳÞ

 
trðUxU

†
ȳÞtrðU†

x̄UyÞ
trðUxU

†
x̄UyU

†
ȳÞ

!
; ðA14Þ

where the evolution operator Mðx; x̄; y; ȳÞ takes the form

Mðx; x̄; y; ȳÞ ¼
 
Gxȳ þ Gyx̄ − 1

N2
c−1

Txȳ;yx̄
1

2CF
Txȳ;yx̄

1
2CF

Txx̄;yȳ Gxx̄ þGyȳ − 1
N2

c−1
Txx̄;yȳ

!
: ðA15Þ

Hence, the relevant correlation function can be obtained as

trðUxU
†
x̄UyU

†
ȳÞ ¼

�
0

1

�T

expðMðx; x̄; y; ȳÞÞ
�
N2

c

Nc

�
: ðA16Þ

Of course, for this simple example we could easily calculate the full expression as done in [68]. However, for our purpose it
is more useful to first take the derivatives and set the coordinates x̄ ¼ x and ȳ ¼ y equal to each other, such that the relevant
expression

g2ðN2
c − 1Þ
2

Wik
α ðx; yÞ ¼ i∂i

x̄i∂k
ȳtrðUxU

†
x̄UyU

†
ȳÞjx̄¼x;ȳ¼y ðA17Þ

greatly reduces in complexity to

g2ðN2
c − 1Þ
2

Wik
α ðx; yÞ ¼

�
0

−1

�T

∂i
x̄∂k

ȳexpðMðx; x̄; y; ȳÞÞjx̄¼x;ȳ¼y

�
N2

c

Nc

�
: ðA18Þ

Specifically, denoting the evolution matrix and its derivatives as

Mxy ¼ Mðx;x; y; yÞ; Mði;0Þ
xy ¼ ∂i

x̄Mðx; x̄; y; ȳÞjx̄¼x;ȳ¼y; Mð0;kÞ
xy ¼ ∂k

ȳMðx; x̄; y; ȳÞjx̄¼x;ȳ¼y;

Mði;kÞ
xy ¼ ∂i

x̄∂k
ȳMðx; x̄; y; ȳÞjx̄¼x;ȳ¼y; ðA19Þ

the derivative of the matrix exponential is given by

∂i
x̄∂k

ȳexpðMðx; x̄; y; ȳÞÞjx̄¼x;ȳ¼y ¼
Z

1

0

ds expðsMxyÞMði;kÞ
x;y expðð1 − sÞMxyÞ

þ
Z

1

0

ds
Z

1

0

dt expðstMxyÞsMði;0Þ
x;y expðð1 − tÞsMxyÞMð0;kÞ

x;y expðð1 − sÞMxyÞ

þ
Z

1

0

ds
Z

1

0

dt expðsMxyÞMð0;kÞ
x;y expðð1 − sÞtMxyÞ

× ð1 − sÞMði;0Þ
x;y expðð1 − sÞð1 − tÞMxyÞ: ðA20Þ
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Evaluating the matrix elements according to

Gxy ¼ Gyx; Gxx ¼ Gyy ¼ 0; Txx;yy ¼ 0;

Txy;yx ¼ −2Gxy; ðA21Þ

we obtain

Mxy ¼
 

2N2
c

N2
c−1

Gxy − 1
CF
Gxy

0 0

!
; ðA22Þ

such that

expðqMxyÞ ¼
 
e
q

2N2
c

N2
c−1

Gxy 1
Nc

�
1 − e

q
2N2

c
N2
c−1

Gxy
�

0 1

!
: ðA23Þ

Similarly, using the relations

∂i
x̄Gxx̄jx̄¼x ¼ 0; ∂i

x̄Gx̄yjx̄¼x ¼ ∂i
x̄Gyx̄jx̄¼x ¼ GðiÞ

xy

ðA24Þ

∂i
x̄Txx̄;yȳjx̄¼x ¼ GðiÞ

yx −GðiÞ
ȳx; ∂i

x̄Txȳ;yx̄jx̄¼x ¼ −GðiÞ
xȳ ;

ðA25Þ

we obtain the derivative of the evolution operator as

∂i
x̄Mðx; x̄; y; ȳÞjx̄¼x

¼
 

GðiÞ
yx þ 1

N2
c−1

GðiÞ
xȳ − 1

2CF
GðiÞ

xȳ

1
2CF

ðGðiÞ
yx − GðiÞ

ȳxÞ − 1
N2

c−1
ðGðiÞ

yx −GðiÞ
ȳxÞ

!
; ðA26Þ

such that the relevant expressions are given by

Mði;0Þ
xy ¼

 
N2

c
N2

c−1
Gði;0Þ

xy − 1
2CF

Gði;0Þ
xy

0 0

!
;

Mð0;kÞ
xy ¼

 
N2

c
N2

c−1
Gð0;kÞ

xy − 1
2CF

Gð0;kÞ
xy

0 0

!
;

Mði;kÞ
xy ¼

 þ 1
N2

c−1
Gði;kÞ

xy − 1
2CF

Gði;kÞ
xy

− 1
2CF

Gði;kÞ
xy þ 1

N2
c−1

Gði;kÞ
xy

!
: ðA27Þ

Based on the explicit form of Mði;0Þ
xy and Mð0;kÞ

xy with
vanishing entries in the second line, the first derivative
terms in Eq. (A20) vanish upon the projection onto the final
state and hence do not contribute to the quadrupole
operator. Collecting everything and performing the inte-
grals we finally obtain

g2ðN2
c − 1Þ
2

Wik
ðUÞðx; yÞ ¼ CF

Gði;kÞ
xy

Gxy

�
e

2N2
c

N2
c−1

Gxy − 1
�
: ðA28Þ

APPENDIX B: GLASMA GRAPH TWO
GLUON CORRELATION

While the coordinate space correlation can be argued to
vanish at τ ≫ 1/Qs, the situation is different for particle
production, which is measured in momentum space. Here
one integrates over the coordinates x, y and the corre-
sponding x̄; ȳ for the conjugate amplitude. This gives an
additional momentum conservation delta function, which
always sets pþ k ¼ −ðp̄þ k̄Þ and qþ l ¼ −ðq̄þ l̄Þ also
for the connected contributions in the expressions analo-
gous to Eqs. (4.12) and (4.13) (for an illustration of the
momentum flow see Fig. 3). This leads to the glasma graph
[80] momentum space correlation structure. Even though
this has not been the main focus of our paper, it is
illustrative to derive this momentum space correlation

(a)

(b)

(c)

FIG. 3. Examples of (a) a completely disconnected diagram and
examples of (b) a disconnected-connected correlation (i.e. a
“rainbow diagram” in the terminology of [77]) and (c) a
connected-connected correlation in the glasma graph approxi-
mation. For particle production, the coordinates in the amplitude
x, y are different from those in the conjugate amplitude, x̄; ȳ, and
are related by the momenta of the produced gluon. For the energy
density and axial charge correlators, on the other hand, we
integrate over momenta of the final state gluons, setting
x ¼ x̄; ȳ ¼ y.

LINEARLY POLARIZED GLUONS AND AXIAL CHARGE … PHYS. REV. D 97, 034034 (2018)

034034-15



signal here. This will clarify the relation of the calculation
of Sec. III to the earlier literature on these glasma graph
correlations [76–82].
In order to obtain single and double inclusive particle

spectra at leading order accuracy in the Lehmann-
Symanzik-Zimmermann (LSZ) formalism one usually
considers the limit τ → ∞ and projects gauge fixed
equal-time correlation functions onto plane wave modes

ξμ;ðλÞk ðτÞ according to

dNg

dyd2P
¼ 1

ð2πÞ2 limτ→∞

X
λ;a

jτgμνððξP;ðλÞμ ðτÞÞ�∂τ↔Aa
νðτ;PÞÞj

2

:

ðB1Þ

By use of the explicit form of the plane wave solutions in
transverse Coulomb gauge [96]

ξk;ð1Þi ðτÞ ¼
ffiffiffi
π

p
2jkj ε

ijkjH
ð2Þ
0 ðjkjτÞ;

ξk;ð2Þη ðτÞ ¼
ffiffiffi
π

p
2jkj jkjτH

ð2Þ
1 ðjkjτÞ; ðB2Þ

with ξk;ð1Þη ðτÞ ¼ 0 and ξk;ð2Þi ðτÞ ¼ 0 and the orthonormality
relations for Bessel type functions

ðHð2Þ
0 ðxÞÞ�∂x↔ J0ðxÞ ¼ −

2i
πx

;

ðxHð2Þ
1 ðxÞÞ�∂x↔ xJ1ðxÞ ¼ −

2ix
π

; ðB3Þ

the above expression evaluates to

dNg

dyd2P
¼ 1

ð2πÞ2
Z
xx̄

2

πP2
trðEηð0þ;xÞEηð0þ; x̄Þ þ Bηð0þ;xÞBηð0þ; x̄ÞÞCoul gaugee−iPðx−x̄Þ; ðB4Þ

where in the dilute-dense regime the correlation functions in Coulomb gauge are given by

trðEηð0þ;xÞEηð0þ; x̄Þ þ Bηð0þ;xÞBηð0þ; x̄ÞÞCoul gauge

¼ ð−igÞ2
Z
p;p̄

Z
k;k̄

ðδijδkl þ εijεklÞ
�
βj;ak ðipiÞUab

p ðip̄kÞU†ba0
p̄ βl;a

0
k̄

2

�
eiðpþkÞxeiðp̄þk̄Þx̄: ðB5Þ

The single inclusive gluon spectrum is obtained by evaluating the expectation value of (B4) directly in momentum
space as

ð−igÞ2
	
βj;ak ðipiÞUab

p ðip̄kÞU†ba0
p̄ βl;a

0
k̄

2



¼ g2NcðN2

c − 1Þ
2

ð2πÞ2δð2Þðpþ p̄Þð2πÞ2δð2Þðkþ k̄Þ

×

�
pipk

p2
DðUÞðjpjÞ

�
×

�
1

2
δjlGð1Þ

ðVÞðjkjÞ þ
1

2

�
2
kjkl

k2
− δjl

�
hð1Þ⊥ðVÞðjkjÞ

�
; ðB6Þ

where we defined the dipole gluon distribution8

DðUÞðjpjÞ ¼
p2

S⊥Nc

Z
x;x̄

1

N2
c − 1

tr½Uadj
x U†;adj

x̄ �eipðx−x̄Þ:

ðB7Þ
Note that the dipole distribution is explicitly proportional to
the momentum. Thus in a decomposition into polarization
states similarly as for the Weiszäcker-Williams distribution,
the unpolarized and polarized distributions are equal and
there is only one scalar distribution D, with

Dik
ðUÞðpÞ ¼

pipk

p2
DðUÞðjpjÞ: ðB8Þ

Using these expressions we obtain the following result for
the single inclusive distribution:

dNg

d2Pdy
¼ g2NcðN2

c − 1Þ
ð2πÞ2

S⊥
πP2

Z
d2k
ð2πÞ2DðUÞðkÞGð1Þ

ðVÞðP − kÞ:

ðB9Þ

We are now in a situation to repeat the calculation of
double inclusive gluon production in [78] in our notations.
Since the glasma graph contribution to the double inclusive
spectrum is simply given by the square of the single
inclusive spectrum, we obtain

8Note that the normalization of the dipole distribution is
chosen such that in the dilute limit of the McLerran-Venugopalan
model, the gluon distributions are all equalDðjkjÞ ¼ Gð1ÞðjkjÞ ¼
hð1ÞðjkjÞ ¼ g2 μ2ðkÞ

k2 .
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dNg

dyPd2PdyQd2Q



¼ ð−igÞ4

ð2πÞ4
Z
xx̄

Z
yȳ

2e−iPðx−x̄Þ

πP2

2e−iQðy−ȳÞ

πQ2

Z
p;p̄

Z
k;k̄

Z
qq̄

Z
l;l̄

× ðδijδkl þ εijεklÞðδi0j0δk0l0 þ εi
0j0εk

0l0 ÞeiðpþkÞxeiðp̄þk̄Þx̄eiðqþlÞyeiðq̄þl̄Þȳ

×

	�
βj;ak ðipiÞUab

p ðip̄kÞU†ba0
p̄ βl;a

0
k̄

2

��
βj

0;c
l ðiqi0 ÞUcd

q ðiq̄k0 ÞU†dc0
q̄ βl

0;c0
l̄

2

�

; ðB10Þ

where we inserted the explicit expressions for the
chromoelectric and chromomagnetic fields in order to
make the similarities and differences with Eq. (4.13) most
apparent.
One immediately observes that both Eqs. (4.13) and

(B10) involve the same correlation function of the gluon
fields in momentum space, allowing for the same inter-
pretation in terms of a diagrammatic analysis. Specifically,
the various different contractions in the projectile and target
fields can be associated with the usual glasma graphs as
illustrated in Fig. 3. Even though the diagrammatics is

essentially the same for double inclusive production and
two-point correlation functions of local operators, there are
of course some crucial differences in the calculation.
Besides the appearance of a different operator structure
in the middle of Eq. (B10), another key difference is that for
the local operator correlation function ḣνðxÞ̇νðyÞi [and
similarly for hεðxÞεðyÞi] all expressions are to be evaluated
at the same coordinates x ¼ x̄ and y ¼ ȳ in the amplitude
and complex conjugate amplitude. Moreover, for the
double inclusive spectrum the relevant correlation function
of Wilson lines is given by

Qiki0k0
jlj0l0 ðp; p̄;k; k̄Þ ¼ ð−igÞ4

	�
βj;ak ðipiÞUab

p ðip̄kÞU†ba0
p̄ βl;a

0
k̄

2

��
βj

0;c
l ðiqi0 ÞUcd

q ðiq̄k0 ÞU†dc0
q̄ βl

0;c0
l̄

2

�

; ðB11Þ

with the crucial difference that the contractions on the dense side now involve adjoint Wilson lines Uab, instead of the
Weiszäcker-Williams field αiðUÞ as discussed in Sec. III. Generally speaking the expectation value of the four point
correlation function of adjoint Wilson lines

hUab
p U†ba0

p̄ Ucd
q U†dc0

q̄ i ðB12Þ

can be decomposed into a complete set of color singlet structures [97]. Evaluating the full color structure is, however, quite
challenging, and following [76–78] one usually resorts to an approximation of the full color structure in terms of the leading
components in a dilute expansion. Specifically one expands the adjoint Wilson lines in Eq. (B12) to lowest order in the
target fields

hUab
p U†ba0

p̄ Ucd
q U†dc0

q̄ i ≃ hðδabδðpÞ þ igAðUÞ
e ðpÞTab

e þ � � �Þðδba0δðp̄Þ − igAðUÞ
e0 ðp̄ÞTba0

e0 þ � � �Þ
ðδcdδðqÞ þ igAðUÞ

f ðqÞTcd
f þ � � �Þðδdc0δðq̄Þ − igAðUÞ

f0 ðq̄ÞTdc0
f0 þ � � �Þi ðB13Þ

and performs a Gaussian averaging in terms of the fields AðUÞ according to

g2hAðUÞ
e ðpÞAðUÞ

e0 ðp̄Þi ¼ ð2πÞ2δðpþ p̄ÞDðUÞðpÞ
p2

δee0 : ðB14Þ

Similar to the discussion in Sec. III, the correlation function can then be evaluated in terms of the disconnected-
disconnected (DD), disconnected-connected (DC), connected-disconnected (CD), and connected-connected (CC)
contributions

Qiki0k0
jlj0l0 ðp; p̄;k; k̄Þ ¼ DDþDCþ CDþ CC: ðB15Þ

Expressing the adjoint generators explicitly as Tab
e ¼ ifabe the color factors are exactly the same ones as in Eq. (3.43), and it

is then straightforward to obtain
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DD ¼ g4N2
cðN2

c − 1Þ2
4

ð2πÞ2δð2Þðpþ p̄ÞDik
ðUÞðpÞð2πÞ2δð2Þðqþ q̄ÞDi0k0

ðUÞðqÞ

× ð2πÞ2δð2Þðkþ k̄ÞWjl
ðVÞðkÞð2πÞ2δð2Þðlþ l̄ÞWj0k0

ðVÞðlÞ; ðB16Þ

DC ¼ g4N2
cðN2

c − 1Þ
4

ð2πÞ2δ2ðpþ p̄ÞDik
ðUÞðpÞð2πÞ2δ2ðqþ q̄ÞDi0k0

ðUÞðqÞ

× ½ð2πÞ2δð2Þðkþ lÞWjj0
ðVÞðkÞð2πÞ2δð2Þðk̄þ l̄ÞWll0

ðVÞðk̄Þ
þ ð2πÞ2δð2Þðkþ l̄ÞWjl0

ðVÞðkÞð2πÞ2δð2Þðlþ k̄ÞWlj0
ðVÞðk̄Þ�; ðB17Þ

CD ¼ g4N2
cðN2

c − 1Þ
4

ð2πÞ2δð2Þðkþ k̄ÞWjl
ðVÞðkÞð2πÞ2δð2Þðlþ l̄ÞWj0l0

ðVÞðlÞ
× ½ð2πÞ2δð2Þðpþ qÞDii0

ðUÞðpÞð2πÞ2δð2Þðp̄þ q̄ÞDkk0
ðUÞðp̄Þ

þ ð2πÞ2δð2Þðpþ q̄ÞDik0
ðUÞðpÞð2πÞ2δð2Þðqþ p̄ÞDki0

ðUÞðp̄Þ�; ðB18Þ

CC ¼ g4N2
cðN2

c − 1Þ
4

fð2πÞ2δð2Þðpþ qÞDii0
ðUÞðpÞð2πÞ2δð2Þðp̄þ q̄ÞDkk0

ðUÞðp̄Þ

×

�
ð2πÞ2δð2Þðkþ lÞWjj0

ðVÞðkÞð2πÞ2δð2Þðk̄þ l̄ÞWll0
ðVÞðk̄Þ

þ 1

2
ð2πÞ2δð2Þðkþ l̄ÞWjl0

ðVÞðkÞð2πÞ2δð2Þðlþ k̄ÞWlj0
ðVÞðk̄Þ

�
þ ð2πÞ2δð2Þðpþ q̄ÞDik0

ðUÞðpÞð2πÞ2δð2Þðqþ p̄ÞDki0
ðUÞðp̄Þ

×

�
1

2
ð2πÞ2δð2Þðkþ lÞWjj0

ðVÞðkÞð2πÞ2δð2Þðk̄þ l̄ÞWll0
ðVÞðk̄Þ

þ ð2πÞ2δð2Þðkþ l̄ÞWjl0 ðkÞð2πÞ2δð2Þðlþ k̄ÞWlj0 ðk̄Þ
�

; ðB19Þ

where we dropped the contributions of all terms propor-
tional to delta functions of a single momentum, i.e
δðpÞ; δðp̄Þ; δðqÞ; δðq̄Þ, as these do not contribute to particle
production. We note that the approximation of the adjoint
four point function in Eqs. (B16), (B17), (B18), and (B19)
is equivalent to the approximation used for the four-point
function of the Weiszäcker-Williams field in Eq. (3.43) to
leading order in the dilute limit. However, they correspond
to different selective resummations of higher order terms
away from the dilute limit. Ultimately this difference
originates in the approximations used for the higher point
functions of Wilson lines in Eqs. (3.32) and (B13). We also
stress that one cannot perform a naive decomposition of the
four-point function of adjoint Wilson lines (B12) into
pairwise contractions of nonsinglet two-point functions.
Such a procedure would, for example, not reproduce the
correct Nc counting in the high momentum dilute limit,
which we can check using the dilute approximation. Thus
the glasma graph appproximation must be used with care,
since it only really works in the dilute limit. In particular,
we have not been able to find a kT-factorized expression for
the two-particle correlation function in the dilute-dense

pA-case although one, involving the dipole distribution,
does exist for the single gluon cross section.
Evaluating the individual terms, we obtain the following

result for the contributions to the double-inclusive spectrum	
dNg

d2PdyPd2QdyQ



−
	

dNg

d2PdyP


	
dNg

d2QdyQ




¼ g4N2
cðN2

c − 1Þ
ð2πÞ4 S⊥

1

πP2

1

πQ2
ðDCþ CDþ CCS þ CCAÞ;

ðB20Þ

where the disconnected-connected (DC), connected-
disconnected (CD), and (symmetry/asymmetric) con-
nected-connected (CCS/CCA) contributions are given by

DC ¼ 1

2

Z
d2k
ð2πÞ2 ½DðUÞðP − kÞDðUÞðQþ kÞ

þDðUÞðP − kÞDðUÞðQ − kÞ�
× ½ðGð1Þ

ðVÞðkÞÞ2 þ ðhð1Þ⊥ðVÞðkÞÞ2�; ðB21Þ
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CD ¼
Z

d2k
ð2πÞ2 ðDðUÞðkÞÞ2½Gð1Þ

ðVÞðP − kÞGð1Þ
ðVÞðQþ kÞ þ Gð1Þ

ðVÞðP − kÞGð1Þ
ðVÞðQ − kÞ�; ðB22Þ

CCS ¼
1

2
ðð2πÞ2δð2ÞðPþQÞ þ ð2πÞ2δð2ÞðP −QÞÞ

Z
d2k
ð2πÞ2

d2k̄
ð2πÞ2 DðUÞðkÞDð1Þ

ðUÞðk̄Þ

× ½Gð1Þ
ðVÞðP − kÞGð1Þ

ðVÞðPþ k̄Þ þ hð1Þ⊥ðVÞðP − kÞhð1Þ⊥ðVÞðPþ k̄Þ cosð2ðθk;P−k − θk̄;Pþk̄ÞÞ�; ðB23Þ

CCA ¼ 1

4

Z
d2k
ð2πÞ2 ½DðUÞðkÞDðUÞðP −Q − kÞhð1Þ⊥ðVÞðP − kÞhð1Þ⊥ðVÞðQþ kÞ cosð2θP−k;QþkÞ

þDðUÞðkÞDðUÞðP −Q − kÞGð1Þ
ðVÞðP − kÞGð1Þ

ðVÞðQþ kÞ cosð2θk;P−Q−kÞ
þDðUÞðkÞDðUÞðPþQ − kÞhð1Þ⊥ðVÞðP − kÞhð1Þ⊥ðVÞðQ − kÞ cosð2θP−k;Q−kÞ
þDðUÞðkÞDðUÞðPþQ − kÞGð1Þ

ðVÞðP − kÞGð1Þ
ðVÞðQ − kÞ cosð2θk;PþQ−kÞ�: ðB24Þ

One interesting feature of Eqs. (B20), (B21), (B22),
(B23), and (B24)—which is also visible in Eq. (3.44)—
is the polarization structure on the proton side, which
we maintained in full generality. One sees that for the
“disconnected” contribution on the proton side (the CD
term) only the unpolarized gluon distribution appears,
whereas on the “connected” side (DC and CC terms)
one is sensitive to the sum of the squares of the
unpolarized and linearly polarized distributions. This
is a subtle effect of a full treatment of a nontrivial linear
polarization structure on the two-gluon correlations in
momentum space.
Our result in Eqs. (B20), (B21), (B22), and (B23)

should be compared with the glasma graph appro-
ximation originally derived in [76] [see also [77],
Eq. (3.17) of [78], Eq. 3 of [79], and Eqs. (1) and
(2) of [80–82] which correct typos in earlier references;
see footnote [23] of [80]]. These assumed a maximal
linear polarization Gð1ÞðkÞ ¼ hð1Þ⊥ ðkÞ for both projec-
tiles, with

Gð1Þ
ðU/VÞðkÞ ¼ hð1Þ⊥;ðU/VÞðkÞ ¼ DðU/VÞðkÞ ¼ g2

μ2ðU/VÞðkÞ
k2

:

ðB25Þ
By expressing our results in this limit of full linear
polarization in terms of the gluon distribution normal-
ized as in [80–82]

Gð1Þ
ðU/VÞðkÞ ¼ hð1Þ⊥ ðkÞ ¼ ΦU/VðkÞ

πðN2
c − 1Þ ; ðB26Þ

we obtain the well known k⊥-factorization result for the
single inclusive spectrum in the form quoted in [80–82]
dNg

d2Pdy
¼ αsNc

π4ðN2
c − 1Þ

S⊥
P2

Z
d2k
ð2πÞ2ΦUðkÞΦVðP − kÞ:

ðB27Þ
Similarly—omitting the connected-connected contribu-
tions for compactness—our result for the double inclu-
sive spectrum in the maximally polarized limit reduces
to the form used in Refs. [80–82]:

	
dNg

d2PdyPd2QdyQ



−
	

dNg

d2PdyP


	
dNg

d2QdyQ




¼ α2sN2
c

4π10ðN2
c − 1Þ3

S⊥
P2Q2

×
Z

d2kð½ΦUðP − kÞΦUðQþ kÞ þΦUðP − kÞΦUðQ − kÞ�ΦVðkÞΦVð−kÞ

þΦUðkÞΦUð−kÞ½ΦVðP − kÞΦVðQþ kÞ þΦVðP − kÞΦVðQ − kÞ�Þ: ðB28Þ

LINEARLY POLARIZED GLUONS AND AXIAL CHARGE … PHYS. REV. D 97, 034034 (2018)

034034-19



[1] K. Fukushima, D. E. Kharzeev, and H. J. Warringa,
The chiral magnetic effect, Phys. Rev. D 78, 074033 (2008).

[2] A. Vilenkin, Equilibrium parity violating current in a
magnetic field, Phys. Rev. D 22, 3080 (1980).

[3] D. T. Son and A. R. Zhitnitsky, Quantum anomalies in dense
matter, Phys. Rev. D 70, 074018 (2004).

[4] B. I. Abelev et al. (STAR Collaboration), Azimuthal
Charged-Particle Correlations and Possible Local Strong
Parity Violation, Phys. Rev. Lett. 103, 251601 (2009).

[5] B. Abelev et al. (ALICE Collaboration), Charge Separation
Relative to the Reaction Plane in Pb-Pb Collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, Phys. Rev. Lett. 110, 012301 (2013).
[6] L. Adamczyk et al. (STAR Collaboration), Beam-Energy

Dependence of Charge Separation Along the Magnetic Field
in Auþ Au Collisions at RHIC, Phys. Rev. Lett. 113,
052302 (2014).

[7] P. Tribedy (STAR Collaboration), Disentangling flow and
signals of chiral magnetic effect in Uþ U, Auþ Au and
pþ Au collisions, Nucl. Phys. A967, 740 (2017).

[8] D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang,
Chiral magnetic and vortical effects in high-energy nuclear
collisions—a status report, Prog. Part. Nucl. Phys. 88, 1
(2016).

[9] V. Skokov, P. Sorensen, V. Koch, S. Schlichting, J.
Thomas, S. Voloshin, G. Wang, and H.-U. Yee, Chiral
magnetic effect task force report, Chin. Phys. C 41, 072001
(2017).

[10] S. A. Voloshin, Parity violation in hot QCD: How to detect
it, Phys. Rev. C 70, 057901 (2004).

[11] F. Wang, Effects of cluster particle correlations on local
parity violation observables, Phys. Rev. C 81, 064902
(2010).

[12] S. Schlichting and S. Pratt, Charge conservation at energies
available at the BNL Relativistic Heavy Ion Collider and
contributions to local parity violation observables, Phys.
Rev. C 83, 014913 (2011).

[13] S. Pratt, S. Schlichting, and S. Gavin, Effects of momentum
conservation and flow on angular correlations at RHIC,
Phys. Rev. C 84, 024909 (2011).

[14] A. Bzdak, V. Koch, and J. Liao, Azimuthal correlations from
transverse momentum conservation and possible local parity
violation, Phys. Rev. C 83, 014905 (2011).

[15] M. A. Stephanov and Y. Yin, Chiral Kinetic Theory, Phys.
Rev. Lett. 109, 162001 (2012).

[16] J.-H. Gao, Z.-T. Liang, S. Pu, Q. Wang, and X.-N. Wang,
Chiral Anomaly and Local Polarization Effect from Quan-
tum Kinetic Approach, Phys. Rev. Lett. 109, 232301 (2012).

[17] D. T. Son and N. Yamamoto, Kinetic theory with berry
curvature from quantum field theories, Phys. Rev. D 87,
085016 (2013).

[18] N. Mueller, S. Schlichting, and S. Sharma, Chiral Magnetic
Effect and Anomalous Transport from Real-Time Lattice
Simulations, Phys. Rev. Lett. 117, 142301 (2016).

[19] M. Mace, N. Mueller, S. Schlichting, and S. Sharma,
Non-equilibrium study of the chiral magnetic effect from
real-time simulations with dynamical fermions, Phys. Rev.
D 95, 036023 (2017).

[20] N. Mueller and R. Venugopalan, Worldline construction of a
covariant chiral kinetic theory, Phys. Rev. D 96, 016023
(2017).

[21] G. M. Newman, Anomalous hydrodynamics, J. High En-
ergy Phys. 01 (2006) 158.

[22] D. T. Son and P. Surowka, Hydrodynamics with Triangle
Anomalies, Phys. Rev. Lett. 103, 191601 (2009).

[23] A. V. Sadofyev and M. V. Isachenkov, The chiral magnetic
effect in hydrodynamical approach, Phys. Lett. B 697, 404
(2011).

[24] Y. Hirono, T. Hirano, and D. E. Kharzeev, The chiral
magnetic effect in heavy-ion collisions from event-by-event
anomalous hydrodynamics, arXiv:1412.0311.

[25] Y. Yin and J. Liao, Hydrodynamics with chiral anomaly
and charge separation in relativistic heavy ion collisions,
Phys. Lett. B 756, 42 (2016).

[26] Y. Hirono, T. Hirano, and D. E. Kharzeev, Charge-
dependent correlations from event-by-event anomalous
hydrodynamics, Nucl. Phys. A956, 393 (2016).

[27] Y. Jiang, S. Shi, Y. Yin, and J. Liao, Quantifying the chiral
magnetic effect from anomalous-viscous fluid dynamics,
Chin. Phys. C 42, 011001 (2018).

[28] B. Schenke, P. Tribedy, and R. Venugopalan, Fluctuating
Glasma Initial Conditions and Flow in Heavy Ion Colli-
sions, Phys. Rev. Lett. 108, 252301 (2012).

[29] A. Kurkela, A. Mazeliauskas, J.-F. Paquet, S. Schlichting,
and D. Teaney, Initial conditions for hydrodynamics from
kinetic theory equilibration, Nucl. Phys. A967, 289 (2017).

[30] C. Gale, S. Jeon, B. Schenke, P. Tribedy, and R.
Venugopalan, Event-by-Event Anisotropic Flow in
Heavy-Ion Collisions from Combined Yang-Mills and
Viscous Fluid Dynamics, Phys. Rev. Lett. 110, 012302
(2013).

[31] J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, and
U. Heinz, Applying Bayesian parameter estimation to
relativistic heavy-ion collisions: Simultaneous characteriza-
tion of the initial state and quark-gluon plasma medium,
Phys. Rev. C 94, 024907 (2016).

[32] G. D. Moore and M. Tassler, The sphaleron rate in SU(N)
gauge theory, J. High Energy Phys. 02 (2011) 105.

[33] M. Mace, S. Schlichting, and R. Venugopalan, Off-
equilibrium sphaleron transitions in the glasma, Phys.
Rev. D 93, 074036 (2016).

[34] A. Accardi et al., Electron Ion Collider: The next QCD
frontier, Eur. Phys. J. A 52, 268 (2016).

[35] P. J. Mulders and J. Rodrigues, Transverse momentum
dependence in gluon distribution and fragmentation func-
tions, Phys. Rev. D 63, 094021 (2001).

[36] S. Meissner, A. Metz, and K. Goeke, Relations between
generalized and transverse momentum dependent parton
distributions, Phys. Rev. D 76, 034002 (2007).

[37] A. Metz and J. Zhou, Distribution of linearly polarized
gluons inside a large nucleus, Phys. Rev. D 84, 051503
(2011).

[38] F. Dominguez, J.-W. Qiu, B.-W. Xiao, and F. Yuan, On the
linearly polarized gluon distributions in the color dipole
model, Phys. Rev. D 85, 045003 (2012).

[39] A. Dumitru, T. Lappi, and V. Skokov, The Distribution
of Linearly Polarized Gluons and Elliptic Azimuthal
Anisotropy in DIS Dijet Production at High Energy, Phys.
Rev. Lett. 115, 252301 (2015).

[40] E. Iancu and R. Venugopalan, The color glass condensate
and high energy scattering in QCD, inQuark Gluon Plasma,

TUOMAS LAPPI and SÖREN SCHLICHTING PHYS. REV. D 97, 034034 (2018)

034034-20

https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.70.074018
https://doi.org/10.1103/PhysRevLett.103.251601
https://doi.org/10.1103/PhysRevLett.110.012301
https://doi.org/10.1103/PhysRevLett.113.052302
https://doi.org/10.1103/PhysRevLett.113.052302
https://doi.org/10.1016/j.nuclphysa.2017.05.078
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1088/1674-1137/41/7/072001
https://doi.org/10.1088/1674-1137/41/7/072001
https://doi.org/10.1103/PhysRevC.70.057901
https://doi.org/10.1103/PhysRevC.81.064902
https://doi.org/10.1103/PhysRevC.81.064902
https://doi.org/10.1103/PhysRevC.83.014913
https://doi.org/10.1103/PhysRevC.83.014913
https://doi.org/10.1103/PhysRevC.84.024909
https://doi.org/10.1103/PhysRevC.83.014905
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevLett.109.232301
https://doi.org/10.1103/PhysRevD.87.085016
https://doi.org/10.1103/PhysRevD.87.085016
https://doi.org/10.1103/PhysRevLett.117.142301
https://doi.org/10.1103/PhysRevD.95.036023
https://doi.org/10.1103/PhysRevD.95.036023
https://doi.org/10.1103/PhysRevD.96.016023
https://doi.org/10.1103/PhysRevD.96.016023
https://doi.org/10.1088/1126-6708/2006/01/158
https://doi.org/10.1088/1126-6708/2006/01/158
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1016/j.physletb.2011.02.041
https://doi.org/10.1016/j.physletb.2011.02.041
http://arXiv.org/abs/1412.0311
https://doi.org/10.1016/j.physletb.2016.02.065
https://doi.org/10.1016/j.nuclphysa.2016.03.049
https://doi.org/10.1088/1674-1137/42/1/011001
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1016/j.nuclphysa.2017.04.009
https://doi.org/10.1103/PhysRevLett.110.012302
https://doi.org/10.1103/PhysRevLett.110.012302
https://doi.org/10.1103/PhysRevC.94.024907
https://doi.org/10.1007/JHEP02(2011)105
https://doi.org/10.1103/PhysRevD.93.074036
https://doi.org/10.1103/PhysRevD.93.074036
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1103/PhysRevD.63.094021
https://doi.org/10.1103/PhysRevD.76.034002
https://doi.org/10.1103/PhysRevD.84.051503
https://doi.org/10.1103/PhysRevD.84.051503
https://doi.org/10.1103/PhysRevD.85.045003
https://doi.org/10.1103/PhysRevLett.115.252301
https://doi.org/10.1103/PhysRevLett.115.252301


edited by R. Hwa and X. N. Wang (World Scientific,
Singapore, 2003).

[41] H. Weigert, Evolution at small xbj: The color glass con-
densate, Prog. Part. Nucl. Phys. 55, 461 (2005).

[42] F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan,
The color glass condensate, Annu. Rev. Nucl. Part. Sci. 60,
463 (2010).

[43] F. Gelis, Initial state and thermalization in the color glass
condensate framework, Int. J. Mod. Phys. E 24, 1530008
(2015).

[44] B. Müller and A. Schäfer, Transverse energy density
fluctuations in heavy-ion collisions in a Gaussian model,
Phys. Rev. D 85, 114030 (2012); Erratum, Phys. Rev. D 96,
059903 (2017).

[45] L. D. McLerran and R. Venugopalan, Gluon distribution
functions for very large nuclei at small transverse momen-
tum, Phys. Rev. D 49, 3352 (1994).

[46] L. D. McLerran and R. Venugopalan, Green’s functions in
the color field of a large nucleus, Phys. Rev. D 50, 2225
(1994).

[47] T. Lappi and L. McLerran, Some features of the glasma,
Nucl. Phys. A772, 200 (2006).

[48] A. Kovner, L. D. McLerran, and H. Weigert, Gluon pro-
duction from non-abelian Weizsäcker-Williams fields in
nucleus-nucleus collisions, Phys. Rev. D 52, 6231 (1995).

[49] A. Kovner, L. D. McLerran, and H. Weigert, Gluon pro-
duction at high transverse momentum in the McLerran-
Venugopalan model of nuclear structure functions, Phys.
Rev. D 52, 3809 (1995).

[50] R. J. Fries, J. I. Kapusta, and Y. Li, Near-fields and initial
energy density in the color glass condensate model, arXiv:
nucl-th/0604054.

[51] B. Schenke, P. Tribedy, and R. Venugopalan, Event-by-
event gluon multiplicity, energy density, and eccentricities
in ultrarelativistic heavy-ion collisions, Phys. Rev. C 86,
034908 (2012).

[52] G. Chen and R. J. Fries, Global flow of glasma in high
energy nuclear collisions, Phys. Lett. B 723, 417 (2013).

[53] G. Chen, R. J. Fries, J. I. Kapusta, and Y. Li, Early time
dynamics of gluon fields in high energy nuclear collisions,
Phys. Rev. C 92, 064912 (2015).

[54] A. Krasnitz and R. Venugopalan, Non-perturbative compu-
tation of gluon mini-jet production in nuclear collisions at
very high energies, Nucl. Phys. B557, 237 (1999).

[55] A. Krasnitz and R. Venugopalan, The Initial Energy Density
of Gluons Produced in Very High Energy Nuclear Colli-
sions, Phys. Rev. Lett. 84, 4309 (2000).

[56] A. Krasnitz and R. Venugopalan, The Initial Gluon Multi-
plicity in Heavy Ion Collisions, Phys. Rev. Lett. 86, 1717
(2001).

[57] A. Krasnitz, Y. Nara, and R. Venugopalan, Coherent Gluon
Production in Very High Energy Heavy Ion Collisions,
Phys. Rev. Lett. 87, 192302 (2001).

[58] T. Lappi, Production of gluons in the classical field
model for heavy ion collisions, Phys. Rev. C 67, 054903
(2003).

[59] D. Gelfand, A. Ipp, and D. Müller, Simulating collisions of
thick nuclei in the color glass condensate framework, Phys.
Rev. D 94, 014020 (2016).

[60] A. Ipp and D. Müller, Broken boost invariance in the
glasma via finite nuclei thickness, Phys. Lett. B 771, 74
(2017).

[61] J. Berges, K. Boguslavski, S. Schlichting, and R.
Venugopalan, Turbulent thermalization process in heavy-
ion collisions at ultrarelativistic energies, Phys. Rev. D 89,
074011 (2014).

[62] J. Berges, K. Boguslavski, S. Schlichting, and R.
Venugopalan, Universal attractor in a highly occupied
non-Abelian plasma, Phys. Rev. D 89, 114007 (2014).

[63] J. Berges, B. Schenke, S. Schlichting, and R. Venugopalan,
Turbulent thermalization process in high-energy heavy-ion
collisions, Nucl. Phys. A931, 348 (2014).

[64] A. Kurkela and Y. Zhu, Isotropization and Hydrodynamiza-
tion in Weakly Coupled Heavy-Ion Collisions, Phys. Rev.
Lett. 115, 182301 (2015).

[65] L. Keegan, A. Kurkela, A. Mazeliauskas, and D. Teaney,
Initial conditions for hydrodynamics from weakly coupled
pre-equilibrium evolution, J. High Energy Phys. 08 (2016)
171.

[66] D. Kharzeev, A. Krasnitz, and R. Venugopalan, Anomalous
chirality fluctuations in the initial stage of heavy ion
collisions and parity odd bubbles, Phys. Lett. B 545, 298
(2002).

[67] T. Lappi, Energy density of the glasma, Phys. Lett. B 643,
11 (2006).

[68] F. Dominguez, C. Marquet, B.-W. Xiao, and F. Yuan,
Universality of unintegrated gluon distributions at small
x, Phys. Rev. D 83, 105005 (2011).

[69] C. Marquet, E. Petreska, and C. Roiesnel, Transverse-
momentum-dependent gluon distributions from JIMWLK
evolution, J. High Energy Phys. 10 (2016) 065.

[70] D. Kharzeev, Y. V. Kovchegov, and K. Tuchin, Cronin effect
and high-pðTÞ suppression in pA collisions, Phys. Rev. D
68, 094013 (2003).

[71] J. Jalilian-Marian, A. Kovner, L. D. McLerran, and H.
Weigert, The intrinsic glue distribution at very small x,
Phys. Rev. D 55, 5414 (1997).

[72] K. J. Golec-Biernat and M. Wusthoff, Saturation effects in
deep inelastic scattering at low Q2 and its implications on
diffraction, Phys. Rev. D 59, 014017 (1998).

[73] E. Iancu, J. D. Madrigal, A. H. Mueller, G. Soyez, and D. N.
Triantafyllopoulos, Collinearly-improved BK evolution
meets the HERA data, Phys. Lett. B 750, 643 (2015).

[74] B. G. Giraud and R. Peschanski, Fourier-positivity con-
straints on QCD dipole models, Phys. Lett. B 760, 26
(2016).

[75] K. Dusling, M. Mace, and R. Venugopalan, Multiparticle
collectivity from initial state correlations in high energy
proton-nucleus collisions, arXiv:1705.00745.

[76] A. Dumitru, F. Gelis, L. McLerran, and R. Venugopalan,
Glasma flux tubes and the near side ridge phenomenon at
RHIC, Nucl. Phys. A810, 91 (2008).

[77] F. Gelis, T. Lappi, and L. McLerran, Glittering glasmas,
Nucl. Phys. A828, 149 (2009).

[78] K. Dusling, F. Gelis, T. Lappi, and R. Venugopalan, Long
range two-particle rapidity correlations in Aþ A collisions
from high energy QCD evolution, Nucl. Phys. A836, 159
(2010).

LINEARLY POLARIZED GLUONS AND AXIAL CHARGE … PHYS. REV. D 97, 034034 (2018)

034034-21

https://doi.org/10.1016/j.ppnp.2005.01.029
https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1142/S0218301315300088
https://doi.org/10.1142/S0218301315300088
https://doi.org/10.1103/PhysRevD.85.114030
https://doi.org/10.1103/PhysRevD.96.059903
https://doi.org/10.1103/PhysRevD.96.059903
https://doi.org/10.1103/PhysRevD.49.3352
https://doi.org/10.1103/PhysRevD.50.2225
https://doi.org/10.1103/PhysRevD.50.2225
https://doi.org/10.1016/j.nuclphysa.2006.04.001
https://doi.org/10.1103/PhysRevD.52.6231
https://doi.org/10.1103/PhysRevD.52.3809
https://doi.org/10.1103/PhysRevD.52.3809
http://arXiv.org/abs/nucl-th/0604054
http://arXiv.org/abs/nucl-th/0604054
https://doi.org/10.1103/PhysRevC.86.034908
https://doi.org/10.1103/PhysRevC.86.034908
https://doi.org/10.1016/j.physletb.2013.05.031
https://doi.org/10.1103/PhysRevC.92.064912
https://doi.org/10.1016/S0550-3213(99)00366-1
https://doi.org/10.1103/PhysRevLett.84.4309
https://doi.org/10.1103/PhysRevLett.86.1717
https://doi.org/10.1103/PhysRevLett.86.1717
https://doi.org/10.1103/PhysRevLett.87.192302
https://doi.org/10.1103/PhysRevC.67.054903
https://doi.org/10.1103/PhysRevC.67.054903
https://doi.org/10.1103/PhysRevD.94.014020
https://doi.org/10.1103/PhysRevD.94.014020
https://doi.org/10.1016/j.physletb.2017.05.032
https://doi.org/10.1016/j.physletb.2017.05.032
https://doi.org/10.1103/PhysRevD.89.074011
https://doi.org/10.1103/PhysRevD.89.074011
https://doi.org/10.1103/PhysRevD.89.114007
https://doi.org/10.1016/j.nuclphysa.2014.08.103
https://doi.org/10.1103/PhysRevLett.115.182301
https://doi.org/10.1103/PhysRevLett.115.182301
https://doi.org/10.1007/JHEP08(2016)171
https://doi.org/10.1007/JHEP08(2016)171
https://doi.org/10.1016/S0370-2693(02)02630-8
https://doi.org/10.1016/S0370-2693(02)02630-8
https://doi.org/10.1016/j.physletb.2006.10.017
https://doi.org/10.1016/j.physletb.2006.10.017
https://doi.org/10.1103/PhysRevD.83.105005
https://doi.org/10.1007/JHEP10(2016)065
https://doi.org/10.1103/PhysRevD.68.094013
https://doi.org/10.1103/PhysRevD.68.094013
https://doi.org/10.1103/PhysRevD.55.5414
https://doi.org/10.1103/PhysRevD.59.014017
https://doi.org/10.1016/j.physletb.2016.06.033
https://doi.org/10.1016/j.physletb.2016.06.033
http://arXiv.org/abs/1705.00745
https://doi.org/10.1016/j.nuclphysa.2008.06.012
https://doi.org/10.1016/j.nuclphysa.2009.07.004
https://doi.org/10.1016/j.nuclphysa.2009.12.044
https://doi.org/10.1016/j.nuclphysa.2009.12.044


[79] A. Dumitru, K. Dusling, F. Gelis, J. Jalilian-Marian, T.
Lappi, and R. Venugopalan, The ridge in proton-proton
collisions at the LHC, Phys. Lett. B 697, 21 (2011).

[80] K. Dusling and R. Venugopalan, Azimuthal Collimation of
Long Range Rapidity Correlations by Strong Color Fields in
High Multiplicity Hadron-Hadron Collisions, Phys. Rev.
Lett. 108, 262001 (2012).

[81] K. Dusling and R. Venugopalan, Explanation of systematics
of CMS pþ Pb high multiplicity di-hadron data atffiffiffi
s

p
NN ¼ 5.02 TeV, Phys. Rev. D 87, 054014 (2013).

[82] K. Dusling and R. Venugopalan, Comparison of the color
glass condensate to di-hadron correlations in proton-proton
and proton-nucleus collisions, Phys. Rev. D 87, 094034
(2013).

[83] T. Lappi, B. Schenke, S. Schlichting, and R. Venugopalan,
Tracing the origin of azimuthal gluon correlations in the
color glass condensate, J. High Energy Phys. 01 (2016) 061.

[84] R. Mertig, M. Bohm, and A. Denner, FEYN CALC:
Computer algebraic calculation of Feynman amplitudes,
Comput. Phys. Commun. 64, 345 (1991).

[85] V. Shtabovenko, R. Mertig, and F. Orellana, New develop-
ments in FeynCalc 9.0, Comput. Phys. Commun. 207, 432
(2016).

[86] J. A. M. Vermaseren, New features of FORM, arXiv:math-
ph/0010025.

[87] L. McLerran and V. Skokov, Odd azimuthal anisotropy of
the glasma for pA scattering, Nucl. Phys. A959, 83 (2017).

[88] J. P. Blaizot, T. Lappi, and Y. Mehtar-Tani, On the gluon
spectrum in the glasma, Nucl. Phys. A846, 63 (2010).

[89] A. Dumitru and L. D. McLerran, How protons shatter
colored glass, Nucl. Phys. A700, 492 (2002).

[90] J.-P. Blaizot and Y. Mehtar-Tani, The classical field created
in early stages of high energy nucleus-nucleus collisions,
Nucl. Phys. A818, 97 (2009).

[91] J. S. Moreland, J. E. Bernhard, and S. A. Bass, Alternative
ansatz to wounded nucleon and binary collision scaling in
high-energy nuclear collisions, Phys. Rev. C 92, 011901
(2015).

[92] Y. Hagiwara, Y. Hatta, and T. Ueda, Wigner, Husimi, and
generalized transverse momentum dependent distributions
in the color glass condensate, Phys. Rev. D 94, 094036
(2016).

[93] Y. Hagiwara, Y. Hatta, B.-W. Xiao, and F. Yuan, Elliptic
flow in small systems due to elliptic gluon distributions?,
Phys. Lett. B 771, 374 (2017).

[94] F. Gelis, K. Kajantie, and T. Lappi, Chemical Thermal-
ization in Relativistic Heavy Ion Collisions, Phys. Rev. Lett.
96, 032304 (2006).

[95] F. Gelis and N. Tanji, Quark production in heavy ion
collisions: Formalism and boost invariant fermionic
light-cone mode functions, J. High Energy Phys. 02
(2016) 126.

[96] A. Makhlin, Scenario for ultrarelativistic nuclear collisions:
III. Gluons in the expanding geometry, Phys. Rev. C 63,
044903 (2001).

[97] K. Fukushima and Y. Hidaka, Light projectile scattering
off the color glass condensate, J. High Energy Phys. 06
(2007) 040.

TUOMAS LAPPI and SÖREN SCHLICHTING PHYS. REV. D 97, 034034 (2018)

034034-22

https://doi.org/10.1016/j.physletb.2011.01.024
https://doi.org/10.1103/PhysRevLett.108.262001
https://doi.org/10.1103/PhysRevLett.108.262001
https://doi.org/10.1103/PhysRevD.87.054014
https://doi.org/10.1103/PhysRevD.87.094034
https://doi.org/10.1103/PhysRevD.87.094034
https://doi.org/10.1007/JHEP01(2016)061
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2016.06.008
http://arXiv.org/abs/math-ph/0010025
http://arXiv.org/abs/math-ph/0010025
https://doi.org/10.1016/j.nuclphysa.2016.12.011
https://doi.org/10.1016/j.nuclphysa.2010.06.009
https://doi.org/10.1016/S0375-9474(01)01301-X
https://doi.org/10.1016/j.nuclphysa.2008.11.010
https://doi.org/10.1103/PhysRevC.92.011901
https://doi.org/10.1103/PhysRevC.92.011901
https://doi.org/10.1103/PhysRevD.94.094036
https://doi.org/10.1103/PhysRevD.94.094036
https://doi.org/10.1016/j.physletb.2017.05.083
https://doi.org/10.1103/PhysRevLett.96.032304
https://doi.org/10.1103/PhysRevLett.96.032304
https://doi.org/10.1007/JHEP02(2016)126
https://doi.org/10.1007/JHEP02(2016)126
https://doi.org/10.1103/PhysRevC.63.044903
https://doi.org/10.1103/PhysRevC.63.044903
https://doi.org/10.1088/1126-6708/2007/06/040
https://doi.org/10.1088/1126-6708/2007/06/040

