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Recently, some reformulations of the Yang-Mills theory inspired by the Cho-Faddeev-Niemi decom-
position have been developed in order to understand confinement from the viewpoint of the dual
superconductivity. In this paper we focus on the reformulated SUðNÞ Yang-Mills theory in the minimal
option with UðN − 1Þ stability group. Despite existing numerical simulations on the lattice we perform the
perturbative analysis to one-loop level as a first step towards the nonperturbative analytical treatment. First,
we give the Feynman rules and calculate all renormalization factors to obtain the standard renormalization
group functions to one-loop level in light of the renormalizability of this theory. Then we introduce a mixed
gluon-ghost composite operator of mass dimension 2 and show the Bechi-Rouet-Stora-Tyutin invariance
and the multiplicative renormalizability. Armed with these results, we argue the existence of the mixed
gluon-ghost condensate by means of the so-called local composite operator formalism, which leads to
various interesting implications for confinement as shown in preceding works.
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I. INTRODUCTION

The dual superconductivity picture [1–4] represents one
of the most popular attempts to explain color confinement.
In order for this mechanism to work, the existence of
magnetic monopoles is crucial, raising the question of
how to extract them from the underlying theory. Famous
examples of such monopole configurations are the Dirac
monopole in theAbelianMaxwell theory [5], represented by
a singular gauge field, or the ’t Hooft-Polyakovmonopole in
non-Abelian gauge theories, which, however, relies on the
presence of an adjoint scalar field [6,7]. Dealing with pure
Yang-Mills theory, one has to find a way to define the
monopole in the absence of any scalar field. For SUð2Þ, even
in this case, a possibility to obtain the monopoles is given by
performing a gauge-covariant decomposition of the gauge
field, the Cho-Duan-Ge-Faddeev-Niemi-Shabanov decom-
position [8–19], which also has been extended to the general
SUðNÞ case by Cho [11,12,20,21] and Faddeev-Niemi

[15–17]. It relies on the introduction of the so-called adjoint
color-field nðxÞ, which is used to define the decomposition
of the gauge field Aμ ¼ Vμ þ Xμ into the residual (or
restricted) field Vμ and the coset (or remaining) field Xμ.
Recently, this idea has been readdressed under a different

viewpoint by regarding this decomposition merely as a
nonlinear change of variables. The resulting reformulation
of the Yang-Mills theory has been first performed in the
SUð2Þ case [22] and later extended to the general SUðNÞ
case [23]. It turned out, however, that for N ≥ 3 the
decomposition is no longer unique, as the gauge field is
decomposed into the part lying in the stability group H and
its remainder SUðNÞ/H. But already in the N ¼ 3 case, for
example, there are two options for the stability group,

Hmax ¼ Uð1Þ ×Uð1Þ or Hmin ¼ Uð2Þ: ð1:1Þ

The first case is referred to as the maximal option and
involves the definition of two color fields. In the second
case, the minimal option, we only need one color field to
define the decomposition. Only for SUð2Þ the choice is
unique and the maximal and minimal options are
equivalent.
In this paper we consider the decomposition in the

minimal option, that is, decomposing G ¼ SUðNÞ into the
stability group H ¼ UðN − 1Þ and the coset G/H ¼
SUðNÞ/UðN − 1Þ. However, counting the degrees of free-
dom in the color-field extended Yang-Mills theory, one
finds that they exceed those of the original Yang-Mills

*m_warschinke@chiba-u.jp
†afca3071@chiba-u.jp
‡shogo.nishino@chiba-u.jp
§sinohara@graduate.chiba-u.jp∥kondok@faculty.chiba-u.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 034029 (2018)

2470-0010=2018=97(3)=034029(28) 034029-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.034029&domain=pdf&date_stamp=2018-02-26
https://doi.org/10.1103/PhysRevD.97.034029
https://doi.org/10.1103/PhysRevD.97.034029
https://doi.org/10.1103/PhysRevD.97.034029
https://doi.org/10.1103/PhysRevD.97.034029
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


theory. This is taken care of by means of the so-called
reduction condition,

½n; Dμ½A�Dμ½A�n� ¼ 0: ð1:2Þ

Solving this differential equation gives n as a functional of
Aμ, eliminating the superfluous degrees of freedom. Even
though this procedure is reminiscent of a “gauge fixing”
from the extended Yang-Mills theory to a theory equi-
pollent to the original SUðNÞ Yang-Mills theory, it should
be remarked that the idea behind it is conceptually different
from the usual gauge fixing.
Another key aspect within this reformulation is that

one could introduce a gauge invariant mass term for the
homogeneously transforming coset field [22],

m2
XTrG/HðXμXμÞ: ð1:3Þ

This leads to the idea of a nonvanishing covariant coset
gluon condensate that could lead to a dynamically gen-
erated mass term coming from the quartic self-interaction
term. In fact, at least in the SUð2Þ and SUð3Þ case the
“Abelian” dominance implied by such a condensate has
already been observed in lattice simulations in terms of an
exponential falloff of the covariant coset field two-point
function in the infrared, suggesting the dynamical gener-
ation of the gluon mass [24,25]. Moreover, in preceding
works the assumption of a nonzero condensate leads to
many more implications such as removal of the Nielsen-
Olesen instability in the Savvidy vacuum [26,27], the
Faddeev-Niemi model (describing glueballs as knot sol-
itons) as a low-energy effective theory of this reformulated
Yang-Mills theory [28,29], or quark confinement at low
temperatures [30]. For a more detailed introduction of the
reformulated Yang-Mills theory and its main features
please see the review [31].
The main goal of this paper is to complement the lattice

simulations by an analytical study of the coset field mass
generation. In order to do so we consider a slightly
modified dimension-2 operator,

O ¼ 1

2
Xa

μXμa − iξCaC̄a; ð1:4Þ

as suggested in [32]. Here, ξ is the gauge fixing parameter
corresponding to the reduction condition and the index a
runs over the coset space SUðNÞ/UðN − 1Þ. The pure gluon
condensate is recovered for ξ ¼ 0. It should be remarked
that this operator has already been analyzed in different
gauges, such as for a nondecomposed gauge group (and
thus with the index running over the whole gauge group)
and in the usual covariant gauge fixing [33], within the
Curci-Ferrari gauge [34,35], or within the maximal Abelian
gauge (MAG) [4,36,37]. In order to construct a well-
defined effective action, a new method called local
composite operator (LCO) formalism has been developed

[38,39] and used to show not only the existence of the
“full” gluon condensate AA

μAμA in linear covariant gauges
[40,41] but also the existence of the gluon-ghost conden-
sate in both aforementioned gauges [42–44]. We readdress
this issue within our novel decomposition.
The paper is organized as follows. In the second section

we set up the Lagrangian, explaining the decomposition of
the gauge field and the incorporation of the gauge fixing
related to the reduction condition. We then briefly discuss
the one-loop renormalization and calculate all renormali-
zation group (RG) functions. The third section is dedicated
to the proper introduction of the composite operator
O ¼ 1

2
Xa

μXμa − iξCaC̄a. We prove its (on-shell) Bechi-
Rouet-Stora-Tyutin (BRST) invariance and the multiplica-
tive renormalizability to one-loop level. In the fourth
section we use the LCO formalism in order to deal with
divergences quadratic in the source, coming from the
composite operator source term JO. In the last section,
the one-loop effective potential for the composite operator
is calculated and the existence of the condensate is
discussed.

II. LAGRANGIAN IN THE MINIMAL OPTION

Before discussing the decomposition we restrict our-
selves to the case of a space-time independent color field,
thus discarding the monopole degrees of freedom. The
analytical treatment of the dynamical color field is a highly
complicated task and plays only a minor role when
investigating the coset field condensate. Therefore, con-
sidering a fixed color field is sufficient for our purposes. In
particular, we choose the color field to be the last Cartan
generator,

n ¼ Tγ; γ ¼ N2 − 1; ð2:1Þ

where the generators are normalized as 2TrðTATBÞ ¼ δAB.
Even after the choice (2.1), the theory still has the local (and
global) UðN − 1Þ symmetry, because the constant form of
the color field is maintained under the UðN − 1Þ gauge
transformations, as it is supposed to transform in the adjoint
way, nðxÞ → UðxÞnðxÞU†ðxÞ for UðxÞ ∈ SUðNÞ. The
gauge field is then decomposed intoAμ ¼ Vμ þ Xμ, where
the residual field Vμ takes value in UðN − 1Þ and the
covariant coset field Xμ takes value in the coset space
SUðNÞ/UðN − 1Þ. It is convenient to further decompose
UðN − 1Þ → SUðN − 1Þ ×Uð1Þ, since Tγ commutes with
all other generators of UðN − 1Þ. In a suitable basis we
write

Xμ ¼ Xa
μTa ∈ suðNÞ − uðN − 1Þ;

Vμ ¼ VJ
μTJ ¼ Vj

μTj þ Vγ
μTγ ∈ suðN − 1Þ þ uð1Þ; ð2:2Þ

where the generators obey the following commutator
relations,
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½Ta;Tb�¼ ifabJTJ; ½TJ;Ta�¼ ifJabTb;

½TJ;TK�¼ ifJKLTL; ð2:3Þ

and the last relation is further decomposed according to
UðN − 1Þ ¼ SUðN − 1Þ ×Uð1Þ,

½Tj;Tk�¼ ifjklTl; ½Tγ;Tj�¼0; ½Tγ;Tγ�¼0. ð2:4Þ

In the SUð3Þ case for example the different indices take
the values a ∈ f4; 5; 6; 7g, j ∈ f1; 2; 3g, and γ ¼ 8. The
SUð2Þ case is special in the sense that the decomposition
reads SUð2Þ → SUð2Þ/Uð1Þ ×Uð1Þ and therefore the
residual field does not possess the SUðN − 1Þ part. We
simply find a ∈ f1; 2g and γ ¼ 3. Using the fact that in this
decomposition the only nonvanishing structure constants
are fabJ and fJKL (note however that fγKL ¼ 0), the Yang-
Mills Lagrangian is decomposed as

LYM ¼ −
1

4
Fa
μνFμνa −

1

4
FJ
μνFμνJ; ð2:5Þ

where

Fa
μν ¼ Dab

μ Xb
ν −Dab

ν Xb
μ;

FJ
μν ¼ ∂μVJ

ν − ∂νVJ
μ þ gfJabXa

μXb
ν þ gfJKLVK

μ VL
ν ; ð2:6Þ

and the covariant derivative is defined with respect to the
residual field,

Dab
μ ¼ δab∂μ − gfabJVJ

μ: ð2:7Þ

Finally, we remark that due to the fixing of the color field n,
the originally gauge invariant mass term m2

XTrðXμXμÞ
loses its gauge invariance. However, one is at least able to
construct a BRST invariant composite operator containing
the coset gluon condensate, cf., Sec. III.

A. BRST invariance and gauge fixing

In the following, we incorporate the reduction condition
(1.2) by means of a gauge fixing. First, let us recall the
BRST transformation δB,

δBXa
μ ¼ Dab

μ ωb þ gfabJXb
μCJ;

δBVJ
μ ¼ ∂μCJ þ gfJKLVK

μCL þ gfJabXa
μω

b;

δBω
a ¼ −gfabJωbCJ;

δBCJ ¼ −
g
2
fJKLCKCL −

g
2
fJabωaωb;

δBω̄
a ¼ iNa; δBC̄J ¼ iNJ;

δBNa ¼ δBNJ ¼ 0; ð2:8Þ

and the anti-BRST transformation δ̄B,

δ̄BXa
μ ¼ Dab

μ ω̄b þ gfabJXb
μC̄J;

δ̄BVJ
μ ¼ ∂μC̄J þ gfJKLVK

μ C̄L þ gfJabXa
μω̄

b;

δ̄Bω̄
a ¼ −gfabJω̄bC̄J;

δ̄BC̄J ¼ −
g
2
fJKLC̄KC̄L −

g
2
fJabω̄aω̄b;

δ̄Bω
a ¼ iN̄a; δ̄BCJ ¼ iN̄J;

δ̄BN̄a ¼ δ̄BN̄J ¼ 0; ð2:9Þ

where we have introduced the Nakanishi-Lautrup field
N ¼ ðNa; Nj:NγÞ, ghosts C ¼ ðωa; Cj; CγÞ, and anti-
ghosts C̄ ¼ ðω̄a; C̄j; C̄γÞ according to the three parts
SUðNÞ/UðN − 1Þ, SUðN − 1Þ, and Uð1Þ, respectively.
The quantity N̄ finally is defined as N̄ ¼ g½C; C̄� −N .
Both transformations are nilpotent, δ2B ¼ δ̄2B ¼ 0, and
satisfy fδB; δ̄Bg ¼ 0. It is shown [31] that the reduction
condition (1.2) can be cast into the form

Dab
μ Xμb ¼ 0: ð2:10Þ

Then we can introduce the gauge fixing term as

Lred
GF ¼ iδBδ̄B

�
1

2
Xa
μXμa − i

ξ

2
ωaω̄a

�

¼ −iδB
�
ω̄a

�
Dab

μ Xμb þ ξ

2
Na

�
− i

ξg
2
fabJω̄aω̄bCJ

�
:

ð2:11Þ

Beside its different interpretation this also differs from the
standard gauge fixing procedure by the last term, generat-
ing the four-ghost interaction after performing the BRST
transformation. This is necessary since we deal with a
nonlinear gauge fixing, in which case the four-ghost
interaction preserves the renormalizability of the theory
[45]. Indeed, we find

Lred
GF ¼ ξ

2
NaNaþ iω̄aDμab½V�Dbc

μ ½V�ωcþNaDab
μ ½V�Xμb

þ igfabJω̄aðDμbc½V�Xc
μÞCJ − iξgfaJbCJω̄bNa

þ ξg2

4
fabJfcdJω̄aω̄bωcωdþ ig2fabJfcdJXμaXc

μω̄
bωd

−
ξg2

4
fjklfajbω̄aω̄bCkCl; ð2:12Þ

where the four-ghost interactions are obtained.
We are left with fixing the residual UðN − 1Þ symmetry.

We choose the simple Lorenz gauge, where according to
the decomposition UðN − 1Þ ¼ SUðN − 1Þ × Uð1Þ two
different gauge fixing parameters are introduced,
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Lres
GF ¼ −iδB

�
C̄j

�
∂μVμj þ λ

2
Nj

��

− iδB

�
C̄γ

�
∂μVμγ þ α

2
Nγ

��

¼ λ

2
NjNj þ α

2
NγNγ þ NJ∂μVμJ þ iC̄J∂2CJ

þ igfjklC̄j∂μðVμkClÞ þ igfJabC̄J∂μðXμaωbÞ:
ð2:13Þ

Even though two different gauge fixing parameters are
introduced, it can be shown that both the SUðN − 1Þ and
the Uð1Þ part of the residual gauge fixing Lagrangian are
independently invariant under the global Uð1Þ, the global
SUðN − 1Þ, and the combined global UðN − 1Þ trans-
formations, irrespective of the choice of λ and α. In
particular, it is shown later that λ and α receive different
one-loop corrections, such that this distinction is actually
necessary from the viewpoint of renormalization.
Finally, the Nakanishi-Lautrup field is integrated out,

which casts the gauge fixing Lagrangian into the form

Lred
GF ¼ −

1

2ξ
ðDab

μ ½V�XμbÞ2 þ iω̄aDμab½V�Dbc
μ ½V�ωc

þ ξg2

4
fabJfcdJω̄aω̄bωcωd

þ ig2fabJfcdJXμaXc
μω̄

bωd; ð2:14Þ

Lres
GF ¼ −

1

2λ
ð∂μVμjÞ2 − 1

2α
ð∂μVμγÞ2 þ iC̄J∂2CJ

þ igfjklC̄j∂μðVμkClÞ þ igfJabC̄J∂μðXμaωbÞ;
ð2:15Þ

and the equations of motion for the Nakanishi-Lautrup
field read

Nj ¼ −
1

λ
∂μVμj; Nγ ¼ −

1

α
∂μVμγ;

Na ¼ −
1

ξ
Dab

μ Xμb þ igfabJω̄bCJ: ð2:16Þ

This completes the gauge fixing and leaves us with a BRST
invariant Lagrangian

L ¼ LYM þ Lred
GF þ Lres

GF: ð2:17Þ
We proceed with the one-loop analysis of our theory,

L¼LYMþ iδBδ̄B

�
1

2
Xa
μXμa− i

ξ

2
ωaω̄a

�

− iδB

�
C̄j

�
∂μVμjþ λ

2
Nj

��
− iδB

�
C̄γ

�
∂μVμγþα

2
Nγ

��
:

ð2:18Þ

The induced propagators are shown in Fig. 1, and imply the
Feynman rules

hXa
μXb

νi ¼ −δab
i
p2

�
gμν − ð1 − ξÞpμpν

p2

�
; ð2:19Þ

hVj
μVk

νi ¼ −δjk
i
p2

�
gμν − ð1 − λÞpμpν

p2

�
; ð2:20Þ

hVγ
μV

γ
νi ¼ −

i
p2

�
gμν − ð1 − αÞpμpν

p2

�
; ð2:21Þ

hωaω̄bi ¼ −δab
1

p2
; ð2:22Þ

hCJC̄Ki ¼ −δJK
1

p2
: ð2:23Þ

FIG. 1. Propagators.

(a) (b)

(c)

(e)

(d)

FIG. 2. Three-field vertices.
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Furthermore, there exist five three-field vertices, see Fig. 2,
with the Feynman rules

ðaÞ ihVj
μðpÞVk

νðqÞVl
ρðrÞi ¼ δpþqþrgfjklfgμνðp − qÞρ

þ gμρðr − pÞν þ gνρðq − rÞμg;
ð2:24Þ

ðbÞ ihXa
μðpÞXb

νðqÞVJ
λðrÞi

¼ δpþqþrgfabJfgμνðq − pÞλ þ gλνðr − q − ξ−1pÞμ
− gλμðr − p − ξ−1qÞνg; ð2:25Þ

ðcÞ ihVJ
μðrÞωbðqÞω̄aðpÞi ¼ −δqþr−pigfaJbðqþ pÞμ;

ð2:26Þ

ðdÞ ihVj
μðrÞCkðqÞC̄lðpÞi ¼ −δqþr−pigfjklpμ; ð2:27Þ

ðeÞ ihXa
μðrÞωbðqÞC̄JðpÞ ¼ −δrþq−pigfabJpμ; ð2:28Þ

where we have defined δq ≔ ð2πÞDδðqÞ.
Moreover, we find six four-field vertices, see Fig. 3,

and with defining Iμν;ρσ ¼ gμρgνσ − gμσgνρ we obtain the
Feynman rules

ðfÞ ihVm
μ ðpÞVn

νðqÞVj
ρðrÞVk

σðsÞi
¼ −ig2δpþqþrþsffmnlfjklIμν;ρσ

þ fmjlfnklIμρ;νσ þ fmklfnjlIμσ;νρg; ð2:29Þ

ðgÞ ihXa
μðpÞXb

νðqÞVJ
ρðrÞVK

σ ðsÞi
¼ −ig2δpþqþrþsf2fabMfJKMIμν;ρσ
þ fcKafbJcðð1 − ξ−1Þgμσgρν − gμνgρσÞ
þfcJafbKcðð1 − ξ−1Þgμρgνσ − gμνgρσÞg; ð2:30Þ

ðhÞ ihVj
ρðrÞVk

σðsÞωbðqÞω̄aðpÞi
¼ −g2δq−pþrþsgρσðfaJcfcKb þ faKcfcJbÞ; ð2:31Þ

ðiÞ ihXa
μðpÞXb

νðqÞXc
ρðrÞXd

σðsÞi
¼ −ig2δpþqþrþsffacJfbdJIμρ;νσ
þfadJfbcJIμσ;νρ þ fabJfcdJIμν;ρσg; ð2:32Þ

ðjÞ ihXa
μðrÞXb

νðsÞωdðqÞω̄cðpÞi
¼ δrþsþq−pg2gμνffaJcfbdJ þ fbJcfadJg; ð2:33Þ

ðkÞ ihωaðqÞω̄bðpÞωcðrÞω̄dðsÞi
¼ −iξg2δqþr−p−sfacJfJbd: ð2:34Þ

Let us point out the differences to some other common
gauges. As mentioned before, our “gauge condition”
Dab

μ Xμb ¼ 0 is nonlinear unlike for example the standard
Lorenz gauge. This requires the four-ghost vertex (2.34) in
order to render our theory renormalizable. Furthermore, the
nonlinearity gives rise to the ξ-dependent corrections in the
four-gluon interaction (2.30) as well as in the two-gluon-
two-ghost interactions (2.31) and (2.33). These features are
also observed in the MAG. However, in the MAG the coset
field takes value in SUðNÞ/Uð1ÞN−1, where the quotient is
Abelian and thus fJKL ¼ 0. In our decomposition however,
the coset field takes value in SUðNÞ/UðN − 1Þ, where the
quotient UðN − 1Þ ¼ SUðN − 1Þ × Uð1Þ is non-Abelian,
fJKL ≠ 0. In fact, only the Uð1Þ generator Tγ commutes
with all other generators of the quotient, fγKL ¼ 0 while
fjkl ≠ 0. On the other hand, in the MAG one has fabc ≠ 0

while in our decomposition fabc ¼ 0. Once more we
emphasize that in the case of SUð2Þ our decomposition
and the MAG are equivalent.
Finally, we state some color-algebra relations that are

required in the upcoming one-loop calculations. Starting
from the SUðNÞ and SUðN − 1Þ identities

fACDfBCD ¼ NδAB;

fjmnfkmn ¼ ðN − 1Þδjk; ð2:35Þ
and using the fact that only fabj, fabγ , and fjkl are
nonvanishing structure constants, one derives using the
Jacobi identity

(f) (g)

(h) (i)

(j) (k)

FIG. 3. Four-field vertices.
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fγabfγab ¼ N;

fiabfjab ¼ δij;

fimnfjmn ¼ ðN − 1Þδij;
fabγfcbγ ¼ N

2ðN − 1Þ δ
ac;

fabjfcbj ¼ NðN − 2Þ
2ðN − 1Þ δ

ac;

fγabfjab ¼ 0: ð2:36Þ

B. One-loop analysis

We start our one-loop analysis with the introduction of
the renormalization factors

Xa
μ ¼ Z

1
2

XX
a
μR; Vj

μ ¼ Z
1
2

VV
j
μR; Vγ

μ ¼ Z̃
1
2

VV
γ
μR; g¼ ZggR;

Cj ¼ Z
1
2

CC
j
R; C̄j ¼ Z

1
2

C̄C̄
j
R; Cγ ¼ Z̃

1
2

CC
γ
R; C̄γ ¼ Z̃

1
2

C̄C̄
γ
R;

ωa ¼ Z
1
2
ωωa

R; ω̄a ¼ Z
1
2
ωω̄a

R; ξ¼ ZξξR; α¼ ZααR;

λ¼ ZλλR: ð2:37Þ

Note that we took the same renormalization factor for the
coset ghost and antighost, while for the residual ghost they
must be chosen independently [46]. Furthermore, one has
to distinguish between the SUðN − 1Þ andUð1Þ gauge field
and ghosts. Hereafter, the subscript R is dropped again.
The corresponding counterterm Lagrangian is given in
Appendix A together with the relation between the counter-
terms and the renormalization factors. The renormalization
is done within dimensional regularization.
We begin with the coset gluon self-energy. The one-loop

correction reads1

ð2:38Þ

In dimensional regularization only the last diagram con-
tributes. The divergent part is calculated as

ð2:39Þ

where ϵ ¼ 4−D
2
. The renormalization factors are expanded

according to Z ¼ 1þ Zð1Þ þOðℏ2Þ. Then, Eq. (2.39)
implies

Δð1Þ
1 ¼ Zð1Þ

X ¼ g2μ−2ϵ

ð4πÞ2ϵ
N
2

�
17

6
−
ξ

2
−
αþ ðN − 2Þλ

N − 1

�
;

ð2:40Þ

Δð1Þ
2 ¼ Zð1Þ

X − Zð1Þ
ξ

¼ g2μ−2ϵ

ð4πÞ2ϵ
N
2

�
6þ ξðξþ 3Þ

2ξ
−
αþ ðN − 2Þλ

N − 1

�
;

ð2:41Þ

and consequently,

Zð1Þ
ξ ¼ g2μ−2ϵ

ð4πÞ2ϵ
N
2

�
4

3
− ξ −

3

ξ

�
: ð2:42Þ

We proceed with the self-energy of the residual field,
starting with the SUðN − 1Þ part,

ð2:43Þ

Here, only the last four diagrams contribute in dimensional
regularization. Their divergent parts read as follows,

1Here and in the following, labeling an internal residual field
line as Vj þ Vγ means one has to calculate the sum of two
diagrams, one with the propagator of the SUðN − 1Þ field Vj and
one with the propagator of the Uð1Þ field Vγ .
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ð2:44Þ

ð2:45Þ

ð2:46Þ

ð2:47Þ

The sum is transverse and we therefore find

Δð1Þ
3 ¼ Zð1Þ

V ¼ g2μ−2ϵ

ð4πÞ2ϵ
�
13N þ 9

6
−
λ

2
ðN − 1Þ

�
; ð2:48Þ

Δð1Þ
4 ¼ Zð1Þ

V − Zð1Þ
λ ¼ 0; ð2:49Þ

or

Zð1Þ
λ ¼ g2μ−2ϵ

ð4πÞ2ϵ
�
13N þ 9

6
−
λ

2
ðN − 1Þ

�
: ð2:50Þ

The case of the Uð1Þ part is more simple, since
fγKL ¼ 0. The one-loop correction is given by

ð2:51Þ

Again, only the last two diagrams have to be calculated and
contain the divergent parts

ð2:52Þ

ð2:53Þ

yielding a purely transverse correction and thus

Δð1Þ
5 ¼ Z̃ð1Þ

V ¼ g2μ−2ϵ

ð4πÞ2ϵN
11

3
; ð2:54Þ

Δð1Þ
6 ¼ Z̃ð1Þ

V − Zð1Þ
α ¼ 0; ð2:55Þ

or

Zð1Þ
α ¼ g2μ−2ϵ

ð4πÞ2ϵN
11

3
: ð2:56Þ

Next, we turn to the ghost self-energy, starting with the
coset ghosts. The one-loop correction is given by

ð2:57Þ

Only the last diagram contributes in dimensional regulari-
zation and the divergent part reads
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ð2:58Þ

¼ −
g2μ−2ϵ

ð4πÞ2ϵ
N
2

�
3 −

αþ ðN − 2Þλ
N − 1

�
δabp2; ð2:59Þ

which yields

Δð1Þ
7 ¼ Zð1Þ

ω ¼ g2μ−2ϵ

ð4πÞ2ϵ
N
2

�
3 −

αþ ðN − 2Þλ
N − 1

�
: ð2:60Þ

For the residual part we find that the Uð1Þ ghost Cγ does
not enter any interaction vertex. Therefore, the self-energy
correction is 0 and we immediately obtain

Δð1Þ
9 ¼ 1

2
ðZ̃ð1Þ

C þ Z̃ð1Þ
C̄ Þ ¼ 0: ð2:61Þ

We complete the self-energy analysis by considering the
SUðN − 1Þ ghosts. Their one-loop correction is given by
only one diagram,

ð2:62Þ

Thus, we find the relation

Δð1Þ
8 ¼ 1

2
ðZð1Þ

C þ Zð1Þ
C̄ Þ ¼ g2μ−2ϵ

ð4πÞ2ϵ
N − 1

4
ð3 − λÞ: ð2:63Þ

The next step is to obtain the renormalization factor of
the Yang-Mills coupling by renormalizing the VjCkC̄l

vertex. Its one-loop correction reads

ð2:64Þ

The divergent parts of the diagrams read as follows,

ð2:65Þ

and

ð2:66Þ

¼ −
g2μ−2ϵ

ð4πÞ2ϵ
N − 1

2

λ

4
igfjklpμ: ð2:67Þ

Therefore, we obtain the relation

Δð1Þ
25 ¼ 1

2
ðZð1Þ

V þ Zð1Þ
C þ Zð1Þ

C̄ Þ þ Zð1Þ
g

¼ −
g2μ−2ϵ

ð4πÞ2ϵ
N − 1

2
λ: ð2:68Þ

Using Eqs. (2.48) and (2.63) we find

Zð1Þ
g ¼ −

g2μ−2ϵ

ð4πÞ2ϵ
11

6
N: ð2:69Þ

As expected, this is the standard result for the Yang-Mills
coupling in pure Yang-Mills theory.
Finally, we consider the XaωbC̄J vertex. The one-loop

correction reads

ð2:70Þ

The first diagram’s divergent part is found to be
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ð2:71Þ

while the second diagram has the divergent part

ð2:72Þ

Adding both contributions we find after some color algebra
in the SUðN − 1Þ case J ¼ j,

Δð1Þ
26 ¼

�
1

2
Zð1Þ
X þ 1

2
Zð1Þ
C̄ þ 1

2
Zð1Þ
ω þ Zð1Þ

g

�

¼ −
g2μ−2ϵ

ð4πÞ2ϵ
�
9þ 3ξ

8
þ Nα − λ

2ðN − 1Þ
�
: ð2:73Þ

Together with (2.63) this implies

Zð1Þ
C̄ ¼ g2μ−2ϵ

ð4πÞ2ϵ
�ðξþ 3ÞðN − 3Þ

4
þ ðN − 1Þλ

�
; ð2:74Þ

Zð1Þ
C ¼ g2μ−2ϵ

ð4πÞ2ϵ
3ðξþ 1þ 2λÞ − Nðξ − 3þ 6λÞ

4
: ð2:75Þ

In the Uð1Þ case J ¼ γ we obtain

Δð1Þ
27 ¼

�
1

2
Zð1Þ
X þ 1

2
Z̃ð1Þ
C̄ þ 1

2
Zð1Þ
ω þ Zð1Þ

g

�

¼ −
g2μ−2ϵ

ð4πÞ2ϵN
�
9þ 3ξ

8
þ αþ ðN − 2Þλ

2ðN − 1Þ
�
; ð2:76Þ

which implies using (2.61),

Z̃ð1Þ
C̄ ¼ −Z̃ð1Þ

C ¼ −
g2μ−2ϵ

ð4πÞ2ϵ
N
2
ð3þ ξÞ: ð2:77Þ

This completes the one-loop analysis.
We finish this section by summarizing all the corre-

sponding RG functions. We define them by

γA ¼ μ

AR

∂AR

∂μ ¼ −
1

2
μ
∂
∂μ logZA ¼ −

1

2
μ
∂
∂μZ

ð1Þ
A þOðℏ2Þ;

ð2:78Þ

γB ¼ μ

BR

∂BR

∂μ ¼ −μ
∂
∂μ logZB ¼ −μ

∂
∂μZ

ð1Þ
B þOðℏ2Þ;

ð2:79Þ

βg ¼ μ
∂gR
∂μ ¼ −gRμ

∂
∂μ logZg ¼ −gRμ

∂
∂μZ

ð1Þ
g þOðℏ2Þ;

ð2:80Þ

for the fields A, the parameters B, and the Yang-Mills
coupling, respectively. Then we obtain

γX ¼ g2

ð4πÞ2
N
2

�
17

6
−
ξ

2
−
αþðN − 2Þλ

N − 1

�
; γV ¼ g2

ð4πÞ2
�
13Nþ 9

6
−
λ

2
ðN − 1Þ

�
; γ̃V ¼ g2

ð4πÞ2
11

3
N;

γω ¼ γω̄ ¼ g2

ð4πÞ2
N
2

�
3−

αþðN − 2Þλ
N −1

�
; γC ¼ g2

ð4πÞ2
�ðξþ 3ÞðN − 3Þ

4
þðN − 1Þλ

�
;

γC̄ ¼ g2

ð4πÞ2
3ðξþ 1þ 2λÞ−Nðξ− 3þ 6λÞ

4
; γ̃C ¼−γ̃C̄ ¼ g2

ð4πÞ2
N
2
ð3þ ξÞ; γξ ¼

g2

ð4πÞ2
�
4

3
− ξ−

3

ξ

�
N;

γλ ¼
g2

ð4πÞ2
�
13Nþ 9

3
− λðN − 1Þ

�
; γα ¼

g2

ð4πÞ2
22

3
N; βg ¼−

g3

ð4πÞ2
11

3
N: ð2:81Þ

We find that the running of α and λ according to μ ∂α
∂μ ¼ αγα

and μ ∂λ
∂μ ¼ λγλ implies the existence of both the

“symmetric” as well as the “asymmetric” fixed point,

ðα; λÞ ¼ ð0; 0Þ; ðα; λÞ ¼
�
0;

13N þ 9

3ðN − 1Þ
�
: ð2:82Þ

Even though the latter one implies an asymmetric gauge
fixing of the Uð1Þ and SUðN − 1Þ part of the residual
field, no problem occurs as the invariance of the residual
gauge fixing Lagrangian under global UðN − 1Þ color
transformations is completely independent of the param-
eters α and λ.
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Moreover, as mentioned before, for N ¼ 2 our decom-
position coincides with the MAG. In that case, our results
are in full agreement with the existing literature; see for
example [46–50]. In particular, note that the λ dependent
terms in γX and γω coming from the SUðN − 1Þ part of
UðN − 1Þ vanish in this case, which reflects the fact that for
N ¼ 2 we have the decomposition SUð2Þ/Uð1Þ ×Uð1Þ;
i.e., the SUðN − 1Þ part of the residual field is absent.

III. BRST INVARIANCE AND MULTIPLICATIVE
RENORMALIZABILITY OF THE

COMPOSITE OPERATOR

A. BRST invariance of the composite operator

The first step in the proper introduction of the composite
operator O ¼ 1

2
Xa
μXμa − iξωaω̄a is to add a source term to

the action,

S ¼
Z
x
Lþ JO; ð3:1Þ

and to show that the BRST invariance of the action is
preserved. The source satisfies δBJ ¼ 0. Using (2.8) the
composite operator transforms as

δBO ¼ Xa
μδBXμa − iξð−gfabJωbCJÞω̄a þ iξωaðiNaÞ:

ð3:2Þ

Replacing Na by its equation of motion (2.16) we find

δBO ¼ Xa
μðDμabωb þ gfabJXμbCJÞ þ iξgfabJωbCJω̄a

− ξωa

�
−
1

ξ
Dab

μ Xμb þ igfabJω̄bCJ

�

¼ XμaDab
μ ωb þ ωaDab

μ Xμb

¼ ∂μðXa
μω

aÞ; ð3:3Þ

and therefore the (on-shell) BRST invariance is maintained
after introducing the source term for the composite oper-
ator. Yet two problems remain to be solved. The first is the
proof of multiplicative renormalizability of the composite
operator, at least to one-loop level. This is given below. The
second and more involved problem is the divergences
proportional to J2 that are generated by the source term.
This will be postponed until the next section.

B. Multiplicative renormalizability
of the composite operator

The composite operator OR ¼ ½1
2
Xa
μXμa�R − ξ½iωaω̄a�R

can, in principle, mix with any condensate that has the
same mass dimension and quantum number. We therefore
have to set up the renormalization matrix

0
BBBBBBBBBBBBB@

h
1
2
Xa
μX

μ
a

i
Rh

1
2
Vj
μV

μ
j

i
R

½iωaω̄a�R
½iCjC̄j�Rh
1
2
Vγ
μV

μ
γ

i
R

½iCγC̄γ�R

1
CCCCCCCCCCCCCA

¼

0
BBBBBBBB@

Z1 Z2 Z3 Z4 Z5 Z6

Z7 Z8 Z9 Z10 Z11 Z12

Z13 Z14 Z15 Z16 Z17 Z18

Z19 Z20 Z21 Z22 Z23 Z24

Z25 Z26 Z27 Z28 Z29 Z30

Z31 Z32 Z33 Z34 Z35 Z36

1
CCCCCCCCA

0
BBBBBBBBBBBBB@

h
1
2
Xa
μX

μ
a

i
h
1
2
Vj
μV

μ
j

i
½iωaω̄a�
½iCjC̄j�h
1
2
Vγ
μV

μ
γ

i

½iCγC̄γ�

1
CCCCCCCCCCCCCA

:

ð3:4Þ

The matrix elements are calculated by insertingOR into the
various two-point functions and requiring the cancellation
of the resulting divergences [33], using the Feynman rules
for the operator insertions as shown in Fig. 4.
At this point we only state the result, since the calcu-

lations are quite lengthy. The details are presented in
Appendix B. The renormalization matrix is shown to have
the form

Z ¼ 1þ Zð1Þ; ð3:5Þ

where the one-loop part Zð1Þ contains ten nonvanishing
elements given by

FIG. 4. Feynman rules for operator insertions.
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Zð1Þ
1 ¼ −

g2μ−2ϵ

ð4πÞ2ϵ
N
2

�
3

2
ðξþ 1Þ þ αþ ðN − 2Þλ

N − 1

�
; Zð1Þ

3 ¼ g2μ−2ϵ

ð4πÞ2ϵN
3þ ξ2

2
; Zð1Þ

7 ¼ −
g2μ−2ϵ

ð4πÞ2ϵ
NðN − 2Þ
2ðN − 1Þ

3

4
ðξþ 3Þ;

Zð1Þ
8 ¼ −

g2μ−2ϵ

ð4πÞ2ϵ
3

4
ðN − 1Þð1þ λÞ; Zð1Þ

9 ¼ −3
g2μ−2ϵ

ð4πÞ2ϵ
NðN − 2Þ
2ðN − 1Þ ; Zð1Þ

13 ¼ −
g2μ−2ϵ

ð4πÞ2ϵN;

Zð1Þ
15 ¼ g2μ−2ϵ

ð4πÞ2ϵ
N
2

�
ξ −

αþ ðN − 2Þλ
N − 1

�
; Zð1Þ

20 ¼ −
g2μ−2ϵ

ð4πÞ2ϵ ðN − 1Þ 1
2
; Zð1Þ

25 ¼ −
g2μ−2ϵ

ð4πÞ2ϵ
N

2ðN − 1Þ
3

4
ðξþ 3Þ;

Zð1Þ
27 ¼ −3

g2μ−2ϵ

ð4πÞ2ϵ
N

2ðN − 1Þ : ð3:6Þ

Using the fact that to one-loop level the inverse of the renormalization matrix reads

Z−1 ¼ 1 − Zð1Þ; ð3:7Þ

we can invert Eq. (3.4), obtaining

0
BBBBBBBBBBBB@

h
1
2
Xa
μX

μ
a

i
h
1
2
Vj
μV

μ
j

i
½iωaω̄a�
½iCjC̄j�h
1
2
Vγ
μV

μ
γ

i

½iCγC̄γ�

1
CCCCCCCCCCCCA

¼

0
BBBBBBBBBBBB@

1 − Zð1Þ
1 0 −Zð1Þ

3 0 0 0

−Zð1Þ
7 1 − Zð1Þ

8 −Zð1Þ
9 0 0 0

−Zð1Þ
13 0 1 − Zð1Þ

15 0 0 0

0 −Zð1Þ
20 0 1 0 0

−Zð1Þ
25 0 −Zð1Þ

27 0 1 0

0 0 0 0 0 1

1
CCCCCCCCCCCCA

0
BBBBBBBBBBBB@

h
1
2
Xa
μX

μ
a

i
Rh

1
2
Vj
μV

μ
j

i
R

½iωaω̄a�R
½iCjC̄j�Rh
1
2
Vγ
μV

μ
γ

i
R

½iCγC̄γ�R

1
CCCCCCCCCCCCA

: ð3:8Þ

The composite operator is thus renormalized as

O ¼ ð1þ Zð1Þ
X Þ 1

2
Xμ
aRXa

μR − ð1þ Zð1Þ
ξ Þð1þ Zð1Þ

ω Þξiωa
Rω̄

a
R

¼ ð1þ Zð1Þ
X Þ

�
ð1 − Zð1Þ

1 Þ
�
1

2
Xa
μX

μ
a

�
R
− Zð1Þ

3 ½iωaω̄a�R
�

− ð1þ Zð1Þ
ξ Þð1þ Zð1Þ

ω Þξ
�
−Zð1Þ

13

�
1

2
Xa
μX

μ
a

�
R
þ ð1 − Zð1Þ

15 Þ½iωaω̄a�R
�

¼!
�
1þ 1

2
Zð1Þ
O

���
1

2
Xa
μX

μ
a

�
R
− ξ½iωaω̄a�R

�
: ð3:9Þ

This yields the condition

−Zð1Þ
1 þ Zð1Þ

X þ ξZð1Þ
13 ¼ Zð1Þ

ξ − Zð1Þ
15 þ Zð1Þ

ω þ 1

ξ
Zð1Þ
3 : ð3:10Þ

Indeed, we find

−Zð1Þ
1 þ Zð1Þ

X þ ξZð1Þ
13 ¼ g2μ−2ϵ

ð4πÞ2ϵ
�
N
6
ð13 − 3ξÞ

�
; ð3:11Þ

Zð1Þ
ξ − Zð1Þ

15 þ Zð1Þ
ω þ 1

ξ
Zð1Þ
3 ¼ g2μ−2ϵ

ð4πÞ2ϵ
�
N
6
ð13 − 3ξÞ

�
: ð3:12Þ
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Thus, the composite operator is one-loop multiplicatively
renormalizable, O ¼ Z1/2

O OR, with the renormalization
factor

Zð1Þ
O ¼ 2ð−Zð1Þ

1 þ Zð1Þ
X þ ξZð1Þ

13 Þ

¼ 2

�
Zð1Þ
ξ − Zð1Þ

15 þ Zð1Þ
ω þ 1

ξ
Zð1Þ
3

�

¼ g2μ−2ϵ

ð4πÞ2ϵ
N
3
ð13 − 3ξÞ: ð3:13Þ

Again, this result is in agreement with the existing N ¼ 2
MAG results, e.g., [44]. According to Eq. (3.8) the
existence of the coset gluon condensate seems to induce
a residual field condensate Vj

μVμj (Vγ
μVμγ) due to a non-

vanishing of the matrix entries Zð1Þ
7 and Zð1Þ

9 (Zð1Þ
25 and Zð1Þ

27 ).
However, no BRST invariant combination of mass dimen-
sion 2 operators including the residual field condensate
can be constructed. This renders such a condensate non-
physical and thus we continue to discuss the composite
operator O only.
Finally, for later use we furthermore introduce the

composite operator anomalous dimension,

γO ¼ μ

OR

∂OR

∂μ ¼ −
1

2
μ
∂
∂μ logZO; ð3:14Þ

which reads to one-loop level

γO ¼ g2

ð4πÞ2
N
3
ð13 − 3ξÞ: ð3:15Þ

IV. LCO FORMALISM

As mentioned before, the introduction of the composite
operator source term leads to new divergences quadratic in
the source. To treat these divergences the so-called LCO
formalism has been developed in [38,39] and also has been
applied to similar gluon-ghost composite operators for
example in the usual Lorenz gauge and in the MAG
[40,41,44]. In order to make this paper self-contained,
we briefly introduce the LCO formalism, thereby mainly
following the lines of [44].
In order to cure the aforementioned divergences we

extend the Lagrangian by adding

1

2
κJ2 þ 1

2
δκJ2; ð4:1Þ

where κ is an a priori arbitrary parameter and the second
term is understood to be a pure counterterm. Since we
already proved the multiplicative renormalizability of
the composite operator we define J0 ¼ Z−1/2

O J such that
J0O0 ¼ JO. The running of the generating functional then
becomes

�
μ
∂
∂μþ βg2

∂
∂g2 þ ξγξ

∂
∂ξ − γOJ

∂
∂J þ η

∂
∂κ

�
W½J� ¼ 0;

ð4:2Þ

where η ¼ μ ∂
∂μ κ. Its running behavior allows us to deter-

mine κ if we assume that it only runs implicitly through its
dependence on g and ξ, as shown below. By noting that κ
and δκ have mass dimension ½κ� ¼ ½δκ� ¼ D − 4 ¼ −2ϵ we
find that starting from

0 ¼ μ
∂
∂μ

�
1

2
ðκ þ δκÞJ2μ−2ϵ

�
; ð4:3Þ

the RG function of κ can be written as

μ
∂κ
∂μ ¼ ð2ϵþ 2γOÞκ þ δ; ð4:4Þ

with the inhomogeneity

δ ¼ ð2ϵþ 2γOÞδκ − μ
∂
∂μ δκ: ð4:5Þ

Next, we use the assumption that the auxiliary parameter
κ ¼ κðg2; ξ; μÞ depends on μ only implicitly via g2ðμÞ and
ξðμÞ. Equation (4.4) then becomes

�
2ϵþ 2γO − βg2

∂
∂g2 − ξγξ

∂
∂ξ

�
ðκ þ δκÞ ¼ 0: ð4:6Þ

Expanding in g2 this implies that the solution can be
written as

κðg2; ξÞ ¼ κ0
g2

þ ℏκ1 þ ℏ2κ2g2 þ…; ð4:7Þ

where we temporarily introduced ℏ. At this stage it
becomes obvious that we unfortunately need to perform
(nþ 1)-loop calculations in order to determine κ to n loop.
For example, assuming all quantities have been determined
to two-loop level we have the expansions

βg2 ¼ −2ϵg2 þ β1g4 þ β2g6;

δκ ¼ δκ0
ϵ

þ
�
δκ1;1
ϵ

þ δκ1;2
ϵ2

�
g2;

γO ¼ γO;0g2 þ γO;1g4;

γξ ¼ γξ;0g2 þ γξ;1g4; ð4:8Þ

and Eq. (4.6) implies

1

g2
∶ 2ϵκ0 − 2ϵκ0 ¼ 0; ð4:9Þ
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g0∶ 2γO;0κ0 þ κ0β1 − ξγξ;0∂ξκ0 þ 2δκ0 ¼ 0; ð4:10Þ

g2∶ ξγξ;0∂ξκ1 − 2γO;0κ1 ¼ δ1; ð4:11Þ

where

δ1 ¼ −ξγξ;1∂ξκ0 þ 2γO;1κ0 þ β2κ0 þ 4δκ1;1

þ 1

ϵ
½4δκ1;2 þ 2γO;0δκ0 − ξγξ;0∂ξδκ0�: ð4:12Þ

The first equation is satisfied identically while the second
equation implies the ordinary differential equation (ODE)
for κ0,

½ξγξ;0∂ξ − 2γO;0 − β1�κ0 ¼ 2δκ0: ð4:13Þ

Therefore, knowledge of the one-loop quantities γξ;0, γO;0,
β1, and δκ0 is necessary to obtain the tree-level part κ0.
The solution of this ODE is plugged into Eq. (4.11) to
obtain κ1. However, one comment needs to be made about
the inhomogeneity δ1. When taking the limit ϵ → 0 the last
term in Eq. (4.12) can only be finite if the bracket vanishes
identically.
This is guaranteed from the fact that if the theory is

renormalizable, the finiteness of Eqs. (4.2)–(4.4) implies the
finiteness of δ and therefore there is no need to consider the
terms proportional to 1/ϵ in δ, as they must vanish by
construction [51]. In fact, based on the results in [41] for the
case of the full gluon composite operator AA

μAμA and in
Lorenz gauge with arbitrary gauge parameter this condition
can be explicitly checked and is found to be satisfied. It
should be remarked on the other hand that if one is interested
in the mere existence of the condensate, knowledge of κ0 is
sufficient, thus avoiding this subtlety in determining κ1.
Before we turn to the calculation of the last ingredient

for the ODE (4.13), that is, the one-loop part of δκ, let us
note that there actually exist two ways of calculating this
quantity and also γO, depending on the interpretation of the
composite operator source J. One possibility is to regard J
as a constant parameter and therefore treat γO as a mass
renormalization. Hence, all calculations are performed
using a massive gluon propagator, which is quite cumber-
some especially in higher-loop calculations. This has been
adopted in the original version of the LCO formalism.
Alternatively, in [52] it has been suggested to treat J as a
nondynamical field that interacts with the gluon. In this
case, the calculations can be performed using massless
propagators and the renormalization is done by inserting
the composite operator into two-point functions in order to
obtain γO, while δκ is obtained by inserting the composite
operator into the vacuum bubbles, requiring the quantity
hOðxÞOðyÞi to be finite. It actually was the second view-
point that we used to prove the one-loop multiplicative
renormalizability of our composite operator in Sec. III B.

Both approaches seem to be equivalent as for example the
results derived in [52] agree with those in [40].
To obtain δκ0 it is convenient to return to the viewpoint

of J being a mass; then the one-loop correction to the
generating functional is given by

−
i
2
Tr log ½δabð−p2gμν þ ð1− ξ−1Þpμpν þ gμνJÞ�
þ iTr log ½δabð−p2 þ ξJÞ�

¼ i
2ðN − 1Þ

2
½ðD− 1ÞTr logð−p2 þ JÞ þTr logð−p2 þ ξJÞ�

þ iTr log ½δabð−p2 þ ξJÞ�; ð4:14Þ

where the second line is obtained using the orthonormality
of the transverse and longitudinal gluon propagator.
Adopting dimensional regularization and taking the deriva-
tive with respect to J twice we find the ϵ-divergent part
proportional to J2,

2ðN − 1Þ
2

ð3 − ξ2Þ
ð4πÞ2ϵ ; ð4:15Þ

and therefore

δκ0
ϵ

¼ −
2ðN − 1Þ

2

ð3 − ξ2Þ
ð4πÞ2ϵ : ð4:16Þ

We are now ready to solve the differential Eq. (4.13) for κ0.
A particular solution is given by

κðpÞ0 ¼ 2ðN − 1Þ
N

ξ: ð4:17Þ

The homogeneous part is solved as

Z
dκ0
κ0

¼
Z

2γO;0 þ β1
ξγξ;0

¼
Z

4 − 6ξ

4ξ − 3ξ2 − 9
dξ ¼

Z d
dξ ½4ξ − 3ξ2 − 9�
4ξ − 3ξ2 − 9

dξ;

ð4:18Þ

and therefore

κðhÞ0 ¼ Cð4ξ − 3ξ2 − 9Þ; ð4:19Þ

which implies the general solution

κ0 ¼
2ðN − 1Þ

N
ξþ Cð4ξ − 3ξ2 − 9Þ: ð4:20Þ

As discussed in [44] the minimum of the effective potential
should be independent of the gauge fixing parameter,
allowing us to choose the integration constant C arbitrarily.
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In practice, the result for the vacuum energy may explicitly
depend on ξ due to the mixing between different orders of
perturbation theory. This could only be avoided if one knew
the potential up to infinite order. Nevertheless, in the next
section we motivate a reasonable choice for C.

V. EFFECTIVE POTENTIAL AND EXISTENCE
OF THE CONDENSATE

Before we calculate the one-loop effective potential there
is still one problem left. Because of the introduction of the
terms proportional to J2 the generating functional lost its
usual interpretation as an energy density. However, follow-
ing [44] this can easily be circumvented by performing a
Hubbard-Stratonovich transformation, introducing the aux-
iliary field σ as

1 ¼
Z

dσ Exp

�
−i

1

2g2κ
ðσ þ AOþ BJÞ2

�
: ð5:1Þ

Here, a normalization constant was absorbed into the path
integral measure. The parameters A and B are chosen such
that the J2 term and the JO term of the original Lagrangian
are canceled, for example, A ¼ −g and B ¼ −gκ. The
modified Lagrangian then reads

Lmod ¼ LYM þ Lred
GF þ Lres

GF þ Lσ þ
σ

g
J; ð5:2Þ

where

Lσ ¼ −
σ2

2g2κ
þ 1

κ

σ

g
O −

1

2κ
O2: ð5:3Þ

From Eq. (5.1) we also find that the vacuum expectation
values of O and the auxiliary field σ at J ¼ 0 are related as

hσi ¼ ghOi: ð5:4Þ

Provided the auxiliary field has a nonzero vacuum expect-
ation value and using

1

g2κ
¼ 1

κ0
−
κ1
κ20

g2 þOðg4;ℏ2Þ ð5:5Þ

we note that Lσ contains the mass term for the coset gluon
and ghosts, with the tree-level masses

m2
X ¼ ghσi

κ0
; m2

ω̄ω ¼ ξghσi
κ0

: ð5:6Þ

Thus, to answer whether the condensate exists or not, we
need to calculate the effective potential for the auxiliary
field. Decomposing the potential into V ¼ V0 þ V1 with
the tree part V0 and the one-loop part V1 we immediately
find the tree-level part

V0ðσÞ ¼
σ2

2κ0
: ð5:7Þ

For the one-loop correction we have

V1ðσÞ

¼ −
κ1
2κ20

g2σ2 þ iTr log

�
δab

�
−p2 þ ξgσ

κ0

��

−
i
2
Tr log

�
δab

�
−p2gμν þ ð1 − ξ−1Þpμpν þ gμν

gσ
κ0

��
:

ð5:8Þ

Within dimensional regularization, the calculation of the
logarithms can be done analogously to Sec. IV. Adopting
the MS scheme we find

V1ðσÞ ¼ −
κ1
2κ20

g2σ2 −
3

64π2
2ðN − 1Þg

2σ2

κ20

�
5

6
− log

�
gσ
κ0μ̄

2

��

þ 1

64π2
2ðN − 1Þξ

2g2σ2

κ20

�
3

2
− log

�
ξgσ
κ0μ̄

2

��
; ð5:9Þ

where μ̄2 ¼ 4πμ2e−γ . Next we are looking for the stationary
points,

dV
dσ

¼ σ

κ0

�
1−

g2κ1
κ0

�
−

3

32π2
2ðN − 1Þg

2σ

κ20

�
1

3
− log

�
gσ
κ0μ̄

2

��

þ 1

32π2
2ðN − 1Þξ

2g2σ
κ20

�
1− log

�
ξgσ
κ0μ̄

2

��
: ð5:10Þ

Besides the solution σ ¼ 0 we find another stationary
point σ�, providing the squared mass m2

X given by

m2
X ¼ gσ�

κ0
¼ μ̄2Exp

�
H1

g2
þH2

�
; ð5:11Þ

with

H1ðξ; κ0Þ ¼ −
1

ð3 − ξ2Þ
32π2

2ðN − 1Þ κ0; ð5:12Þ

H2ðξ; κ1Þ ¼
1

ð3− ξ2Þ
�

32π2

2ðN − 1Þ κ1 þ 1þ 1

2
ξ2 logξ2 − ξ2

�
:

ð5:13Þ

Based on these results, we discuss the open issue
of fixing the integration constant in the solution for
κ0ðξÞ, Eq. (4.20). First of all, we learn from the tree
potential (5.7) that κ0 should be positive in order to have a
bounded-from-below tree part. In addition, we need to
recover the correct UV limit, σ� → 0 as g2 → 0, which
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implies that H1 must be negative and thus ξ2 < 3. This is
consistent with the fact that the physical region for ξ is the
close vicinity of ξ ¼ 0.2 The choice

C0 ¼ −
1

11

N − 1

N
ð5:14Þ

guarantees that κ0 is positive for all ξ within the close
vicinity of ξ ¼ 0. Moreover, for this choice we find that
for ξ ¼ 0 the function H2 becomes an irrelevant constant,
while for H1 we obtain

H1ðξ ¼ 0; κ0 ¼ −9C0Þ ¼ −ð4πÞ2 3

11N
: ð5:15Þ

Introducing the experimentally accessible and RG invariant
QCD scale ΛQCD as usual,

ΛQCD ¼ μ̄Exp

�
−
Z

g dg0

βgðg0Þ
�
; ð5:16Þ

we find that at ξ ¼ 0 and to one-loop order the coset gluon
mass becomes proportional to Λ2

QCD,

m2
X ¼ eH2ðξ¼0;κ1ÞΛ2

QCD: ð5:17Þ
Therefore, assuming that ξ only changes marginally with μ̄
around ξ ¼ 0 we obtain an RG invariant coset gluon mass.
More explicitly, to one-loop order

μ̄
d
dμ̄

m2
X ¼ const × μ̄

d
dμ̄

�
μ̄2Exp

�
−

3

11N
ð4πÞ2
g2

��
¼ 0:

ð5:18Þ
Consequently, the vacuum energy is calculated as

Vðσ�Þ ¼
σ2�
2κ0

�
1 −

g2κ1
κ0

�

−
3 · 2ðN − 1Þ

64π2
g2σ2�
κ20

�
5

6
− log

�
gσ�
κ0μ̄

2

��

þ 2ðN − 1Þ
64π2

g2σ2�ξ2

κ20

�
3

2
−
1

2
log ξ2 − log

�
gσ�
κ0μ̄

2

��
:

ð5:19Þ
The first term in Eq. (5.19) is replaced using dV

dσ jσ� ¼ 0,
which yields

σ2�
2κ0

�
1 −

g2κ1
κ0

�
¼ 3 · 2ðN − 1Þ

64π2
g2σ2�
κ20

�
1

3
− log

�
gσ�
κ0μ̄

2

��

−
2ðN − 1Þ
64π2

g2σ2�ξ2

κ20

�
1 − log

�
ξgσ�
κ0μ̄

2

��
:

ð5:20Þ

Plugging this into the Eq. (5.19) we obtain

Vðσ�Þ ¼ −ð3 − ξ2Þ 2ðN − 1Þ
128π2

g2σ2�
κ20

¼ −ð3 − ξ2Þ 2ðN − 1Þ
128π2

m4
X; ð5:21Þ

where in the last line we used that the gluon mass is given
by m2

X ¼ gσ�
κ0

and the result is in full agreement with the

N ¼ 2 MAG case [44]. Together with the condition ξ2 < 3
we indeed find that the energy for this vacuum is negative
and therefore the condensate is energetically favored. At
first sight, the dependence of the vacuum energy on the
parameter ξ is problematic, as one should obtain the gauge
independent result. However, our “gauge” is different from
the usual treatment in the sense that it removes superfluous
degrees of freedom from the extended Yang-Mills theory,
in order to recover the theory equipollent to the SUðNÞ
Yang-Mills theory. This suggests we set ξ ¼ 0 and thus
our result hints at the existence of the nonzero coset field
condensate, at least to one-loop level.

VI. CONCLUSION

In this paper we investigated the decomposition of the
G ¼ SUðNÞ Yang-Mills theory with respect to the stability
group H ¼ UðN − 1Þ. We proved the one-loop renorma-
lizability of this theory and explicitly obtained all the
involved RG functions.
An important feature of this theory is the fact that one can

introduce a gauge invariant mass term for the coset field
Xμ ∈ LieðG/HÞ. This is interesting from the viewpoint that
the existence of a nonzero condensate hXμXμi ≠ 0 directly
leads to many implications such as quark confinement at
low temperature. While it is true that the mass term for the
coset gluon is gauge invariant within the original version
of the reformulated Yang-Mills theory, it loses its gauge
invariance because the color field is considered to be fixed
within this paper. However, we showed that one can at least
introduce the on-shell BRST invariant composite operator
O ¼ TrG/HðXμXμ − 2iξCC̄Þ to investigate the possibility
of a coset gluon condensate. As an intermediate step, by
taking into account the mixing with condensates of the same
quantumnumber, we obtained the one-loop renormalizability
of this composite operator.
In the second part of the paper we used these results to

discuss the existence of the condensate by means of the
local composite operator formalism. Consequently, after
performing a Hubbard-Stratonovich transformation, we
obtained the one-loop effective potential VðσÞ for the
auxiliary field σ, where the vacuum expectation values
of σ and O are related as hσi ¼ ghOi. Indeed, we found a
nonzero stationary point σ� away from the origin. However,
the corresponding vacuum energy Vðσ�Þ explicitly depends
on the parameter ξ. This would be a problem in the usual2See the discussion at the end of this section.
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gauge fixing framework, but our reduction condition has a
different meaning as it reduces the enlarged color-field
extended gauge symmetry back to the theory equipollent to
the SUðNÞ Yang-Mills theory. In other words, even though
the reduction condition is imposed, the full SUðNÞ gauge
symmetry is preserved. But again, due to the fixing of the
color field, the situation changes. The reduction condition
appears as a gauge fixing term for the coset gluon.
Nevertheless, we take the standpoint that according to
the previous argument, we should adopt the physical choice
ξ ¼ 0 in order to incorporate the reduction condition in an
δ-functionlike manner. In this case, the value Vðσ�Þ is
negative and a nonzero coset gluon condensate is ener-
getically favored. Certainly, these considerations need to be
improved, for example by discussing the existence of the
condensate within a nonperturbative approach such as the
functional renormalization group.
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APPENDIX A: COUNTERTERM LAGRANGIAN

In this appendix we set up the counterterm Lagrangian
corresponding to

L ¼ LYM þ iδBδ̄B

�
1

2
Xa
μXμa − i

ξ

2
ωaω̄a

�
− iδB

�
C̄j

�
∂μVμj þ λ

2
Nj

��
− iδB

�
C̄γ

�
∂μVμγ þ α

2
Nγ

��
: ðA1Þ

Then the counterterm Lagrangian is written as

Lc:t:¼Δ1

1

2
Xa
μðgμν∂2−∂μ∂νÞXa

νþΔ2

1

2ξ
Xa
μ∂μ∂νXa

νþΔ3

1

2
Vj
μðgμν∂2−∂μ∂νÞVj

νþΔ4

1

2λ
Vj
μ∂μ∂νVj

ν

þΔ5

1

2
Vγ
μðgμν∂2−∂μ∂νÞVγ

νþΔ6

1

2α
Vγ
μ∂μ∂νVγ

νþΔ7iω̄a∂2ωaþΔ8iC̄j∂2CjþΔ9iC̄γ∂2Cγ

−Δ10

g
2
fjklð∂μV

j
ν−∂νV

j
μÞVμkVνl−Δ11

g
ξ
fajb∂μXμaVj

νXνb−Δ12

g
ξ
faγb∂μXμaVγ

νXνb

þΔ13

g
2
fajbfXμaXνbð∂μV

j
ν−∂νV

j
μÞþVμjXνbð∂νXa

μ−∂μXa
νÞþVνjXμbð∂μXa

ν −∂νXa
μÞg

þΔ14

g
2
faγbfXμaXνbð∂μV

γ
ν−∂νV

γ
μÞþVμγXνbð∂νXa

μ−∂μXa
νÞþVνγXμbð∂μXa

ν −∂νXa
μÞg

−Δ15

g2

4
fabJfcdJXa

μXb
νXμcXνd−Δ16

g2

4
fjklfjmnVk

μVl
νVμmVνn

þΔ17g2
�
1

2
fakcfcjbðXa

μXμbVk
νVνj−Xa

μXb
νVμkVνjÞ−fabjfjklVk

μVl
νXμaXνb

�

þΔ18g2
�
1

2
faγcfcγbðXa

μXμbVγ
νVνγ−Xa

μXb
νVμγVνγÞ

�
þΔ19g2fakcfcγb

�
Xa
μXμbVk

νVνγ−
1

2
Xa
μXνbVμkVγ

ν−
1

2
Xb
μXνaVμγVk

ν

�

−Δ20

g2

2ξ
fajbfakcVμjXb

μVk
νXνc−Δ21

g2

2ξ

N
2ðN−1ÞV

μγXa
μV

γ
νXνa−Δ22

g2

2ξ
faγbfakcfVμγXb

μVk
νXνcþVμkXc

μXb
νVνγg

þΔ23igfajbfω̄a∂μðVμjωbÞþ ω̄aVμj∂μω
bgþΔ24igfaγbfω̄a∂μðVμγωbÞþ ω̄aVμγ∂μω

bg
þΔ25igfjklC̄j∂μðVμkClÞþΔ26igfjabC̄j∂μðXμaωbÞþΔ27igfγabC̄γ∂μðXμaωbÞ

þΔ28ig2fakcfcjbω̄aωbVμkVj
μ− iΔ29g2

N
2ðN−1Þω̄

aωaVμγVγ
μ

þΔ30ig2fakcfcγbVk
μVμγfω̄aωbþ ω̄bωagþΔ31ig2fabJfcdJω̄bωdXa

μX
μ
cþΔ32

ξg2

4
fabJfcdJω̄aω̄bωcωd; ðA2Þ

where the coefficients Δi are expressed in terms of the renormalization factors as
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Δ1 ¼ ZX − 1; Δ2 ¼ ZXZ−1
ξ − 1; Δ3 ¼ ZV − 1;

Δ4 ¼ ZVZ−1
λ − 1; Δ5 ¼ Z̃V − 1; Δ6 ¼ Z̃VZ−1

α − 1;

Δ7 ¼ Zω − 1; Δ8 ¼ Z1/2
C Z1/2

C̄ − 1; Δ9 ¼ Z̃1/2
C Z̃1/2

C̄ − 1;

Δ10 ¼ Z3/2
V Zg − 1; Δ11 ¼ ZXZ1/2

V ZgZ−1
ξ − 1; Δ12 ¼ ZXZ̃1/2

V ZgZ−1
ξ − 1;

Δ13 ¼ ZXZ1/2
V Zg − 1; Δ14 ¼ ZXZ̃1/2

V Zg − 1; Δ15 ¼ Z2
gZ2

X − 1;

Δ16 ¼ Z2
VZ

2
g − 1; Δ17 ¼ ZXZVZ2

g − 1; Δ18 ¼ ZXZ̃VZ2
g − 1;

Δ19 ¼ ZXZ1/2
V Z̃1/2

V Z2
g − 1; Δ20 ¼ ZXZVZ2

gZ−1
ξ − 1; Δ21 ¼ ZXZ̃VZ2

gZ−1
ξ − 1;

Δ22 ¼ ZXZ1/2
V Z̃1/2

V Z2
gZ−1

ξ − 1; Δ23 ¼ ZωZ1/2
V Zg − 1; Δ24 ¼ ZωZ̃1/2

V Zg − 1;

Δ25 ¼ Z1/2
C Z1/2

C̄ Z1/2
V Zg − 1; Δ26 ¼ Z1/2

ω Z1/2
C̄ Z1/2

X Zg − 1; Δ27 ¼ Z1/2
ω Z̃1/2

C̄ Z1/2
X Zg − 1;

Δ28 ¼ ZωZVZ2
g − 1; Δ29 ¼ ZωZ̃VZ2

g − 1; Δ30 ¼ ZωZ1/2
V Z̃1/2

V Z2
g − 1;

Δ31 ¼ ZωZXZ2
g − 1; Δ32 ¼ Z2

ωZ2
gZξ − 1: ðA3Þ

In the main text we determine Δ1, Δ2, Δ3, Δ4, Δ5, Δ6, Δ7, Δ8, and Δ9 by considering one-loop self-energy corrections.
Next, we consider corrections to the VjCkC̄l vertex and the XωC̄J vertex, yielding Δ25, Δ26, and Δ27, respectively. This is
sufficient to determine all the renormalization factors to one-loop level.

APPENDIX B: DETERMINING THE RENORMALIZATION MATRIX
OF THE COMPOSITE OPERATOR

In this appendix we briefly explain how to determine the renormalization matrix of the composite operator
renormalization, deriving the diagrammatic equations for the renormalization matrix elements. This is done by inserting
the composite operator into the propagators of the fields.

1. Insertion into hXXi

ðB1Þ
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From this it follows that Z1 has the tree part.

ðB2Þ

From this it follows that Z7 does not have the tree part.

ðB3Þ

From this it follows that Z13 does not have the tree part.

ðB4Þ

From this it follows that Z19 does not have the tree part.

ðB5Þ

From this it follows that Z25 does not have the tree part
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ðB6Þ

From this it follows that Z31 does not have the tree part.

2. Insertion into hVjVki

ðB7Þ

From this it follows that Z2 does not have the tree part.

ðB8Þ

From this it follows that Z8 does have the tree part.

ðB9Þ

From this it follows that Z14 does not have the tree part.
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ðB10Þ

From this it follows that Z20 does not have the tree
part.

ðB11Þ

From this it follows that Z26 does not have the tree part.

ðB12Þ

From this it follows that Z32 does not have the tree part.

3. Insertion into hωω̄i

ðB13Þ

From this it follows that Z3 does not have the tree part.
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ðB14Þ

From this it follows that Z9 does not have the tree part.

ðB15Þ

From this it follows that Z15 does have the tree part.

ðB16Þ

From this it follows that Z21 does not have the tree part.

ðB17Þ

From this it follows that Z27 does not have the tree part.

ðB18Þ

From this it follows that Z33 does not have the tree part.

4. Insertion into hCjC̄ki

ðB19Þ

From this it follows that Z4 does not have the tree part.
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ðB20Þ

From this it follows that Z10 does not have the tree
part.

ðB21Þ

From this it follows that Z16 does not have the tree
part.

ðB22Þ

From this it follows that Z22 does have the tree
part.

ðB23Þ

From this it follows that Z28 does not have the tree part.

ðB24Þ

From this it follows that Z34 does not have the tree part.

5. Insertion into hVγVγi

ðB25Þ

From this it follows that Z5 does not have the tree part.
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ðB26Þ

From this it follows that Z11 does not have the tree part.

ðB27Þ

From this it follows that Z17 does not have the tree part.

ðB28Þ

From this it follows that Z23 does not have the tree
part.

ðB29Þ

From this it follows that Z29 does have the tree part.

ðB30Þ

From this it follows that Z35 does not have the tree
part.
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6. Insertion into hCγC̄γi

ðB31Þ

From this it follows that Z6 does not have the tree part.

ðB32Þ

From this it follows that Z12 does not have the tree part.

ðB33Þ

From this it follows that Z18 does not have the tree part.

ðB34Þ

From this it follows that Z24 does not have the tree part.

ðB35Þ

From this it follows that Z30 does not have the tree part.

ðB36Þ

From this it follows that Z36 does have the tree part.
At this stage we have proven the following form of the

renormalization matrix,

Z ¼ 1þ Zð1Þ:

We therefore can reconsider Eqs. (B1)–(B36) to
obtain the diagrammatic equations for the elements of

Zð1Þ. From Eqs. (B1)–(B6) we find Zð1Þ
19 ¼ Zð1Þ

31 ¼ 0 as
well as

ðB37Þ

ðB38Þ

ðB39Þ

ðB40Þ

From Eqs. (B7)–(B12) we find Zð1Þ
26 ¼ Zð1Þ

32 ¼ 0 as
well as

ðB41Þ
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ðB42Þ

ðB43Þ

ðB44Þ

From Eqs. (B13)–(B18) we find Zð1Þ
21 ¼ Zð1Þ

33 ¼ 0 as
well as

ðB45Þ

ðB46Þ

ðB47Þ

ðB48Þ

Considering Eqs. (B19)–(B24) we obtain Zð1Þ
4 ¼ Zð1Þ

16 ¼
Zð1Þ
28 ¼ Zð1Þ

34 ¼ 0 and

ðB49Þ

ðB50Þ

Equations (B25)–(B30) imply Zð1Þ
11 ¼ Zð1Þ

23 ¼ Zð1Þ
29 ¼

Zð1Þ
35 ¼ 0 and

ðB51Þ

ðB52Þ

Finally, from Eqs. (B31)–(B36) we find Zð1Þ
6 ¼ Zð1Þ

12 ¼
Zð1Þ
18 ¼ Zð1Þ

24 ¼ Zð1Þ
30 ¼ Zð1Þ

36 ¼ 0. This leaves us with a priori
16 nonvanishing renormalization factors. The divergent
parts of the diagrams necessary to obtain these renormal-
ization factors are calculated as

ðB53Þ
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ðB54Þ

ðB55Þ

ðB56Þ

ðB57Þ

ðB58Þ

ðB59Þ

ðB60Þ

ðB61Þ

ðB62Þ

ðB63Þ

ðB64Þ

ðB65Þ

ðB66Þ

ðB67Þ
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ðB68Þ

ðB69Þ

ðB70Þ

ðB71Þ

ðB72Þ

ðB73Þ

ðB74Þ

ðB75Þ

ðB76Þ

ðB77Þ

ðB78Þ

ðB79Þ

ðB80Þ

These results for the Feynman diagrams imply that some
of the 16 a priori nonvanishing renormalization factors

actually become 0. The factors Zð1Þ
10 and Zð1Þ

22 given by
Eqs. (B49) and (B50) are vanishing because the involved
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diagrams are finite. Moreover, the factors Zð1Þ
2 , Zð1Þ

5 , Zð1Þ
14 ,

and Zð1Þ
17 given by Eqs. (B42), (B51), (B41), and (B52),

respectively, are 0 as well since in each case the involved

diagrams cancel each other. This finally leaves us with ten
nonzero renormalization factors, yielding Eqs. (3.6) and
(3.8) in the main text.
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