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Recently, some reformulations of the Yang-Mills theory inspired by the Cho-Faddeev-Niemi decom-
position have been developed in order to understand confinement from the viewpoint of the dual
superconductivity. In this paper we focus on the reformulated SU(N) Yang-Mills theory in the minimal
option with U(N — 1) stability group. Despite existing numerical simulations on the lattice we perform the
perturbative analysis to one-loop level as a first step towards the nonperturbative analytical treatment. First,
we give the Feynman rules and calculate all renormalization factors to obtain the standard renormalization
group functions to one-loop level in light of the renormalizability of this theory. Then we introduce a mixed
gluon-ghost composite operator of mass dimension 2 and show the Bechi-Rouet-Stora-Tyutin invariance
and the multiplicative renormalizability. Armed with these results, we argue the existence of the mixed
gluon-ghost condensate by means of the so-called local composite operator formalism, which leads to
various interesting implications for confinement as shown in preceding works.
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I. INTRODUCTION

The dual superconductivity picture [1-4] represents one
of the most popular attempts to explain color confinement.
In order for this mechanism to work, the existence of
magnetic monopoles is crucial, raising the question of
how to extract them from the underlying theory. Famous
examples of such monopole configurations are the Dirac
monopole in the Abelian Maxwell theory [5], represented by
a singular gauge field, or the "t Hooft-Polyakov monopole in
non-Abelian gauge theories, which, however, relies on the
presence of an adjoint scalar field [6,7]. Dealing with pure
Yang-Mills theory, one has to find a way to define the
monopole in the absence of any scalar field. For SU(2), even
in this case, a possibility to obtain the monopoles is given by
performing a gauge-covariant decomposition of the gauge
field, the Cho-Duan-Ge-Faddeev-Niemi-Shabanov decom-
position [8—19], which also has been extended to the general
SU(N) case by Cho [11,12,20,21] and Faddeev-Niemi
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[15—17]. It relies on the introduction of the so-called adjoint
color-field n(x), which is used to define the decomposition
of the gauge field A, =V, + X, into the residual (or
restricted) field 1V, and the coset (or remaining) field &,
Recently, this idea has been readdressed under a different
viewpoint by regarding this decomposition merely as a
nonlinear change of variables. The resulting reformulation
of the Yang-Mills theory has been first performed in the
SU(2) case [22] and later extended to the general SU(N)
case [23]. It turned out, however, that for N > 3 the
decomposition is no longer unique, as the gauge field is
decomposed into the part lying in the stability group H and
its remainder SU(N)/H. But already in the N = 3 case, for
example, there are two options for the stability group,

(1.1)

The first case is referred to as the maximal option and
involves the definition of two color fields. In the second
case, the minimal option, we only need one color field to
define the decomposition. Only for SU(2) the choice is
unique and the maximal and minimal options are
equivalent.

In this paper we consider the decomposition in the
minimal option, that is, decomposing G = SU(N) into the
stability group H = U(N —1) and the coset G/H =
SU(N)/U(N — 1). However, counting the degrees of free-
dom in the color-field extended Yang-Mills theory, one
finds that they exceed those of the original Yang-Mills

H™ = U(1)x U(1) or H™" =U(2).
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theory. This is taken care of by means of the so-called
reduction condition,

[n, D, [A]D"[A]n] = 0. (1.2)
Solving this differential equation gives n as a functional of
A, eliminating the superfluous degrees of freedom. Even
though this procedure is reminiscent of a “gauge fixing”
from the extended Yang-Mills theory to a theory equi-
pollent to the original SU(N) Yang-Mills theory, it should
be remarked that the idea behind it is conceptually different
from the usual gauge fixing.

Another key aspect within this reformulation is that
one could introduce a gauge invariant mass term for the
homogeneously transforming coset field [22],

my Trgy (X,X%). (1.3)
This leads to the idea of a nonvanishing covariant coset
gluon condensate that could lead to a dynamically gen-
erated mass term coming from the quartic self-interaction
term. In fact, at least in the SU(2) and SU(3) case the
“Abelian” dominance implied by such a condensate has
already been observed in lattice simulations in terms of an
exponential falloff of the covariant coset field two-point
function in the infrared, suggesting the dynamical gener-
ation of the gluon mass [24,25]. Moreover, in preceding
works the assumption of a nonzero condensate leads to
many more implications such as removal of the Nielsen-
Olesen instability in the Savvidy vacuum [26,27], the
Faddeev-Niemi model (describing glueballs as knot sol-
itons) as a low-energy effective theory of this reformulated
Yang-Mills theory [28,29], or quark confinement at low
temperatures [30]. For a more detailed introduction of the
reformulated Yang-Mills theory and its main features
please see the review [31].

The main goal of this paper is to complement the lattice
simulations by an analytical study of the coset field mass
generation. In order to do so we consider a slightly
modified dimension-2 operator,

0= %X;j/'\f”“ —iECCe, (1.4)
as suggested in [32]. Here, £ is the gauge fixing parameter
corresponding to the reduction condition and the index a
runs over the coset space SU(N)/U(N — 1). The pure gluon
condensate is recovered for £ = 0. It should be remarked
that this operator has already been analyzed in different
gauges, such as for a nondecomposed gauge group (and
thus with the index running over the whole gauge group)
and in the usual covariant gauge fixing [33], within the
Curci-Ferrari gauge [34,35], or within the maximal Abelian
gauge (MAG) [4,36,37]. In order to construct a well-
defined effective action, a new method called local
composite operator (LCO) formalism has been developed

[38,39] and used to show not only the existence of the
“full” gluon condensate A;}A"A in linear covariant gauges
[40,41] but also the existence of the gluon-ghost conden-
sate in both aforementioned gauges [42—44]. We readdress
this issue within our novel decomposition.

The paper is organized as follows. In the second section
we set up the Lagrangian, explaining the decomposition of
the gauge field and the incorporation of the gauge fixing
related to the reduction condition. We then briefly discuss
the one-loop renormalization and calculate all renormali-
zation group (RG) functions. The third section is dedicated
to the proper introduction of the composite operator
O = X9XH — (£C*C*. We prove its (on-shell) Bechi-
Rouet-Stora-Tyutin (BRST) invariance and the multiplica-
tive renormalizability to one-loop level. In the fourth
section we use the LCO formalism in order to deal with
divergences quadratic in the source, coming from the
composite operator source term JO. In the last section,
the one-loop effective potential for the composite operator
is calculated and the existence of the condensate is
discussed.

II. LAGRANGIAN IN THE MINIMAL OPTION

Before discussing the decomposition we restrict our-
selves to the case of a space-time independent color field,
thus discarding the monopole degrees of freedom. The
analytical treatment of the dynamical color field is a highly
complicated task and plays only a minor role when
investigating the coset field condensate. Therefore, con-
sidering a fixed color field is sufficient for our purposes. In
particular, we choose the color field to be the last Cartan
generator,

n=177,

y=N?*-1, (2.1)

where the generators are normalized as 2Tr(TAT58) = §45.
Even after the choice (2.1), the theory still has the local (and
global) U(N — 1) symmetry, because the constant form of
the color field is maintained under the U(N — 1) gauge
transformations, as it is supposed to transform in the adjoint
way, n(x) = U(x)n(x)U'(x) for U(x) € SU(N). The
gauge field is then decomposed into A, =V, + &, where
the residual field V), takes value in U(N —1) and the
covariant coset field X, takes value in the coset space
SU(N)/U(N —1). It is convenient to further decompose
UN-1)— SUN-1)x U(1), since T" commutes with
all other generators of U(N — 1). In a suitable basis we
write

X, =X T* € 3u(N) —u(N - 1),

V,=ViT! =V|TI+ V[T € 8u(N — 1) +u(l), (2.2)

where the generators obey the following commutator
relations,
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[Ta’ Tb} — ifabJTj, [TJ,Ta] — l'f.labTb7
(17, 7¥] = if/KLTL, (2.3)

and the last relation is further decomposed according to
UN-1)=SUN-1)xU(1),

[T/, TK|=ifMT!, [T7,T/]=0, [T7,T"]=0. (2.4)

In the SU(3) case for example the different indices take
the values a € {4,5,6,7}, j € {1,2,3}, and y = 8. The
SU(2) case is special in the sense that the decomposition
reads SU(2) - SU(2)/U(1) x U(1) and therefore the
residual field does not possess the SU(N — 1) part. We
simply find a € {1,2} and y = 3. Using the fact that in this
decomposition the only nonvanishing structure constants
are f°%/ and f/KL (note however that 75 = 0), the Yang-
Mills Lagrangian is decomposed as

1 1
Lyw = =g Fi P = PP, (2.5)

where
Fé, = D;hxf - ngxjj,
Fl,=0,Vi =0,V + gfletxaxb + gf/¥LvkvL  (2.6)

and the covariant derivative is defined with respect to the
residual field,

Db = 59, — gf > V. (2.7)

Finally, we remark that due to the fixing of the color field n,
the originally gauge invariant mass term m3Tr(X,X*)
loses its gauge invariance. However, one is at least able to
construct a BRST invariant composite operator containing
the coset gluon condensate, cf., Sec. III.

A. BRST invariance and gauge fixing

In the following, we incorporate the reduction condition
(1.2) by means of a gauge fixing. First, let us recall the
BRST transformation &5,

8pXl = Db’ + gf P X)CY,

85V = 0,7 + gf ’*LVECE + gf/ P XiwP

Sp® = _gfablwbcj,

55C! = _ngKLCKCL _ gfjabwawb’

op®”® = IN“, 65C7 = iN’,

5BN(1 = 6BNJ - O, (28)

and the anti-BRST transformation SB,

5sX% = Db + gf P/ XC,

55VI = 0,87 + gf'KLVKTL 4 gflabxagh,

Spat = —gf b

5,07 = _ngKLCKCL _ gfjah@aa)b’

dpw® = iN, 6pCY = iN’,

5pNe = 55N =0, (2.9)

where we have introduced the Nakanishi-Lautrup field
N = (N N/.N7), ghosts C= (0" C/,C"), and anti-
ghosts C = (@, C/,C") according to the three parts
SU(N)/UN —1), SUN—1), and U(1), respectively.
The quantity A finally is defined as N = g[C.C] — N.
Both transformations are nilpotent, 6% = 6% =0, and
satisfy {85,065} = 0. It is shown [31] that the reduction
condition (1.2) can be cast into the form

DX = 0. (2.10)

Then we can introduce the gauge fixing term as

S 1 ayua 5 a~a
£lg%—15353<2XﬂXﬂ —ZE(U a)>

= —idy <a) {D,‘j”X*‘” + gN] i 5 e a)”CJ>

(2.11)

Beside its different interpretation this also differs from the
standard gauge fixing procedure by the last term, generat-
ing the four-ghost interaction after performing the BRST
transformation. This is necessary since we deal with a
nonlinear gauge fixing, in which case the four-ghost
interaction preserves the renormalizability of the theory
[45]. Indeed, we find

Ly = gN”N“ + i@ D’ [V]Dye[V]a© + N Dy? [V]XH?

+ lg th@a(Dﬂbc[V]X;)CJ _ iégfanCJCthu

ég fthfchw 60 G w + IQqubechx;wXL

'fg fjklfa/b a - hckcl (212)

where the four-ghost interactions are obtained.

We are left with fixing the residual U(N — 1) symmetry.
We choose the simple Lorenz gauge, where according to
the decomposition U(N —1) =SU(N —1) x U(1) two
different gauge fixing parameters are introduced,
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e — iy {Ci (Q,V”f +%Nf'>]

sy [Cr <8ﬂ vir gNr>]

P _
= SNINI 4 ZNTNY 4 N9, VW +iCPC

+igfTI,(VHECY) + igf! !, (XPawb).
(2.13)

Even though two different gauge fixing parameters are
introduced, it can be shown that both the SU(N — 1) and
the U(1) part of the residual gauge fixing Lagrangian are
independently invariant under the global U(1), the global
SU(N —1), and the combined global U(N — 1) trans-
formations, irrespective of the choice of A and a. In
particular, it is shown later that 4 and a receive different
one-loop corrections, such that this distinction is actually
necessary from the viewpoint of renormalization.

Finally, the Nakanishi-Lautrup field is integrated out,
which casts the gauge fixing Lagrangian into the form

Ered 215 (Dah[V]Xﬂb)Z + i&)aDMah[V]DZC [V]wc

&P b e ¢
fbjfd] d

a)a)a)a)

+ lg2 [ el Xrax oot o? (2.14)

1 o 1 .

6r = =57 @V = - (9,V)? +iC'PC!

+ igfMCI9,(VHC!) + igf/“P C10, (XM o),
(2.15)

and the equations of motion for the Nakanishi-Lautrup
field read

. 1 .
N/ =—-9, VH,
A

1
N =——9, V¥,
" a K

1
N = _EDZbXMb +igflabC’. (2.16)

This completes the gauge fixing and leaves us with a BRST
invariant Lagrangian
L= Lyy+ LZ + L. (2.17)

We proceed with the one-loop analysis of our theory,

_ (1
L= Lyy+i650p (zx;;xw - i%w“&ﬂ)

. . A . . o
—idp [C-’ <8ﬂV"-’ +2N-’)] —10p {CV (8,,VW +2N7’>] .

(2.18)

X, NoIolo]o]o)] X’lj VI;I A VVK
wa....>....@b C]>CK
FIG. 1. Propagators.

The induced propagators are shown in Fig. 1, and imply the
Feynman rules

i Puly
xx) = =0z (9= (19 28). 219
vt ==ty (- =0 ) 220
PuPv
i) =% (- - 22). @2y
1
(w'@’) = -5 —, (2.22)
p
(C/CK)y 5”(%. (2.23)
V4
(a) Vi () X
Vi vy
1% X5
(©) wb (d oL
V#J f\/w. VI '\/\M
A}
w? oL
(e) wb
X QQom
. -
FIG. 2. Three-field vertices.
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Furthermore, there exist five three-field vertices, see Fig. 2,
with the Feynman rules

(a) iVi(P)VE@V(r) = 651 g409 {9 (P = ),
+ gﬂp(r - p)p + gyp(q - r)ﬂ}’
(2.24)

(b) i{X5i(p)XD(q)Vi(r))
= 8pigirdf " {Gua—p); + 9u(r—q-¢&"p),
—gu(r=p=£,"9),}, (2.25)

(¢) i(Vya(r)@®(q)@®(p)) = =841r-pigf " (g + P),.

(2.26)
() i(Vi()CY(q)C!(p)) = =b44r—piaf ™ py, (2.27)
(e) i(Xgi(r)a”(q)C/(p) = =61g—pigf*" Py, (2.28)

where we have defined 6, = (27)"5(q).

Moreover, we find six four-field vertices, see Fig. 3,
and with defining 1., ,, = 9,906 — Gus9,p We obtain the
Feynman rules

® (&)
v v vy X}
|74 vE 14 X
) i .
Vp wb Xﬂ Xf’
’
hY
vE @ Xt xd
@ . (k)
X“ wd we W€
i W’
. ...
A Y VY
D¢ w° b od

FIG. 3. Four-field vertices.

() iV (p)Vi(@)Vh(r)VE(s))
= _i926p+q+r+s {fmn[fjkllmx,/m

+ fmjlfnkllup,w; + fmklfnjllﬂrf,bp}v (229)

(g) i(Xi(p)X2(q) V) (r)VE(s))
= _ig25p+q+r+s{Q’fabejKMIﬂv.pa
+ fEPI( = ) GuoGpr = Gupe)
LKA = EN oo = Gubpe)}>  (2:30)

(h) iV (r)VE(s)" (q)@" (p))
= _gzéq—p+r+sgpa(fajchKb + faKCfCJb)7 (231)

(i) i(X;i(p)X2(q) X5 (r)X3(s))
= _i925p+q+r+s{facjfbdjlyp.ucr

+ fad] fch I/w,up 4 fab] fch IMU-/’G}’ (2_32)

() (X5 (X7 (s)a’(q)@° (p))
— 5r+l¥+q_p929ﬂy{fa.lc]cbd] +beCfadJ}, (233)

(k) i((q)a" (p)ar (r)a(s))
= _i5925q+r—p—sfacjfjbd' (234)

Let us point out the differences to some other common
gauges. As mentioned before, our ‘“gauge condition”
Db x> = 0 is nonlinear unlike for example the standard
Lorenz gauge. This requires the four-ghost vertex (2.34) in
order to render our theory renormalizable. Furthermore, the
nonlinearity gives rise to the £-dependent corrections in the
four-gluon interaction (2.30) as well as in the two-gluon-
two-ghost interactions (2.31) and (2.33). These features are
also observed in the MAG. However, in the MAG the coset
field takes value in SU(N)/U(1)N~!, where the quotient is
Abelian and thus f/X% = 0. In our decomposition however,
the coset field takes value in SU(N)/U(N — 1), where the
quotient U(N — 1) = SU(N — 1) x U(1) is non-Abelian,
/KL #£0. In fact, only the U(1) generator 77 commutes
with all other generators of the quotient, f7X = 0 while
f7¥ £ 0. On the other hand, in the MAG one has f%¢ # 0
while in our decomposition f¢*¢ = 0. Once more we
emphasize that in the case of SU(2) our decomposition
and the MAG are equivalent.

Finally, we state some color-algebra relations that are
required in the upcoming one-loop calculations. Starting
from the SU(N) and SU(N — 1) identities

fACDfBCD — N5AB,
fimn plmn — (N — 1)k, (2.35)

and using the fact that only f%J, feb and f/* are
nonvanishing structure constants, one derives using the
Jacobi identity

034029-5



MATTHIAS WARSCHINKE et al.

PHYS. REV. D 97, 034029 (2018)

fyabfyab =N
fiabfjab = §i
fimnfjmn — (N— 1)51’]’7
N
aby fcby S5ac
PO = S
. N(N=2)
abj £cbj 54
PO =S

frab fiab — (. (2.36)

B. One-loop analysis

We start our one-loop analysis with the introduction of
the renormalization factors

1 - 1 . ~ 1
X0 =Z Xl Vi=ZVie Vi=ZVie 9=Zn.

R N 1 ool
O =7.Cl, O =7.C), O =70Ch =270,
1 1
o =Zywy, O =Zywg, $=ZLr, a=Z,ag,
A= Zp. (2.37)

Note that we took the same renormalization factor for the
coset ghost and antighost, while for the residual ghost they
must be chosen independently [46]. Furthermore, one has
to distinguish between the SU(N — 1) and U(1) gauge field
and ghosts. Hereafter, the subscript R is dropped again.
The corresponding counterterm Lagrangian is given in
Appendix A together with the relation between the counter-
terms and the renormalization factors. The renormalization
is done within dimensional regularization.

We begin with the coset gluon self-energy. The one-loop

Vi vy

correction reads’
oo - \.QQQQQ/Jr &%)Qz

w .
-~ V4 V7
b Q00AQQ @%’;\@

In dimensional regularization only the last diagram con-
tributes. The divergent part is calculated as

(2.38)

'Here and in the following, labeling an internal residual field
line as V/ + V” means one has to calculate the sum of two
diagrams, one with the propagator of the SU(N — 1) field V/ and
one with the propagator of the U(1) field V7.

VIig vy
X \.o,‘;;}@ X?

eI ON [ (17 -3¢
(4m)2e 2 6

6HEE+3)  at (N=2A) .,
re (P -SR]

(2.39)

CV“F(N—Q))\) F“/Q “ ,/

where € = “‘TD. The renormalization factors are expanded

according to Z =1+ 27" + O(h?). Then, Eq. (2.39)
implies

W L0 GHWEN(1T & at+(N=-2)i
A =2y =" o\ 3 N1 )
(4m)%e2 \ 6 2 N-1
(2.40)
1 1 1
Al = 7P — 7
_GHTN (64E8(E+3) at (N=2)
 (4n)%€2 2¢ N—-1 ’
(2.41)
and consequently,
2,,—2€
() _gH N (4 3
7 = —(=—e-2). 2.42
¢ (4ﬂ)262<3 g & (242)

We proceed with the self-energy of the residual field,
starting with the SU(N — 1) part,

Vi w

w
N .-~
+ e e ~ne e
-’ -’
(2.43)

Here, only the last four diagrams contribute in dimensional
regularization. Their divergent parts read as follows,
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_-jk(N_1)92M726 %_ 2 pvo E_ o0ov
=0 2 (4m)2e 6 A)pg 3 AJpE|

(2.44)
V,j N\%iéw VU’C
(2.45)
2 —2e
kg 710 v v
= i§’* a3 [p*g" —p"'p"] .
w
Vd PV o V,,k
~ (2.46)
S Y A y
= 0" 2 e 9 ]
Cl
v ~e o %
- (2.47)

:Z(;Jk (N_ 1) 92/"‘726 |:1 2 pv 3

+ Lpip?
2 (4m)2e 6" Y pp-
The sum is transverse and we therefore find

2,,—2¢
M L) gH I3BN+9 1
Ay =2y (47)%€ [4‘_

: SN - 1)] . (2.48)

AV =270z =0, (2.49)
or

2,.—2€
1) _gH 13N+9 1
Zy = — = —=(N-=-1)]. 2.50
4 (47)e 6 2( ) ( )

The case of the U(1) part is more simple, since
7L = 0. The one-loop correction is given by

w
Vp:y M@’W VVA’ = AN

(2.51)

Again, only the last two diagrams have to be calculated and
contain the divergent parts

v Mg :%w vy
(2.52)

2 —2e
g 10+ 0 2 wov
= N— —
! (4m)2¢" 3 9" p" = "]

w
. 'A-
V] ~~e o~ V)
- (2.53)

2, —2e
g M N 2 pv v
-t (4m)%¢ 3 [P =]

yielding a purely transverse correction and thus

2. ,—2e

) _50) _gH 11
A =27, = N—, 2.54
3 v (471')26 3 ( )
AV =70 -z =0, (2.55)

or
2,,—2€
1 _9gH 11

Zy 2.56
(4rn)%e 3 (2:56)

Next, we turn to the ghost self-energy, starting with the
coset ghosts. The one-loop correction is given by

w Vi v

B %
w@..»@.».@b — - -

+ - . ﬂ»
o
w

(2.57)

Only the last diagram contributes in dimensional regulari-
zation and the divergent part reads
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VIi4 Vo
N S S (2.58)
a4
w
2,,—2¢
FPu N a+(N=2)2\ ., »
- _ — (3 ———— ) 5% p2, 2.59
(47)% 2 ( N-1 (2:59)
which yields
2,,—2€
(1) _ ,0) _g# N a+ (N-2)a
A =7y =20 (3T (2.60
! (47)%€ 2 ( N-1 (2.60)

For the residual part we find that the U(1) ghost C” does
not enter any interaction vertex. Therefore, the self-energy
correction is 0 and we immediately obtain

n_ 1 o), 50
Ay =2z +ZY) =o.

5 (2.61)

We complete the self-energy analysis by considering the
SU(N — 1) ghosts. Their one-loop correction is given by
only one diagram,

Vl
Cj »@» Ck =V »‘1\1 .- Ck
o (2.62)
2 —2e
9K N-1 gk, 2
(4m)%e 4 (3=2)9
Thus, we find the relation
A Lz gy TN 6
$27C T (4n)’e 4 ST

The next step is to obtain the renormalization factor of
the Yang-Mills coupling by renormalizing the V/CkC!
vertex. Its one-loop correction reads

Ck
. ....»..
Cm
1 A
@WVJ — ym A
> L
C

(2.64)

The divergent parts of the diagrams read as follows,

k
C% o . om
a )
ym LA VJ
» P
a0 e (2.65)
2pTEN—13N. .
e
and
Ck
(2.66)
ct-
2,,—2€
gu=<N-11_ .
= —WTzlgf]klp#. (267)
Therefore, we obtain the relation
n L, _qa 1 1 1
ay =52y vz + 7)) + 7))
2,,—2¢
g N-1
Using Eqgs. (2.48) and (2.63) we find
2,,—2¢
m _ gu 1l
Zy =— (4ﬂ)2€€N. (2.69)

As expected, this is the standard result for the Yang-Mills
coupling in pure Yang-Mills theory.

Finally, we consider the Xw”C’ vertex. The one-loop
correction reads

? |
e
A\
Do i = @y
e -
CVJ
. %99'%,
0
'.l w

(2.70)

The first diagram’s divergent part is found to be

034029-8



COMPOSITE OPERATOR AND CONDENSATE IN THE ...

PHYS. REV. D 97, 034029 (2018)

w e k ¥ 2% 3 1+21)—-N(E—-3+64
N VEHV Z0 =91 (+1+20)-N(E-3+61) (2.75)
: . (4r)*e 4
w v X,
P (2.71)  Inthe U(1) case J =y we obtain
éJ . 4. .
o_ (10 10 10 (1))
2),—2e Ay =22y +2Z) +-2, +2Z
_ .9(41;)26 ,L-gfceJ (afe’ybfca’y + )\fekbfcak) pp,’ 27 <2 X 2 C 2 g9
Y <9+3§ a—l—(N—Z)/l) (2.76)
while the second diagram has the divergent part (47)%€ 8 2(N=-1) )7 .
X5 which implies using (2.61),
2,,—2¢
9% 92 S) _ 5 _ 9K N
P Z. =—-7Z. = 2.77
VC_"J C C (4ﬂ)€2( +§) ( )
l w This completes the one-loop analysis.
b ' We finish this section by summarizing all the corre-
oK a wKe e 22 sponding RG functions. We define them by
:ZgKfobK_'_fobK)f ]54 SZZ;)%pu.
2.72 =S =——pu—logZy=—-u—7, + O(h?),
( ) ra Ax O 2”8 08244 2'u8,uA+ (n?)
Adding both contributions we find after some color algebra (2.78)
in the SU(N — 1) case J = j, 5 5 5
# OBr _ (1) >
= =— Zyp=—u—=72 o(h~),
m_ (L 10 Lom BB oy - M08t = ThgZe H O
Asy = —Zx ZC +-Zy +2Z4
2 2 2 (2.79)
2,,—2€
_GH (9 +3¢  Na-1 )
+ . (2.73) o o o
8 2(N -1 _ ,99r _ _ (1)
(4”) ( ) Py =n VN —gRlla*’ulOng = —gkﬂafluzg +0(n),
Together with (2.63) this implies (2.80)
y_gH ((E+3)(N-3) i i
Z(C) = 5 < +(N-1) ,1>, (2.74) for the fields A, the parameters B, and the Yang-Mills
(4m)*e 4 coupling, respectively. Then we obtain
|
2 2 2
g N[(1T & a+(N-2)A g I3N+9 4 - g 11
= — =), = ——(N-1) |, = —N,
X~ 4n72 <6 27 N-1 V= 4n) V=D ) =g
2 2
g N a+ (N=2)A g [((E+3)(N=3)
— . — — 13— N = N-1)4 N
y(u ym (4”)2 2 < N _ 1 yC (4”)2 4 + ( )
2 2 2
g 3(E+1+21)—N(E-3464) . . _ g N g (4 3
P s —_ =Y~ et _— —_—— I\I7
1= np ) Te=Te={(y 275 (348, 7= e \3 §-%
2 2 3
g 13N +9 g 22 g 11
= —AN-1)), «=7—5=N, =5 2.81
& (47[)2 < 3 ( ) 4 (4ﬂ')2 3 ﬂg (471,)2 3 ( )
[
We ﬁnd that the running of a and 4 according to u 3 @ =ay, Even though the latter one implies an asymmetric gauge
and ,u = ly, implies the existence of both the  fixing of the U(1) and SU(N — 1) part of the residual

symmetnc as well as the “asymmetric” fixed point,

13N
(a,z)—(o, 3N +9

TU) (2.82)

(.4) = (0.0) S

field, no problem occurs as the invariance of the residual
gauge fixing Lagrangian under global U(N —1) color
transformations is completely independent of the param-
eters a and A.
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Moreover, as mentioned before, for N = 2 our decom-
position coincides with the MAG. In that case, our results
are in full agreement with the existing literature; see for
example [46-50]. In particular, note that the 4 dependent
terms in yyx and y, coming from the SU(N — 1) part of
U(N — 1) vanish in this case, which reflects the fact that for
N =2 we have the decomposition SU(2)/U(1) x U(1);
i.e., the SU(N — 1) part of the residual field is absent.

III. BRST INVARIANCE AND MULTIPLICATIVE
RENORMALIZABILITY OF THE
COMPOSITE OPERATOR

A. BRST invariance of the composite operator

The first step in the proper introduction of the composite
operator O = $ X4X** — iw®® is to add a source term to
the action,

S:/E+JO, (3.1)

and to show that the BRST invariance of the action is
preserved. The source satisfies dzJ = 0. Using (2.8) the
composite operator transforms as

530 = XaopXr* — iE(—gf Y w”C" )" + i (iN?).
(3.2)

Replacing N“ by its equation of motion (2.16) we find
530 — Xﬁ(Dﬂuba)b + gf“bJX”bCJ) 4 ifgfahja)hcj(ba
1
— éwa <_EDZbXﬂb + igfabja)bcj>

— X/szbwb + waDZbXﬂb

= 0" (X40"), (3.3)
and therefore the (on-shell) BRST invariance is maintained
after introducing the source term for the composite oper-
ator. Yet two problems remain to be solved. The first is the
proof of multiplicative renormalizability of the composite
operator, at least to one-loop level. This is given below. The
second and more involved problem is the divergences
proportional to J? that are generated by the source term.
This will be postponed until the next section.

B. Multiplicative renormalizability
of the composite operator

The composite operator O = [} X4XH], — Eliw* @]
can, in principle, mix with any condensate that has the
same mass dimension and quantum number. We therefore
have to set up the renormalization matrix

—
ST
=
I

[E

=

| Zs Zu Zis Zis Zi7 Zys [iw® @]
Zyg 2y Zoy Zyn Zyz Iy [iCICY]
Zys Zos Zyg Zog Zog Zzg [1 VZ,V’;}
2
Zyy Zzp Zsz Zzy Zszs Zsg B
icre)

(3.4)

The matrix elements are calculated by inserting Oy, into the
various two-point functions and requiring the cancellation
of the resulting divergences [33], using the Feynman rules
for the operator insertions as shown in Fig. 4.

At this point we only state the result, since the calcu-
lations are quite lengthy. The details are presented in
Appendix B. The renormalization matrix is shown to have
the form

Z=1+20, (3.5)
where the one-loop part Z(1) contains ten nonvanishing
elements given by

X QQOXQ0eQ X 18" g
VMJ W\/%/V\/\a VUK = i(SJKgW

wG...»X.»..@b _ sab

CJ>'><>0K _ §IK

FIG. 4. Feynman rules for operator insertions.
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2,—2¢ 2 —2e 2 2,,—2¢
(1) gH N (3 a+ (N-2)1 1 _GH 3+¢ ) gH*NN-2)3
— _ | = 1 _, 7z = s V4 - - - 3 )
! (47)%€ 2 (2 (E+D+ N-1 S (4m)?e 2 ! (47)%€2(N-1) 4 (E+3)
2,,—2¢ 2,,—2€ 2,,—2¢
y_ _gu>*3 (1) gr*NWN-2) W _ _GH
Zy' = N-1)(1+2), Z -3 , =—->"7-N,
= T amrea VDU 9 (4r)2e 2(N = 1) 3= T )
—2e 2,,—2e 2,,—2€
) _GH*N a+ (N-2)1 ny_ _GH 1 n_ _gH N 3
—— 7)), Z5) = — N-1)=, 7y = — ~(E+3),
157 (4z)2e 2 (‘f N-1 20 (47:)26( )2 » (47)%€2(N —1)4 (£+3)
—2e
1) _ L TH N
Zy = —_— 3.6
77 (An)Pe2(N = 1) (3.6)
Using the fact that to one-loop level the inverse of the renormalization matrix reads
Zh=1-20, (3.7)
we can invert Eq. (3.4), obtaining
Bad 1=Z0 0~z 0 0 o) [ [bxixi]
1y/J e (1 _ 7 (1) 1y e
vy Z; 1-2Zg Zy 0 00 SVuvh .
iwear] | _ | -2 0 1-27 00 0| [iwa, (3.8)
[iCICY] 0 ~z{) 0 100 [iCiC),
Bviv] 20 A o 1o vivi]
The composite operator is thus renormalized as
1
0=(1+2z) 5 XorXgp = (14 ZI(1 + 2wty
1
— a2 {- 20 x| -2 lirar
R
1
~(1+zM)a+ zf,,”)g{ -7\ L X;’X"} Rt zg%;)[ia)aa-ﬂ]R}
! 1 (1) 1 ayH P oA a
=1 +§Z0 2X”X — Eflio*@" ]y ). (3.9)
R
This yields the condition
1
-z + 2y vezl) =2V - Z) + Z) +Ez§“. (3.10)
Indeed, we find
2,,—2€
(1) _gHu N
-Z, Z z\) = —(13-3¢)], 3.11
2,,—2€
W _ 0, ,m Lo _gu— N
Z.' -7 Zy +=23 = —(13-3¢)]|. 3.12
02 k) ) =T [ - ) (.12)
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Thus, the composite operator is one-loop multiplicatively
renormalizable, O = ZY?Op, with the renormalization
factor

2 =27 5“ + zss> e
I _a
9# N
—((13-3 3.13

Again, this result is in agreement with the existing N = 2
MAG results, e.g., [44]. According to Eq. (3.8) the
existence of the coset gluon condensate seems to induce
a residual field condensate V/,V*/ (V7, VW) due to a non-

vanishing of the matrix entries Zg ) and Z (Z25 and Z£7 ).
However, no BRST invariant comblnatlon of mass dimen-
sion 2 operators including the residual field condensate
can be constructed. This renders such a condensate non-
physical and thus we continue to discuss the composite
operator O only.

Finally, for later use we furthermore introduce the
composite operator anomalous dimension,

PO _ 10

== 1 Zo, 3.14
which reads to one-loop level
¢ N

= 13-3 3.15

0= Gy (13739 (3.15)

IV. LCO FORMALISM

As mentioned before, the introduction of the composite
operator source term leads to new divergences quadratic in
the source. To treat these divergences the so-called LCO
formalism has been developed in [38,39] and also has been
applied to similar gluon-ghost composite operators for
example in the usual Lorenz gauge and in the MAG
[40,41,44]. In order to make this paper self-contained,
we briefly introduce the LCO formalism, thereby mainly
following the lines of [44].

In order to cure the aforementioned divergences we
extend the Lagrangian by adding

1 1
*K‘J2+§5KJ2, (4.1)

2
where k is an a priori arbitrary parameter and the second
term is understood to be a pure counterterm. Since we
already proved the multiplicative renormalizability of
the composite operator we define J, = Z5"2J such that
JoOp = JO. The running of the generating functional then
becomes

0 0 0 0 0
ﬂa—”+ﬁgza—gz+57§a—£—7015+’1§ W[J] =0,
(4.2)

where 1 = ﬂa%x. Its running behavior allows us to deter-

mine « if we assume that it only runs implicitly through its
dependence on g and &, as shown below. By noting that «
and 5k have mass dimension [k] = [6k] = D — 4 = —2¢ we
find that starting from

0 |1

0= ua [ (x + 6K)J%u 6}, (4.3)

the RG function of x can be written as
= = (2 + 2r0)x + 6 (44)

—=(2e K+ 6, .
“ou Yo
with the inhomogeneity

0

5= (2¢ +2yp)0k — u— k. (4.5)

ou

Next, we use the assumption that the auxiliary parameter
k = (g%, & p) depends on p only implicitly via g*(u) and
&(u). Equation (4.4) then becomes

0 0
2¢ + 2]/0 —ﬂgz 8_92 — 5}/58_6 (K =+ (SK) =0. (46)

Expanding in ¢’ this implies that the solution can be
written as
k(g ¢) =

K
g_(2)+ hi, + R2k0% + ..., (4.7)

where we temporarily introduced 7. At this stage it
becomes obvious that we unfortunately need to perform
(n + 1)-loop calculations in order to determine « to n loop.
For example, assuming all quantities have been determined
to two-loop level we have the expansions

By = =24 + pi1g* + o’

Ok oK ok
Sk = —2 <i+%)gz,
€ € €

Yo =7009" +7v0.14"

ve=7reod +verdt (4.8)
and Eq. (4.6) implies
— : 2eKg — 2ek = 0, (4.9)

g
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"1 2y00Kko + KoP1 — Eye0Oeko + 20kg =0, (4.10)
g1 Eyeo0ek — 2y 00Kk = 61, (4.11)
where
01 = —Eye10sk0 + 2y 0,10 + Pako + 40K
+ é [46K1 5 + 270,00k — &Y £00:0K|.- (4.12)

The first equation is satisfied identically while the second
equation implies the ordinary differential equation (ODE)
for «,

[575,085 = 2700 = Pilko = 26ky. (4.13)
Therefore, knowledge of the one-loop quantities y: ¢, y0 .0
P, and Ok is necessary to obtain the tree-level part k.
The solution of this ODE is plugged into Eq. (4.11) to
obtain ;. However, one comment needs to be made about
the inhomogeneity 6;. When taking the limit ¢ — 0 the last
term in Eq. (4.12) can only be finite if the bracket vanishes
identically.

This is guaranteed from the fact that if the theory is
renormalizable, the finiteness of Egs. (4.2)—(4.4) implies the
finiteness of ¢ and therefore there is no need to consider the
terms proportional to 1/e in &, as they must vanish by
construction [51]. In fact, based on the results in [41] for the
case of the full gluon composite operator A;‘A”A and in
Lorenz gauge with arbitrary gauge parameter this condition
can be explicitly checked and is found to be satisfied. It
should be remarked on the other hand that if one is interested
in the mere existence of the condensate, knowledge of «j is
sufficient, thus avoiding this subtlety in determining .

Before we turn to the calculation of the last ingredient
for the ODE (4.13), that is, the one-loop part of Jx, let us
note that there actually exist two ways of calculating this
quantity and also y, depending on the interpretation of the
composite operator source J. One possibility is to regard J
as a constant parameter and therefore treat y, as a mass
renormalization. Hence, all calculations are performed
using a massive gluon propagator, which is quite cumber-
some especially in higher-loop calculations. This has been
adopted in the original version of the LCO formalism.
Alternatively, in [52] it has been suggested to treat J as a
nondynamical field that interacts with the gluon. In this
case, the calculations can be performed using massless
propagators and the renormalization is done by inserting
the composite operator into two-point functions in order to
obtain y», while dk is obtained by inserting the composite
operator into the vacuum bubbles, requiring the quantity
(O(x)O(y)) to be finite. It actually was the second view-
point that we used to prove the one-loop multiplicative
renormalizability of our composite operator in Sec. III B.

Both approaches seem to be equivalent as for example the
results derived in [52] agree with those in [40].

To obtain 0k it is convenient to return to the viewpoint
of J being a mass; then the one-loop correction to the
generating functional is given by

—%Trlog (690 (=p2g™ + (1 = &) ptp? + ¢ )]

+ iTrlog [6°° (= p* + &J)]
— ,'W[(D — 1)Trlog(—p? +J) + Trlog(—p> + &J)]

+ iTrlog [6°° (—=p? + &J)), (4.14)
where the second line is obtained using the orthonormality
of the transverse and longitudinal gluon propagator.
Adopting dimensional regularization and taking the deriva-
tive with respect to J twice we find the e-divergent part
proportional to JZ,

2N-1)(3-8)

> (4”)26 (4.15)
and therefore
oKy 2(N—=1)(3 —52)
~ = 5 (4”)26 . (4.16)

We are now ready to solve the differential Eq. (4.13) for «,.
A particular solution is given by

(n _2(N-1)

Ky N 3 (4.17)

The homogeneous part is solved as

/ dcg _ [2ro0thi
57:0
/ 4-6¢ i /d,54§ 3¢ - ]d§
4¢ -3¢~ 46 -3¢ ~ ’
(4.18)
and therefore
) = C(4E-382 - 9), (4.19)
which implies the general solution
2(N-1) )

As discussed in [44] the minimum of the effective potential
should be independent of the gauge fixing parameter,
allowing us to choose the integration constant C arbitrarily.
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In practice, the result for the vacuum energy may explicitly
depend on & due to the mixing between different orders of
perturbation theory. This could only be avoided if one knew
the potential up to infinite order. Nevertheless, in the next
section we motivate a reasonable choice for C.

V. EFFECTIVE POTENTIAL AND EXISTENCE
OF THE CONDENSATE

Before we calculate the one-loop effective potential there
is still one problem left. Because of the introduction of the
terms proportional to J? the generating functional lost its
usual interpretation as an energy density. However, follow-
ing [44] this can easily be circumvented by performing a
Hubbard-Stratonovich transformation, introducing the aux-
iliary field o as

lz/da Exp[—l

Here, a normalization constant was absorbed into the path
integral measure. The parameters A and B are chosen such
that the J? term and the JO term of the original Lagrangian
are canceled, for example, A = —g and B = —gk. The
modified Lagrangian then reads

1
S (0 +AO+BIY (5.1)

Lanod = Lynt + L4+ L1 + £, + 31, (5.2)
where
e lo 1 5
L,=—— 20— (5.3)

2¢°k K¢ 2K

From Eq. (5.1) we also find that the vacuum expectation
values of O and the auxiliary field o at J = O are related as

(5.4)

Provided the auxiliary field has a nonzero vacuum expect-
ation value and using

11
T:——— 7+ O0(g*. h?) (5.5)
gk Ko

we note that £, contains the mass term for the coset gluon
and ghosts, with the tree-level masses

2, _glo). » _ ¢9{o) 56
my Ko > M Ko . ( . )

Thus, to answer whether the condensate exists or not, we
need to calculate the effective potential for the auxiliary
field. Decomposing the potential into V =V, + V| with
the tree part V,, and the one-loop part V| we immediately
find the tree-level part

62

V0(0'> =_—.

. (5.7)

For the one-loop correction we have

)

Ko

~ 1 Trlog {5” (—ng"” +(1=&Npp* +g* @)} .
2 o

(5.8)

Vi(o)

= 2’<12 g*6” + iTrlog [5”(

Within dimensional regularization, the calculation of the
logarithms can be done analogously to Sec. IV. Adopting
the MS scheme we find

Ki 5 » 3 2 2 5 gd
Vi(o)=—-—LPc?———2(N-1 ~ —log
1 (6) 2K(2) go 6472 ( ) % 6 KOﬂ
1 &go ¢go
—2(N - ~—lo S.
* 64> (N-1) K3 (2 Loﬂz - (59)

where i = 4nu’e™". Next we are looking for the stationary

points,
dv o 77K, g*o ga
—=—(1-=—|= —2 N-1)Z—(=-1o
do kg ( Ko ) 3277 ( 1 K% 3 8 Koji>
1 &g'o ¢go
—2(N-1 —lo . 5.10
* 3272 ( ) K3 < |:K0/l ( )

Besides the solution ¢ =0 we find another stationary
point o, providing the squared mass m% given by

m§:g’;" -2Exp[H +H2} (5.11)
with
1 3277
H, (&Ko) = "GN -1 (5.12)
1 (3
Hz(e:,Kl)z(3_§2)(( ”1)K1+1+ Elogg - «:2).

(5.13)

Based on these results, we discuss the open issue
of fixing the integration constant in the solution for
ko(¢), Eq. (4.20). First of all, we learn from the tree
potential (5.7) that x, should be positive in order to have a
bounded-from-below tree part. In addition, we need to
recover the correct UV limit, o, — 0 as 92 — 0, which
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implies that H, must be negative and thus &> < 3. This is
consistent with the fact that the physical region for ¢ is the
close vicinity of & = 0.> The choice
I N-1
Co=——F—F— 5.14
=N (5.14)
guarantees that x, is positive for all £ within the close
vicinity of £ = 0. Moreover, for this choice we find that
for £ = O the function H, becomes an irrelevant constant,
while for H; we obtain

3
Hl(f = 0, Ko = —9C0) = —(4ﬂ)2m.

Introducing the experimentally accessible and RG invariant
QCD scale Agep as usual,

Aqep = AEXp {— / g ﬁj(i;)] ’

we find that at £ = 0 and to one-loop order the coset gluon
mass becomes proportional to AzQCD’

(5.15)

(5.16)

m} = et (E0x) Aécn- (5.17)

Therefore, assuming that £ only changes marginally with ji
around £ = 0 we obtain an RG invariant coset gluon mass.
More explicitly, to one-loop order

_d _d (. 3 (4ﬂ)2
,ud—ﬁmf( = const X 'ud_ﬂ (/42Exp {—m 7 —-0.

(5.18)
Consequently, the vacuum energy is calculated as
2 2
Vie,) == <1 _ﬂ)
21('0 Ko
3-2(N-1)g*% (5 9o,
a2 a2 \gTlogl—
647 k5 \6 Koft
2(N—=1)g*2& (3 1 go
=22 2 [Z——log& -1 ~1 .
+ 647> k5 \2 2 0gé” ~log Koj
(5.19)

The first term in Eq. (5.19) is replaced using % l,, =0,
which yields

o2 . Fx\ _ 3-2(N-1)g0: (1 loa | 9%
2K kg ) 64n® 3 \3 g Kofi

AN DPRE (|l

64z K} Koji*

(5.20)

%See the discussion at the end of this section.

Plugging this into the Eq. (5.19) we obtain

- 2(N - 1) g*c?
V(ie.)=-(3- ﬁz)w o
—-&) D s

where in the last line we used that the gluon mass is given
by m% = % and the result is in full agreement with the

N = 2 MAG case [44]. Together with the condition & < 3
we indeed find that the energy for this vacuum is negative
and therefore the condensate is energetically favored. At
first sight, the dependence of the vacuum energy on the
parameter £ is problematic, as one should obtain the gauge
independent result. However, our “gauge” is different from
the usual treatment in the sense that it removes superfluous
degrees of freedom from the extended Yang-Mills theory,
in order to recover the theory equipollent to the SU(N)
Yang-Mills theory. This suggests we set £ =0 and thus
our result hints at the existence of the nonzero coset field
condensate, at least to one-loop level.

VI. CONCLUSION

In this paper we investigated the decomposition of the
G = SU(N) Yang-Mills theory with respect to the stability
group H = U(N — 1). We proved the one-loop renorma-
lizability of this theory and explicitly obtained all the
involved RG functions.

An important feature of this theory is the fact that one can
introduce a gauge invariant mass term for the coset field
X, € Lie(G/H). This is interesting from the viewpoint that
the existence of a nonzero condensate (X', X*) # 0 directly
leads to many implications such as quark confinement at
low temperature. While it is true that the mass term for the
coset gluon is gauge invariant within the original version
of the reformulated Yang-Mills theory, it loses its gauge
invariance because the color field is considered to be fixed
within this paper. However, we showed that one can at least
introduce the on-shell BRST invariant composite operator
O = Trgu(X,X" — 2i£CC) to investigate the possibility
of a coset gluon condensate. As an intermediate step, by
taking into account the mixing with condensates of the same
quantum number, we obtained the one-loop renormalizability
of this composite operator.

In the second part of the paper we used these results to
discuss the existence of the condensate by means of the
local composite operator formalism. Consequently, after
performing a Hubbard-Stratonovich transformation, we
obtained the one-loop effective potential V(o) for the
auxiliary field o, where the vacuum expectation values
of o and O are related as (o) = g(O). Indeed, we found a
nonzero stationary point o, away from the origin. However,
the corresponding vacuum energy V (o, ) explicitly depends
on the parameter £ This would be a problem in the usual
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gauge fixing framework, but our reduction condition has a
different meaning as it reduces the enlarged color-field
extended gauge symmetry back to the theory equipollent to
the SU(N) Yang-Mills theory. In other words, even though
the reduction condition is imposed, the full SU(N) gauge
symmetry is preserved. But again, due to the fixing of the
color field, the situation changes. The reduction condition
appears as a gauge fixing term for the coset gluon.
Nevertheless, we take the standpoint that according to
the previous argument, we should adopt the physical choice
£ = 0 in order to incorporate the reduction condition in an
S-functionlike manner. In this case, the value V(o,) is
negative and a nonzero coset gluon condensate is ener-
getically favored. Certainly, these considerations need to be
improved, for example by discussing the existence of the
condensate within a nonperturbative approach such as the
functional renormalization group.

|

- /1 _ . . . _
S (T W T RN | B e R

Then the counterterm Lagrangian is written as
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APPENDIX A: COUNTERTERM LAGRANGIAN

In this appendix we set up the counterterm Lagrangian
corresponding to

(A1)

1 1 1 . . 1 . .
Lo =A15X] (g 0*— 00" Xe+ Azz—éxgaﬂavxg +435Vi (g 0* ="V + By57Vid" OV

1 1 o i
+ AsiVi (g O* = \VE+ Aﬁz—vzaﬂavvz +Aqi* 0w + AgiCIO*Cl + AgiCT 0> CY
04

= A3 HD, V=,V - Ay g faibg, XnayixH Aug Farb8), XMV XV

+As g FUIPLXRX (D, V] =D, V]) + VX (9, X% —,X) + VIXF(9,X4 —D,X4)}

+A, 4% frt{xraxt(9,vi—0,Vy) + VX (9,X4—0,X8) + VI XM (9, X4 —0,X%)}

7

—A
157

2
fah]fcdfxzxfxuexvd _ A16ngjklfjmn V,lj Vlljvum \Z

1 . : . L
+ A1792 {Efakchb (XZX/AbVlISVL// _X;zvaykvyj) _fabjfjklvﬁvf/xﬂaxbb}

1 1 1
+ A9 {5 farefert(Xaxrbviver— Xaxbyrryer) } + Ajgg? faoke ferb {X;Xﬂh ViV — 5x;xv" ViV — Exgxw A% }

g2

12E2(N-1)

2
_Azog_éfajbfakcvﬂszvllixw —A

2
VHIXAVI XY — Ay, Z_z; ferbpake{yrr xbyixve 4 vrkxexhvery

+ Agsigf P {0, (VHaP) + @ VRO, } + Dgyigf 7P {0, (VM @) + @ V¥ 90"}
+ AosigfIMCID, (VFECT) + Agsigfi®0 CID, (XF @P) + Mgy igf TP CT D, (XM w?)

+ A28 l-g2fakcfcjhcbaa)h Vﬂk V/Jl _ iA2992

2(N—

+ A30ig2fak0fcrb VII; Vﬂr{a)awb + &)ba)a} + Ay, iQZfabech@bdeZX;Ct 1A,

pate” Vet

&g

Tfab]fcdja)aa)bwcwd’ (AZ)

where the coefficients A; are expressed in terms of the renormalization factors as
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Ay =Zy—1, Ay =ZyZ7' -1, Ay=2Zy—1,
Ay=2ZyZ7' -1, As=2Zy—1, Ag =ZyZ;' — 1,
A =2Z,-1, Ay =ZPZ[* -1, Ay =ZPZ[2 -1,
Ay =ZPZ, -1, Ay =2ZyZVZ,7:" - 1, Ay =Zy 27,75 — 1,
Ay =ZxZVZ, -1, Ay =ZxZPZ, -1, Ays=2275% -1,
Ay =2372 -1, Ay = ZxZyZ2 -1, Ay =ZyZyZ2 -1,
Ay = ZyZ\PZPZ2 - 1, Doy = ZxZyZ37;' -1, Doy = ZxZyZ3Z;' - 1,
Doy = ZyZ\PZPZ3Z:' -1, Aoy =Z,Z\PZ,— 1, Doy =Z,2\Z,— 1,
Dy =ZPZVPZ3P7, -1, Dog = ZPZPZPZ, - 1, Ay =ZVZ2 7307, - 1,
Aoy = Z,ZyZ2 — 1, Doy =Z,2v72 -1, ANy =Z,Z\PZ7% - 1,
Ay =Z,Zx7% 1, A3y =22727; — 1. (A3)

In the main text we determine Ay, A;, Az, Ay, As, Ag, A7, Ag, and Ag by considering one-loop self-energy corrections.
Next, we consider corrections to the V/C¥C! vertex and the XawC’ vertex, yielding A,s, Ay, and A,, respectively. This is
sufficient to determine all the renormalization factors to one-loop level.

APPENDIX B: DETERMINING THE RENORMALIZATION MATRIX
OF THE COMPOSITE OPERATOR

In this appendix we briefly explain how to determine the renormalization matrix of the composite operator
renormalization, deriving the diagrammatic equations for the renormalization matrix elements. This is done by inserting
the composite operator into the propagators of the fields.

1. Insertion into (XX)

QQQOXQQQQ/= (X |5 xx] )=

R
Vig vy

zl{@x@ﬁ % +W}

+Zz{f®‘%{0‘0“+&;§;w}+%{ ‘>w<, }
QIARQY
+Z4{0}+Zs{@b“%gﬁm+&§;@}+%{0}-
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From this it follows that Z; has the tree part.

0= (XX FV]T/J} Y=
2 RV VT

27{Mw+&+f®‘%®}
Zg{fcm\g%gdm &éj%{ x|

X
(y
LQAAQY
& v
Zlo{o}+Z11{ 00 E%g 00 +&}+212{0}.
(B2

)

From this it follows that Z; does not have the tree part.

0= (XX [iww =
S R

le{mw+&%+m}
v Vi w
+&{W+&}+le{ ‘X, }
\QOAQQ
v v
+Zm{0}+Zl7{f6@5§_§g’6@+&Qﬁ/}+Zlg{0}.

(B3)

From this it follows that Z;53 does not have the tree part.

0= (XX [iCjC‘j] ) =
: V4 v

ZIQ{M+%+W}

X
'y
QIAQQ

VY Vv
+ZZZ{O}+ZQS{W+ QQQJ}MM{O}.

(B4)

+Zm,{fw~5§‘%{6m ngzgl}ﬂ{ x|

From this it follows that Z,9 does not have the tree part.

0= (XX {hﬂw] ) =
2 R A
Vi v

ZQS{W+%+W}
R 2SS

X
'y
QIAQQ

v 1Yl
+Z28{0}+Z29 {W+\Q@g’}+zw{0}.

(BS)

From this it follows that Z,s does not have the tree part
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0= (XX [iC"C"],) =
VIi4 VY

ZBI{M+Q%+W}

< |

Vi Vi
+Zs2 {W%—&} +Z33{
QOAQQ
v v
+Zg4{0}—|—Z35 {W+QQQI}+ZSG{O}

(B6)
From this it follows that Z3; does not have the tree part.

2. Insertion into (V/V*)

0= (VIVF BXX} R> =

Zl{,\%\j— Vi W%M vk }
1% vk
1L V!
+Z2{Vj % Vk_i_/\/@\j-vj M@\N Vk}
Vi vk
w
+ v W%M vk

Vi o %4
+z4{ VI Ao 1k }+Z5{o}+zﬁ{0}.
‘.

(B7)

From this it follows that Z, does not have the tree part.

Vi A~ v = (vIvE Bvlvl} =

R

27{’\%+ Vi AM%\M‘ vk }
1% vk
Vl Vl
Zs{Vj % Vk—|—/\ﬁ\/+vj M@W Vk}
V7 %4
w
I V& W%M vk

1% vk

Cl
+Z10{ 178l W%M 1% } + Z11{0} + Z12{0}.
‘.

(B8)

From this it follows that Zg does have the tree part.

0= (VIV* [iwa] ) =

Zm{&_~_vi W%M Vk}
1% vk
Vl Vl

+zl4{w' e v é 7~ vk}

Vi vk

w
+ Z15 { ><
C)

AAP A
% %%

Cl
+zw{ Vi ~ren€enn v’“}+zn{0}+zls{0}-
‘.

w
N V£ W%M vk }
‘.

(B9)

From this it follows that Z;, does not have the tree part.
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0= (Vivk [iClC*l]R> =

Z{N%\w W vk}

J

Vl Vl
+Z20{Vj KA VS é VI «A@\(ﬁvw vk}
Vi %
w
+ Zo1 ><
{ (

AAP A
i vk

Cl
+ Zao { Vi ~remen vk} + Z23{0} + Z24{0}.
~-"

w
NI V& W%M vk }
‘.

(B10)

From this it follows that Z,, does not have the tree
part.

0= (Vv* [%V“’V”] ) =
R

BC B e

J

Vl Vl
+Z26{Vj K VEL é VI «A@\(ﬁw vk}
1% 1%
w
+ Zar X
{ )

AAOA.
V7 vF

Cl
+Zzg{vj S s A vk} + Z20{0} + Z30{0}.
~-"

w
NI Ve W%M vk }
‘.

(B11)

From this it follows that Z,¢ does not have the tree part.

0= (V'VF[icTC],) =

z{ N%j V W v }

J
V! V!
+Z32{Vj A~ VE é +Vi "’W vk}
V.i Vk

w w

+ Zss X + VI ~Aneen 1 }
{ ) -
A
\% vk

Cl
+Zg4{vj e A V’“}+Zs5{0}+236{0}4

‘.

(B12)

From this it follows that Z5, does not have the tree part.

3. Insertion into (w@®)

gl e

w w

w
VIig vy

+Z3{w - ov+w NV S ‘.MX.’ }

e -

w w

v v
<] . .V

(B13)

+Z4{0}+Zs{

w

From this it follows that Z; does not have the tree part.

034029-20



COMPOSITE OPERATOR AND CONDENSATE IN THE ...

PHYS. REV. D 97, 034029 (2018)

— (o | 2vivil oy =
0=( [zv vL}
v v’
A YR She i
o b . . 0 . .V
Vi v
w - o w
+Zg{ e ‘-X }
pas
v v
+Zlo{0}+Zu{ ﬁw - e W}+Z12{0}~
-
(B14)

From this it follows that Zg does not have the tree part.

W>X>@ =

U

w o w

(o [iww] ) =

Vi Vi
@

VIigvyy
w - @ - w
+Zi5 4w - 4 >< }
{ Yy
e
w w
VY v
+Z16{0}+Z17{ Hw e ‘:’}+Z18{0}-
a4
e
(B15)

From this it follows that Z,5 does have the tree part.

0= (ww [iC’jC’j] R) =

af 9 | S el
gllgg o

w @ w

VIig vy
w - W w
+221{ - % - ‘X }
ek
w w
v v
+222{0}+Z23{ o »'%" Lanl W}+Z24{0}-
4
w -

(B16)

From this it follows that Z,; does not have the tree part.

o= warv] -

SPACP-S

Vi

ﬁw >h‘>/2u> w}
e . >

w ) w ) w
ViV
w w
+Z27{ o o (X- }
.
w w
%t &
+Zzs{0}+229{ Jw »'\><\"‘ L a’}+230{0}-
a4
L Ll

(B17)

From this it follows that Z,; does not have the tree part.

0= (ww [iC"C"] ) =

ZSI{ }+Z32{ ¢ w-~>q;ép->~w}
Sl gy

w I w

VIig vy
oo .
+Zszs{ e -»é?» @+ (-X- }
au
w w
V’Y V"f
+Zs4{0}+Z35{ SRR et o Sl @}+ng{0}.
o
e

(B18)
From this it follows that Z33 does not have the tree part.
4. Insertion into (G/C¥)

0= (C'C* BXX]R) =

Vl
ZI{O}+ZQ{CJ' Nl S N ok C*k} + Z3{0}
el

Cl

+ Z5{0} + Zs{0}.
(B19)

From this it follows that Z, does not have the tree part.
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0= (CiC* Bvlvl} )=
R

Vl
Z7{0} +Zg{C’j Nk S Rk C’“} + Zo{0}
e

Cl
+Z10{ CJ »X» ol + ¢ »w - C_'k}

+ Z11{0} + Z12{0}.
(B20)

From this it follows that Z,, does not have the tree
part.

0= (C'C" [iwa) ) =
Vl
Z13{0} + Z14{Cj o "’><"" - C_'k} + Z15{0}
s

Cl
+Z16{ ol »X» ok + ¢ »w» Ck}

+ Z17{0} + Z15{0}.
(B21)

From this it follows that Z;s does not have the tree
part.

C7 X O = (It [ic'c!] ) =

Vl
Z10{0} +Z20{Cj N e St ck} + Z21{0}
e

Cl
+Z22{ ol »X» ok + Y »w » Ok }

+ Z23{0} + Z24{0}.
(B22)

From this it follows that Z,, does have the tree
part.

0= (CC* vaw} -
R

Vl
225{0} + Z26{Cj c ."><"‘ N Ck} =+ ZQ?{O}

Cl
JrZQS{ i »X» ok + ¢ »% >k }

+ Z29{0} + Z30{0}.
(B23)

From this it follows that Z,g does not have the tree part.
0= (C'C*[icC] ) =

Vl
Z31{0} + Z32{Cj co - ."><"‘. B Ck} —|—Z33{0}

Cl

+ Z35{0} + Z36{0}.
(B24)

From this it follows that Z;, does not have the tree part.

5. Insertion into (V?V7)

0= (Vv BXX} R) =

{ff;%w e s
V"/ V’Y

| 4%’

V7 v

+Z4{0}+Z5{ VY A VY }+Zﬁ{o}.

w
+ VY W%M V“Y}
~

(B25)

From this it follows that Z5 does not have the tree part.
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0= (Vv [ Lvivi| )=
2
R

V"/ V’Y

| 4%', st

V’Y V’Y

+Z10{0}+Z11{ v “’%"\’ v }+Z12{0}.

(B26)

From this it follows that Z;; does not have the tree part.

0=(V'V" [iww] ) =
zlg{w‘%ﬁﬂﬂ w«a%%g{vw v }+Zl4{0}
VY VY

o] 4%7 Sihaciatd

v v

+Zle{0}+Zl7{ v '\’%’\’ v }+le{0}.

(B27)

From this it follows that Z;; does not have the tree part.

0= (VW7 [iC'CY] ) =
Z19{ .ﬁ Vel w%vw V’Y}+Z20{O}
v v

w
+ VY W%M Vv}
-

+ Z32{0} +223{ VY A~ VY } + Zou{0}.

(B28)

From this it follows that Z,; does not have the tree
part.

VY A~ VY

(Ve vavv} R) -

VY VY

+Z28{0}+Z29{ VI AKA VY } + Z30{0}.

(B29)

From this it follows that Z,9 does have the tree part.

0= VIV [iC7CY] ) =
Zgl{ .%‘ el ’\/\/\%\M Vv}+232{0}
VY Vv

w
+ VT ~Anemee vw}
-

+ZS4{O}+Z35{ VI AKA VY } + Z36{0}.

(B30)

From this it follows that Z;s does not have the tree
part.
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6. Insertion into (C7C?)

) =Z1{0} + Z2{0} + Z3{0} + Z4{0}

e [3xx]
2 R

+Z5{0}+ZG{ EE D CW} =0.

(B31)
From this it follows that Zg does not have the tree part.

(cren [;VJVJ} ) =Z{0} + Zs{0} + Zo{0} + Z10{0}
R

Jerl{O}Jerz{ c >><> C'“’} =0.

(B32)

From this it follows that Z;, does not have the tree part.

<C’YCW [iw@]R> :Zlg{O} + Zl4{0} + 215{0} + ZlG{O}

+ 217{0} + Zlg{ cv - »X» C"Y } =0.
(B33)

From this it follows that Z;3 does not have the tree part.

(CVCT (iG] ) =Z10{0} + Z20{0} + Z21{0} + Z22{0}

+Z23{0}+ZQ4{ Ccv »X» C'Y} =0.

(B34)
From this it follows that Z,, does not have the tree part.

(cren [;vvw} ) =Z55{0} + Zog {0} + Zo7 {0} + Zos {0}
R

+ Z29{0} + Zso{ Y X CW} = 0.
(B35)

From this it follows that Z;, does not have the tree part.

o »X» cr = <C"YC(Y [ZO’YC”Y:I R> =

Z31{0} + Z32{0} + Z33{0} + Z34{0} (B36)

+Zg5{0}+Z36{ c” >><> C_W}

From this it follows that Z;¢ does have the tree part.
At this stage we have proven the following form of the
renormalization matrix,

Z=1+ 20,

We therefore can reconsider Egs. (B1)-(B36) to
obtain the diagrammatic equations for the elements of

Z(). From Egs. (B1)~(B6) we find Zilg) = Z§11> =0 as
well as

ViV

z§1>:_{ %mm%m} (537

\% VI

(B39)

V’Y V’Y
22(;):—{& + } (B40)

From Egs. (B7)-(B12) we find Zglé) :Z(312) =0 as
well as
w w
Zfi)—{ RO Gl s 2aad }
‘.
Q
Vi vk

(B41)
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Vk

\%
(B42)

V! V!

Vi vk
(B43)

Ol

From Egs. (B13)-(B18) we find Z\) = Z) =0 as

well as
Z¢M = - :
(B45)
L -
1%} Vi
Zg(l)—_{ +w-~>..\'></\.0->'w}_
L - -
(B46)
VIi4 vy
w
Zg)_{ >< 4w .».w}
oy
S -
w w
(B47)

VY
T W ee }
e

V’Y
z;?:—{ ﬁ

w w

(B48)

Considering Egs. (B19)-(B24) we obtain Z\" = z{}) =
Z(zg) = Zgz) =0 and

VI
Z{ = - {cj N Sl ck}, (B49)
Sy

Cl
zy) =~ {OJ' --»@-»- C* } (B50)

Equations (B25)-(B30) imply Zz\! =z =2z =
Zgls) =0 and

Zé”{%_ﬁ_‘/"/w%vw‘/ﬁ’}
Vv vV

(B51)

(B52)

Finally, from Eqs. (B31)~(B36) we find Z\" = z!}) =
Z<118) = Z&) = Z%) = Zglg = 0. This leaves us with a priori
16 nonvanishing renormalization factors. The divergent
parts of the diagrams necessary to obtain these renormal-
ization factors are calculated as

ViV

2,,—2¢

= Z'g(4/;)2€g;w5abg {3 (b+EE+2)]+

4 N—-1

(B53)

a+(N—2)A)_
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\%4

oAl

_ ngH_ZE ,u.u(sa,bN(N — 2) <3()‘2 + 6)£ + A + 352 + 3>
(4m)2e 2(N —-1) 4¢ '

(B54)

VY

e

g o b N (3(a2+6)§+a2+3€2+3>.

“amze? 0 (N A€
(B55)
\%
N - -
.V'
(B56)
o 792/1726 N(N — 2) )\25ab
(4m)2%e 2(N —1) '
vV
SRS b0 0 Sl
o (B57)
2, —2€
_ _g H N a25ab
(47)%€ 2(N — 1)
Vi
~ : (B58)
W o - »( S w =)
v
~ : (B59)
W o - »( o =0

Vj W@’M Vk

.92u725

- (4)2e

(B60)

g IR (N — 1)%@2 +A44).

2

—2e 2
Vi b IH g3t E 1
,\,\%,\,\/ V Z(47T)Zeg 13 1 3+£ .

(B61)

(B62)
& —2¢
Vi~~~ |k _ o g iV =1)
- (47)2%e 2
(B63)
. w 92u—2€ .
Vi Ao~ [k — 9 —g" 6" (B64)
- (4m)2e
w g2M—26 .
VT ~nemeen VT == g5IRIN.  (B6S)
- (4m)2e
Vl
Sl CE g (B66)
i
Cj . »@ - C_«k: = 0.
(B67)

Vl
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2, —2€ 2
_ 7Z3Ng4'u > 6abg,u,1/3 +8£
(4m)2e (B68)
& 92M_2E ab v
X - N(47T)26 '
A y (B69)
.
2, —2€ 2
:7N94M2 5ab3—;£
(4m)2e (B70)
w
v 2y~ 2 N(N -2) 301
_ _-g H ab puv PAN It o
&Q@J T a2 TESRARE {4 + 45} ‘
(B71)
VY 2, —2¢ 3 1
_ _-g H ab v AN e .
“dm)2e SN =) 0 {4 + 45}
(B72)
2,,—2¢ 2
— _-g H Jk ,uu3+€ }
i (471')265 g 1 3+ )
Vi vk
(B73)
2, ,—2€ 2
gt 34 1
/\%\. o (47T)2eg 4 3+£ |
Vv Vv
(B74)

Vl 2,—2¢ 3
— _g H Jk v _ e 2
Q( 1(47_‘_)265 g (N 1)4(3+)\).
1% vk
(B75)
w 2,,—2
X = eulE g,
. (4m)2e
Ly (B76)
1% vk
w 2 L—Qe
D —i2Ng(4;)2€gW.
( Y (B77)
VY VY
w - gQ/L_QE ab€
‘.-X-. = NG5
! y (B78)
" e 5
@ 22 L N(N -2
g N ) 2
=z v BN
w ' ")
(B79)
VvV 2,,—2€¢ N
_ g p ab 2
=z st
w ‘@
(B80)

These results for the Feynman diagrams imply that some
of the 16 a priori nonvanishing renormalization factors
actually become 0. The factors Z(li)) and Zg; given by
Eqgs. (B49) and (B50) are vanishing because the involved
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diagrams are finite. Moreover, the factors Zgl), Zgl), Z(IQ,

and Z\") given by Eqgs. (B42), (BS1), (B41), and (B52),
respectively, are O as well since in each case the involved

diagrams cancel each other. This finally leaves us with ten
nonzero renormalization factors, yielding Egs. (3.6) and
(3.8) in the main text.
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