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The parton quasidistribution functions (QDFs) of Ji have been found by Radyushkin to be directly
related to the transverse momentum distributions (TMDs), to the pseudodistributions, and to the Ioffe-time
distributions (ITDs). This makes the QDF results at finite longitudinal momentum of the hadron interesting
in their own right. Moreover, the QDF-TMD relation provides a gateway to the pertinent QCD evolution,
with respect to the resolution scale Q, for the QDFs. Using the Kwieciński evolution equations and well
established parametrizations at a low initial scale, we analyze the QCD evolution of quark and gluon QDF
components of the proton and the pion. We discuss the resulting breaking of the longitudinal-transverse
factorization and show that it has little impact on QDFs at the relatively low scales presently accessible on
the lattice, but the effect is visible in reduced ITDs at sufficiently large values of the Ioffe time. Sum rules
involving derivatives of ITDs and moments of the parton distribution functions (PDFs) are applied to the
European Twisted Mass Collaboration lattice data. This allows us for a lattice determination of the
transverse-momentum width of the TMDs from QDF studies.
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I. INTRODUCTION

Partonic structure of hadrons is vividly exemplified
experimentally by the inclusive and semi-inclusive deep
inelastic scattering, Drell-Yan processes, the prompt-photon
emission, etc., where abundant information has been col-
lected over the last 50 years. While parton distributions are
genuinely nonperturbative objects, the scaling violations, as
dictated by perturbative QCD (pQCD) radiative corrections
describing the relative scale dependence of the correspond-
ing partonic distributions, have been a major and lasting
success of the theory at sufficiently high resolution [1]. This
verification does not account for the absolute scale depend-
ence of parton distribution functions (PDFs), which are
nonperturbative objects.
Sound but isolated attempts have been undertaken on the

transverse lattice, formulated directly on the light cone [2,3]

(for a review see, e.g., [4]), which have incomprehensibly
been abandoned or forgotten. On the other hand, direct
ab initio calculations involving Euclidean lattices are
precluded by the very Minkowski nature of PDFs (the
light-cone condition in the Minkowski space t2 − z2 ¼ 0

shrinks to one point, t2E þ z2 ¼ 0 in the Euclidean space
where tE ¼ it) and the unavoidable Lorentz symmetry
breaking of the finite lattice. Under those conditions, the
only available method for many years has been the compu-
tation of the lowest moments of PDFs in the Bjorken x
variable. Along this computational strategy, transverse
momentum distributions (TMDs) on the latticewere pursued
by Musch et al. [5] in a pioneering and comprehensive
investigation.
A more recent and promising breakthrough comes from

an original proposal by Ji [6], which provides an alternative
route to access PDFs directly from the Euclidean lattices
and relies on the so-called quasiparton distribution func-
tions (QDFs). These matrix elements of partonic bilinears
taken between hadron states moving at a finite momentum
P3 were introduced as auxiliary objects. They involve
boosting spacelike correlators to a finite momentum and,
eventually, may be used to extrapolate the results to the
infinite-momentum frame, P3 → ∞, yielding PDFs. Many
theoretical discussions [7–21], lattice simulations [22–26]
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and quark-diquark model calculations [27] have been
undertaken along these lines.
Quite generally, the full partonic structure contains both

the longitudinal and transverse information, which can
equivalently be described in terms of different kinematic
variables. Fourier transformations generate a proliferation
of possible definitions of these objects, depending on the
chosen variables, whereas relativistic covariance provides
relations between them (for instance, transversity relations,
connecting the light-cone (LC) and equal-time (ET) wave
functions of the pion [28–31]).
In a series of remarkable and insightful papers,

Radyushkin [12,32–34] unveiled a fundamental connection
between Ji’s QDFs and the well-studied TMDs [1] (see,
e.g., [35] for an overview) and the honorable Ioffe-time-
distributions (ITDs) [36,37]. The relation follows just from
the Lorentz covariance (and from projecting out the
subleading twist structures). This observation has triggered
incipient further works on the lattice [26,38,39] providing
in addition a different and upgraded perspective to former
TMD lattice studies [5]. These crucial findings show that
QDFs are in fact complementary to TMDs, thus QDFs,
even at low values of P3, should not be viewed as mere
auxiliary mathematical devices, but rather as physical
objects interesting in their own right. The wealth of
information on TMDs from phenomenological studies in
the so-called kT-factorization scheme is therefore inherited
by QDFs. Besides, this connection provides a handle on the
issue of the resolution scale dependence, since much is
already known on TMDs from the pQCD evolution aspect.
Moreover, the results for QDFs at finite P3 are interesting
for testing nonperturbative models of the proton and pion
structure.
Within the standard folklore of the TMD phenomeno-

logical studies, the independence of the longitudinal and
transverse dynamics has been implemented through a
Gaussian factorization ansatz, which a fortiori complies to
the Drell-Yan [40] and semi-inclusive deep-inelastic scatter-
ing investigations [41], as well as to the recent lattice studies
[5]. This important issue has recently been reanalyzed and
confirmed for the ITDs on the quenched lattice [26,38].
The purpose of this paper is to discuss certain aspects of

the QDF-TMD connection which are potentially relevant
for phenomenological and lattice studies, but have not yet
been covered to sufficient detail in the literature. A careful
scrutiny of the longitudinal-transverse factorization is
one of the key issues we present here. Thanks to the
Radyushkin QDF-TMD relation, one may investigate
the QCD evolution of QDFs with a probing scale Q via
the known methods of the TMD evolution.1 Specifically, we
use here a simple scheme based on the Ciafaloni, Catani,

Fiorani, and Marchesini (CCFM) framework [42–44],
developed long ago for the then so-called kT- unintegrated
gluon distributions to evolve TMDs. The CCFM equations
in the single loop approximation were later adapted to
include quarks by Kwieciński [45] (see also [46–48]).
We use the solutions of the Kwieciński evolution equations
for both the proton and the pion, where the initial condition
for the evolution imposed at the scale Q0 is obtained by
assuming a factorized ansatz involving a known para-
metrization of the PDFs and a choice of the transverse-
coordinate profile function. We bring up the fact that the
QCD evolution of TMDs precludes factorization at all
scales. However, the induced breaking does not generate a
large effect on the QDFs at the relatively low values of
Q ∼ 2 GeV, which are presently available on the lattice.
The factorization breaking from the QCD evolution is

visible in ITDs at magnitudes of the Ioffe time above
several units, thus in the tail, which via Fourier transform
corresponds to low values of x. Therefore, the factorization
breaking becomes relevant at low values of x and is
enhanced at higher values of Q. Note, however, that the
low-x domain is not accessible to the methodology of the
present Euclidean lattice investigations. We also explore
the reduced ITDs proposed in [26], which are specifically
designed to probe the longitudinal-transverse factorization.
With the factorization breaking induced by the Kwieciński
evolution, we find effects in the tails of the reduced ITDs,
which become increasingly relevant as the value of the
longitudinal momentum of the hadron is reduced.
In our study, we provide QDFs for both quarks and

gluons in the proton and the pion, as well as the corre-
sponding ITDs. One should keep in mind, however, that an
evaluation of the gluon distributions on the lattice is more
demanding than for the quark case.
On the general ground, we spell out simple sum

rules linking the derivatives of ITDs at the origin to the
x-moments of the PDFs and the moments of the kT
distribution. These sum rules may be useful for consis-
tency checks of the lattice results. For the reduced ITDs,
they set the slope of the imaginary part and the curvature
of the real part at the origin, which are universal, and
determined by the first and second x-moment of the
corresponding PDF. They also link in a simple way the
xmoments of the QDFs and PDFs, and the kT moments of
TMDs. We have applied the sum rules to the lattice data of
[23], confirming proper scaling with P3 and extracting
the width of the kT distribution.

II. DEFINITIONS AND RELATIONS

We begin by presenting a glossary of relevant definitions
and formulas. The results referring to the Ioffe distributions
and the link between QDFs and TMDs were obtained in
previous works [12,26,33,37]. We review them here for
completeness and to establish our notation.

1The correct definition of a parton density requires a speci-
fication of the resolution scale, which will generically be denoted
by Q.
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A. Quark distributions

The Lorentz covariance allows one to parametrize the
matrix elements of the spin-averaged quark bilinears as

hPjψ̄ð0ÞγμU½0; z�ψðzÞjPi
¼ PμhðP · z; z2Þ þ zμhzðP · z; z2Þ; ð1Þ

where jPi is a hadron state of four-momentum P, the link
operator, providing the gauge invariance, is denoted as
U½0; z�, and hðP · z; z2Þ and hzðP · z; z2Þ are scalar func-
tions. The term proportional to zμ in the decomposition of
Eq. (1) contains subleading twist pieces only, so it is
favorable to project it out from the following definitions
[12,33]. The issue is discussed in some greater detail in
Appendix A.
Following [12,26,33], we define the parton quasidistri-

butions (QDFs) analogously to the original proposal by
Ji [6], but retaining the Pμ term only, i.e.,

q̃ðy; P3Þ ¼ P3

Z
dz3
2π

e−iyP3z3hð−P3z3;−z23Þ: ð2Þ

Here y acquires the interpretation of the fraction of the
hadron’s longitudinal momentum P3 carried by the parton,
with the support y ∈ ð−∞;∞Þ. As shown by Ji [6], in the
limit of P3 → ∞ one recovers the usual PDFs,

lim
P3→∞

q̃ðy; P3Þ ¼ qðx ¼ yÞ; ð3Þ

where

qðxÞ ¼ Pþ

Z
dz−
2π

eixPþz−hðPþz−; 0Þ; ð4Þ

with y ¼ x denoting the fraction of the light-front momen-
tum of the hadron carried by the parton.
More precisely, in the adopted convention the distribu-

tion for x ∈ ½0; 1� corresponds to the quarks, and for x ∈
½−1; 0� to the antiquarks, i.e., q̄ðxÞ ¼ −qð−xÞ [49] (see
Ref. [50] for a pedagogical introduction). Then, for the
valence and sea quarks one has

qvalðxÞ ¼ qðxÞ − q̄ðxÞ ¼ qðxÞ þ qð−xÞ; x ∈ ½0; 1�;

qseaðxÞ ¼
�
q̄ðxÞ ¼ −qð−xÞ for x ∈ ½0; 1�;
−q̄ð−xÞ ¼ qðxÞ for x ∈ ½−1; 0�: ð5Þ

The transverse-momentum unintegrated parton distribu-
tion, or TMD, is defined as

qðx; k1; k2Þ≡ Pþ
Z

dz−

2π
eixPþz−

Z
dz1
2π

eik1z1
Z

dz2
2π

eik2z2

× hðPþz−;−z21 − z22Þ: ð6Þ

From the axial symmetry qðx; k1; k2Þ ¼ qðx; k2TÞ, with
k⃗T ¼ ðk1; k2Þ.

B. Gluon distributions

For the gluons, the corresponding matrix element can be
defined analogously as

hPjFμαð0ÞU½0; z�Fα
νðzÞjPizμzν

¼ PμPνhgðP · z; z2Þ þ � � � ; ð7Þ

with the dots denoting terms containing higher twists only,
and the QDF and PDF, multiplied by the corresponding
momentum fractions, are defined as

yg̃ðy; P3Þ ¼ P3

Z
dz3
2π

e−iyP3z3hgð−P3z3;−z23Þ;

xgðxÞ ¼ Pþ

Z
dz−
4π

eixPþz−hgðPþz−; 0Þ: ð8Þ

The quasidistribution yg̃ðy; P3Þ is distributed symmetri-
cally in y ∈ ð−∞;∞Þ, whereas xgðxÞ is distributed sym-
metrically in the domain x ∈ ½−1; 1� (see, e.g., Refs. [51]
for discussion). Then, together with the quark and anti-
quark distributions they form the singlet component of the
partonic distributions in context of their QCD evolution.

C. Transversity relations

Lorentz invariance of the matrix elements allows one to
obtain relations, which otherwise are a priori not obvious.
To our knowledge, the first investigations along these lines
were done in [28–31] for the case of the pion wave function
(see Appendix B for a brief review). The functions
Φaðα; z2Þ of Eq. (B1) are analogs of the pseudodistribu-
tions introduced by Radyushkin [32] and advocated as a
basic entity of the formalism.
Note that the functional dependence in both integrands

appearing in the QDF in Eq. (2) and the TMD in Eq. (6)
suggests a direct link. Radyushkin [12] showed that QDFs
are simply but nontrivially related to TMDs,

q̃ðy; P3Þ ¼ P3

Z
dk1

Z
dxqðx; k21 þ ðx − yÞ2P2

3Þ: ð9Þ

For completeness, in Appendix C we review the derivation
of the Radyushkin relation from the Lorentz invariance [32]
in an explicit manner.
We may use the transverse coordinate representation

[Fourier-conjugate to definition (6) and denoted with a hat]
of the TMD,

q̂ðx; z2TÞ ¼
Z

dν
2π

e−iνxhð−ν;−z2TÞ; ð10Þ

where the transverse coordinate is zT ¼ ð0; z2Þ, whereas the
integration variable ν ¼ −P · z is the Ioffe time [36,37].
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In the Lorentz-invariant notation one recovers Radyushkin’s
pseudodistribution P [32]

q̂ðx;−z2Þ≡ Pðx;−z2Þ ¼
Z

dν
2π

e−iνxhð−ν; z2Þ; ð11Þ

which in the frame z ¼ ð0; 0; 0; z3Þ applied below becomes

q̂ðx; z23Þ ¼ Pðx; z23Þ ¼
Z

dν
2π

e−iνxhð−ν;−z23Þ: ð12Þ

We can nowwrite down an equivalent form of Eq. (9), which
links QDF to TMD or to the pseudodistribution, namely

q̃ðy; P3Þ ¼ P3

Z
dx

Z
dz2
2π

e−iðy−xÞz2P3 q̂ðx; z2TÞ

¼ P3

Z
dx

Z
dz3
2π

e−iðy−xÞz2P3 q̂ðx; z23Þ: ð13Þ

These relations can be inverted if we invoke the integration
over P3:

q̂ðx; z2TÞ ¼ z2

Z
dy

Z
dP3eiðy−xÞz2P3 q̃ðy; P3Þ;

q̂ðx; z23Þ ¼ z3

Z
dy

Z
dP3eiðy−xÞz3P3 q̃ðy; P3Þ: ð14Þ

Therefore the knowledge of quasidistributions at all values
of the hadron momentum P3 allows one for obtaining the
corresponding TMD and the pseudodistribution in z3.

2

The matrix element hð−ν; z2Þ appearing in Eq. (12) is
referred to as the Ioffe-time distribution (ITD) [26,37],
and is equal to 2Mpðν;−z2Þ in the notation of [12,33].
The normalized amplitude [5], or the reduced ITD [26],
used to probe the transverse-longitudinal factorization, is
defined as

Mðν;−z2Þ ¼ Mpðν;−z2Þ
Mpð0;−z2Þ

¼ hð−ν; z2Þ
hð0; z2Þ : ð15Þ

The denominator has an interpretation of the rest-frame
distribution.
This definition has the advantage that the self-energy of

the Wilson loop characterized by a multiplicative renorm-
alization factor ∼e−z3m cancels in the ratio. This finding on
the lattice [26] is in harmony with the improved parton
quasidistribution through the Wilson line renormalization
[14], which safely removes power divergences ubiquitous
in lattice QCD.

III. SUM RULES FOR THE MATRIX ELEMENTS
OF BILOCAL FIELDS

Fourier inversion with ν ¼ −P3z3 of Eq. (12) yields the
relation of the ITD with the pseudodistribution,

hð−P3z3;−z23Þ ¼
Z

1

−1
dxeiP3z3xq̂ðx; z23Þ; ð16Þ

whereas the corresponding inversion of Eq. (2) links ITD to
QDF,

hð−P3z3;−z23Þ ¼
Z

∞

−∞
dyeiP3z3yq̃ðy; P3Þ: ð17Þ

We immediately see that the real part of h is an even
function of z3, whereas the imaginary part is odd. Note that
according to Eq. (5), the valence quarks contribute both to
the real and imaginary parts of h, the sea quarks contribute
to the imaginary part of h only, and the gluons yield hg
which is real. Also, Eqs. (16) and (17) immediately yield
the equality

Z
1

−1
dxeiP3z3xq̂ðx; z23Þ ¼

Z
∞

−∞
dyeiP3z3yq̃ðy; P3Þ; ð18Þ

which leads to the new sum rules presented shortly.
The normalization condition for the quark PDF yields,

from Eqs. (16), (17),

hð0; 0Þ ¼
Z

1

−1
dxq̂ðx; 0Þ ¼

Z
1

−1
dxqðxÞ

¼
Z

∞

−∞
dyq̃ðy; P3Þ ¼ Nq; ð19Þ

where Nq is the number of valence quarks of a given flavor.
Taking subsequent derivatives of the left- and right-hand

sides of Eq. (18) with respect to z3 at the origin, under the
assumption of regularity of q̂ðx; z23Þ in z23, yields simple sum
rules which depend parametrically on P3.
The first derivative of Eq. (18) is related to fractions of

momenta carried by the quarks,

d
dz3

hð−P3z3;−z23Þj
z3¼0

¼ iP3

Z
1

−1
dxxqðxÞ ¼ iP3

Z
∞

−∞
dyyq̃ðy; P3Þ ð20Þ

(we have used the fact that dq̂ðx; z23Þ/dz3jz3¼0 ¼ 0, which
follows from regularity), or

hxiq ¼ hyiqðP3Þ ¼ hyiq ð21Þ
[the brackets denote the moments appearing in Eq. (20)].
We notice from Eq. (20) that the derivative of the

imaginary part of h with respect to z3 at the origin is
proportional to P3 and contains a known coefficient, hxiq.

2As remarked in [26], the implicit prescription for the Wilson
gauge link is a straight line extending from 0 to z3, rather than the
semi-infinite stapled-link form [52]. Similar prescriptions are
used in the lattice studies of TMDs [5] or QDFs [22–26].
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We also note that the first y-moment of q̃ðy; P3Þ, which in
principle might depend on P3, in fact does not, as indicated
in Eq. (21).
Similarly, the second derivative of Eq. (18) with respect

to z3 at the origin yields

d2

dz23
hð−P3z3;−z23Þ

����
z3¼0

¼ −P2
3

Z
1

−1
dxx2qðxÞ þ

Z
1

−1
dx

d2

dz23
q̂ðx; z23Þ

����
z3¼0

¼ −P2
3

Z
∞

−∞
dyy2q̃ðy; P3Þ: ð22Þ

Since the quasidistributions and the TMDs have the same
functional form, their Maclaurin expansions, correspond-
ingly, in z3 or z2 are the same. The interpretation of the
coefficients can thus be given via the (x-dependent) kT-
moments of the TMDs. In particular, for the quadratic term
we have

d2

dz23
q̂ðx; z23Þ

����
z3¼0

¼ d2

dz22
q̂ðx; z22Þ

����
z2¼0

¼ −
1

2
P2
3hk2TiðxÞqðxÞ: ð23Þ

We introduce the short-hand notation for the x-averaged kT
width per valence quark,

hk2Ti ¼
Z

1

−1
dxhk2TiðxÞqðxÞ/Nq: ð24Þ

We may now rewrite Eq. (22) in a compact form

hx2iq þ
Nqhk2Ti
2P2

3

¼ hy2iqðP3Þ: ð25Þ

We note from Eq. (22) that increasing P3 makes the
function h more and more sharply peaked at the origin.
Also, the width of QDF is larger than the width of the
corresponding PDF, as follows from the relation of the
second moments (25), with the first moments being equal,

cf. Eq. (21). The effect is of the order hk2Ti/P2
3,

Higher-order relations may be readily obtained taking
more differentiations with respect to z3, and hold as long as
the obtained moments exist.
For the gluon distributions, analogously,

hgð0; 0Þ ¼ hxig ¼ hyig;
d
dz3

hgð−P3z3;−z23Þ
����
z3¼0

¼ 0; ð26Þ

and

d2

dz23
hgð−P3z3;−z23Þ

����
z3¼0

¼ −P2
3hx3ig −

1

2

Z
1

−1
dxhk2TðxÞigxgðxÞ

¼ −P2
3hy3igðP3Þ: ð27Þ

Equations (20)–(27) may have a practical significance
in the interpretation and consistency checks of the lattice
data. The consistency can be verified by checking the P3

dependence in Eq. (21) with the known x-moment.
Equations (25), (27) provide a way to effectively measure
the average spreading of the transverse momentum in the
TMDs. One would need to obtain the matrix elements h or
hg at various values of P3 with a sufficient accuracy, such
that interpolation fits can be made and then derivatives at
the origin taken. In Sec. VI we successfully apply the sum
rules to the lattice data from [23].
The distributions in the Ioffe time ν ¼ −P3z3 display

more universality, as then the slope of the imaginary part
of h at the origin is common to all values of P3,

d
dν

h

�
−ν;−

ν2

P2
3

�����
ν¼0

¼ ihxiq ¼ ihyiq; ð28Þ

whereas the curvature at the origin of the real part of h is

d2

dν2
h

�
−ν;−

ν2

P2
3

�����
ν¼0

¼ −hx2iq −
Nqhk2Ti
2P2

3

¼ −hy2iqðP3Þ:

ð29Þ

Above, we have used the same method as in the derivation
of Eqs. (21), (25).
There is even more vivid universality for the reduced

ITDs, where both first and second derivatives at the origin
are independent of P3:

d
dν

Mðν; ν2/P2
3Þj

ν¼0
¼ ihxiq ¼ ihyiq;

d2

dν2
Mðν; ν2/P2

3Þj
ν¼0

¼ −hx2iq ¼ −hy2iqðP3Þ þ
Nqhk2Ti
2P2

3

:

ð30Þ

The discussed universality behavior was observed in
actual (quenched) lattice simulations reported in [26].

IV. FACTORIZATION ANSATZ

In modeling of TMDs, a popular assumption is the
factorization ansatz

qðx; kTÞ ¼ qðxÞFðkTÞ; ð31Þ

or, equivalently,
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q̂ðx; zTÞ ¼ qðxÞF̂ðzTÞ; ð32Þ

which separates the transverse and longitudinal dynamics
(we will discuss later on the departures from this assu-
mption). Whereas this has traditionally been an out-of-
ignorance guess, lattice calculations of TMDs speak in favor
of this factorization, at least as long as mπ ≃ 600 MeV [5].3

Moreover, one typically uses a Gaussian shape

FðkTÞ ¼
e
−

k2
T

hk2
T
i

πhk2Ti
; F̂ðzTÞ ¼ e

−
z2
T

2σ2
0 ; σ20 ¼

2

hk2Ti
:

ð33Þ

The Gaussian factorization ansatz has been favorably
checked against the data in the Drell-Yan [40] and semi-
inclusive deep-inelastic scattering [41]. In the context of
quasidistributions, this form was explored in [12,26,33].
A typical value of hk2Ti extracted from phenomenolo-
gical studies (at energy scales of a few GeV) is hk2Ti ∼
0.3–0.6 GeV2 [59,60].
With the factorization (32), Eq. (13) becomes the folding

formula

q̃ðy; P3Þ ¼ P3

Z
dxF½ðx − yÞP3�qðxÞ ð34Þ

of the form factor F½ðx − yÞP3� and the PDF. Equation (34)
carries a particular “operational” simplicity: in the factor-
ized case, QDF is obtained from PDF in terms of a simple
folding, which washes out the PDF, more and more as P3

is decreased. On the other hand, when P3 → ∞, the form
factor tends to the delta function and QDF approaches PDF,
in agreement with Eq. (3).
With the Gaussian form (33) one has

q̃ðy; P3Þ ¼
1ffiffiffiffiffiffi
2π

p
Σ

Z
dxe−

ðx−yÞ2
2Σ2 qðxÞ; ð35Þ

where

Σ2 ¼ 1

σ20P
2
3

¼ hk2Ti
2P2

3

: ð36Þ

The effective parameter of the mentioned washing-out is
thus the ratio Σ2 from Eq. (36).
In the factorization approximation Eq. (17) becomes

hð−P3z3;−z23Þ ¼ F̂ðz23Þ
Z

dxeiP3z3xqðxÞ; ð37Þ

hence

hð0;−z23Þ ¼ F̂ðz23Þ ð38Þ

and

Mðν; ν2/P2
3Þ ¼

Z
dxeiνxqðxÞ ð39Þ

becomes a universal (P3-independent) function.
In the limit of P3 → ∞, the ITDs also loose the

information on the form factor, as then

hð−ν;−ν2/P2
3Þ → hð−ν; 0Þ ¼

Z
dxeiνxqðxÞ; ð40Þ

which gives exactly the same form as Eq. (39). Note that
the form factor F̂ðz23Þ cancels also from the ratio of the
imaginary and real parts,

Imhð−P3z3;−z23Þ
Rehð−P3z3;−z23Þ

¼
R
dx sinðP3z3xÞqðxÞR
dx cosðP3z3xÞqðxÞ

; ð41Þ

which also provides a measure of goodness of the factori-
zation ansatz.
In the factorization ansatz, Eq. (25) takes a simple form,

where the width of the transverse-momentum distribution
of partons is independent of x:

d2

dz23
hð−P3z3;−z23Þj

z3¼0

¼ −P2
3hx2iq −

1

2
Nqhk2Ti; ð42Þ

For the gluon distribution analogous results to those listed
above are immediately obtained.
The remainder of this section is devoted to an illustration

of the derived results in a sample calculation. We evaluate
the matrix elements h and hg using the NNPDF4 para-
metrization of the PDFs of the proton in the factorization
model. As the scale, we take Q ¼ 2.4 GeV, which corre-
sponds to the lattice spacing of 0.08 fm used in [22,24,25].
The factorization ansatz (32) with a Gaussian form factor
(33) is assumed to hold at this scale. We take hk2Ti ¼
0.6 GeV2 for both the quarks and gluons.
In Fig. 1 we plot the matrix element for the difference of

u and d quarks, hu−dð−P3z3;−z23Þ, and hgð−P3z3;−z23Þ,
evaluated at several values of P3 (the values P3 ¼
0.95 GeV and 2.4 GeV were used in [22,24,25]).
The solid line represents the limit of P3 ¼ 0, where
hð0;−z23Þ ¼ hgð0;−z23Þ/hxig ¼ F̂ðz23Þ. We notice clearly
the features of Eqs. (21), (42), with the slope of the

3Quite surprisingly, this a priori naive property is indeed
violated for the spectator [53] and chiral quark soliton models
[54] for the proton, as well as for the chiral quark models for the
pion [55–58] away from the strict chiral limit.

4We use the file NNPDF30_nlo_as_0118.LHgrid and the
interface in Mathematica [61] for the calculations in this
paper.
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imaginary parts increasing with P3, and the real parts
becoming more and more sharply peaked at the origin.
Figure 2 presents the analogous results for ITDs. Here

the solid lines correspond to the P3 → ∞ limit, i.e., the
distributions hð−ν; 0Þ or hgð−ν; 0Þ of Eq. (40). We note
indeed that as P3 increases, the curves tend to hð−ν; 0Þ
or hgð−ν; 0Þ, but at large values of ν the convergence
is slow.
Finally, in Fig. 3 we show the reduced ITDs, which in the

factorization ansatz are universal (independent of P3) func-
tions. Note that according to Eqs. (39) and (40), these are the
same curves as theP3 → ∞ lines from Fig. 2. The straight or
parabolic solid lines in Fig. 3 represent the expansion in ν up
to second order, i.e., the functions νhxiu−d and 1þ 1

2
ν2hxiu−d

for the imaginary and real parts of hu−d, respectively, and
the function 1þ 1

2
ν2hx3ig/hxig for the case of the gluon

distribution. For the presented NNPDF case, numerically,
hxiu−d ¼ 0.16, hx2iu−d ¼ 0.05, hxig ¼ 0.44, and hx3ig ¼
0.01. Of course, the results conform to the sum rules of
Sec. III.

The long tail in the reduced ITDs, prominently seen in
Figs. 1 or 3, is immanently related to the low-x behavior
of the associated PDFs, which typically involve an
integrable singularity as x → 0. For instance, if the
distribution behaves low x as x−α, with α < 1, (for the
moment we use distributions defined in the domain
x ∈ ½0; 1�, which can be converted according to Eq. (5),
then the asymptotic behavior of the corresponding ITDs
goes as ν−1þα. Note that this long-tail behavior in ν,
following from the low-x behavior of the PDFs, is
inaccessible on the lattice. In contrast, the simulations
of [26] or [22,24,25] display a rapid fall-off of the matrix
elements to zero around jνj ∼ 5–10. We believe this is
associated to the lattice discretization. When P3 ¼
2πn/L, with L denoting the longitudinal size and n
being a small natural number, (typically 1–5), then
jνj ¼ jP3z3j ≤ 2πn. This, in turn, via the Fourier trans-
form, sets a lower limit for the accessible values of x,
namely x > 1

n.
Having seen that the lattice simulations cannot go to

large values of jνj, a doubt arises concerning the
practicality of the method. We have demonstrated that
the expansion in ν near the origin, with the coefficients
given by the x-moments of the PDFs, works. Adding

(a)

(b)

FIG. 1. Matrix element corresponding to the (a) quark (b) gluon
QDF of the proton for several values of P3, evaluated in the
factorization model, where the PDFs at the scale Q ¼ 2.4 GeV,
taken from the NNPDF parametrization, are supplied with a
Gaussian form factor with the width parameter hk2Ti ¼ 0.6 GeV.
The real parts are symmetric in z3, whereas the imaginary parts
are antisymmetric. The solid line (P3 ¼ 0) indicates the form
factor F̂ðz23Þ.

(a)

(b)

FIG. 2. Same as in Fig. 1 but for the distributions in the Ioffe
time ν ¼ P3z3. In this case the solid lines labeled P3 ¼ ∞
represent the limits of Eq. (40).
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some next terms with higher moments would lead to
further improvement, such that the expansion would be
fairly accurate up to, say, jνj ∼ 5. However, since the
ambition of the lattice method based on QDFs is to
surpass the moment evaluations and provide the PDFs
themselves as functions of x (be it for sufficiently large
arguments), one has to verify if the “principle of
conservation of difficulty” is possible to circumvent.

V. QCD EVOLUTION AND THE BREAKING
OF FACTORIZATION

A proper definition of PDFs, QDFs, ITDs, TMDs, etc.,
requires specification of the resolution scale, which we
generically denote by Q, as it is expected to be the natural
choice where the hard scale is identified with the probing
momentum Q. Here we treat the resolution scale as an
independent parameter in the problem within the MS-
renormalization scheme in the continuum, as opposed to
the discrete lattice approach to renormalization. For suffi-
ciently fine lattices, the value of the scale can be, roughly
speaking, identified with the lattice spacing expressed in

physical units, a ∼ 1/Q.5 When Q is large enough, the
pQCD approach can be invoked.
A trivial but practically relevant observation is that once

we are able to carry out the QCD evolution for some
representation of the partonic distribution, for instance the
TMD, we can then use the integral transformations
unveiled by Radyushkin and spelled out in Sec. II to
effectively carry out the evolution for another representa-
tion, such as QDF. We can thus rewrite Eq. (13)

q̃ðy;P3;QÞ¼P3

Z
dx

Z
dz2
2π

e−iðy−xÞz2P3 q̂ðx;z22;QÞ; ð43Þ

where now the dependence on the scale is explicitly
indicated. Our scheme is to evolve the TMD, q̂, and that
way produce an evolved QDF or ITD. Note that in this
treatment P3 is an external (kinematic) variable.
For the standard unintegrated gluon distribution (or TMD)

one has at hand the Ciafaloni, Catani, Fiorani, and
Marchesini (CCFM) evolution equations [42–44], which
in a sense interpolate between the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) [63–65] and Balitsky-
Fadin-Kuraev-Lipatov [66–68] methods. The CCFM
scheme was extended to incorporate quarks by Kwieciński
[45] in the so-called one-loop approximation. The technical-
ities standing behind this derivation were very precisely
explained in [69], see also the review [70], hence we do not
give more details here.
For our practical purpose it is important we have a ready-

to-apply method with is simple but nontrivial in the present
context.6 Moreover, Kwieciński [45] showed that in the
transverse-coordinate (zT) representation, the one-loop
CCFM equations become diagonal in zT , possessing the
structure very much like the DGLAP equations for the
corresponding integrated parton distributions (PDFs), but
with a modified kernel. For the non-singlet case they read

Q2
∂q̂ðx; z2T ;QÞ

∂Q2
¼ αsðQ2Þ

2π

Z
1

0

dξPqqðξÞ
�
Θðξ − xÞ

× J0½ð1 − ξÞQzT �q̂
�
x
ξ
; z2T ;Q

�

− q̂ðx; z2T ;QÞ
�
; ð44Þ

(a)

(b)

FIG. 3. Same as in Fig. 1 but for the reduced ITDs of the
proton, M, of Eq. (15). The straight or parabolic solid lines
indicate the leading expansion at ν ¼ 0, as explained in the text.
The model curves at various values of P3 overlap, displaying
universality.

5The current limit is a ∼ 0.1 fm, which corresponds to a
momentum scale Q ∼ 2 GeV. This permits a pQCD matching
within the M̄S-renormalization scheme in the continuum. On the
other hand, we recall that the transverse lattice approach [2–4]
with the resolution scale 1/Q corresponding to the transverse
lattice spacing, seems to feature the QCD evolution in the case of
the pion [62]. It also generates a nonperturbative scale depend-
ence, according to the Wilsonian point of view, which differs in
that regard from the more popular Euclidean lattice approach.

6One should keep in mind, however, that more elaborate
evolution equations may be needed to account for a specific
gauge-link operator present in the definition of TMDs.

WOJCIECH BRONIOWSKI and ENRIQUE RUIZ ARRIOLA PHYS. REV. D 97, 034031 (2018)

034031-8



where PqqðξÞ is the usual splitting function and J0 stands
for the Bessel function. The singlet case, embodying the
gluon and sea mixing as well as details and methods of
solutions, can be found in [45–48].
The initial condition at the scale Q0 is provided with a

factorized form

q̂ðx; z2T ;Q0Þ ¼ F̂ðz2TÞqðx;Q0Þ; ð45Þ

and evolved with Eq. (44) to the scale Q. Since the
evolution is diagonal in zT , the presence of F̂ðz2TÞ has
only a multiplicative effect, and the evolved solution has
the form

q̂ðx; z2T ;QÞ ¼ F̂ðz2TÞq̂evolðx; z2T ;QÞ: ð46Þ
In other words, the dependence of the TMD on zT sits in a
factorized trivial component put in by hand, F̂ðz2TÞ,7 and a
dynamically generated nontrivial component, which mixes
zT and x, i.e., yields the longitudinal-transverse factoriza-
tion breaking. The factorization ansatz (32), which is
assumed to hold at a scale Q0 in Eq. (45), is broken at
higher scales Q. The breaking increases with the evolution
range and, as we shall see, with decreasing x.
In Fig. 4 we present the solutions of Eq. (44) (we plot

q̂evol parts of Eq. (46), as it shows the dynamical effect of
the evolution). For this part of our analysis we take for the
PDF the GRV [71] initial conditions at the scale
Q0 ¼ 510 MeV.8 For simplicity, we neglect the small
effect of the isospin asymmetry of the sea quarks. At this
scale we use the factorization formula (45) with a Gaussian
form factor and hk2Ti0 ¼ 0.38 GeV2. This value is fixed in
such a way that after the evolution to Q ¼ 2.4 GeV the
average width is equal to the phenomenological number

hk2Ti ¼ 0.57 GeV2 [59]. We note from Fig. 4 that an
increase of zT leads to a decrease of the distribution, which
is accelerated as Q grows. Also, the shape in x is not
maintained when zT is changed. This displays the factori-
zation breaking in an explicit manner.
The evolution of Eq. (44) leads to a substantial narrow-

ing of the TMDs in zT or, equivalently, broadening in kT , as
x is being decreased. The results for

hk2Tiu−dðxÞ ¼ hk2Ti0 þ
Z

d2kTk2Tq
evol
u−dðx; k2T ;QÞ; ð47Þ

after evolution up to Q ¼ 2.4 GeV, are shown in Fig. 5.
We note a strong dependence on x, with hk2Tiu−dðxÞ

(a)

(b)

FIG. 4. The u − d TMDs (multiplied with x) in the proton,
plotted as functions of the momentum fraction x at various values
of the transverse coordinate zT . The model takes a factorized
ansatz at the scale Q0 ¼ 510 MeV with the GRV parametrization
and caries out the Kwieciński evolution with Eq. (44) to the
lattice scale (a) Q ¼ 2.4 GeV or (b) Q ¼ 10 GeV.

FIG. 5. Transverse-momentum width of the u − d TMD in the
proton, plotted as a function of the momentum fraction x. The
model takes a factorized ansatz at the scale Q0 ¼ 510 MeV with
the GRV parametrization and carries out the Kwieciński evolu-
tion of Eq. (44) to the lattice scale Q ¼ 2.4 GeV. We notice the
broadening of the kT distribution as Q grows or x decreased.
The dashed line indicates hkTi0 originating from the form factor
F̂ of Eq. (47), whereas the dotted line shows the value at Q
averaged over x.

7The phenomenological reason to incorporate F̂ðz2TÞ is that
without it the obtained width of the kT distributions seems too
narrow.

8The reason for using GRV rather than NNPDF or some other
more modern parametrization is that for this case we have the
stored numerical evolution results from Refs. [47] at hand. Also,
the GRV initial scale of 510 MeV is low, which enhances
potential factorization breaking effects.
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growing as x decreases. At x ¼ 1 there is no effect, which
reflects the form of the evolution kernel in Eq. (44). The

average width hk2Tiu−d is indicated with a dotted line,
whereas the dashed line corresponds to the value hk2Ti0 at
the scale Q0, following from the assumed form factor. A
behavior similar toFig. 5 occurs for other parton species [47].
The key question we wish to address now is whether the

described breaking of the longitudinal-transverse factori-
zation induced by the evolution of the TMDs leads to
noticeable effects in ITDs or QDFs at the scales relevant for
the present-day lattice studies. We first compare the results
for the reduced u − d ITDs following from the evolved
distributions, which are shown in Fig. 6. Recall that the
external form factor effects (i.e., those coming from F̂)
cancel out from this quantity [26], hence it serves as a probe
for the breaking effects due to evolution. The dashed
curves,9 distinguished by the value of P3, correspond to
the model described above, where the initial condition for
the PDF is set at the GRV scale Q0 ¼ 510 MeV, and the
Kwieciński evolution is carried out to (a) Q ¼ 2.4 GeV or
(b) Q ¼ 10 GeV. The solid line shows the P3 → ∞ case,

where the ITD corresponds to the Fourier transform of the
PDF (similarly as the curves in Fig. 3). We note a visible
departure from universality, which at jνj ¼ 7 reaches about
30% for Q ¼ 2.4 GeV and 50% for Q ¼ 10 GeV for
P3 ∼ 1 GeV.
Whereas the factorization breaking effects displayed in

Fig. 3 seem substantial, or at least relevant at larger values of
jνj, the issue is to what extent they can influence the QDFs.
The point here is that the form of Eq. (13) leads to diffusion
of the PDF into QDF, which is best seen in the factorized
ansatz (34) or (35). In particular, the PDF at low values of x,
where we would expect more effect from factorization
breaking, is diffusedmore, as thewidth of the kT distribution
is larger in that region.As a result, there is novisible effect on
the QDFs from the factorization breaking induces be
evolution in our model. This can be seen from Fig. 7, where
in panel (a) we show the model with the Kwieciński
evolution, which induced the factorization breaking, to be
compared with panel (b), which assumes factorization at the
final scale ofQ ¼ 2.4 GeV. We note that the two cases lead
to essentially identical results. Thus, as advocated in [26],

(a)

(b)

FIG. 6. Reduced u − d ITD of the proton at various values of P3

at the evolution scale (a) Q ¼ 2.4 GeV and (b) Q ¼ 10 GeV,
obtained from the model described in the text. The solid line
represents the P3 → ∞ limit.

(a)

(b)

FIG. 7. The ũ − d̃ QDF of the proton at several values of P3,
obtained from a model with the GRV parametrization of the PDFs
at Q0 ¼ 510 MeV, supplied with a Gaussian form factor. In
(a) the distributions are evolved to Q ¼ 2.4 GeV with the
Kwieciński equations, whereas in (b) factorization is imposed
at the scale Q. In both cases the width of the transverse
momentum distribution averaged over x is the same and equals
hk2Ti ¼ 0.6 GeV2.

9The curves end at lower values of jνj than the range of the
plot, which is due to a fixed upper limit for z3 ≃ 1 fm in our
stored files with evolved TMDs.
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the place to look for potential factorization breaking are the
ITDs and not the QDFs. Our study supports this conclusion.

VI. COMPARISON TO THE EUCLIDEAN
LATTICE SIMULATIONS

In this section we compare our results to QDFs obtained
from the European Twisted Mass Collaboration (ETMC)
full-QCD lattice simulations reported in [23]. As we have
seen that the effects of the transverse-longitudinal factori-
zation seem negligible for QDFs, we return now to the
model with the NNPDF distributions used in Sec. IV and
the simple Gaussian factorization ansatz (33) taken at the
lattice scale Q ¼ 2.4 GeV.
The results for P3 ¼ 1.9 GeV are shown in Fig. 8, where

we use the model with three different values of hk2Ti. We
note that the model curves move closer to the PDF as hk2Ti
is being decreased, which is obvious from the discussion
below Eq. (34). We recall that the combination hk2Ti/P2

3 is
the relevant parameter, and its going to zero provides the
PDF limit. At the same time, the comparison to the ETMC
data, represented with a band, is qualitative only, except
perhaps the large-y region for hk2Ti ¼ 0.6 GeV2.
Figure 8 presents a similar study, where we keep hk2Ti at

the value of 0.3 GeV2 [60], but change the value of P3.
Comparison is made to the corresponding three QDF
extractions from the ETMC data, indicated with the bands.
Again, the model curves are substantially away from the
lattice extractions.
There are several possible reasons for the discrepancy.

First, as discussed in Appendix A, the extraction of QDF in
[22–25] uses a prescription retaining the structure propor-
tional to zμ. Then, the Radyushkin QDF-TMD relation (9)
receives corrections subleading in the twist expansion.
Moreover, this choice leads to mixing with a subleading-
twist scalar channel which needs to be disentangled [72].

Another issue is the value of the pion mass, which in the
ETMCsimulations ismπ ¼ 370 MeV.One artifact, possibly
causedby a largedeparture from the physical pionmass limit,
is a large value of the momentum fraction hxiu−d ¼ 0.23
(cf. Table I of [24]), compared to the phenomenological value
of 0.16. Thus, quite naturally, the lattice QDFs are moved
to the right from the PDF, as in Figs. 8 and 9. A proper
extrapolation inmπ down to physical value may resolve this
problem. The target-mass corrections [21,22] also move the
lattice extractions closer to the data. Apart from the issues
mentioned above, there are also typical lattice problems, such
as a finite cutoff from the lattice spacing, volume effects, the
source-sink separation, etc.
We note that the quenched simulation in [26], which

served as a proof of concept of the invented methods and
where the P0 projection discussed in Appendix Awas used,
the value of the pion mass was 600 MeV. In this study, the
PDF extracted from the lattice is also visibly to the right of
the phenomenological distribution.
Besides these issues, we note from Fig. 9 that the needed

values for P3 to achieve a few-percent agreement with the
PDF limit for x > 0.15 are P3 > 5 GeV, or more appro-
priately, hk2Ti/P2

3 < 0.025.
Finally, we illustrate in the nucleon case the sum rules

discussed in Sec. III, which for the second central10

moment (21), (25) yield

hy2i − hyi2 ¼ hx2i − hxi2 þ hk2Ti
2P2

3

: ð48Þ

This relation allows us to extract the TMD width, hk2Ti,
directly from the lattice data on QDFs from the ETMC
collaboration [23].11 We just make a linear fit of the form

FIG. 8. The ũ − d̃ QDF of the proton in the factorization model
with the NNPDF distributions at various values of the width of
the kT distribution (lines), compared to the lattice results from
ETMC [23] (band). Both the model results and the ETMC data
are for P3 ¼ 1.9 GeV. The solid line shows the PDF, which is the
limit of the QDF at hk2Ti → 0.

FIG. 9. Same as in Fig. 8, but for the case where hk2Ti ¼
0.3 GeV2 is fixed and P3 changed.

10We use central moments here to avoid problems die to the fact
that the mean xu−d is too large compared to phenomenological
parametrizations.

11The point at P3 ¼ 0.95 GeV is obtained for the Gaussian
smearing data, and the remaining points from the momentum
smearing data.

PARTONIC QUASIDISTRIBUTIONS OF THE PROTON AND … PHYS. REV. D 97, 034031 (2018)

034031-11



Aþ B/P2
3. The result is depicted in Fig. 10, where a clear

straight line can be seen. The slope yields the value of
hk2Tiu−d ¼ 0.27 GeV2.12 Another determination of this
quantity was made in the lattice study [5] by means of a
Gaussian fit in kT , with the result hk2Tiu−d ¼ ð0.16ð1Þ GeVÞ2
at mπ ¼ 600 MeV. In addition, we note from Fig. 10 an
agreement of the second central x moment with the phe-
nomenological GRV analysis [71], holding in the range
Q ¼ 0.5–2.4 GeV, with a better agreement for the lower
scale.

VII. PREDICTIONS FOR THE PION

Finally, we wish to make some predictions for the pion,
which undoubtedly also will be soon analyzed on the lattice
in the context of ITDs or QDFs. Note that a similar object,
namely the pion quasidistribution amplitude [6,33], has
been evaluated on the lattice [73] and reproduced favorably
in a chiral quark model [74].
The phenomenological parton distributions for the pion

were extracted from the Drell-Yan and the prompt photon
emission experiments. The parametrization provided in
[75], denoted as SMRS (see Table VII, NA10 case at
Q2 ¼ 5 GeV2), reads

VπðxÞ ¼ Ax−0.4ð1 − xÞ1.08; ð49Þ

for the valence quark PDF of the pion. We use his form to
derive, with the techniques of the previous sections, the
corresponding QDF and the reduced ITD.

In Fig. 11 we show the valence QDFs of the pion, Vπ , at
several values of P3 in a model, where a Gaussian
factorization ansatz of width hk2Ti ¼ 0.6 GeV2 is imposed
at the SMRS scale Q ¼ 2.2 GeV, with the PDF taken from
Eq. (49). We note a behavior qualitatively similar to the
proton case of Fig. 7, with the QDF converging to within a
few percent to the PDF at P3 > 5 GeV (for x > 0.15).

FIG. 10. The sum rule of Eq. (48) at work. We use the lattice
data from the ETMC collaboration [23] to compute the second y-
moment of the QDFs. We note that the value at the origin gives
the second central x-moment of the PDF. The horizontal lines
correspond to the phenomenological GRV analysis [71] for the
values Q ¼ 0.5 and 2.4 GeV. The slope yields the value of

hk2Tiu−d ¼ 0.27 GeV2 for the spread of the transverse momentum
distribution.

FIG. 11. Valence QDFs of the pion at various values of P3 for
the SMRS parametrization (49). Factorization ansatz is imposed
at the scale Q ¼ 2.2 GeV. The solid line indicates the valence
PDF of the pion.

(a)

(b)

FIG. 12. Reduced valence ITD of the pion at Q ¼ 2.4 GeV (a)
and Q ¼ 10 GeV (b), evaluated in the chiral quark model (χQM)
at various values of P3. At the origin, the real and imaginary parts
equal 1 or 0, respectively.

12The numerical resemblance with SQM model calculations of
the pion, yielding hk2Ti ¼ m2

ρ/2, is worth noticing [56,57].
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We have also carried out a similar analysis with the
factorization breaking in the pion due to the Kwieciński
evolution starting from the GRS [76] parametrization at the
scale ofQ0 ¼ 510 MeVand carried out up toQ ¼ 2.2 GeV,
and found small factorization breaking effects in QDFs,
similarly to the proton case discussed in detail in Sec. V.
The longitudinal-transverse factorization breaking due to

the QCD evolution naturally increases with the evolution
ratio r≡ αQCDðQ0Þ/αQCDðQÞ. Thus the effect will be
enhanced in approaches where r is large. This is notori-
ously the case of the chiral quark models (χQM) (for a
review in the context of PDF and PDA analyses, see [77]
and references therein), where the quark-model scale Q0 is
very low,Q0 ∼ 320 MeV, and r ≃ 7 for Q ¼ 2.2 GeV. The
quark-model scale is defined as the scale where the valence
quarks, which are the only degrees of freedom in the model,
saturate the momentum sum rule.
In Fig. 12 we present the reduced valence ITD of the

pion, evaluated in χQM, where the PDF at the initial scale
Q0 has a constant value [78], and the Kwieciński evolution
(44) is performed up to Q ¼ 2.2 GeV. We notice strong
violation effects, larger than for the analogous plot for the
nucleon (6), which is a result of an increased evolution ratio
r. We note that at jνj ¼ 5 the effect reaches 100% for the
lower values of P3.

9

VIII. CONCLUSIONS

The ab initio determination of the parton distribution
functions is a formidably complex problem which remains
a pending issue in hadronic structure. Whereas the
x-moments method has been for a long time the only
available scheme for Euclidean lattices, the QDF method-
ology proposed by Ji has opened a new venue in the field
by considering spacelike correlators boosted to a finite
momentum, and eventually extrapolating to the infinite
momentum limit. These apparently auxiliary new math-
ematical objects have been found by Radyushkin to be
intertwined with the well known TMDs, or more generally,
with the pseudodistributions. This makes QDFs at finite
longitudinal momentum interesting on their own. As a
bonus, this connection suggests a working scheme to
implement the QCD evolution for QDFs via an evolution
of TMDs, which has been studied for many years, offering
working prescriptions ready to use.
In the present paperwe have profited from theRadyushkin

relation between the QDFs and TMDs or ITDs in several
ways. First, we have written down some useful sum rules
which can be easily used as consistency checks for the lattice
studies. The sum rules show that at low values of the Ioffe
time, the reduced ITDs are essentially dominated with the
lowest x-moments of PDFs. Application of the sum rules to
ITDs also allows one, with sufficiently accurate lattice data,
for an extraction of the transverse-momentum widths of
TMDs. We have checked favorably the lowest sum rule on

the ETMC lattice data and obtained the kT-width of the TMD
of the nucleon at a low scale.
Second, we have conducted a phenomenological analysis

of the QCD evolution effects on the quark and gluon
components of the proton using the Kwieciński extension
of the one-loop CCFM equations. Our method uses the
established parametrizations of PDFs in conjunction with
the widely employed longitudinal-transverse factorization
ansatz imposed at a low momentum scale. We have focused
on the examination of the factorization breaking due to the
QCD evolution. While, strictly speaking, the factorization
ansatz can only hold at a given reference scale, we have
shown that the breaking of factorization is not numerically
very large as long as the evolution ratio is not large.Whereas
the breaking is visible in the reduced ITDs, it essentially
disappears fromQDFs at the presently available scales. This
finding is in agreement with factorization studies on the
lattice, where factorization is found to hold in a relatively
wide range. The reason is due to a rather weak effect of the
QCD evolution at the scales presently available on the
lattice. All these results make the a priori naive but actually
numerically valid on the lattice factorization property even
more intriguing from a theoretical point of view.
Finally, we have presented predictions for the valence-

quark QDF in the pion, as well as for the corresponding
reduced ITD. To enhance the possible effects of the longi-
tudinal-transverse factorization breaking, we have used
chiral quark models, where the QCD evolution ration is
large and the effect are largely enhanced. This calculation
may serve as a limit of how large the breaking effects
could be.
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APPENDIX A: DECOMPOSITION OF THE
MATRIX ELEMENT

Rewriting Eq. (1) for brevity as

Mμ ¼ PμAþ zμB; ðA1Þ
we find from contractions with Pμ and zμ the relations

A ¼ M · zP · z −M · pz2

P · z2 − P2z2
;

B ¼ M · pP · z −M · zP2

P · z2 − P2z2
: ðA2Þ
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We may now consider the kinematic cases of interest. For
PDFs, the only nonzero component of z is z−, hence taking
γþ in the definition (1) yields

Mþ ¼ PþA: ðA3Þ

The same relation holds for TMDs, where z− and zT are
nonzero. For the kinematics of QDFs defined by Ji [6], only
z3 is nonzero, and

M3 ¼ P3Aþ z3B; ðA4Þ

where both A and B structures enter, precluding a generic
link to TMD, which contains A only. In Ref. [26] it is
proposed to take

M0 ¼ P0A: ðA5Þ

Note that despite the mixing in Eq. (A4), in the limit of
P3 → ∞ (under assumptions of regularity of B), the term
with A dominates, hence the asymptotic link to the PDF
follows.
We note that in [22–25] the M3 prescription is used,

hence the above difficulty arises. Moreover, this choice
leads to mixing of the unpolarized QDF with the twist-3
scalar correlator [72], adding to technical difficulties.
One could also use the prescription with M3, but with z

having only a nonvanishing transverse component, z2. In
that case M3 ¼ P3A.

APPENDIX B: TRANSVERSITY RELATION
FOR THE PION WAVE FUNCTION

Consider the relation [29]

ΨaðP · z; z2Þ ¼
Z

1

0

dαeið2α−1ÞP·zΦaðα; z2Þ; ðB1Þ

where Ψaðz · q; z2Þ is the pion wave function (related to the
Bethe-Salpeter amplitude in the given tensor channel a), and
Φaðz · q; z2Þ is its Fourier transform. The functions, as
Lorentz invariants, depend on the two available scalars P ·
z and z2. Choosing two specific frames: equal-time (ET),
with z ¼ ð0; r⃗Þ andP ¼ ðmπ; 0Þ, and the infinite-momentum
light-cone frame (LC), with zþ¼0 and P¼ðP0;0;0;P3Þ¼
limP3→∞ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþP2
3

p
;0;0;P3Þ, hencePþz− ¼ P · z ¼ 0, one

derives a relation between the ET and LC pion wave
functions

ΨET
a ð0;−r2Þ ¼

Z
1

0

dαΦLC
a ðα;−r2Þ: ðB2Þ

The integration variable α in Eq. (B2) acquires the meaning
of the light-cone momentum fraction of the pion carried by
the quark.
We bring up this example, since the discussion in this

paper concerning the distribution functions bears a lot of
similarity. In that case, direct analogs of Φaðα; z2Þ are the
pseudodistributions introduced by Radyushkin [32].

APPENDIX C: DERIVATION OF THE
RADYUSHKIN RELATION

In this Appendix we present, for completeness, a
pedestrian derivation of Eq. (9), which is based solely
on the Lorentz invariance [32] of the matrix element h
appearing in the decomposition (1).
In the definition of TMD we encounter, by construction,

the matrix element

hðP · z; z2Þjzþ¼0 ¼ hðPþz−;−z21 − z22Þ; ðC1Þ

whereas in QDF

hðP · z; z2Þjz0¼0;z1¼z2¼0 ¼ hð−P3z3;−z23Þ: ðC2Þ

Now, following [32], one takes the specific value

k2 ¼ ðx − yÞP3 ðC3Þ

in the definition (6). Then, using Eq. (6) and carrying out
the two integrations from Eq. (9) we readily find

Z
dk1

Z
dxqðx; k1; ðy − xÞP3Þ

¼ Pþ
Z

dz−δðPþz− þ P3z2Þ

×
Z

dz1δðz1Þ
Z

dz2
2π

e−iyP3z2hðPþz−;−z21 − z22Þ

¼
Z

dz2
2π

e−iyP3z2hð−P3z2;−z22Þ

¼
Z

dz3
2π

e−iyP3z3hð−P3z3;−z23Þ≡ 1

P3

q̃ðy; P3Þ: ðC4Þ

Since the support of qðx; kTÞ is x ∈ ½−1; 1�, the x integra-
tion can be formally carried in ð−∞;∞Þ, yielding the delta
function. In the last line we have changed the notation for
the dummy integration variable, z2 → z3, which finally
yields Eq. (9).
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