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We have systematically constructed the general structure of the fermion self-energy and the effective
quark propagator in the presence of a nontrivial background such as a hot magnetized medium. This is
applicable to both QED and QCD. The hard thermal loop approximation has been used for the heat bath.
We have also examined transformation properties of the effective fermion propagator under some of the
discrete symmetries of the system. Using the effective fermion propagator we have analyzed the fermion
dispersion spectra in a hot magnetized medium along with the spinor for each fermion mode obtained by
solving the modified Dirac equation. The fermion spectra is found to reflect the discrete symmetries of the
two-point functions. We note that for a chirally symmetric theory the degenerate left- and right-handed
chiral modes in vacuum or in a heat bath get separated and become asymmetric in the presence of a
magnetic field without disturbing the chiral invariance. The obtained general structure of the two-point
functions is verified by computing the three-point function, which agrees with the existing results in one-
loop order. Finally, we have computed explicitly the spectral representation of the two-point functions
which would be very important to study the spectral properties of the hot magnetized medium

corresponding to QED and QCD with background magnetic field.
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I. INTRODUCTION

In noncentral heavy ion collision (HIC) experiments in
LHC at CERN and in RHIC at BNL, it is believed that a
very strong magnetic field is created in the direction
perpendicular to the reaction plane due to the spectator
particles that are not participating in the collisions. The
experiments conducted by PHENIX Collaboration [1]
showed direct-photon anisotropy which has posed a serious
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challenge to the present theoretical models. It is conjectured
that this excess elliptic flow may be due to the excess
photons produced by the decay p — z(n)y and the branch-
ing ratio of which increases in the presence of the magnetic
field near the critical value where the condensate of p is
found. The estimated strength of this magnetic field
depends on collision energy and impact parameter between
the colliding nuclei and is about several times the pion mass
squared, i.e., eB ~ 15m2 at LHC in CERN [2]. Also, a class
of neutron star called magnetar exhibits [3—5] a magnetic
field of 10'-10% Gauss at the inner core and
10'2-10"* Gauss at the surface. These observations moti-
vate to study the properties of hot magnetized medium
using both phenomenology and quantum field theory.
The presence of a strong magnetic field in HIC
influences the QCD phase transitions [6] and particle
productions, especially the production of the soft photon
[7] and dileptons [8—13], which act as a probe of the
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medium. Apart from these, there is a large class of other
phenomena that take place in the presence of a background
magnetic field such as chiral magnetic effects due to axial
anomalies [14-16], magnetic catalysis [17,18], inverse
magnetic catalysis [19,20], and superconductivity of the
vacuum [21]. It further influences the thermal chiral and
deconfining phase transition [22], change of topological
charge [23], anomalous transports [24], refractive indices
[25,26] and screening mass [27], and decay constant [28] of
neutral mesons, etc. In addition, efforts were also made to
study the bulk properties for a Fermi gas [29], low lying
hadrons [30] and strongly coupled systems [31], collective
excitations in magnetized QED medium [32] using Ritus
method and QCD medium [33] using Furry’s picture,
neutrino properties [34,35] and field theory of the
Faraday effects [36,37].

The magnetic field created in HIC lasts for very short
time (~ a few fm). The strength of the field decays rapidly
with time after 7 ~ 1-2 fm/c. However, the medium effects
such as electric conductivity can delay the decay and by the
time deconfined quarks and gluons equilibrate with QGP
medium, the magnetic field strength gets sufficiently weak.
At that time the relevant energy scales of the system can be
put in this way: ¢ /B < m3 < T*. In this low-field limit, the
properties of the deconfined medium are also affected. So,
it becomes important to treat the weak-field limit
separately. Fermion propagator in the presence of a uniform
background magnetic field has been derived first by
Schwinger [38]. Using this, one-loop fermion self-energy
and the vacuum polarization was calculated in double
parameter integral in [39,40], respectively. The weak-field
expansion of this propagator was calculated order by order
in powers of ;B in [41]. Recently, the pion self-energy and
its dispersion property have been studied at zero temper-
ature [42] in weak-field approximation and using full
propagator at finite temperature [43]. Also a detailed study
of the spectral properties of p mesons has been performed
in the presence of a magnetic field both at zero [44,45] and
at nonzero temperature [46].

For ahot and dense medium (e.g., QED and QCD plasma),
it is well known that a bare perturbation theory breaks down
due to infrared divergences. A reorganization of the pertur-
bation theory has been done by performing the expansion
around a system of massive quasiparticles [47], where mass
is generated through thermal fluctuations. This requires a
resummation of a certain class of diagrams, known as hard
thermal loop (HTL) resummation [48], when the loop
momenta are of the order of the temperature. This reorgan-
ized perturbation theory, known as HTL perturbation theory
(HTLpt), leads to gauge-independent results for various
physical quantities [49-65]. Within this one-loop HTLpt,
the thermomagnetic correction to the quark self-energy [66],
quark-gluon three-point [66] function at zero chemical
potential, and four-point [67] function at finite chemical
potential in the weak-field limit have been computed. The

fermion self-energy has also been extended to the case of
nonzero chemical potential and the pressure of a weakly
magnetized QCD plasma [68] has also been obtained.

In recent years, a huge amount of activity is underway to
explore the properties of a hot medium with a background
magnetic field using phenomenology as well as using
thermal field theory. In a thermal medium, the bulk and
dynamical properties [48,69,70] are characterized by the
collective excitations in a timelike region and the Landau
damping in a spacelike domain. The basic quantity asso-
ciated with these medium properties is the two-point
correlation function. In this work, we construct the general
structure of the fermionic two-point functions (e.g., self-
energy and the effective propagator) in a nontrivial back-
ground such as a hot magnetized medium. We then analyze
its property under the transformation of some discrete
symmetries of the system, the collective fermionic spectra,
QED-like three-point functions and the spectral represen-
tation of the two-point function and its consequences in a
hot magnetized medium. The formulation is applicable
equally well to both QED and QCD.

The paper is organized as follows; In Sec. II, the
notation and set up are briefly discussed through a
fermion propagator in a constant background field using
Schwinger formalism. Section III has number of parts
in which we obtain the general structure of the self-energy
(subsection IIT A), the effective fermion propagator
(subsection III B), the transformation properties and discrete
symmetries of the effective propagator (subsection III C),
the modified Dirac equations in general and for lowest
Landau level (subsection III D) and the dispersion properties
of the various collective modes (subsection III E) in timelike
region. In Sec. IV, the general structure of the self-energy
and the propagator has been verified from one-loop direct
calculation. The spectral representation of the effective
propagator in spacelike domain has been obtained in
Sec. V. We have presented some detailed calculations for
various sections and subsections in Appendix A—E. Finally,
we conclude in Sec. VL

II. CHARGED FERMION PROPAGATOR
IN BACKGROUND MAGNETIC FIELD
WITHIN SCHWINGER FORMALISM

In this section, we set the notation and briefly outline the
fermionic propagator in the presence of a background
magnetic field following Schwinger formalism [38].
Without any loss of generality, the background magnetic
field is chosen along the z direction, B = Bz, and the vector
potential in a symmetric gauge reads as

yB xB
AF = - . 1
<0’ 2 b 2 70> ( )

Below we also outline the notation we shall be using
throughout:
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a' = (a’,a',a*,a®) = (ay, d);
a-b=agby—a-b, ¢ =diag(l,—1,-1,-1),
at = a"“ +d; aﬁ =(a,0,0,a%);

a| =(0,a',a%,0) :g’ﬁv—l—gﬁ”;

g =diag(1,0,0,-1); ¢/ =diag(0.-1.-1,0),
(a-b)=(a-b)y—(a-b); (a-b)H:aObO—a3b3;
(a-b), =a'b' +a*b?,  d=y'a,=d +d;
dy=7’ag—ya’; g =yla' +ya’, (2)
where || and L are, respectively, the parallel and
perpendicular components, which would be separated

out due to the presence of the background magnetic field.
Now, the fermionic two-point function is written as

% 1

S(x,x") = =iC(x,x’ ds ——

(x,x") iC(x x)/0 Sssm(qus)
X exp(—imjzcs +iq;BsXs)

xexp[—%((x—x’)z _aBs g )]

tan(q,Bs)
Bs
[mf+ <(X|| X)) — qu(gw
explia Bt~ 21 )| )

where the parameter s is called Schwinger proper time
variable [38]. We note that m and g, are mass and absolute
charge of the fermion of flavor f, respectively. The phase
factor, C(x,x’), is independent of s but is responsible for
breaking of both gauge and translational invariance.
Remaining part, denoted as S(x —x'), is translationally
invariant. However, as shown below, C(x, x") drops out for
a gauge invariant calculation. Now C(x, x’) reads as

+3Fule=r) |
@

C(x.x') = Cexp {iqf / " der (Aﬂ(g)

where C is just a number. The integral in the exponential is
independent of the path taken between x and x’' and,
choosing it as a straight line, one can write

Clx,x') = CO(x,¥') = Cexp [iqf / ' df”Aﬂ(f)} (5)

Using the gauge transformation A#(&) — A#(&) + O#A(€),
and choosing the symmetric gauge as given in (1), the
phase factor @(x, x’) becomes 1 if we take [66]

Nlbd

A(8) == (361 — x18). (6)

From Eq. (3), the momentum space propagator can be
obtained as

S(K)= / d*xe®*S(x—x')

:—i/ooodsexp [is([(2 Ki—m%)]

< [(1+7172tan(q,Bs)) (K| +my) —sec*(q;Bs)K 1]

tan(q,Bs)
qsBs

= Dn(QfB’K)
=exp(=K . */lqsBl) ) (-1)"5—— :
1=0 K||_mf—2”61f3|
(7)
where k% = ¢B|, is quantized with Landau level
[=0,1,..., and

Di(qyB.K) = (K| + my) [(1 - i}"yz)Ll<2 Klz)

VIfB|
KJ_Z
- (I +iriy2)Lin (2—”
|QfB‘
K 2
—4k L (2= ), 8
KL l—1< |qu|> ( )

where L;(x) is Laguerre polynomial, L{ (x) is associated
Laguerre polynomial with L ,(x) = 0 and both j is a non-
negative integer.

Below we discuss the structure of the propagator in (7)
in the presence of the background magnetic field. Since
the fermion propagator is 4 x 4 matrix, a new matrix
(K| + my)iy y, appears in addition to that of the vacuum
structure (K, o (K?) is a Lorentz invariant structure
function) for a chirally symmetric theory. One can now
write the new matrix for a chirally symmetric theory in
terms of background electromagnetic field tensor F** as

iv172K B = —ysK'F 0" 9)

where the background dual field tensor reads as

F,= %eﬂ,,MFM. (10)
The structure of a chirally symmetric free fermion propa-
gator in the presence of only a magnetic field can be
viewed as (@K + 8'ysK*F Ww?”), where &' is a new structure
constant that appears due to the presence of a background
magnetic field. When a fermion propagates only in a hot
medium, then the vacuum part will be modified only due to
the thermal background [69] as (oK + f'#), where u is the
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four-velocity of the heat bath. When a fermion moves in a
nontrivial background such as a hot magnetized medium,
then one can write (9) as

iVl}’zKH = —rs[(K.n) — (K.u)i], (11)

where

1

n, = =—=€,,,U
n = g Hr

uF/)/l _ 1 I./F
—EM v+

(12)
and the four-velocity in the rest frame of the heat bath and
the direction of the magnetic field B, respectively, given as

w = (1,0,0,0), (13a)

n* =(0,0,0,1). (13b)

One can notice that in a hot magnetized medium both u
and n are correlated as given in (12) and the contribution
due to magnetic field in (9) in the presence of a heat
bath becomes a thermomagnetic contribution. We also
further note that in the absence of a heat bath, (11) reduces
to (9), which is not obvious by inspection but we would
see later.

III. GENERAL STRUCTURE OF FERMION
TWO-POINT FUNCTION IN A HOT
MAGNETIZED MEDIUM

In the previous section, the modification of a free
propagator has been discussed briefly in the presence of
a background magnetic field. In this section, we would like
to obtain the most general structure of a fermion self-
energy, the effective fermion propagator and some of its
properties in a nontrivial background such as a hot
magnetized medium. We would also discuss the modified
Dirac equation and the fermion dispersion spectrum in a hot
magnetized medium. For a thermal bath, we would use
HTL approximation and any other approximation required
for the purpose will be stated therein.

A. General structure of the fermion self-energy

The fermionic self-energy is a matrix as well as a Lorentz
scalar. However, in the presence of a nontrivial background,
e.g., heat bath and magnetic field, the boost and rotational
symmetries of the system are broken. The general structure
of fermion self-energy for hot magnetized medium can be
written by the following arguments. The self-energy X(P)
is a 4 x4 matrix which depends, in present case, on
the four-momentum of the fermion P, the velocity of the
heat bath u and the direction of the magnetic field n. Now,
any 4 x 4 matrix can be expanded in terms of 16 basis
matrices: {1,s,7,,7,7s,0,,}, Which are the unit matrix,

the four y matrices, the six o, matrices, the four ysy,

matrices and finally ys. So, the general structure can be
written as

L(P)=—al —pys—aP — b —cif — a'ysP — b'ysff — c'ysi
- ho,,P'P* — h'e, u'u’ — ko, n'n* —do,, P*u”

-d'o,n'P’—Ko,u'n", (14)

where various coefficients are known as structure functions.
We note that the combinations involving 6,, do not appear
due to antisymmetric nature of it in any loop order of self-
energy. Also in a chirally invariant theory, the terms a1 and
ysf will not appear as they would break the chiral
symmetry. The term ysf would appear in the self-energy
if fermions interact with an axial vector.' By dropping
those in (14) for chirally symmetric theory, one can now
write

I(P) = —aP — b — cff = byssh — 'ysf. (15)

Now we point out that some important information is
encoded into the fermion propagator in (7) through (11) for
a hot magnetized medium. This suggests that ¢y should not
appear in the fermion self-energy” and the most general
form of the fermion self-energy for a hot magnetized
medium becomes

Z(P) = —aP — by = b'ysih — c'ys)h. (16)

When a fermion propagates in a vacuum, then b = b’ =
¢’ =0 and X(P) = —apP. But when it propagates in a
background of pure magnetic field without any heat bath,
then a # 0, b = 0 and the structure functions, b’ and ¢’, will
depend only on the background magnetic field as we will
see later. When a fermion propagates in a heat bath, then
a # 0, b # 0but both b" and ¢’ vanish because there would
not be any thermomagnetic corrections as can also be
seen later.

We now write down the right chiral projection operator,
‘P and the left chiral projection operator P_, respectively,
defined as:

(T+7s). (17a)

N =

P+:

P =5(1=-7s), (17b)

N =

"The presence of an axial gauge coupling leads to chiral or
axial anomaly and a chirally invariant theory does not allow this.
Other way, the preservation of both chiral and axial symmetries is
impossible, a choice must be made which one should be
preserved. For a chirally invariant theory, this term drops out.
Also the presence of y5 in a Lagrangian violates parity invariance.

2We have checked that even if one keeps cif, the coefficient ¢
becomes zero in one-loop order in the weak-field approximation.
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which satisfy the usual properties of projection operator:

PL =P,
P+ +P_ - 1,

P+7)_ = 7)_7)+ - O,
7)+_7)_ =7s- (18)
Using the chirality projection operators, the general struc-
ture of the self-energy in (16) can be casted in the following
form
%(P)=-P.LP_-P_PP,, (19)
where ¢ and p are defined as
C=aP+ (b+b)+ M, (20a)
D=aP+ (b-b)— . (20Db)

From (16) one obtains the general form of the various
structure functions as

_ 1Te(ZP) - (P.u)Tr(SH)

4 (Pup-Pr (212)

1 —=(P.u)Tr(ZP) + P*Tr(Z)
b= (P.u)?—P? - (D)
b = —%Tr(ﬁ%), (21¢)
¢ = 1 Te(zys). (14)

which are also Lorentz scalars. Beside 7" and B, they would
also depend on three Lorentz scalars defined by

o = Plu, (22a)
p*=—-P'n, = p.. (22b)
pu = [(Phuy,)® = (P'n,)? = (PP,)]2. (22c)

Since P? = w* — pi - pzz, we may interpret o, p,, p, as

Lorentz invariant energy, transverse momentum, longi-
tudinal momentum respectively. All these structure func-
tions for one-loop order in a weak field and HTL
approximations have been computed in Appendix A and
quoted here’ as

*In the weak-field approximation, the domain of applicability
bfecomes rr?fll(~ng2). < qB < T* instead of m* < q;B < T* as
discussed in Appendix A.

2
g my), Po
ap,p:—ﬂQ<T), 23a
(po-IP) =~z @15 (232)
- m?
b(po. |Pl) = "t [”—:’ 0 (”—) ~ 0, (”—)} (23b)
\p| LIP] P 1P|
= p p
b (pu. 1) = 4CsPM (T my.a8) 5 0 (m) ,
(23c¢)
/ EI 2012 1 Po
(po.|p|) =4Crg"M (TameIfB)ﬂQO m .
(23d)

We note that the respective vacuum contributions in a, b’
and ¢’ have been dropped by the choice of the renormal-
ization prescription, and the general structure of the self-
energy, as found in Appendix A, agrees with that in (16).

B. Effective fermion propagator

The effective fermion propagator is given by Dyson-
Schwinger equation (see Fig. 1) which reads as

S'(P) = 55 (24)

and the inverse fermion propagator reads as

§*=1(P) =P -2(P). (25)

Using (19) the inverse fermion propagator can be
written as

§*1(P) = P.(1 + a(po. |p]))P + (b(po, | P|)
+b'(po. P P+ ¢ (po. | PDAIP-
+P_[(1 + a(po, |P]))P + (b(po. |P])
= b'(po, pis p))h = ' (po. [PDAIP ¢
=P LP_+P_RP., (26)

where J and R can be obtained from two four-vectors
given by

L*(po. p1.p.) = Alpo. |DI)P* + B.(po. p1. p.)u

+ ¢ (po. | Bl)n*, (27a)
RA(po, P p2) = A(pos |P)P* + B_(po. i, p;)u*
- c'(po. [P|)n*, (27b)

with
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-

A(po. P

pl) = 1+ a(po. |p), (28a)

Bi(PmPL’Pz) = b(l’o, I3|) + b'(PO’PL,Pz) (28b)

Using (26) in (24), the propagator can now be written as

L R

P+P. TP, (29)

where we have used the properties of the projection oper-
ators Poy* = y*P+, PL =Py, and P,P_=P_P, =0.
It can be checked that S*(P)S*~!'(P)=P, +P_=1.
Also we have

L?=L'L,=(Apy+B,)*=[(Ap,+c')?+ A%pi]
=L2—|L]% (30a)

R = R'R, = (Apo+ B = [(Ap, =) + 41

where we have used u2=1, n =-1, u-n=0,
P-u= py, and P-n = —p,. Note that we have suppressed
the functional dependencies of L, R, A, B, and ¢’ and
would bring them back whenever necessary.

For the lowest Landau level (LLL), [ =0 = p, =0,
and these relations reduce to

L = (Apy+By)? - (Ap,+ ) =L§j—L2,  (3la)

Rii = (Apo+B_)* = (Ap.—¢')> =Rj—R:.  (31b)
The poles of the effective propagator, L> = 0 and R?> = 0,
give rise to quasi-particle dispersion relations in a hot
magnetized medium. There will be four collective modes
with positive energies: two from L? =0 and two from
R? = 0. Nevertheless, we will discuss dispersion proper-
ties later.

C. Transformation properties of structure
functions and propagators
First, we outline some transformation properties of the
various structure functions as obtained in (23a), (23Db),
(23c) and (23d).
(1) Under the transformation p - —p = (p,,—p.),

a(po.| = pl) = a(po. |Pl). (32a)
b(po.| = pl) = b(po.|Pl). (32b)
b'(po.pi.—p.) = =b'(po. PL. Do), (32¢)
c'(po. | = Pl) = ¢'(po. |P))- (32d)

(2) For py — —po:

a(=po. |P|) = a(po. |pl). (33a)
b(=po.|Bl) = —b(po. |P), (33b)
b'(=po. p1.p:) =V (po.pr.p2).  (33¢)
c'(=po.1pl) = =c'(po. |P]).  (33d)
(3) For P — —P = (—py. —p):
a(=po.| = p|) = a(po. |pl). (34a)
b(=po.| = pl) = =b(po. |pl). (34b)
b'(=po.p1.—p:) = =b'(po. PL. P2), (34¢)

p)- (34d)

We have used the fact that Qy(—x) = —Qg(x)

and Q;(—x) = Q;(x).
Now based on the above, we also note the transformation
properties of those quantities appearing in the propagator:

(1) For A:

c(=po.| = pl) = =¢'(po.

A(po. p1.p2) = Alpo. .. p2), (35a)
A(po:p1p:) =" Alpo. p1.p:).  (35b)
A(po.p1.p2) p;E’ZO A(po.p1.p2)- (35¢)

(2) For B.:
B(po.p1-p.) = B=(po.pu.p.). (36a)
B.(po,p1,p:) e B:F(po’pl»pz)’ (36b)
By (po,pisp-) p;E’;O —B.i(po,p1.P2)- (36¢)

Using the above transformation properties, it can be
shown that £, R, L? and R?, respectively given in (27a),
(27b), (30a) and (30b) transform as

L(po. pi.p2) = Alpo, |B)(por® + B 7)
+ B_(po. pL. p )k + ' (po. |P)it. (37a)

R(posp1.p2) = Alpo, |B) (por° + B -7)
+ By (po, po. pok — ¢ (po. [P, (37D)

P

L*(po.p1.p:) — R*(po.pi.p2)- (37¢)
o

RQ(PO»PL,PZ) - LZ(PO,PL’PQ’ (37(1)
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and S(po. B) = =r5S(po. P)rs- (39)

o The effective propagator, S*(pg, p., p.), in (29) trans-
L(po-pi.p) "= —L(po.pi.p.). (38a)  forms under chirality as

p——p
=758 (Pos P1Ls P2)Ys

Po——Po l’(va Pl pz)

) ) -_— - ) ) ) 38b = _y P— P y
Rpo.p1p2) = ~R(po.p o). (38D) P po prp) T
R(po, P1.D2)
Po—=>=p e +R2((Poo PLL PZ)PJS
0—>=Po ’ ’
Lz(pO?pJ_’pz) ﬁ_)ﬂ Lz(p07pl7pz)’ (380) :
p==p :P l(pO’pl’pZ)P +P R(p()’pl’pz)/])
"L (po.pi.p.) T TR pospLopl)
R*(po.p1.p.) p;E’;O R*(po. p1.pe)- (384d) = 5(Po. P P2): (40)

which satisfies (39) and indicates that it is chirally invariant.

Now we are in a position to check the transformation

. . 2. Reflection
properties of the effective propagator under some of the ) )
discrete symmetries: Under reflection the fermion propagator transforms
[71] as
1. Chirality S(po. P) = S(po.—P)- (41)
Under chirality the fermion propagator transform The effective propagator, S*(pg, p., p.), in (29) trans-
as [71] forms under reflection as

l’(va Pl _pz>
“L*(po.p1.—p.)
A(Po’

R(povaJ_pz) »P
2
R*(po.p1.—p;)
P (por’ + P -7) + B_(po. p1. p)ik + ¢'(po. |P|)ik
Rz(pO’ Pl pz)
A(po. [P)(por° + B - 7) + B (po, P, P2)ih = ¢ (po. [P
L2(p0’ P, pz)
#S8*(po. 1. P2)- (42)

S*(PO,PL —Pz) =P P +P,

—P_

Py

+P,

P_

However, now considering the rest frame of the heat bath, u* = (1,0,0,0), and the background magnetic field along
z-direction, n* = (0,0,0, 1), one can write (42) as

A(po, |P])(por® + P - 7) + B_(po, p1, )10 = ¢'(po. D)7
RZ(PO,PLaPz)
A(po. [P|)(por’ + B - 7) + B (po. P P2)ro + ¢ (po,
LZ(PO,PLPz)
# S*(Po. PLs P2)- (43)

S*(pO’pJ_’_pz> =P_ P+

21)43
+P, Y’

As seen in both cases the reflection symmetry is violated as we will see later while discussing the dispersion property of a
fermion.

3. Parity

Under parity a fermion propagator transforms [71] as

S(Po, 1_5) - YOS(PO, —5)70- (44)

The effective propagator, S*(pg, p1, p.), in (29) under parity transforms as

034024-7
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708*(Po-PL.—P2)Y0
ﬂ(PovPL,—Pz)
Lz(pO’pJ_v_pZ)

R(p()va_v_pz)
+r0Pi————=P-ro
“R*(po.p1.—p.)

—p v L(poapjn_pz)yorp_+,P_yOR(p07pJ_’_pz)

T ORZ(p()vpL’pz) Lz(p()’pL9pz)
#S*(Po,PLsP2) (45)

=yoP- Piro

YoP+

which does not obey (44), indicating that the effective
propagator in general frame of reference is not parity
invariant due to the background medium.

However, now considering the rest frame of the heat
bath, u* = (1,0,0,0), and the background magnetic field
along z-direction, n* = (0,0,0, 1), one can write (45) by
using (37a), (37b) and yoy’ = —y'y, as

YoS*(Pov Pl —Pz)Vo

R(pO’pJ_’pz) l<p07pj_’pz)
2P PLP) p op BP0 PLP p
"R (po. p1.p.) L*(po, p1.p-)
= S*(po.P1.P2)- (46)

which indicates that the propagator is parity invariant in the
rest frame of the magnetized heat bath. We note that other
discrete symmetries can also be checked but leave them on
the readers.

D. Modified Dirac equation

1. General case

The effective propagator that satisfy the modified Dirac
equation with spinor U is given by

(PLLP_+P_RP,)U =0. (47)

Using the chiral basis,
B <0 1 >
=\ o)
-1 0 VL
(D )
0 1 YR

one can write (47) as

(b ")) @

where w and y; are two component Dirac spinors with
o= (1,6) and 6 = (1,—35), respectively. One can obtain
nontrivial solutions with the condition

0 c-R
det( >:0
6-L 0

det[L - 6] det[R - 6] =0
L’R?* = 0. (50)

We note that for a given po(= w), either L> = 0, or R* = 0,
but not both of them are simultaneously zero. This implies
that i) when L? = 0, yy = 0; ii) when R*> =0, y, = 0.
These dispersion conditions are same as obtained from the
poles of the effective propagator in (29) as obtained in
subsection III B.

(1) For R?> =0 but L? # 0, the right chiral equation is

given by

(R0 = 0. (51)
Again R® =0 = Ry = +|R| = +,/R + R? + R

and the corresponding dispersive modes are denoted
by R™). So the solutions of (51) are

(i) Ry = |R|; mode R™;
0
S R|+R.| O _(0)
RH) 2|I—é| 1 wg:.) ’
R +iR,
|R|+R.
(52a)
(il) Ry = —|7?|; mode R(7);
0
IR| + R, 0 0
Uy = —\|——=— R—iR, = “ |
2|R| |R|4+R, v
-1
(52b)

(2) For L> =0 but R> # 0, the left chiral equation is
given by

(L-&)wr =0, (53)

where L2 = 0 implies two conditions; Ly = +|L| =

+4/L% 4 L% 4+ L? and the corresponding dispersive

modes are denoted by L(*). The two solutions of
(53) are obtained as

034024-8



GENERAL STRUCTURE OF FERMION TWO-POINT ...

PHYS. REV. D 97, 034024 (2018)

(i) Ly=|L|; mode L™);

L,—iL,
- |L|+L. )
LI+L,| — -
Uy=- | H; : ! :<w1‘ ), (54a)
2|L| 0 0
0
(i) Ly = —|L|; mode L;
1
|Z| oL Ly+iL, =)
Uy = | =2 EHE ] = (""L > (54b)
2|L| 0 0
0
We note here that I/J(Li) and y/f) are only chiral eigenstates

but neither the spin nor the helicity eigenstates.

2. For lowest Landau level (LLL)

(1) R?,, =0 in (31b) indicates that R, = %R,
R, =R, = 0. The two solutions obtained, respec-
tively, in (B5) and (B6) in Appendix B are given as

(i) Ry = R,; mode R™);
0
0 0

Uy = = ( > (55a)
1 X+
0

(ii) Ry = —R.; mode R7);

0
0 0

Upor = - : (55b)
0 -
1

where y, = (}) and y_ = (9).

(2) For LLL, L}, =0 in (3la) indicates that
Ly=+=L, L,=L,=0. The two solutions ob-
tained, respectively, in (B7) and (B8) in Appendix B
are given as

(56a)

(i) Lo = —L.; mode L),

1
0 -()
0 0/
0

The spin operator along the z direction is given by

Uy = (56b)

. 3
3 o2 _ Yooy a10_© 0
=0 —z[y,y]—tw—<0 03), (57)

where o with single index denotes Pauli spin matrices and

that with double indices denotes the generator of the
Lorentz group in spinor representation. Now,

o= (5 2)(0 )= ()
K 0 o) \x« oy

0
- i( ) U, (58)
X+
o 0 X oy
u=(3 2))-(5)
L <0 03>< 0 0
=F ({j) =F UL(i). (59)

So, the modes L(~) and R*) have spins along the direction
of magnetic field whereas L(*) and R(-) have spins
opposite to the direction of magnetic field. Now we discuss
the helicity eigenstates of the various modes in LLL. The
helicity operator is defined as

Hs=p- <. (60)
When a particle moves along +z direction, p = Z and when
it moves along —z direction, p = —2Z. Thus,
>3 for p. >0,
H; = { P (61)
-3, for p, <O.
Thus,
+Upy, for p. >0,
HUpr = { K ) (62)
UR(i), for p; < 0
and
U,+, for > 0,
HPUL(i) - { L " (63)
+U;w, forp, <0
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il N

FIG. 1.

E. Dispersion

In the presence of a magnetic field, the component of
momentum transverse to the magnetic field is Landau
quantized and takes discrete values given by p? = 2l|qB],
where [ is a given Landau levels. In the presence of a pure
background magnetic field and no heat bath (T = 0), the
Dirac equation gives rise to a dispersion relation,

E? = p24+m}+ (2w +1)q/|Q|B — q;0Bo. (64)

where v =0,1,2,..., Q = +1, 6 = +1 for spin up and
o = —1 for spin down. The solutions are classified by
energy eigenvalues,

E} = p? +m; +2lq;B, (65)
where one can define
2l=(2v+1)|Q| - Qo. (66)

Now we discuss the dispersion properties of a fermions in a
hot magnetized medium. For the general case (for higher
LLs, [ # 0), the dispersion curves are obtained by solving
L? =0 and R?> = 0 given in (30a) and (30b), numerically.
We note that the roots of Ly = +|L| = Lo F |L| = 0 are
represented by L*) with energy @, ), whereas those for
Ry = £|R| = Ry T |R| = 0 by R® with energy wpw.
The corresponding eigenstates are obtained in (54a), (54b),
(52a) and (52b) in subsection IIID 1. We have chosen
T =02 GeV, a; = 0.3 and g;B = 0.5m3, where m, is the
pion mass. In Fig. 2, the dispersion curves for higher
Landau levels are shown where all four modes can
propagate for a given choice of Q. This is because the
corresponding states for these modes are neither spin nor
helicity eigenstates as shown in subsection III D 1. We also
note that there will be negative energy modes which are not
displayed here but would be discussed in the analysis of the
spectral representation of the effective propagator Sec. V.

AtLLL/ =0 — p, = 0andtheroots of Ry = £R, give
rise to two right-handed modes R®) with energy e
whereas those for Ly = £L, produce4 two left-handed
modes L*) with energy o .. In Appendix D, the analytic
solutions for the dispersion relations in LLL are presented
which show four different modes and the corresponding

*We make a general note here for left-handed modes at LLL.
At small p,, L, itself is negative for LLL and becomes positive
after a moderate value of p,. This makes the left-handed modes
L) and L) to flip in LLL than those in higher Landau levels.
For details, see Appendix D.

Diagrammatic representation of the Dyson-Schwinger equation for one-loop effective fermion propagator.

eigenstates are obtained in subsection III D 2. Now, at LLL,
we discuss two possibilities below:
(1) for positively charged fermion Q = 1, 6 = 1 implies

v=0 and ¢ = —1 implies v = —1. Now we note
that v can never be negative. This implies that the
modes with Q = 1 and ¢ = —1 (spin down) cannot

propagate in LLL. Now, the right-handed mode R+
and the left-handed mode L(~) have spin up as
shown in subsection III D 2, will propagate in LLL
for p, > 0. The R™*) mode has helicity to chirality
ratio +1 is a quasiparticle whereas the mode L(~)
left-handed has that of —1 known as plasmino (hole).
However, for p, < 0, the right-handed mode flips to
plasmino (hole) as its chirality to helicity ratio
becomes -1 whereas the left-handed mode becomes
particle as its chirality to helicity ratio becomes +1.
The dispersion behavior of the two modes are shown
in the left panel of Fig. 3 which begins at mass
my7l, —o as given in (D13).

(i) for negatively charged fermion Q = -1, o6 =1
implies v = —1 and ¢ = —1 implies v = 0. Thus,
the modes with Q =—1 and ¢ = +1 (spin up)
cannot propagate in LLL. However, the modes
L™) and R) have spin down as found in sub-
section IIID2 will propagate in LLL. Their
dispersion are shown in the right panel of Fig. 3
which begin at mass m;}, as given in (D13). For
p. > 0, the mode L(*) has helicity to chirality ratio
+1 whereas R has that of —1 and vice-versa
for p, <O.

In the absence of the background magnetic field (B = 0),
the two modes, the left-handed L) and the right-handed
R™) fermions, merge together whereas the other two
modes, the left-handed L) and the right-handed RG)
fermions, also merge together. This leads to degenerate
(chirally symmetric) modes for which the dispersion plots
start at m,;, and one gets back the usual HTL result [49] with
quasiparticle and plasmino modes in the presence of a heat
bath as shown in Fig. 4.

As evident from the dispersion plots (Figs. 2 and 3) both
left- and right-handed modes are also degenerate at p, = 0
in the presence of a magnetic field but at nonzero |p,| both
left- and right-handed modes get separated from each
others, causing a chiral asymmetry without disturbing
the chiral invariance (subsection IIIC 1) in the system.
Also in subsection III C2 it was shown that the fermion
propagator does not obey the reflection symmetry in the
presence of a medium, which is now clearly evident from
all dispersion plots as displayed above.
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FIG. 2. Dispersion plots for higher Landau level, [ # 0. The energy w is scaled with the thermal mass m,, for convenience.
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FIG. 3.

Dispersion plots for LLL, / = 0. The energy w is scaled with the thermal mass m,, for convenience. For details, see the text.

IV. THREE-POINT FUNCTION

The (N + 1)-point functions are related to the N-point functions through Ward-Takahashi (WT) identity. The three-point
function is related to the two-point function as

0,1 (P.K: Q) = 57 (P) = 57 (K) = P = K = X(P) + X(K)
= (P= )= (EO(P.T) — SOK.T)) - (PP T) ~ SPAK.T)
——

Free Thermal or HTL correction Thermomagnetic correction
= @+ alpo. |B)P + b(po. | Bk — alko. [K)K = b(ko. [K]) + b'(po. p.1. p2)ysit
+ ¢ (pos P p)ysik — b (ko ko k)ysih — (ko k oy k2 )y,

(67)
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where Q = P — K. We note that recently the general form of the thermomagnetic corrections for three-point [66,67] and
four-point [67] functions have been given in terms of the involved angular integrals, which satisfy WT identities.
Nevertheless, to validate the general structure of the self-energy in (16) vis-a-vis the inverse propagator in (25), we obtain

below the temporal component of the three-point function at g = 0; p = k and p =k

Using (23a), (23b), (23c) and (23d), we can obtain

2 2
m m o M
TP K Q)|s—0 = ro——28Q07" +—2560,(p - 7) -
pq P40 P40

0

72

[6Q0rs + %5Q1(iy‘72)]73

Thermal or HTL correction

Thermomagnetic correction

— 0+ 6y (P K2 Q) + 6T (P K: Q). (68)

with

ysy’ = —iy'y*y’,
M? = 4Crg*?M*(T, m, qB),

a-oft)olt) @

where Q; are the Legendre functions of the second kind
given in (A7a) and (A7b). Important to note that the
thermomagnetic (TM) correction 8%, matches exactly
with that from direct calculation in (C5) in Appendix C.
The result also agrees with the HTL three-point function
[66,67] in the absence of the background magnetic field by
setting B=0= M' =0 as

2 2
Do (P K 0)lg=0 = [1 —ﬂéQo] 7° +%5Q1(15 “7)
P40 P40

() .
=7 +51—%TL(P,K,Q), (70)
2.0
1.5
il
§1.0
3
0.5 ¢=0 L™
ggB=0 | R
ag=0.3
T=0.2 GeV L
_____ RO
0.0
-2 -1 0 1 2
pz/mth

FIG. 4. The dispersion plots corresponding to HTL propagator
in the absence of a magnetic field, i.e., B = 0.

|
where all components, i.e., (0,1,2,3), are relevant for a pure
thermal background.

Now in the absence of a heat bath, setting 7 =0 =
my, =0 and M? = 4Crg*M*(T = 0,m, q;, B), the tem-
poral three-point function in (68) reduces to

M12
T3(P K Q)lg—0 = 1"
B )|q 0 P4

50075 + 500 (ir') |

Pure magnetic correction
(71)
=90+ Ty (P, K; Q). (72)

We now note that this is the three-point function with pure
background magnetic field but no heat bath. The gauge
boson is oriented along the field direction and there is no
polarization in the transverse direction. Thus, only the
longitudinal components (i.e., (0, 3) components) of the
three-point function would be relevant for pure background
magnetic field in contrast to that of (70) for pure thermal
background.

V. SPECTRAL REPRESENTATION OF THE
EFFECTIVE PROPAGATOR

In this section, we obtain the spectral representation of
the effective propagator in a hot magnetized medium. This
quantity is of immense interest for studying the various
spectral properties, real and virtual photon production,
damping rates and various transport coefficients etc. of
the hot magnetized medium, in particular, for hot magnet-
ized QCD medium.

A. General case

The effective propagator as obtained in (29) is given by

. L R
S :P_FP++P+FP_, (73)

where /. and R can be written in the rest frame of the heat
bath and the magnetic field in the z-direction following
(27a) and (27b), respectively, as
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L = [(1+a(po, p))po + b(po, p) + b'(po, pr, p)Ir° = [(1+ a(po, p))p- + ¢'(po, L, PP
= (I+a(po, P))(r- )1
= [(1+a(po. p))po + b(po, p) + b'(po. pos p)IY° = [p(1 + a(po. P))(r - p) = ¢'((pos P1. PV
= 91(po, L, PI)° = 91 (Pos PL. P) (7 - P) = 91 (Po- PL, P2)Ys (74)

S

o~

R = [(1+a(po, p))po + b(po. p) = ' (po. pL, p)IY° = [(1 + a(po. p))p. = ¢ (o, pL. PV
x (=1 +a(po.p))(r-p)1
= [(1 +a(po. P))po + b(po, p) = b'(po. p1. PNV’ = [p(1 + a(po, P))(y - P) + ¢'(po. P, P2V
= 9k(Po> PL P)T° = 9%(Po- L. ) (7 - P) + gk (Por PLs P)Y, (75)

where p = p/|p|, p = |p| and, p, and p, are given, respectively, in (22b) and (22c). We also note that though g7 = g2;
g = g», but they are treated separately for the sake of notations that we would be using, for convenience, as ¢; and gi. One
can decompose the effective propagator into six parts by separating out the y matrices as

91 (Po. P1.P2)
L2

0p gr(PosPLs D)

e

2 3
91 (pos P1sP2) PP, 91 (Po. P1, P2)

* 0
S =P_y'P, 12 2

—P_(r-p)P+

2 3
_P(y p)p K (Po-P1.P2) | PP 9r(Po-P1 D) (76)

+ Py R R

In subsection III E, we have discussed that L? = 0 yields four poles, leading to four modes with both positive and negative
energy as +w;(p.,p,) and Fw,-(p.,p,). Similarly, R> =0 also yields four poles, namely Fwpw (p.,p.)

and +wpe) (pL, p:)-
With this information one can obtain the spectral representation [49,72—74] of the effective propagator in (76) as

p=(Py°"Po)pr = (P_(r- )P )pi — (P_r’Py)pi + (Py"P_)pk — (Pi(y - P)P-)pk + (Pir*P_)px.  (77)

where the spectral function corresponding to each of the term can be written as

1 gL
=—Im
P s (LZ)

= Zy0(P1.p2)8(po = @1 (P Ly p2)) + Z5 (P 1 p2)8(po + @10 (P L. P2))
+ Z S(pisp2)d(po = @po (posp2) + Z7 L (prs p2)8(po + @0y (s p2)) + BLs (78)

1 gR
i =—Im

= Zy (P1:P)8(po = wper (P L P2)) + Zig (P12 )3 (Po + @gen (1. P2))
+ Z (pr p2)8(po = wpr (P p2)) + Zi (P P2)8(Po + @i (P p2)) + B, (79)

where i = 1, 2, 3. We note that the delta functions are associated with pole parts originating from the timelike domain
(p% > p?), whereas the cut parts ﬁi( g) are associated with the Landau damping arises from the spacelike domain, p(z) < p2

of the propagator. The residues Zi< x) are determined at the various poles as

AL (R?)|-

Zl sgn of pole
dpo

ww (PP = gy (Pos p)'

(80)

po=pole

As a demonstration, we present analytical expressions of three residues corresponding to the pole py = 4+, + as
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15ILL, B=0.5m?, T=200 MeV 15'LL, B=0.5m?%, T=200 MeV
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FIG. 5. Different Residues for the first LL (I = 1) are plotted with scaled momentum along the magnetic field direction.

P(P2 - a)iu))[ ( log( ) 2pwy i+ ) + Mlzpz(zp Wy “) log( +ﬂhﬁ)}

I+ _

Z6 = P o .
iy [SP (@p ) + M2/m3,p.) + log( p>X}

I s >Pmmm+p> myoy o log (512)|

Lo = e .

mtzh [817 ( Mlz/mzhpz) + log( p) }
+

-~ —M2p3 (7 - 7)) log (422

L = @, 1)+ ’

m?h [8p4(a)L + M/2/mthpz) + lo g(—wL( )_Z)X]
where X = 2p3(M” = 2m2,) + 2M? pp? + M@, p3 log(L—" ) The other poles of L?> = 0 can trivially be found out

by replacing w; +) in the above expressions. The expressions for the residues for R parts can similarly be expressed as the L
parts, but we do not show them.
)

|
Below, in Fig. 5, we present the residues corresponding Re(g}) = po — M"” P % <1 _ WPzPO) Qo(
L) = 2 2

to the first Landau level where all the terms are present. We p P m?, p? p
take the value of the magnetic field as m2/2 and temperature (83)
to be 200 MeV.
Now, the expressions for the cut parts . . are given 2 M2
| o Im(g}) =57 (1 - =P (84)
below: 2 mg, p’
, . 2
o1 Im(g} )Re(L?)—Im(L?)Re(g}) 2y _ 2y o M|y _Po Po
i —1@(p2— p2 L L) 31 Re(g7) =Re(gz) = p + 1 Qo . (85)
b o (P>— %) (Re(L?))?+ (Im(L?))? (81) p P p
p
Im(g7) = Im(gz) = mmj, 5 (86)

(g} Re(R?) ~Im(RRefy) ¢ "2p7

(Re(R)? 1 (Im(R%))? /
w@=m@b%%(

|
B ==0(p*-pj)
T
Po

p

) (87)

where
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JTM/2
Im(g;) = Im(g3) = — , 88
(6) = () = -3 (58)
and
2 M/Z
Re(gx) = po +M'2p—§—% <1 +_2p21290> Qo(‘@ >,
p p mth p p

(89)

zm? M” p.po
Im(gl)———’h<1+— z ) (90)

K 2 p m12h P2

Also, we obtain

Re(L?) = A, +BLQ0<‘%D + C<Q3( Po

) -%)

(1)
Im(L2) = %— Qo< @>C, (92)
Re(R2) _AR+BRQO< %) +C<Q5< @> —’9,

(93)
Im(R?) = -% - 7rQ0< % )c, (94)

LLL, B=0.5m%, T=200 MeV

0.40

0.35

i
L+

0.30

0.25

0.0 0.5 1.0 1.5 2.0

pz/mth

LLL, B=0.5m?%, T=200 MeV

0.40

0.35

i
R+

0.30

0.25

0.0 0.5 1.0 1.5 2.0

pz/ My

4 2 "2
m 2M"pop M"p
Ap = p}—p*—2m} ——4 - S, (95)
0 th= 2 P s
m4 2M/2p0p M/4p2
Ag = pg = p* = 2my, =4+ S, (96)
0 th pz pz p4
g, — 2Mipo _2M"p.  2M"pip. 2M"pop:
L= 3 + 3 5 ’ ( )
p p P p
By = 2o 2M°p. 2MPpip. M pop? g
R = 3 3 5 ’
14 V4 )4 p
mb — M pimt MPpip?
C — th 5 _ 0 4th + 60 4 . (99)
p P V4
B. LLL case

For LLL, as p, =0, so gi(R) and gi(R) in (74) and (75)
can now be merged as
917 = [(1+a(po, p))p: + ¢'(po. P)IF,

gz =1+ a(po. p))p. = ¢'(po. )1

The spectral function corresponding to LLL reads as

puiL = (P_y"P)pl — (P_y*PL)pt"

+ (PyP_)pk — (Por*Po)pr. (100)
where one needs to determine

LLL, B=0.5m%, T=200 MeV

—_— 1
Z_

—_— 2+3
Zi T

I
N oo
-0.1 gl
02} _.-=7
PR
0.0 0.5 1.0 1.5 2.0
pz/mth
LLL, B=0.5m2, T=200 MeV
0.2 = zh
—_— 2+3
0.1 -
S S
-0.1 ’,»/’
-0.2 ‘,f”’
0.0 0.5 1.0 1.5 2.0
pz/mlh

FIG. 6. Different Residues for the LLL (I = 0) are plotted with scaled momentum along the magnetic field direction.
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243
243 __ lIm gL(R)
PLR) = L2(RY))

which can again be represented in terms of different
residues corresponding to different poles of L?(R*) =0
as in Eq. (79). In Fig. 6, the variation of the residues for the
lowest Landau level are shown.

In Appendix E, we have demonstrated how one gets back
the HTL spectral functions when magnetic field is with-
drawn from the thermal medium.

VI. CONCLUSIONS

In this article, the general structure of fermionic self-
energy for a chirally invariant theory has been formulated
for a hot and magnetized medium. Using this we have
obtained a closed form of the general structure of the
effective fermion propagator. The collective excitations in
such a nontrivial background have been obtained for
timelike momenta in the weak-field and HTL approxima-
tion in the domain m2,(~¢g*T? < |q,B| < T*. We found
that the left- and right-handed modes get separated and
become asymmetric in the presence of a magnetic field
which were degenerate and symmetric otherwise. The
transformation of the effective propagator in a hot mag-
netized medium under some of the discrete symmetries
have been studied and its consequences are also reflected in
the collective fermion modes in the Landau levels. We have
also obtained the Dirac spinors of the various collective
modes by solving the Dirac equation with the effective two-
point function. Further, we checked the general structure of
the two-point function by obtaining the three-point function
using the Ward-Takahashi identity, which agrees with the
direct calculation of one-loop order in weak-field approxi-
mation. We also found that only the longitudinal compo-
nent of the vertex would be relevant when there is only
background magnetic field. The spectral function corre-
sponding to the effective propagator is explicitly obtained
for a hot magnetized medium which will be extremely
useful for studying the spectral properties, e.g., photon/
dilepton production, damping rate, and transport coeffi-
cients for a hot magnetized medium. This has pole
contribution due to the various collective modes originating
from the timelike domain and a Landau cut contribution
appearing from the spacelike domain. It has explicitly been
shown that the spectral function reduces to that obtained for
thermal medium in the absence of the magnetic field. Our
formulation is in general applicable to both QED and QCD
with nontrivial background such as a hot magnetized
medium.
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APPENDIX A: COMPUTATIONS OF
STRUCTURE FUNCTIONS IN ONE LOOP
IN A WEAK-FIELD APPROXIMATION
FOR A HOT MAGNETIZED QCD MEDIUM

Here, we present the computations of the various
structure functions in (21a) to (21d) in one-loop order
(Fig. 7) in a weak-field and HTL approximations following
the imaginary time formalism. In Fig. 7, the modified quark
propagator (bold line) due to background magnetic field is
given in (A3). Since glouns are chargeless, their propa-
gators do not change in the presence of a magnetic field.
The gluon propagator in Feynman gauge, is given as [41]

v

D" (Q) = —iéang”z.

We note that we would like to explore the fermion spectrum
in a hot magnetized background in the limit m} < ¢,B <

(A1)

T2. In this domain, the fermion propagator is obtained by
expanding the sum over all Landau levels in powers of ;B

in (7) and keeping up to O([g,B)?], it reads as

K—l—mf KH—me
S(K)=1i j ———qg+B
( ) le_mz_Flyl}/Z(Kz_m%)QQf
Kj+my |- mi >
+2 (Kz—m§)4Kl_(K2_m2)4Kl (CIfB)
K+m . f
= i T NP 0rB + Olla YL
f

(A2)

where the first term is the free propagator and the second
one is O[gB] correction to it. Now combining (A2) and
(11) the fermion propagator in background magnetic field
reads as

Q=P-K

P P
—> > >
K

FIG. 7. One-loop fermion self-energy in a hot magnetized
medium.
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K vs[(K.n)jf — (K.u)f]

S(K)=1i -
K? — m?- (K?* - mj%)2

x (qyB) + Ol(qB)’]
= ST=0(K) + 5,7(K) + Ol(qB)?).

(A3)

where the fermion mass in the numerator has been
neglected in the weak-field domain, m} < (¢,B) < T*.

The one-loop quark self-energy up to O(|g,B|) can be
written as

Z: K
X(P) = *C¢T -
( ) gCFr {K}Vﬂ <K2 — m§

Kn)y—(K.u 1
- (KZ) g m%»)2 = B) " Pokp

~¥B=9(P, T) + £8#9(P, T) = 20 + 25.

(A4)

where ¢ is the QCD coupling constant, Cr = 4/3 is the
Casimir invariant of SU(3) group, T is the temperature of
the system. The first term is the thermal bath contribution in
the absence of a magnetic field (B = 0) whereas the second
one is from the magnetized thermal bath.

Using (A4) in (21a) and (21b), the structure functions a
and b, respectively, become

L ITe(Z0P) — (Pa) Tr(=")

alpo. ) =y D PN (s
— w)Tr 0 2 T 0
blp ) =y~ D ETER (asty

where the contributions coming from X? vanish due to the
trace of odd number of y matrices. Following the well-
known results in Ref. [69], one can write

- m? Po
alr 7)) = =50, <|m>

-5 [30)-o(6)} o
D=7 52\~ 2\jp) | (Ao

where the Legendre functions of the second kind read as

04(x) :%1n<x+ 1>’

(Ab6a)

b(Po,

P (A7a)

0,1 =20 -1 =3m(*E) -1 am)

and the thermal mass [69,72] of the quark is given as

g2 T2

The thermal part of the self-energy in (A4) becomes
B=0(P, T) =P, T)
1
= @2C TZ: K u
TEri g Tk — 2’ (P =K
= —a(po. [p)P — b(po. [P)#.

Again using (A4) in (21c) and (21d), the structure
functions b’ and ¢/, respectively, become

(A9)

b =~ Trlirs=h), (A10)

o= %Tr(ﬂ%ZB), (AL1)

where the contributions coming from X° vanish due to the
trace of odd number of y matrices. For computing the above
thermomagnetic structure functions, one needs to use the
following two traces:

Trlysyurs[(K.n)f — (K.u)f]y'] = 8(K.n), — (A12)

Trifysy,rs[(K.n)f — (K.u)fly'] = 8(K.u).  (Al3)

With this one can obtain

b = 2g2CFquBI (Kn)AL(K)AR(P —K),  (Al4)
4k

(K.u)A2(K)Ap(P - K), (A15)

= —ZQZCFquBI
{K}

where the boson propagator in Saclay representation is
given by

s ~
AB(K) = —A dTekOTAB(T, k)

and
By(r.k) = D e ap(K)
ko

= Jwp [1 + ng(w)]e™ + ng(wy)e™ }

where the sum is over ko = 2zinT and w} = k> + m}% Also
the fermion propagator in Saclay representation reads

p ~
AF(K) = —[)' dTekOTAF(T, k)

and
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Rp(r.k) = S e A (K)

1
= 2w, [1 = np(wy)]e™" — np(wy)e”}
where the sum above is over kg = (2n + 1)ziT. Now
following HTL approximation in the presence of a mag-
netic field [66,68] the (A14) and (A15) are simplified as

dQK -n

b' = —4g*CpM*(T, my, q;B) 4z p- kK
dQ K -u

¢ _492CFM2(T’mf’qu)/Eﬁ.

Using the results of the HTL angular integrations [67]

dQK -u 1 p°
/47rP~K 51~ \I7] (A16)
dQK -n P’ pP

e —__ﬂQl(T , (A17)
4z P-K || 4

the thermomagnetic structures functions become
P PO
b' = 4G CpM* (T, my, qsB) = 0, <q> (A18)
' Pl P
! 2 2 1 P°
¢' =4g°CpM*(T, mf’q_fB)ﬂQo ) (A19)

with the magnetic mass is obtained as

9,8 [m(z) —lg].

1677:2 mf

M*(T,mg, q;B) = (A20)
We note here that for m; — 0, the magnetic mass
diverges but it can be regulated by the thermal mass my,
in (A8) as is done in Refs. [66,67]. Then the domain of
applicability becomes m? (~4*T?) < q;B < T? instead
of m} < q;B < T*.

The thermomagnetic part of the self-energy in (A4)
becomes

AP, T) =XB(P,T) = —gchquBiyﬂ

sl (K= (K], 1
& —my T (P-KP

= =b'(po. 1PDysi = ¢'(po. [PD)rsit. (A21)

Now combining (A9), (A21) and (A4), the general
structure of quark self-energy in hot magnetized QCD
becomes

ph
pI# =75 (po.

p|) = —a(po.|p|)P — b(po,
- 75]7/(1707

Z(Po,

pD#-

which agrees quite well with the general structure as
discussed in (16) and also with results directly calculated
in Refs. [66-68].

(A22)

APPENDIX B: SOLUTION OF THE MODIFIED
DIRAC EQUATION AT LOWEST LANDAU
LEVEL (LLL)

At LLL, /- 0= p, =0 and the effective Dirac
equation becomes

(PoL+P-RU =0

RO_GaRZ)U—O

0
( (B1)
LO +63LZ 0

where U = (g;) with g are 2 x 1 blocks. Now, the
condition for the nontrivial solution to exist is given as

0 RO - 63RZ
det 1 =0
Ly+c’L, 0

[(Ro)? = (R)[(Lo) = (L. = 0

or, Ry = %R_, Ly==L,, (B2)
(i) Case-I: For Ry = R_, one can write (B1) as
0 0 0 0
0 0 0 2R,
Lo+ L, 0 0 0
0 Ly—L, 0 0
o
@
YL o, (B3)
)
YR
o
which leads to the following conditions:
2sz§3) =0,
1
(Lo+ Loy =0,
(Lo =Ly =0,
wg) = arbitrary. (B4)

For normalization, we choose only the nonzero

component, z//g) — 1, which leads to
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0
0
Uil =1, (BS)
0
Now, for Ry = —R_, similarly, one can obtain
0
0
(=)
Up’ = B6
O=1, (B6)
1
(ii) Case-II: For Ly = L,, one gets
0
vt = | ! (B7)
L - )
0
0
whereas for Ly = —L_, one finds
1
v =0 (B8)
0
0

APPENDIX C: VERIFICATION OF THE
THREE-POINT FUNCTION FROM
DIRECT CALCULATION

In this appendix, we would verify the general structure of
the temporal three-point function as obtained in sec. IV
using the general structure of the self-energy.

We begin with the one-loop level three-point function in
a hot magnetized medium in [67] within HTL approxima-
tion [48,75] as
[#(P.K: Q) = 1 + 6%y (P.K) + 6T (P.K).  (C1)
where the external four-momentum Q = P — K. The HTL
correction part [49,74,75] is given as

Sy (P, K) = mzthMYv

th 47t(P-f/)(K-f/)y”
= 5F’;ITL(_P’ —K), (CZ)

where ¥, = (1.9) is a lightlike four-vector, and the
thermomagnetic (TM) correction part [66,67] is given

dQ 1
ST (P, K) = 4ysg*C M2/—ﬁ
TM( ) V59 Cr in (P-Y)(K~Y)

< [(V - mgh = (V- )] ¥ (C3)

Now, choosing the temporal component of the thermo-
magnetic correction part of the three-point function and
external three momentum ¢ = 0, we get

ST\ (P, K) 5
,2/d9 1 . A
=ysM R se—— : :
4z (P-Y)(K-Y)

Crde 1 )
= Vst/Hm[(Y'n)Vo + (Y- u)y’]

Along with this following identity:

< 11 >_ o-vy o
K-¥Y P.Y) (P-V)K-¥) (P-P)K-V)

and, (A16) and (A17), we one finally obtain

M/2p M/2
2 . 5Q17’57’0 -
p~4q

0 P40

5Qors7’

2

M P .
=- {5Q07’5 +=80:(ir'r*) |,
P90 14

(Cs)

where 60, = 0, (%) - Qn(%o). We note that this expres-

sion matches exactly with the expression obtained in (72)
from the general structure of fermion self-energy.

APPENDIX D: ANALYTICAL SOLUTION
OF THE DISPERSION RELATIONS AND
THE EFFECTIVE MASS IN LLL

The dispersion relations at LLL can be written the
Egs. (31a) and (31b) as

L = (Apo+By)* = (Ap,+ ) =L§—-L: =0,
(Dla)

Ri;, = (Apo+B_)* = (Ap,—')* =R —R: =0,

(D1b)
each of which leads to two modes, respectively, as
LO = :i:LZ
Apg+ B, =+(Ap. + '), (D2a)
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and

Ry = +R,

Apo+B_ =+(Ap, - ). (D3a)
Below we try to get approximate analytical solution of
these equations at small and high p, limits.

1. Low p, limit

In the low p, region, one needs to expand a(py, |p.|),
b(po. |p.]), b'(Po.0, p;) and ¢’(py. |p.|) defined in (23a),
(23b), (23c) and (23d), respectively, which depend on
Legendre function of second kind Qgy(x) and Q;(x) as
given in Eqgs. (A7a) and (A7b), respectively. The Legendre
function Q, and structure coefficients are expanded in

powers of % as

llpzl3 Lp.P

Po |pz|
Q< > Loty s ek (DY)
“\Ip.| 305 5

m? 1|p.|?
alpolpd) = =" (34320 ) )

0 0

m? (1 1 |p,
blpolpd) = 2" (34 0] 0o

0

2
b'(po.0,p,) =4g*CrM*(T,m.qB)p, 2+|p2| -,
375 5ps

(D7)

2
P
' (po. |p2|) = 44> CrM*(T. m, qB)< " Z3| +)
Po Po

(D8)

Now retaining the terms that are up to the order of p, in
(D5), (D6), (D7), (D8), we obtain the following expressions
for the dispersion relation of Vanous modes:

(1) Ly =L, leads to a mode L) a
1
wp(pz) =mir, +3 3P (D9)
(2) Ly =—L, leads to a mode L) as
. 1
w o (p:) =mip - ng' (D10)
(3) Ry = R, leads to a mode R*) as
. 1
g (P2) = mi7, + 3P (D11)

(4) Ry = —R, leads to a mode R as

wp- (p2) = mHL ng' (D12)

where the effective masses of various modes are given as

. \/m%h +4g2CyM*(T, M. q,B), for LI*) &R,
mrrr =

\/m%h —4¢*CpM*(T,M,q;B), for RO &L ).

(D13)

2. High p, limit

We note that p, can be written as

_ { Pl
P =
_|pz"

In high p, limit, we obtain
(1)

for p, >0
for p, <0

[+ a(po. 1p)](po = p.) + b(po.|p:|)

2
p0_|pz|_\r;ly_lzh\’ fOI‘pZ>O

2 2
2|p.| —Q—r;—’fl—r;—’z”‘ln( 2lp| ) for p, <0

po—Ip:|
(D14)
(ii)
[1+ a(po. Ip:D](Po + p2) + (o, |P:I)
? o 2|p.
B 2|p.] +% —%ln(m‘_”‘[)‘z‘), for p. >0
= .
p0_|pz|_ﬁ’ fOI‘pZ<0
(D15)
(1ii)
b'(po. 0. p;) + ¢'(po. |p:|)
442 CpM? 2lp.| | _ 44CrM?
_ \Pzr\ ln(ﬂo—\ﬂz\) \ﬂzrl , forp, >0
492‘55‘”12 for p, <0
(D16)
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(iv)
b'(po. 0, p;) = c'(po. |p:|)
—492‘(1’;31”2 for p. >0
- 4P CrM? 2|p.| 44 CpM?
\Pf\ ln(m—\ﬂzl) + ‘pf‘ - forp, <0
(D17)
(1) Ly = L, leads to a mode L(*):
For p, > 0,
it )2
oy () = Ipel + ZHL - (pr)
|p.|
For p, <0,
2|p 2p?
w(p.) = |p.l +Mexp < = 2) (D19)
(mirr)
(2) Ly = —L, leads to a mode LO):
For p, > 0,
2|p.| 2p?
_ = c - - . D20
oy (pe) =lpdl+ = Polewp (~ P ). (020
For p, <0,
me 2
oo (pe) = Ipel + AL ooy
|p.|
(3) Ry =R, leads to a mode RH):
For p, > 0,
2
m
oo (p) = Ip + TS (D)
Z
For p, <0,
2|p 2p?
o (p)= o + 2P exp (225 ). 020y
€ (mizr
(4) Ry = —R, leads to a mode R):
For p, > 0,
2|p.| 2p?
o=l lexp (20 ). (o2
mprp
For p, <0,

(m*+ )2
Wp-) (pz) = |pz‘ + |LLT (D25)
Z
Note that, in the high-momentum limit, the above

dispersion relations are given in terms of absolute values
of p., ie., |p,|.

We further note that the above dispersion relations in the
absence of the magnetic field reduce to HTL results, where
left- and right-handed are degenerate.

APPENDIX E: RECOVERING HTL
SPECTRAL FUNCTION

One can easily get back to the HTL thermal spectral
function from (77) by turning off the magnetic field, i.e.,
B=0= b'=¢ =0, and one gets the following simpli-
fications:
9ilp—o = 9kls—0 = 9" Gils—0 = Gklp—0 =
92|B:o = g?e|3:0 =0, (E1)
Lo =R|p_o = H% Wp [p—o = Wpeo =0 = 0.

(E2)
PLl—o = Prle—o =0"s  Pils—o = Pkls—0 = %
P’lp—o =0 (E3)

These implies that the spectral function can be written as

ple—o =7" = (r-p)p*. (E4)
Now the HTL spectral function [49,73] is given by

1 ) 1 )
PHTL :E(J’O—J"P>P+ +§(70+7'P),0—
1 1,
=370 +p) =5 P)ps—p). (ES)

where p_. are the HTL spectral function. Since the spectral
has both pole and cut part, comparing (E4) and (ES5), one
gets for the pole parts

pole 5 LO—&-P;;I(}% + p—|§<}12;] (E6)
pole 5 LU+ ;ﬁl‘ _p—|§£§]’ (E7)

and for the cut parts
cut [:B+ |£—LT[‘L + ﬂ— |EJ1;L] (ES)

o = [ﬂ+ an = B-lan]- (E9)

Now one can obtain either (78) or (79):
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[Z56(po — ) + Z8(po + @)
+[Z568(po —w_) + Z18(po + _)).

P |pole
(E10)

When the magnetic field is turned off, the different residues
can be read from their analytical expressions as given in
Sec. V as

2 2
__wy—p 1
VANEAY =-Z., (E11)
4m?, 2
)
it =z =P 27 (E12)
4dmy, 2

1
P ool = 5 [Z,8(po — wy) + Z,6(po + @)
1
T3 [Z_5(po—w_) +Z_5(py + »_)]
1
=5 [Z,.6(po — ;) + Z_6(py + )]

1
+=[Z_8(py— o_

ol )+ Z.8(po + 0,)

1
= 5[‘0+|];(;[1‘:; +p- |pole} (E13)
which agrees with (E6).

Now the other nonzero component of the spectral
function can be reduced as

PPlooe = [2576(po -

pole — (1)+> + Zi_‘s(l’o + w+)]

+[22°6(py —o-) + Z28(po + @-)].  (E14)
where Z,. = (w.? — p?)/2m?, are the residues correspond-
ing to the modes w*. Using these, one can write (E10) as  along with the remaining nonzero residues as
|
+
e W —p?  oymylog(G=t) = 2p(myp, + p?) _ A =p 1, (E15)
" " 4my, 2p*w, — pmy, IOg(w++P) 4m3, 2™
and
w_ +p 2 2
Z%+ _ —Z%_ _ a)% —2p2 w_ mth log( ) 2p( + V4 ) _ 60% —2]72 — lZ_ (E16)
4my, 2p w_ — pm;h log(w _p) 4mg, 2
Note that we have used the respective dispersion 1 2 5 1
relations coming from H? =0, in the last line of (E15) p! = l@(p2 - p%)lm(g JRe(H') ZIZm(H JRe(g ),
and (E16) for further simplifications. Now (E14) can be T ||
rewritten as (E18)
1 1 Im(g?)Re(H?) — Im(H?)Re(g?
P50 = 12,8060~ 0,) = Z.5(p0 + 0.) = Lo - iy MHRAI IR,
1
~5[2-6(po~0_) = Z_5(po + ) (E19)
1
=5 [Z,6(po — @) + Z_8(po + w_)] where, for the zero magnetic field case,
1
—512-8(po— ) + Z,5(po + )]
2 H =L =R|po= (9" +9°)(¢' —¢*) =H_H.,

HTL HTL

1
=35 [p+ pole p—|pole]’ (E17)
2

which agrees with (E7).
In the absence of a magnetic field, one can write the cut
parts from the general expression of 8 in (82) as

(E20)

where following the same convention as before H_ =
g +g andH, =g' - ¢

The real and imaginary parts of H? can be written in
terms of H_ and H, as
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Re(H?) + ilm(H?) = (Re(H_) + ilm(H_))(Re(H ) + ilm(H ,))

= [Re(H_)Re(H,) —Im(H_)Im(H )] + i[Re(H_)Im(H, ) + Re(H  )Im(H_)].  (E2I)
Now we can write down
1 (Im(g') +Im(¢*))Re(H*) — Im(H?)(Re(g') + Re(g*))
B+ B =—0(p* - pj)
x 0 [H_PIH,
1 Im(H_)Re(H?) — Im(H?*)Re(H_)
=-0(p* - p;)
m 0 \H\|*|H,?
1 Im(H.)
=—-0 2 _ 52 +
T (p pO) |H+|2
- ﬁm?h( _%)
 Hpo—p (1 - B log | B2 |+ 2)F + T (1 -
Po=P T3 p/ 08 p=p ap? P
—p.. (E22)
and similarly
1 Im(H_)
1 _ 52 20 2 _ 2 ,
ﬂ ﬁ T (p pO) |H_|2
B ﬁm%h(l + %)
- m? 2 2Pmt ’
{po+p =30 ((1+5) log | Bb | —2)}" + 500 (1 + 22)?)
=p- (E23)
where both (E22) and (E23) agree with the HTL cut parts [49,73].
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