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An effective relativistic kinetic theory has been constructed for an interacting system of quarks,
antiquarks and gluons within a quasiparticle description of hot QCD medium at finite temperature and
baryon chemical potential, where the interactions are encoded in the gluon and quark effective fugacities
with nontrivial energy dispersions. The local conservations of stress-energy tensor and number current
require the introduction of a mean field term in the transport equation which produces non-vanishing
contribution to the first order transport coefficients. Such contribution has been observed to be significant
for the temperatures which are closer to the QCD transition temperature, however, induces negligible
contributions beyond a few times the transition temperature. As an implication, impact of the mean field
contribution on the temperature dependence of the shear viscosity, bulk viscosity and thermal conductivity
of a hot QCD medium in the presence of binary, elastic collisions among the constituents, has been
investigated. Visible effects have been observed for the temperature regime closer to the QCD transition
temperature.
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I. INTRODUCTION

In view of the fact that heavy-ion experiments at
relativistic heavy-ion collider (RHIC) and large hadron
collider (LHC) have already realized strongly coupled
quark-gluon plasma (QGP) [1–4], interacting hot QCD
equations of state (EOSs) computed either within the lattice
QCD framework [5–8] or the improved hard thermal loop
(HTL) perturbation theory up to three loops [9], might play
important roles in modeling the equilibrium/isotropic state
of the QGP. On the other hand, effective transport theory
approaches beyond hot QCD transition temperature (weak
coupling domain) have already shown their usefulness in
understanding the bulk and the transport properties of the
QGP/hot QCD matter [10–14]. These approaches not only
require the microscopic definitions of various thermody-
namic quantities for the QGP but also the appropriate
momentum distributions as the inputs. To that end, map-
ping hot QCD equation of state(EOS) effects in a system of
effective gluons and quark-antiquarks (quasiparticles) with
nontrivial dispersion relations [15–20], has turned out to be
a viable approach in developing covariant transport theory.
Moreover, the effective kinetic equation is needed to obtain
the first and second order dissipative hydrodynamic equa-
tions that depict the fluid-dynamic evolution of the QGP
medium in addition to the determination of the first and the
second order transport coefficients itself.

In this work, we are presenting the foundations of a
relativistic kinetic theory of many particle, multicomponent
systems, that effectively represent the partonic interactions
within the system through a quasiparticle model, viz.,
effective fugacity quasiparticle model (EQPM)[21–23].
The EQPM has been constructed on the idea of mapping
the hot QCD medium effects present in the EOSs of the
strongly interacting system, created in the heavy ion colli-
sion experiments in terms of quasi-gluons and quasi-quarks/
antiquarks with respective temperature dependent effective
fugacity parameters. The temperature dependence of the
effective fugacities has been determined from the recent
(2þ 1)-flavor lattice data of HotQCD Collaboration [6],
realizing the medium as an effective grand canonical system
of these quasi-particles. Further, the EQPM at higher
temperature (much beyond QCD transition temperature,
Tc) approaches to the perturbative QCD as far as the
effective coupling or the Debye mass are concerned.
The key finding of the present article is to identify the

presence of mean field terms that is necessary for the
conservation of particle number and energy momentum
tensor from a covariant kinetic equation in terms of its
appropriate moments. In our analysis, we have observed
that, the mean field term turns out to be dependent on the
medium modified part of the energy dispersions for the
effective gluons and quark-antiquarks. Treating the above
mentioned function as the force term in the relativistic
transport equation and expressing the thermodynamic
quantities in terms of the quasiparticle four-momenta, we
conveniently obtain the conservation relations for particle
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current and energy-momentum under the EQPM.
Following the conservation relations we can further achieve
all the equilibrium thermodynamic laws for a first order
hydrodynamic theory. Under this scheme, a complete
formalism for estimation of the first order transport
coefficients, that quantifies the thermal and viscous dis-
sipations in a strongly interacting medium can be devel-
oped consistently, preserving the quasiparticle excitations
in the transport theory of the system.
It is to be noted, that the presence of the mean field terms

in the effective kinetic theory with quasiparticle models
based on the temperature dependent effective masses in the
hot QCD medium has long been realized in the context of
conservation laws from kinetic theory [24–26] along with
an explanation on the fundamental reason for the presence
of such mean field terms. As mentioned earlier, this
modifies the kinetic theory (microscopic) definition of
the energy-momentum tensor so that the hot QCD thermo-
dynamics could exactly be reproduced from the quasipar-
ticle model realizing hot QCD as an effective grand-
canonical ensemble of effective gluon and quark-antiquark
degrees of freedom.These aspects are crucial while com-
puting transport coefficients for the hot QCD/QGP medium
along with deriving hydrodynamic equations from covar-
iant kinetic theory including second and higher order
relativistic dissipative hydrodynamic evolution equations
[24,25,27–32]. In the context of effective mass quasipar-
ticle model, dissipative hydrodynamics with and without
anisotropy has already been constructed and the predictions
are tested against the experimental observation [33–37].
Here, in the context of the EQPM, an effective kinetic

theory is constructed with appropriate form of the energy-
momentum tensor with mean field contribution. The impact
of mean field contributions to first order transport coef-
ficients such as shear and bulk viscosities and thermal
conductivity of a hot QCD medium with binary, elastic
collisions among the effective gluons and quarks-anti-
quarks has been presented in the current manuscript.
The derivation for second and third order dissipative
hydrodynamics is beyond the scope of the present work.
The manuscript is organized as follows. Section II deals

with the details of the EQPM model, the development of
the effective kinetic theory and hydrodynamics under it and
its application for estimating the viscous coefficients and
thermal conductivity for a QGP system. Section III presents
the results, depicting the significance of the mean field term
on the temperature dependence of the transport coefficients.
The article ends with a conclusion and outlook section,
summarizing the relevance and details of the work and with
a discussion about the possible open horizons in this
direction.

II. FORMALISM

This section consists of the theoretical set up required to
construct a complete, many particle effective theory that

follows the EQPM consistently and hence the estimations
of relevant transport parameters.

A. Effective fugacity quasiparticle model

As mentioned earlier, the EQPM maps the hot QCD
medium effects in to medium consist of noninteracting/
weakly interacting quasigluons and quasiquarks possessing
the following form for their equilibrium momentum dis-
tribution functions:

f0g;q ¼
zg;q expf− Ep

T gÞ
1 ∓ zg;q expf− Ep

T gÞ
: ð1Þ

Here, T is the temperature of the system and Ep simply
denotes the energy of a single bare parton, which for a
gluon becomes Ep ¼ jp⃗j and for a quark turns out to be

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þm2

q

q
, with mq as the quark mass. This model

can be straightforwardly extended to include finite baryon
chemical potential in the quark/antiquark equilibrium
distribution function in the following way,

f0q;q̄ ¼
zg;q expf− Ep∓μq

T gÞ
1 ∓ zg;q expf− Ep∓μq

T gÞ
: ð2Þ

The local equilibrium can be straightforwardly described
simply by generalizing Eq. (1) in the comoving frame of the
fluid, defined by the hydrodynamic four-velocity uμ ¼
ð1; 0Þ in the local rest frame (LRF) as,

fg;q ¼
zg;q expf− uμpμ

T g
1 ∓ zg;q expf− uμpμ

T g
: ð3Þ

Here, we define pμ ¼ ðEp; p⃗Þ is the bare four-momenta
(without including the effects of interactions) and p̃μ ¼
ðωp;p⃗Þ is the quasiparticle four-momenta under the EQPM,
corresponding to a parton. The three momenta p⃗ is not
altered under EQPM, where the single particle energy has
been modified via a dispersion relation as follows,

ωp ¼ Ep þ δω; δω ¼ T2∂Tlnzg;q; ð4Þ

with zg;q is the fugacity parameter for gluons and quarks
respectively, through which the interactions are being
mapped into Eq. (1). δωðTÞ is a pure temperature ðTðxÞÞ
dependent quantity which is again function of four space-
time coordinate xμ ≡ ðt; x⃗Þ. For a massless case with gluons
and light quarks, Eq. (4) simply reduces to,

ωp ¼ jp⃗j þ δω: ð5Þ

In the light of above discussion the quasiparticle and bare
particle four momenta can be related in a local rest frame as
follows,
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p̃μ ¼ pμ þ δωuμ; ð6Þ

which picks up modification of only the energy (zeroth)
component of particle 4-momenta through the dispersion
relation (4).

B. Fundamental quantities of effective
kinetic theory under EQPM

In order to set up a covariant kinetic theory for a many
particle, multicomponent system, under the assumptions of
EQPM mentioned above, we first need to define the basic
macroscopic quantities that describe the thermodynamic
state of the system. We start with the particle 4-flow which
manifests the particle number density nðxÞ and particle
current j⃗ðxÞ as its zeroth and ith component. The quasi-
particle four flow NμðxÞ can be defined in terms of bare
momenta as the following,

NμðxÞ ¼
XN
k¼1

νk

Z
d3jp⃗kj
ð2πÞ3

pμ
k

Epk

fkðx; pkÞ; ð7Þ

that retains the expression of particle number density nðxÞ
under EQPM as the following,

nðxÞ ¼ Nμuμ ¼
XN
k¼1

νk

Z
d3jp⃗kj
ð2πÞ3 fkðx; pkÞ: ð8Þ

Here fkðx; pkÞ is the single particle momentum distribution
belonging to kth species, that is a function of space-time
coordinate and particle momenta and νk is the correspond-
ing degeneracy factor. Throughout the analysis, the sub-
script k denotes the particle species. Now, it can be shown
that Nμ can be expressed in terms of dressed momenta p̃ as
follows,

NμðxÞ ¼
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

p̃μ
kfkðx; p̃kÞ

þ δω
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

hp̃μ
ki

j ⃗p̃kj
fkðx; p̃kÞ: ð9Þ

Here hp̃μi ¼ Δμνp̃ν is the irreducible tensor of rank
one, with Δμν ¼ gμν − uμuν as the projection operator.
Throughout the analysis the metric gμν has taken to be
gμν ¼ ð1;−1;−1;−1Þ. The identical individual compo-
nents of Nμ from Eqs. (7) and (9) and the unaltered form
of n as obtained from Eq. (8), confirms the expression of
Nμ as given by Eq. (9) in terms of dressed momenta p̃μ.
Next, we focus on the energy momentum tensor TμνðxÞ

whose different components describes the energy density
and momentum flow. The quasiparticle energy-momentum
tensor TμνðxÞ can be defined under EQPM in terms of bare
momenta as the following,

TμνðxÞ ¼
XN
k¼1

νk

Z
d3jp⃗kj

ð2πÞ3Epk

pμ
kp

ν
kfkðx; pkÞ

þ δωuμuν
XN
k¼1

νk

Z
d3jp⃗kj
ð2πÞ3 fkðx; pkÞ: ð10Þ

Note that Eq. (10) gives the expression of quasiparticle
energy density and pressure respectively as,

ϵðxÞ ¼ uμuνTμν

¼
XN
k¼1

νk

Z
d3jp⃗kj
ð2πÞ3 ωpk

fkðx; pkÞ; ð11Þ

PðxÞ ¼ −
1

3
ΔμνTμν

¼ 1

3
νk

Z
d3jp⃗kj
ð2πÞ3 jp⃗kjfkðx; pkÞ: ð12Þ

In terms of dressed momenta, Tμν can be shown to take
the form,

TμνðxÞ ¼
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

p̃k
μp̃k

νfkðx; p̃kÞ

þ δω
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

hp̃k
μp̃k

νi
j ⃗p̃kj

fkðx; p̃kÞ;

ð13Þ

with hp̃μp̃νi ¼ 1
2
fΔμαΔνβ þ ΔμβΔναgp̃αp̃β as the irreduc-

ible tensor of rank two. Equation (13) readily traces back
the expression of ϵ and P as given by Eqs. (11) and (12).
Finally, we provide the microscopic definition of entropy

4-current as,

Sμ ¼ −
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

× p̃μ
kffklnfk ∓ ð1� fkÞlnð1� fkÞg: ð14Þ

Contraction of Eq. (14) with uμ gives the entropy density as
follows,

s ¼ Sμuμ ¼ −
XN
k¼1

νk

Z
d3j ⃗p̃kj
ð2πÞ3

× ffklnfk ∓ ð1� fkÞlnð1� fkÞg: ð15Þ

C. Conservation laws

We start with the relativistic transport equation of the
single quasiparticle distribution function, that can be given
by the following covariant equation,
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1

ωpk

p̃μ
k∂μfkðx; p̃kÞ þ F⃗ · ∇⃗pk

fk ¼
XN
l¼1

Ckl½fk; fl�;

½k ¼ 1;…:; N� ð16Þ

with F⃗ as the external force and Ckl as the collision integral
given by,

Ckl½fk;fl� ¼
1

2

νl
2ωpk

Z
dΓp̃l

dΓp̃0
k
dΓp̃0

l
δ4ðp̃kþ p̃l− p̃0

k− p̃0
lÞ

× ð2πÞ4½fkðp̃0
kÞflðp̃0

lÞf1�fkðp̃kÞgf1�flðp̃lÞg
−fkðp̃kÞflðp̃lÞf1�fkðp̃0

kÞgf1�flðp̃0
lÞg�

× hjMkþl→kþlj2i: ð17Þ

The phase space factor is given by the notation

dΓp̃i
¼ d3 ⃗p̃i

ð2πÞ32ωi
. The overall, 1

2
factor appears due to the

symmetry in order to compensate for the double counting
of final states that occurs by interchanging p̃0

k and p̃0
l. νl is

the degeneracy of 2nd particle that belongs to lth species.
hjMkþl→kþlj2i is the QCD scattering amplitudes for 2 → 2
binary, elastic processes are taken from [38], which are
averaged over the spin and color degrees of freedom of
the initial states and summed over the final states. However,
the inelastic processes like qq̄ → gg, have been ignored
in the present case, because of the fact that they do not
have a forward peak in the differential cross section and
thus their contributions will presumably be much smaller
compared to the elastic ones.

1. Conservation of particle current

Integrating both sides of Eq. (16) over
R d3j ⃗p̃kj

ð2πÞ3 and
summing over k ¼ ½0; N� we obtain,

XN
k¼1

Z
d3j ⃗p̃kj
ð2πÞ3

1

ωpk

p̃μ
k∂μfkðx; p̃kÞ

þ
XN
k¼1

Z
d3j ⃗p̃kj
ð2πÞ3 F

i ∂fk
∂pi

k
¼ 0: ð18Þ

The right-hand side of Eq. (18) is zero by the virtue of
zeroth moment of summation invariance. Now we define
the force term as,

Fi ¼ −∂μfδωuμuig: ð19Þ

With this form of Fi, the integration on the second term of
left hand side of Eq. (18) also reduces to zero. Now
following the definition of particle 4-flow from Eq. (9) and
performing the necessary integrations of Eq. (18), we can
achieve the conservation of the particle flow,

∂μNμ ¼ 0; ð20Þ

where the momentum integration over the second term of

Nμ from Eq. (9) and over
R d3j ⃗p̃kj

ð2πÞ3 ∂fp̃k
μ

ωpk
gfk exactly cancels

each other to preserve particle flow conservation.

2. Conservation of energy momentum

Integrating both sides of Eq. (16) over
R d3j ⃗p̃kj

ð2πÞ3 p̃k
ν and

summing over k we now obtain,

XN
k¼1

Z
d3j ⃗p̃kj
ð2πÞ3

1

ωpk

p̃μ
kp̃

ν
k∂μfkðx; p̃kÞ

þ
XN
k¼1

Z
d3j ⃗p̃kj
ð2πÞ3 p̃

ν
kF

i ∂fk
∂pi

k
¼ 0 ð21Þ

This time the right-hand side of Eq. (21) is zero by the
virtue of first moment of summation invariance.
Defining the force term as Eq. (19) and adopting the

definition of quasiparticle stress energy tensor from Eq. (13),
the space-time derivative over Tμν can be written as,

∂μTμν ¼ ∂μ

�
δω

XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

hp̃k
μp̃k

νi
j ⃗p̃kj

fkðx; p̃kÞ
�

þ
XN
k¼1

νk

Z
d3j ⃗p̃kj
ð2πÞ3 ∂μ

�
p̃k

μp̃k
ν

ωpk

�
fkðx; p̃kÞ

− νkn∂μfδωuμuνg; ð22Þ
where the integration over the force term simply reduces to a
momentum independent quantity n∂μfδωuμuνg. The space-
time derivative over fk multiplied with δω has been ignored
considering δω

hj ⃗p̃jiT
≪ 1, where hiT stands for the notation of

thermal average. It can be shown that the addition of first and
the second term on the right-hand side of Eq. (22) exactly
cancels the force term to make the right-hand side zero
whole together, leading to

∂μTμν ¼ 0: ð23Þ
We must notice that the partial derivative on the first

term of left-hand side of Eq. (21) cannot be simply taken
outside of the integral, since now the phase space factorR d3j ⃗p̃kj

ð2πÞ3ωpk
contains a space-time dependent quasiparticle

energy ωpk
given by Eq. (5). Hence the extraction of the

partial derivative outside integral produces an extra termR d3j ⃗p̃kj
ð2πÞ3 ∂μfp̃k

μp̃k
ν

ωpk
gfkðx; p̃kÞ. So from this current analysis

we can conclude that the difference of this term and the
force term generated due to the quasiparticle excitations
as a function of dispersion parameter δω, produces the
exact additional piece of quasi particle energy-momentum

tensor over the usual one [
R d3jp⃗kj

ð2πÞ3ωpk
p̃μ
kp̃

ν
kfðx; p̃kÞ] from

conventional kinetic theory. Equation (23) gives the

SUKANYA MITRA and VINOD CHANDRA PHYS. REV. D 97, 034032 (2018)

034032-4



desired energy-momentum conservation under the EQPM
scheme. Hence Eq. (16) with the force term given in
Eq. (19) gives effective kinetic theory description of the
interacting partons in a thermal medium under EQPM
scheme.

D. Estimation of transport coefficients

1. Solution to relativistic transport equation

Determination of the transport coefficients requires the
knowledge of the system away from equilibrium. This
could be done by first set-up the relativistic transport
equation and look for the appropriate solutions. Here, in
order to estimate the transport coefficients, one needs solve
the relativistic transport equation (16). For this purpose we
employ the Chapman-Enskog (CE) method, which is an
iterative technique, where from the known lower order
distribution function the unknown next order can be
determined by successive approximation. Furthermore, to
solve the transport equation Eq. (16) for kth species, we
need to linearize the collision term on right-hand side by
introducing the relaxation time τk over the deviation part of
the next to leading order momentum distribution from the
lowest order in following manner,

1

ωpk

p̃μ
k∂μf0kðx; p̃kÞ þ Fi ∂f0k

∂pi
k
¼ −

δfk
τk

¼ −
f0kð1� f0kÞϕk

τk
:

ð24Þ

Clearly, f0k provides the leading order momentum distri-
bution which is the equilibrium distribution function and
δfk accounts for the correction to the next to leading order
corresponding to kth species. Hence, ϕk denotes deviation
of momentum distribution from its equilibrium value that
quantifies the dissipation in the medium.
Now we retrieve the definition of equilibrium distribu-

tion function of quasipartons under the EQPM from
Eqs. (1), (2) and (3). In covariant notation with 4-momenta
p̃k

μ the above equations can be written as,

f0kðx; p̃kÞ ¼
1

expfp̃
μ
kuμ
T − μk

T g
; ð25Þ

with μk ¼ μBk
þ δωþ Tlnzk, such that expf− μk

T g is the
total effective fugacity due to the baryon chemical potential
and the quasiparticle excitation effects.
Here we need to make an important remark. After

defining the local equilibrium distribution function f0k,
we can identify T and expf− μk

T g, respectively as the
temperature and effective fugacity of the system, only after
specifying the following conditions,

XN
k¼1

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

p̃μ
kuμδfk ¼ 0; ð26Þ

XN
k¼1

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

ðp̃μ
kuμÞ2δfk ¼ 0; ð27Þ

which follows from the fact that contraction of the non-
equilibrium part of Nμ and Tμν from Eqs. (9) and (13) with
hydrodynamic velocity uμ, gives rise to zero (which is
nothing but Landau-Lifshitz condition). In such situation
the expression of energy density and pressure from
Eqs. (11) and (12) contain only the equilibrium part of
the distribution function. So we can conclude within the
scheme of first order CE method, the particle number
density and energy density can be specified by the
equilibrium distribution function alone. Under such cir-
cumstances, the equilibrium part of particle 4-flow and
energy-momentum tensor can be expressed by the follow-
ing macroscopic definition,

Nμ ¼ nuμ: ð28Þ

Tμν ¼ ϵuμuν − PΔμν: ð29Þ

Following same line of argument, the macroscopic defi-
nition of equilibrium entropy density becomes,

s ¼
XN
k¼1

�
ϵk þ Pk

T
−
nkμk
T

�
: ð30Þ

2. Equilibrium thermodynamic laws

From the thermodynamic definition of NμðxÞ and TμνðxÞ
from Eqs. (28) and (29) respectively, and following their
conservation laws from Eqs. (20) and (23) respectively, we
can achieve the equilibrium thermodynamic laws of macro-
scopic state variable such as number density (n), energy per
particle (e) and hydrodynamic velocity uμðxÞ, as follows,

Dnk ¼ −nk∂ · u; ð31Þ

XN
k¼1

xkDek ¼ −
�P

N
k¼1 PkP
N
k¼1 nk

�
∂ · u; ð32Þ

Duμ ¼ ∇μP
nh

; ð33Þ

withD ¼ uμ∂μ ≡ ∂
∂t as the convective time derivative and h

as enthalpy per particle h ¼ eþ P
n of the system. Pk is the

partial pressure belongs to kth species that is related to total
pressure as P ¼ P

N
k¼1 Pk. xk ¼ nk/n denotes the particle

fraction given by the ratio of particle number of nth species
to total particle number, xk ¼ nk/n. Following the pre-
scription, the total energy density can be given
as, ϵ ¼ P

N
k¼1 ϵk ¼

P
N
k¼1 eknk.
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3. Linearized solution of the deviation function

Following the definition of equilibrium distribution
function from Eq. (25), the second term on the left-hand
side of Eq. (24) vanishes for a comoving frame, whereas the
first term produces a number of terms containing thermo-
dynamic forces giving rise to a number of transport
processes as follows,

QkX þ hp̃μ
kiðωpk

− hkÞXqμ − hp̃μ
kp̃

ν
kiXμν ¼ −

Tωpk

τk
ϕk:

ð34Þ
with Qk ¼ 1

3
fj ⃗p̃kj2 − 3ω2

pk
c2sg where cs is the velocity of

sound. The thermodynamic forces such as the bulk viscous
force, thermal force and shear viscous force are defined
respectively as follows,

X ¼ ∂ · u; ð35Þ

Xμ
q ¼

�∇μT
T

−
∇μP
nh

�
; ð36Þ

Xμν ¼h∂μuνi: ð37Þ

Since thermodynamic forces are independent, in order to be
a solution of Eq. (34), the deviation function ϕk must be a
linear combination of thermodynamic forces with a number
of unknown coefficients,

ϕk ¼ AkX þ Bμ
kXqμ − Cμν

k Xμν: ð38Þ
The coefficients with proper tensorial ranks can be deter-
mined from Eq. (34) itself as the following,

Ak ¼
Qk

f− Tωpk
τk

g
; ð39Þ

Bk ¼ hp̃μ
ki
ðωpk

− hkÞ
f− Tωpk

τk
g

; ð40Þ

Cμν
k ¼ hp̃μ

kp̃
ν
ki

f− Tωpk
τk

g
: ð41Þ

Therefore, it cab be observed that through these coefficients
which contain the thermal relaxation times of quasipartons,
the dynamic interactions of the medium enter in the
expression of the deviation function, which are finally
inserted in the expressions of transport coefficients.

4. Decomposition of the energy-momentum tensor

In order to decompose the energy momentum tensor in
an equilibrium and an out of equilibrium part, we first
define the pressure tensor in the following way,

Pμν ¼ Δμ
σTστΔν

τ : ð42Þ

Following the covariant definition of Tμν under the
EQPM from Eq. (13), the pressure tensor yields the form
given below,

Pμν ¼
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

hp̃k
μp̃k

νifkðx; p̃kÞ

þ δω
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

hp̃k
μp̃k

νi
j ⃗p̃kj

fkðx; p̃kÞ: ð43Þ

In the LRF, Pμν is purely spatial,

P00
LRF ¼ P0i

LRF ¼ Pi0
LRF ¼ 0; ð44Þ

Pij
LRF ¼

XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

p̃k
ip̃k

jfkðx; p̃kÞ

þ δω
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

p̃k
ip̃k

j

j ⃗p̃kj
fkðx; p̃kÞ: ð45Þ

Now we decompose Pμν in a reversible and an irrevers-
ible part, that picks up respectively the equilibrium and
non-equilibrium components of fk in Eq. (43),

Pμν ¼ −PΔμν þ Πμν: ð46Þ

The reversible part is addressed by the equilibrium
distribution function f0k as the following,

−PΔμν ¼
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

hp̃k
μp̃k

νif0kðx; p̃kÞ

þ δω
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

hp̃k
μp̃k

νi
j ⃗p̃kj

f0kðx; p̃kÞ;

ð47Þ

which on contracting with Δμν simply leads to Eq. (12),
revealing P as the local hydrostatic pressure.
However, the irreversible part Πμν, named by viscous

pressure tensor, includes the nonequilibrium part of fk
only, leading to the following expression,

Πμν ¼
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

hp̃k
μp̃k

νiδfk

þ δω
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

hp̃k
μp̃k

νi
j ⃗p̃kj

δfk: ð48Þ

From Eq. (48), we can see that the viscous pressure
tensor is orthogonal to hydrodynamic velocity,
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Πμνuμ ¼ 0: ð49Þ

The heat flow is defined as the difference of energy flow
and the flow of enthalpy carried by the particle,

Iμq ¼ uνTνσΔμ
σ − hNσΔμ

σ: ð50Þ

Putting expressions of Tνσ and Nσ from Eqs. (13) and
(9), respectively, it can be shown that in the LRF the heat
flow is purely spatial as well,

I0q ¼ 0; ð51Þ

Iiq ¼ Ti0
LRF − Ni

LRF: ð52Þ

From Eq. (50), it is evident that Iμq is also orthogonal
to uμ,

Iμquμ ¼ 0: ð53Þ

From Eq. (50), it is also observed that heat flow only
retains the nonequilibrium part of fk, while the equilibrium
f0k produces zero contraction in heat flow, leading to the
following expression,

Iμq ¼ uνΔ
μ
σ

XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

p̃k
νp̃k

σδfk

− hΔμ
σ

�XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

p̃k
σδfk

þ δω
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

hp̃k
σi

j ⃗p̃kj
δfk

�
: ð54Þ

It is worth noting that in viscous pressure the additional
term due to dispersion parameter δω is contributed from
Tμν, where as in heat flow it comes from Nμ.

5. Shear and bulk viscous coefficients

In both the terms of Eq. (48), hp̃μp̃νi can be decomposed
in a traceless and a remaining part, giving rise toΠμν a shear
and a bulk part respectively.
Following this argument the shear viscous tensor comes

out to be,

Π̄μν ¼ Πμν − ΠΔμν;

¼
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

⟪p̃k
μp̃k

ν⟫f0kð1� f0kÞϕk

þ δω
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

⟪p̃k
μp̃k

ν⟫

j ⃗p̃kj
f0kð1� f0kÞϕk:

ð55Þ

Here ⟪⟫ has been used to denote the traceless irreducible
tensor, ⟪AμBν⟫ ¼ f1

2
Δμ

αΔν
β þ 1

2
Δμ

βΔν
α − 1

3
ΔαβΔμνgAαBβ.

Consequently, the bulk viscous part takes the following
form,

Π ¼
XN
k¼1

νk
3

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

Δμνp̃k
μp̃k

νf0kð1� f0kÞϕk

þ δω
XN
k¼1

νk
3

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

1

j ⃗p̃kj
Δμνp̃k

μp̃k
νf0kð1� f0kÞϕk:

ð56Þ

Putting the expression of ϕk from Eq. (38) and compar-
ing with the macroscopic definition of Πμν as follows,

Πμν ¼ 2ηh∂μuνi þ ζΔμν∂ · u; ð57Þ

we obtain following expressions of shear and bulk viscosity
respectively,

η ¼
XN
k¼1

νkτk
15T

Z
d3j ⃗p̃kj
ð2πÞ3

j ⃗p̃kj4
ω2
pk

f0kð1� f0kÞ

þ δω
XN
k¼1

νkτk
15T

Z
d3j ⃗p̃kj
ð2πÞ3

j ⃗p̃kj3
ω2
pk

f0kð1� f0kÞ; ð58Þ

ζ ¼
XN
k¼1

νkτk
9T

Z
d3j ⃗p̃kj
ð2πÞ3

1

ω2
pk

fj ⃗p̃kj2 − 3ω2
pk
c2sg2f0kð1� f0kÞ

þ δω
XN
k¼1

νkτk
9T

Z
d3j ⃗p̃kj
ð2πÞ3

1

ω2
pk

1

j ⃗p̃kj
fj ⃗p̃kj2 − 3ω2

pk
c2sg2

× f0kð1� f0kÞ: ð59Þ

Clearly the second term on the right-hand side of
Eqs. (58) and (59) is the additional term due to quasiparticle
excitations, over the first term which comes from the usual
kinetic theory of bare particles.

6. Thermal conductivity

Since we observe only the nonequilibrium part of the
heat-flow is relevant, we can obtain its analytical expres-
sion for a multicomponent system, from Eq. (54) after
contracting with projection operator and hydrodynamic
velocity,

δIμ ¼
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

ðωpk
− hkÞhp̃k

μif0kð1� f0kÞϕk

− δω
XN
k¼1

νk

Z
d3j ⃗p̃kj

ð2πÞ3ωpk

hk
j ⃗p̃kj

hp̃k
μif0kð1� f0kÞϕk:

ð60Þ
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Putting the expression of ϕk from Eq. (38) and compar-
ing with the macroscopic definition of heat flow,

δIμ ¼ λTXμ
q; ð61Þ

we obtain the expression of thermal conductivity as
follows,

λ ¼
XN
k¼1

νkτk
3T2

Z
d3j ⃗p̃kj
ð2πÞ3

ðωpk
− hkÞ2
ω2
pk

j ⃗p̃kj2f0kð1� f0kÞ

− δω
XN
k¼1

νkτk
3T2

Z
d3j ⃗p̃kj
ð2πÞ3

hkðωpk
− hkÞ

ω2
pk

j ⃗p̃kjf0kð1� f0kÞ:

ð62Þ

The term proportional to δω in Eq. (62) is the extra term
here over the usual definition of λ from kinetic theory,
which renders the quasiparticle excitation in the analytical
expression of thermal conductivity.

7. Dynamical inputs

The relaxation times that are inverse of the collision
frequencies, provide the dynamical interaction measures in
the expressions of the above mentioned transport coeffi-
cients. The relaxation times, corresponding to the quasi-
gluons and quasiquarks/antiquarks, namely τg and τq/q̄
respectively, have been taken from [39], with updated lattice
EOSs [6]. The interaction cross sections therein include the
binary, elastic scatterings between quarks and gluons,
considering the fusion processes not to be able to contribute
forward peak in the differential cross section, leading to
insignificant contribution with respect to elastic ones. The
effective coupling for an interacting QCD medium, has been
introduced following the EQPM prescription of charge
renormalization [23], at finite temperature and baryon
chemical potential. Throughout the analysis, the quark
chemical potential has been taken to be μq ¼ 100 MeV.

III. RESULTS AND DISCUSSIONS

In this section, we have depicted the temperature
dependence of shear and bulk viscous coefficients over
entropy density and thermal conductivity scaled by T2, with
and without the mean field corrections in Figs. 1, 2 and 3
respectively. As we have already discussed in our previous
work [39], the mean field corrections are of second order in
gradients, which indeed appear as the mean field force
term, ∂μfδωuμuig. This term being a derivative over δω,
which itself is a temperature gradient of the fugacity
parameter zg/q, turns out to be second order in gradient.
Since, at higher temperature regions, mostly over
T/Tc ∼ 2.5, zg/q is a slowly varying function of T
[22,23], we can see that the mean field effects are almost
negligible in the temperature dependence of transport

coefficients over T/Tc ∼ 3. However, below T/Tc ∼ 3, the
sharp temperature gradient of zg/q, makes the mean field
term significant, which is consequently reflected in the
temperature behavior of transport coefficients. In Figs. 1, 2
and 3, the estimated values of shear viscosity, bulk

1 2 3 4 5
T/Tc

η/
s

 Without mean field
 With mean field

2

4

6

8

10

FIG. 1. Shear viscosity over entropy density ratio as a function
of T/Tc with and without mean field correction.

4321
 T/Tc

ζ/
s

 Without mean field correction 
 With mean field correction

0

1

2
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4
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FIG. 2. Bulk viscosity over entropy density ratio as a function
of T/Tc with and without mean field correction.
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 T/Tc

λ
/T
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 Without mean field effect
 With mean field effect
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FIG. 3. Thermal conductivity scaled by T2 as a function of T/Tc
with and without mean field correction.
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viscosity and thermal conductivity including mean field
corrections, follow the same temperature trend as obtained
in the previous estimation [39] without considering it.
However, the quantitative difference in the low temperature
behavior of shear and bulk viscous coefficients as well as
thermal conductivity, with and without mean field correc-
tions, reveals the significance of the mean field term
induced by a system’s collective behavior, in estimating
thermodynamic quantities in those temperature regions.
Therefore, although the mean field correction is not
affecting the transport coefficients beyond T/Tc ∼ 3, and
hence neglecting those terms are justified in explaining the
high temperature behavior of the system properties, its
inclusion is essential in order to explain the behavior of
thermodynamic parameters closer to Tc.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, a covariant kinetic theory is developed for
the hot QCD matter/QGP, employing the effective fugacity
quasi-particle model (EQPM) for interacting hot QCD
equations of state. Since the hot QCD medium effects
are encoded in the gluon and quark effective fugacities as
well as in the modified part of the dispersion relations, the
mean field terms of the current effective kinetic theory also
include only these fugacity parameters and their deriva-
tives. The modified energy momentum tensor reproduces
the hot QCD thermodynamics exactly, while respecting the
thermodynamic consistency condition. The conservation
laws are realized in an exact way from the covariant kinetic
theory while taking its appropriate moments of the rela-
tivistic transport equation.
Interestingly, the mean field contributions induce sizable

modifications to the transport coefficients of the hot QCD
matter. Be it shear viscosity, bulk viscosity or the thermal
conductivity, the respective three momentum integrals
involving the out of equilibrium part of the momentum

distribution, get modified with an additive term propor-
tional to δωg;q/j⃗pj. Recalling that δωg;q is the medium
modified part of the dispersion relation containing the
collective effects of an interacting medium, we can con-
clude thus this additional term introduces the quasiparticle
excitations in the expressions of transport coefficient. The
modifications have negligible contribution at higher tem-
peratures (≥ 2.5Tc) as far as the first order transport
coefficients are concerned, however, in the vicinity of
the transition temperature the mean field effects appear
to be significant. This observation is in line with our earlier
estimates for the transport coefficients such as shear and
bulk viscosities, and thermal conductivity, etc. [39].
The work presented in the manuscript is the first step

toward developing second and third order dissipative
relativistic hydrodynamics from transport theory with the
effective fugacity quasiparticle model along with estimat-
ing the respective second and third order transport coef-
ficients from the relativistic effective kinetic theory. These
aspects will be taken up in immediate near future.
Moreover, the electromagnetic responses of the strongly
interacting medium in presence of an electric or magnetic
field, are scheduled to be explored following the line of
work in [40,41], within the scopes of the effective kinetic
theory developed in the present work.
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