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We have systematically constructed the general structure of the fermion self-energy and the effective
quark propagator in the presence of a nontrivial background such as a hot magnetized medium. This is
applicable to both QED and QCD. The hard thermal loop approximation has been used for the heat bath.
We have also examined transformation properties of the effective fermion propagator under some of the
discrete symmetries of the system. Using the effective fermion propagator we have analyzed the fermion
dispersion spectra in a hot magnetized medium along with the spinor for each fermion mode obtained by
solving the modified Dirac equation. The fermion spectra is found to reflect the discrete symmetries of the
two-point functions. We note that for a chirally symmetric theory the degenerate left- and right-handed
chiral modes in vacuum or in a heat bath get separated and become asymmetric in the presence of a
magnetic field without disturbing the chiral invariance. The obtained general structure of the two-point
functions is verified by computing the three-point function, which agrees with the existing results in one-
loop order. Finally, we have computed explicitly the spectral representation of the two-point functions
which would be very important to study the spectral properties of the hot magnetized medium
corresponding to QED and QCD with background magnetic field.
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I. INTRODUCTION

In noncentral heavy ion collision (HIC) experiments in
LHC at CERN and in RHIC at BNL, it is believed that a
very strong magnetic field is created in the direction
perpendicular to the reaction plane due to the spectator
particles that are not participating in the collisions. The
experiments conducted by PHENIX Collaboration [1]
showed direct-photon anisotropy which has posed a serious

challenge to the present theoretical models. It is conjectured
that this excess elliptic flow may be due to the excess
photons produced by the decay ρ → πðηÞγ and the branch-
ing ratio of which increases in the presence of the magnetic
field near the critical value where the condensate of ρ is
found. The estimated strength of this magnetic field
depends on collision energy and impact parameter between
the colliding nuclei and is about several times the pion mass
squared, i.e., eB ∼ 15m2

π at LHC in CERN [2]. Also, a class
of neutron star called magnetar exhibits [3–5] a magnetic
field of 1018–1020 Gauss at the inner core and
1012–1013 Gauss at the surface. These observations moti-
vate to study the properties of hot magnetized medium
using both phenomenology and quantum field theory.
The presence of a strong magnetic field in HIC

influences the QCD phase transitions [6] and particle
productions, especially the production of the soft photon
[7] and dileptons [8–13], which act as a probe of the
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medium. Apart from these, there is a large class of other
phenomena that take place in the presence of a background
magnetic field such as chiral magnetic effects due to axial
anomalies [14–16], magnetic catalysis [17,18], inverse
magnetic catalysis [19,20], and superconductivity of the
vacuum [21]. It further influences the thermal chiral and
deconfining phase transition [22], change of topological
charge [23], anomalous transports [24], refractive indices
[25,26] and screening mass [27], and decay constant [28] of
neutral mesons, etc. In addition, efforts were also made to
study the bulk properties for a Fermi gas [29], low lying
hadrons [30] and strongly coupled systems [31], collective
excitations in magnetized QED medium [32] using Ritus
method and QCD medium [33] using Furry’s picture,
neutrino properties [34,35] and field theory of the
Faraday effects [36,37].
The magnetic field created in HIC lasts for very short

time (∼ a few fm). The strength of the field decays rapidly
with time after τ ∼ 1–2 fm/c. However, the medium effects
such as electric conductivity can delay the decay and by the
time deconfined quarks and gluons equilibrate with QGP
medium, the magnetic field strength gets sufficiently weak.
At that time the relevant energy scales of the system can be
put in this way: qfB < m2

π ≪ T2. In this low-field limit, the
properties of the deconfined medium are also affected. So,
it becomes important to treat the weak-field limit
separately. Fermion propagator in the presence of a uniform
background magnetic field has been derived first by
Schwinger [38]. Using this, one-loop fermion self-energy
and the vacuum polarization was calculated in double
parameter integral in [39,40], respectively. The weak-field
expansion of this propagator was calculated order by order
in powers of qfB in [41]. Recently, the pion self-energy and
its dispersion property have been studied at zero temper-
ature [42] in weak-field approximation and using full
propagator at finite temperature [43]. Also a detailed study
of the spectral properties of ρ mesons has been performed
in the presence of a magnetic field both at zero [44,45] and
at nonzero temperature [46].
For a hot and densemedium (e.g., QEDandQCDplasma),

it is well known that a bare perturbation theory breaks down
due to infrared divergences. A reorganization of the pertur-
bation theory has been done by performing the expansion
around a system of massive quasiparticles [47], where mass
is generated through thermal fluctuations. This requires a
resummation of a certain class of diagrams, known as hard
thermal loop (HTL) resummation [48], when the loop
momenta are of the order of the temperature. This reorgan-
ized perturbation theory, known as HTL perturbation theory
(HTLpt), leads to gauge-independent results for various
physical quantities [49–65]. Within this one-loop HTLpt,
the thermomagnetic correction to the quark self-energy [66],
quark-gluon three-point [66] function at zero chemical
potential, and four-point [67] function at finite chemical
potential in the weak-field limit have been computed. The

fermion self-energy has also been extended to the case of
nonzero chemical potential and the pressure of a weakly
magnetized QCD plasma [68] has also been obtained.
In recent years, a huge amount of activity is underway to

explore the properties of a hot medium with a background
magnetic field using phenomenology as well as using
thermal field theory. In a thermal medium, the bulk and
dynamical properties [48,69,70] are characterized by the
collective excitations in a timelike region and the Landau
damping in a spacelike domain. The basic quantity asso-
ciated with these medium properties is the two-point
correlation function. In this work, we construct the general
structure of the fermionic two-point functions (e.g., self-
energy and the effective propagator) in a nontrivial back-
ground such as a hot magnetized medium. We then analyze
its property under the transformation of some discrete
symmetries of the system, the collective fermionic spectra,
QED-like three-point functions and the spectral represen-
tation of the two-point function and its consequences in a
hot magnetized medium. The formulation is applicable
equally well to both QED and QCD.
The paper is organized as follows; In Sec. II, the

notation and set up are briefly discussed through a
fermion propagator in a constant background field using
Schwinger formalism. Section III has number of parts
in which we obtain the general structure of the self-energy
(subsection III A), the effective fermion propagator
(subsection III B), the transformation properties and discrete
symmetries of the effective propagator (subsection III C),
the modified Dirac equations in general and for lowest
Landau level (subsection III D) and the dispersion properties
of the various collectivemodes (subsection III E) in timelike
region. In Sec. IV, the general structure of the self-energy
and the propagator has been verified from one-loop direct
calculation. The spectral representation of the effective
propagator in spacelike domain has been obtained in
Sec. V. We have presented some detailed calculations for
various sections and subsections in Appendix A–E. Finally,
we conclude in Sec. VI.

II. CHARGED FERMION PROPAGATOR
IN BACKGROUND MAGNETIC FIELD
WITHIN SCHWINGER FORMALISM

In this section, we set the notation and briefly outline the
fermionic propagator in the presence of a background
magnetic field following Schwinger formalism [38].
Without any loss of generality, the background magnetic
field is chosen along the z direction, B⃗ ¼ Bẑ, and the vector
potential in a symmetric gauge reads as

Aμ ¼
�
0;−

yB
2
;
xB
2
; 0

�
: ð1Þ

Below we also outline the notation we shall be using
throughout:
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aμ ¼ ða0; a1; a2; a3Þ ¼ ða0; a⃗Þ;
a · b≡ a0b0 − a⃗ · b⃗; gμν ¼ diagð1;−1;−1;−1Þ;
aμ ¼ aμk þ aμ⊥; aμk ¼ ða0;0;0; a3Þ;
aμ⊥ ¼ ð0; a1; a2;0Þ gμν ¼ gμνk þ gμν⊥ ;

gμνk ¼ diagð1;0;0;−1Þ; gμν⊥ ¼ diagð0;−1;−1;0Þ;
ða · bÞ ¼ ða · bÞk − ða · bÞ⊥; ða · bÞk ¼ a0b0 − a3b3;

ða · bÞ⊥ ¼ a1b1 þ a2b2; =a¼ γμaμ ¼ =ak þ=a⊥;
=ak ¼ γ0a0 − γ3a3; =a⊥ ¼ γ1a1 þ γ2a2; ð2Þ

where k and ⊥ are, respectively, the parallel and
perpendicular components, which would be separated
out due to the presence of the background magnetic field.
Now, the fermionic two-point function is written as

Sðx; x0Þ ¼ −iCðx; x0Þ
Z

∞

0

ds
1

s sinðqfBsÞ
× expð−im2

fsþ iqfBsΣ3Þ

× exp

�
−

i
4s

�
ðx − x0Þ2k −

qfBs

tanðqfBsÞ
ðx − x0Þ2⊥

��

×

�
mf þ

1

2s

�
ð=xk − =x0kÞ −

qfBs

sinðqfBsÞ

× expð−iqfBsΣ3Þð=x⊥ − =x0⊥Þ
��

; ð3Þ

where the parameter s is called Schwinger proper time
variable [38]. We note thatmf and qf are mass and absolute
charge of the fermion of flavor f, respectively. The phase
factor, Cðx; x0Þ, is independent of s but is responsible for
breaking of both gauge and translational invariance.
Remaining part, denoted as Sðx − x0Þ, is translationally
invariant. However, as shown below, Cðx; x0Þ drops out for
a gauge invariant calculation. Now Cðx; x0Þ reads as

Cðx; x0Þ ¼ C exp

�
iqf

Z
x

x0
dξμ

�
AμðξÞ þ

1

2
Fμνðξ − x0Þν

��
;

ð4Þ

where C is just a number. The integral in the exponential is
independent of the path taken between x and x0 and,
choosing it as a straight line, one can write

Cðx; x0Þ ¼ CΦðx; x0Þ ¼ C exp

�
iqf

Z
x

x0
dξμAμðξÞ

�
: ð5Þ

Using the gauge transformation AμðξÞ → AμðξÞ þ ∂μΛðξÞ,
and choosing the symmetric gauge as given in (1), the
phase factor Φðx; x0Þ becomes 1 if we take [66]

ΛðξÞ ¼ B
2
ðx02ξ1 − x01ξ2Þ: ð6Þ

From Eq. (3), the momentum space propagator can be
obtained as

SðKÞ¼
Z

d4xeiK·xSðx−x0Þ

¼−i
Z

∞

0

dsexp

�
is

�
K2

k−
tanðqfBsÞ
qfBs

K2⊥−m2
f

��
× ½ð1þ γ1γ2 tanðqfBsÞÞð=Kk þmfÞ− sec2ðqfBsÞ=K⊥�

¼ expð−K⊥2/jqfBjÞ
X∞
l¼0

ð−1Þn DnðqfB;KÞ
K2

k−m2
f−2ljqfBj

;

ð7Þ

where k2⊥ ¼ 2ljqfBj, is quantized with Landau level
l ¼ 0; 1;…, and

DlðqfB;KÞ ¼ ð=Kk þmfÞ
�
ð1 − iγ1γ2ÞLl

�
2
K⊥2

jqfBj
�

− ð1þ iγ1γ2ÞLl−1

�
2
K⊥2

jqfBj
��

− 4=K⊥L1
l−1

�
2
K⊥2

jqfBj
�
; ð8Þ

where LlðxÞ is Laguerre polynomial, Lj
lðxÞ is associated

Laguerre polynomial with Lj
−1ðxÞ ¼ 0 and both j is a non-

negative integer.
Below we discuss the structure of the propagator in (7)

in the presence of the background magnetic field. Since
the fermion propagator is 4 × 4 matrix, a new matrix
ð=Kk þmfÞiγ1γ2 appears in addition to that of the vacuum
structure (α0=K, α0ðK2Þ is a Lorentz invariant structure
function) for a chirally symmetric theory. One can now
write the new matrix for a chirally symmetric theory in
terms of background electromagnetic field tensor Fρλ as

iγ1γ2=KkB ¼ −γ5KμF̃μνγ
ν; ð9Þ

where the background dual field tensor reads as

F̃μν ¼
1

2
ϵμνρλFρλ: ð10Þ

The structure of a chirally symmetric free fermion propa-
gator in the presence of only a magnetic field can be
viewed as (α0=K þ δ0γ5KμF̃μνγ

ν), where δ0 is a new structure
constant that appears due to the presence of a background
magnetic field. When a fermion propagates only in a hot
medium, then the vacuum part will be modified only due to
the thermal background [69] as (α0=K þ β0=u), where u is the
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four-velocity of the heat bath. When a fermion moves in a
nontrivial background such as a hot magnetized medium,
then one can write (9) as

iγ1γ2=Kk ¼ −γ5½ðK:nÞ=u − ðK:uÞ=n�; ð11Þ

where

nμ ¼
1

2B
ϵμνρλuνFρλ ¼ 1

B
uνF̃μν: ð12Þ

and the four-velocity in the rest frame of the heat bath and
the direction of the magnetic field B, respectively, given as

uμ ¼ ð1; 0; 0; 0Þ; ð13aÞ

nμ ¼ ð0; 0; 0; 1Þ: ð13bÞ

One can notice that in a hot magnetized medium both u
and n are correlated as given in (12) and the contribution
due to magnetic field in (9) in the presence of a heat
bath becomes a thermomagnetic contribution. We also
further note that in the absence of a heat bath, (11) reduces
to (9), which is not obvious by inspection but we would
see later.

III. GENERAL STRUCTURE OF FERMION
TWO-POINT FUNCTION IN A HOT

MAGNETIZED MEDIUM

In the previous section, the modification of a free
propagator has been discussed briefly in the presence of
a background magnetic field. In this section, we would like
to obtain the most general structure of a fermion self-
energy, the effective fermion propagator and some of its
properties in a nontrivial background such as a hot
magnetized medium. We would also discuss the modified
Dirac equation and the fermion dispersion spectrum in a hot
magnetized medium. For a thermal bath, we would use
HTL approximation and any other approximation required
for the purpose will be stated therein.

A. General structure of the fermion self-energy

The fermionic self-energy is a matrix as well as a Lorentz
scalar. However, in the presence of a nontrivial background,
e.g., heat bath and magnetic field, the boost and rotational
symmetries of the system are broken. The general structure
of fermion self-energy for hot magnetized medium can be
written by the following arguments. The self-energy ΣðPÞ
is a 4 × 4 matrix which depends, in present case, on
the four-momentum of the fermion P, the velocity of the
heat bath u and the direction of the magnetic field n. Now,
any 4 × 4 matrix can be expanded in terms of 16 basis
matrices: f1; γ5; γμ; γμγ5; σμνg, which are the unit matrix,
the four γ matrices, the six σμν matrices, the four γ5γμ

matrices and finally γ5. So, the general structure can be
written as

ΣðPÞ ¼ −α1− βγ5 − aP− b=u− c=n− a0γ5P− b0γ5=u− c0γ5=n

− hσμνPμPν − h0σμνuμuν − κσμνnμnν − dσμνPμuν

− d0σμνnμPν − κ0σμνuμnν; ð14Þ

where various coefficients are known as structure functions.
We note that the combinations involving σμν do not appear
due to antisymmetric nature of it in any loop order of self-
energy. Also in a chirally invariant theory, the terms α1 and
γ5β will not appear as they would break the chiral
symmetry. The term γ5=P would appear in the self-energy
if fermions interact with an axial vector.1 By dropping
those in (14) for chirally symmetric theory, one can now
write

ΣðPÞ ¼ −a=P − b=u − c=n − b0γ5=u − c0γ5=n: ð15Þ

Now we point out that some important information is
encoded into the fermion propagator in (7) through (11) for
a hot magnetized medium. This suggests that c=n should not
appear in the fermion self-energy2 and the most general
form of the fermion self-energy for a hot magnetized
medium becomes

ΣðPÞ ¼ −aP − b=u − b0γ5=u − c0γ5=n: ð16Þ

When a fermion propagates in a vacuum, then b ¼ b0 ¼
c0 ¼ 0 and ΣðPÞ ¼ −a=P. But when it propagates in a
background of pure magnetic field without any heat bath,
then a ≠ 0, b ¼ 0 and the structure functions, b0 and c0, will
depend only on the background magnetic field as we will
see later. When a fermion propagates in a heat bath, then
a ≠ 0, b ≠ 0 but both b0 and c0 vanish because there would
not be any thermomagnetic corrections as can also be
seen later.
We now write down the right chiral projection operator,

Pþ and the left chiral projection operator P−, respectively,
defined as:

Pþ ¼ 1

2
ð1þ γ5Þ; ð17aÞ

P− ¼ 1

2
ð1 − γ5Þ; ð17bÞ

1The presence of an axial gauge coupling leads to chiral or
axial anomaly and a chirally invariant theory does not allow this.
Other way, the preservation of both chiral and axial symmetries is
impossible, a choice must be made which one should be
preserved. For a chirally invariant theory, this term drops out.
Also the presence of γ5 in a Lagrangian violates parity invariance.2We have checked that even if one keeps c=n, the coefficient c
becomes zero in one-loop order in the weak-field approximation.
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which satisfy the usual properties of projection operator:

P2
� ¼ P�; PþP− ¼ P−Pþ ¼ 0;

Pþ þ P− ¼ 1; Pþ − P− ¼ γ5: ð18Þ

Using the chirality projection operators, the general struc-
ture of the self-energy in (16) can be casted in the following
form

ΣðPÞ ¼ −Pþ=CP− − P−DPþ; ð19Þ

where =C and =D are defined as

=C ¼ aPþ ðbþ b0Þ=uþ c0=n; ð20aÞ

D ¼ aPþ ðb − b0Þ=u − c0=n: ð20bÞ

From (16) one obtains the general form of the various
structure functions as

a ¼ 1

4

TrðΣPÞ − ðP:uÞTrðΣ=uÞ
ðP:uÞ2 − P2

; ð21aÞ

b ¼ 1

4

−ðP:uÞTrðΣPÞ þ P2TrðΣ=uÞ
ðP:uÞ2 − P2

; ð21bÞ

b0 ¼ −
1

4
Trð=uΣγ5Þ; ð21cÞ

c0 ¼ 1

4
Trð=nΣγ5Þ; ð21dÞ

which are also Lorentz scalars. Beside T and B, they would
also depend on three Lorentz scalars defined by

ω≡ Pμuμ; ð22aÞ

p3 ≡ −Pμnμ ¼ pz; ð22bÞ

p⊥ ≡ ½ðPμuμÞ2 − ðPμnμÞ2 − ðPμPμÞ�1/2: ð22cÞ

Since P2 ¼ ω2 − p2⊥ − pz
2, we may interpret ω, p⊥, pz as

Lorentz invariant energy, transverse momentum, longi-
tudinal momentum respectively. All these structure func-
tions for one-loop order in a weak field and HTL
approximations have been computed in Appendix A and
quoted here3 as

aðp0; jp⃗jÞ ¼ −
m2

th

jp⃗j2Q1

�
p0

jp⃗j
�
; ð23aÞ

bðp0; jp⃗jÞ ¼
m2

th

jp⃗j
�
p0

jp⃗jQ1

�
p0

jp⃗j
�
−Q0

�
p0

jp⃗j
��

; ð23bÞ

b0ðp0; jp⃗jÞ ¼ 4CFg2M2ðT;mf; qfBÞ
pz

jp⃗j2 Q1

�
p0

jp⃗j
�
;

ð23cÞ

c0ðp0; jp⃗jÞ ¼ 4CFg2M2ðT;mf; qfBÞ
1

jp⃗jQ0

�
p0

jp⃗j
�
:

ð23dÞ

We note that the respective vacuum contributions in a, b0
and c0 have been dropped by the choice of the renormal-
ization prescription, and the general structure of the self-
energy, as found in Appendix A, agrees with that in (16).

B. Effective fermion propagator

The effective fermion propagator is given by Dyson-
Schwinger equation (see Fig. 1) which reads as

S�ðPÞ ¼ 1

P − ΣðPÞ ; ð24Þ

and the inverse fermion propagator reads as

S�−1ðPÞ ¼ P − ΣðPÞ: ð25Þ

Using (19) the inverse fermion propagator can be
written as

S�−1ðPÞ ¼ Pþ½ð1þ aðp0; jp⃗jÞÞPþ ðbðp0; jp⃗jÞ
þ b0ðp0; p⊥; pzÞÞ=uþ c0ðp0; jp⃗jÞ=n�P−

þ P−½ð1þ aðp0; jp⃗jÞÞPþ ðbðp0; jp⃗jÞ
− b0ðp0; p⊥; pzÞÞ=u − c0ðp0; jp⃗jÞ=n�Pþ

¼ Pþ=LP− þ P−=RPþ; ð26Þ

where =L and =R can be obtained from two four-vectors
given by

Lμðp0; p⊥; pzÞ ¼ Aðp0; jp⃗jÞPμ þ Bþðp0; p⊥; pzÞuμ
þ c0ðp0; jp⃗jÞnμ; ð27aÞ

Rμðp0; p⊥; pzÞ ¼ Aðp0; jp⃗jÞPμ þ B−ðp0; p⊥; pzÞuμ
− c0ðp0; jp⃗jÞnμ; ð27bÞ

with

3In the weak-field approximation, the domain of applicability
becomes m2

thð∼g2T2Þ < qfB < T2 instead of m2 < qfB < T2 as
discussed in Appendix A.
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Aðp0; jp⃗jÞ ¼ 1þ aðp0; jp⃗jÞ; ð28aÞ

B�ðp0; p⊥; pzÞ ¼ bðp0; jp⃗jÞ � b0ðp0; p⊥; pzÞ: ð28bÞ

Using (26) in (24), the propagator can now be written as

S�ðPÞ ¼ P−
=L
L2

Pþ þ Pþ
=R
R2

P−; ð29Þ

where we have used the properties of the projection oper-
ators P�γμ ¼ γμP∓, P2

� ¼ P�, and PþP− ¼ P−Pþ ¼ 0.
It can be checked that S�ðPÞS�−1ðPÞ ¼ Pþ þ P− ¼ 1.
Also we have

L2¼LμLμ¼ðAp0þBþÞ2− ½ðApzþc0Þ2þA2p2⊥�
¼L2

0− jL⃗j2; ð30aÞ

R2 ¼ RμRμ ¼ ðAp0 þB−Þ2 − ½ðApz − c0Þ2 þA2p2⊥�
¼ R2

0 − jR⃗j2; ð30bÞ

where we have used u2 ¼ 1, n2 ¼ −1, u · n ¼ 0,
P · u ¼ p0, and P · n ¼ −pz. Note that we have suppressed
the functional dependencies of L, R, A, B� and c0 and
would bring them back whenever necessary.
For the lowest Landau level (LLL), l ¼ 0 ⇒ p⊥ ¼ 0,

and these relations reduce to

L2
LLL ¼ ðAp0 þ BþÞ2 − ðApz þ c0Þ2 ¼ L2

0 − L2
z ; ð31aÞ

R2
LLL ¼ ðAp0 þ B−Þ2 − ðApz − c0Þ2 ¼ R2

0 − R2
z : ð31bÞ

The poles of the effective propagator, L2 ¼ 0 and R2 ¼ 0,
give rise to quasi-particle dispersion relations in a hot
magnetized medium. There will be four collective modes
with positive energies: two from L2 ¼ 0 and two from
R2 ¼ 0. Nevertheless, we will discuss dispersion proper-
ties later.

C. Transformation properties of structure
functions and propagators

First, we outline some transformation properties of the
various structure functions as obtained in (23a), (23b),
(23c) and (23d).
(1) Under the transformation p⃗ → −p⃗ ¼ ðp⊥;−pzÞ,

aðp0; j − p⃗jÞ ¼ aðp0; jp⃗jÞ; ð32aÞ

bðp0; j − p⃗jÞ ¼ bðp0; jp⃗jÞ; ð32bÞ

b0ðp0; p⊥;−pzÞ ¼ −b0ðp0; p⊥; pzÞ; ð32cÞ

c0ðp0; j − p⃗jÞ ¼ c0ðp0; jp⃗jÞ: ð32dÞ

(2) For p0 → −p0:

að−p0; jp⃗jÞ ¼ aðp0; jp⃗jÞ; ð33aÞ
bð−p0; jp⃗jÞ ¼ −bðp0; jp⃗jÞ; ð33bÞ

b0ð−p0; p⊥; pzÞ ¼ b0ðp0; p⊥; pzÞ; ð33cÞ

c0ð−p0; jp⃗jÞ ¼ −c0ðp0; jp⃗jÞ: ð33dÞ

(3) For P → −P ¼ ð−p0;−p⃗Þ:
að−p0; j − p⃗jÞ ¼ aðp0; jp⃗jÞ; ð34aÞ

bð−p0; j − p⃗jÞ ¼ −bðp0; jp⃗jÞ; ð34bÞ

b0ð−p0; p⊥;−pzÞ ¼ −b0ðp0; p⊥; pzÞ; ð34cÞ

c0ð−p0; j − p⃗jÞ ¼ −c0ðp0; jp⃗jÞ: ð34dÞ

We have used the fact that Q0ð−xÞ ¼ −Q0ðxÞ
and Q1ð−xÞ ¼ Q1ðxÞ.

Now based on the above, we also note the transformation
properties of those quantities appearing in the propagator:
(1) For A:

Aðp0; p⊥; pzÞ ⟶
p⃗→−p⃗

Aðp0; p⊥; pzÞ; ð35aÞ
Aðp0; p⊥; pzÞ ⟶

p0→−p0 Aðp0; p⊥; pzÞ; ð35bÞ

Aðp0; p⊥; pzÞ ⟶
p0→−p0

p⃗→−p⃗
Aðp0; p⊥; pzÞ: ð35cÞ

(2) For B�:

B�ðp0; p⊥; pzÞ ⟶
p⃗→−p⃗

B∓ðp0; p⊥; pzÞ; ð36aÞ

B�ðp0; p⊥; pzÞ ⟶
p0→−p0 − B∓ðp0; p⊥; pzÞ; ð36bÞ

B�ðp0; p⊥; pzÞ ⟶
p0→−p0

p⃗→−p⃗
− B�ðp0; p⊥; pzÞ: ð36cÞ

Using the above transformation properties, it can be
shown that =L, =R, L2 and R2, respectively given in (27a),
(27b), (30a) and (30b) transform as

=Lðp0; p⊥; pzÞ ⟶
p⃗→−p⃗

Aðp0; jp⃗jÞðp0γ
0 þ p⃗ · γ⃗Þ

þ B−ðp0; p⊥; pzÞ=uþ c0ðp0; jp⃗jÞ=n; ð37aÞ

=Rðp0; p⊥; pzÞ ⟶
p⃗→−p⃗

Aðp0; jp⃗jÞðp0γ
0 þ p⃗ · γ⃗Þ

þ Bþðp0; p⊥; pzÞ=u − c0ðp0; jp⃗jÞ=n; ð37bÞ

L2ðp0; p⊥; pzÞ ⟶
p⃗→−p⃗

R2ðp0; p⊥; pzÞ; ð37cÞ

R2ðp0; p⊥; pzÞ ⟶
p⃗→−p⃗

L2ðp0; p⊥; pzÞ; ð37dÞ
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and

=Lðp0; p⊥; pzÞ ⟶
p0→−p0

p⃗→−p⃗
−=Lðp0; p⊥; pzÞ; ð38aÞ

=Rðp0; p⊥; pzÞ ⟶
p0→−p0

p⃗→−p⃗
−=Rðp0; p⊥; pzÞ; ð38bÞ

L2ðp0; p⊥; pzÞ ⟶
p0→−p0

p⃗→−p⃗
L2ðp0; p⊥; pzÞ; ð38cÞ

R2ðp0; p⊥; pzÞ ⟶
p0→−p0

p⃗→−p⃗
R2ðp0; p⊥; pzÞ: ð38dÞ

Now we are in a position to check the transformation
properties of the effective propagator under some of the
discrete symmetries:

1. Chirality

Under chirality the fermion propagator transform
as [71]

Sðp0; p⃗Þ → −γ5Sðp0; p⃗Þγ5: ð39Þ
The effective propagator, S�ðp0; p⊥; pzÞ, in (29) trans-

forms under chirality as

− γ5S�ðp0; p⊥; pzÞγ5
¼ −γ5P−

=Lðp0; p⊥; pzÞ
L2ðp0; p⊥; pzÞ

Pþγ5

− γ5Pþ
=Rðp0; p⊥; pzÞ
R2ðp0; p⊥; pzÞ

P−γ5

¼ Pþ
=Lðp0; p⊥; pzÞ
L2ðp0; p⊥; pzÞ

Pþ þ P−
=Rðp0; p⊥; pzÞ
R2ðp0; p⊥; pzÞ

P−

¼ S�ðp0; p⊥; pzÞ; ð40Þ
which satisfies (39) and indicates that it is chirally invariant.

2. Reflection

Under reflection the fermion propagator transforms
[71] as

Sðp0; p⃗Þ → Sðp0;−p⃗Þ: ð41Þ
The effective propagator, S�ðp0; p⊥; pzÞ, in (29) trans-

forms under reflection as

S�ðp0; p⊥;−pzÞ ¼ P−
=Lðp0; p⊥;−pzÞ
L2ðp0; p⊥;−pzÞ

Pþ þ Pþ
=Rðp0; p⊥;−pzÞ
R2ðp0; p⊥;−pzÞ

P−

¼ P−
Aðp0; jp⃗jÞðp0γ

0 þ p⃗ · γ⃗Þ þ B−ðp0; p⊥; pzÞ=uþ c0ðp0; jp⃗jÞ=n
R2ðp0; p⊥; pzÞ

Pþ

þ Pþ
Aðp0; jp⃗jÞðp0γ

0 þ p⃗ · γ⃗Þ þ Bþðp0; p⊥; pzÞ=u − c0ðp0; jp⃗jÞ=n
L2ðp0; p⊥; pzÞ

P−

≠ S�ðp0; p⊥; pzÞ: ð42Þ

However, now considering the rest frame of the heat bath, uμ ¼ ð1; 0; 0; 0Þ, and the background magnetic field along
z-direction, nμ ¼ ð0; 0; 0; 1Þ, one can write (42) as

S�ðp0; p⊥;−pzÞ ¼ P−
Aðp0; jp⃗jÞðp0γ

0 þ p⃗ · γ⃗Þ þ B−ðp0; p⊥; pzÞγ0 − c0ðp0; jp⃗jÞγ3
R2ðp0; p⊥; pzÞ

Pþ

þ Pþ
Aðp0; jp⃗jÞðp0γ

0 þ p⃗ · γ⃗Þ þ Bþðp0; p⊥; pzÞγ0 þ c0ðp0; jp⃗jÞγ3
L2ðp0; p⊥; pzÞ

P−

≠ S�ðp0; p⊥; pzÞ: ð43Þ

As seen in both cases the reflection symmetry is violated as we will see later while discussing the dispersion property of a
fermion.

3. Parity

Under parity a fermion propagator transforms [71] as

Sðp0; p⃗Þ → γ0Sðp0;−p⃗Þγ0: ð44Þ

The effective propagator, S�ðp0; p⊥; pzÞ, in (29) under parity transforms as
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γ0S�ðp0;p⊥;−pzÞγ0
¼ γ0P−

=Lðp0;p⊥;−pzÞ
L2ðp0;p⊥;−pzÞ

Pþγ0

þγ0Pþ
=Rðp0;p⊥;−pzÞ
R2ðp0;p⊥;−pzÞ

P−γ0

¼Pþγ0
=Lðp0;p⊥;−pzÞ
R2ðp0;p⊥;pzÞ

γ0P−þP−γ0
=Rðp0;p⊥;−pzÞ
L2ðp0;p⊥;pzÞ

γ0Pþ

≠S�ðp0;p⊥;pzÞ; ð45Þ

which does not obey (44), indicating that the effective
propagator in general frame of reference is not parity
invariant due to the background medium.
However, now considering the rest frame of the heat

bath, uμ ¼ ð1; 0; 0; 0Þ, and the background magnetic field
along z-direction, nμ ¼ ð0; 0; 0; 1Þ, one can write (45) by
using (37a), (37b) and γ0γ

i ¼ −γiγ0 as

γ0S�ðp0; p⊥;−pzÞγ0
¼ Pþ

=Rðp0; p⊥; pzÞ
R2ðp0; p⊥; pzÞ

P− þ P−
=Lðp0; p⊥; pzÞ
L2ðp0; p⊥; pzÞ

Pþ

¼ S�ðp0; p⊥; pzÞ; ð46Þ

which indicates that the propagator is parity invariant in the
rest frame of the magnetized heat bath. We note that other
discrete symmetries can also be checked but leave them on
the readers.

D. Modified Dirac equation

1. General case

The effective propagator that satisfy the modified Dirac
equation with spinor U is given by

ðPþ=LP− þ P−=RPþÞU ¼ 0: ð47Þ

Using the chiral basis,

γ0 ¼
�
0 1

1 0

�
; γ⃗ ¼

�
0 σ⃗

−σ⃗ 0

�
;

γ5 ¼
�−1 0

0 1

�
; U ¼

�
ψL

ψR

�
; ð48Þ

one can write (47) as

�
0 σ · R

σ̄ · L 0

��
ψL

ψR

�
¼ 0; ð49Þ

where ψR and ψL are two component Dirac spinors with
σ ≡ ð1; σ⃗Þ and σ̄ ≡ ð1;−σ⃗Þ, respectively. One can obtain
nontrivial solutions with the condition

det

�
0 σ · R

σ̄ · L 0

�
¼ 0

det½L · σ̄� det½R · σ� ¼ 0

L2R2 ¼ 0: ð50Þ

We note that for a given p0ð¼ ωÞ, either L2 ¼ 0, or R2 ¼ 0,
but not both of them are simultaneously zero. This implies
that i) when L2 ¼ 0, ψR ¼ 0; ii) when R2 ¼ 0, ψL ¼ 0.
These dispersion conditions are same as obtained from the
poles of the effective propagator in (29) as obtained in
subsection III B.
(1) For R2 ¼ 0 but L2 ≠ 0, the right chiral equation is

given by

ðR · σÞψR ¼ 0: ð51Þ

Again R2 ¼ 0 ⇒ R0 ¼ �jR⃗j ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
x þ R2

y þ R2
z

q
and the corresponding dispersive modes are denoted
by Rð�Þ. So the solutions of (51) are

ðiÞ R0 ¼ jR⃗j; mode RðþÞ;

URðþÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR⃗j þ Rz

2jR⃗j

s 0
BBBBB@

0

0

1
RxþiRy

jR⃗jþRz

1
CCCCCA ¼

�
0

ψ ðþÞ
R

�
;

ð52aÞ

ðiiÞ R0 ¼ −jR⃗j; mode Rð−Þ;

URð−Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR⃗j þ Rz

2jR⃗j

s 0
BBB@

0

0
Rx−iRy

jR⃗jþRz
:

−1

1
CCCA ¼

�
0

ψ ð−Þ
R

�
:

ð52bÞ

(2) For L2 ¼ 0 but R2 ≠ 0, the left chiral equation is
given by

ðL · σ̄ÞψL ¼ 0; ð53Þ

where L2 ¼ 0 implies two conditions; L0 ¼ �jL⃗j ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
x þ L2

y þ L2
z

q
and the corresponding dispersive

modes are denoted by Lð�Þ. The two solutions of
(53) are obtained as
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ðiÞL0¼jL⃗j; modeLðþÞ;

ULðþÞ ¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jL⃗jþLz

2jL⃗j

s 0
BBBBB@

Lx−iLy

jL⃗jþLz

−1
0

0

1
CCCCCA¼

�
ψ ðþÞ
L

0

�
; ð54aÞ

ðiÞ L0 ¼ −jL⃗j; mode Lð−Þ;

ULð−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jL⃗j þ Lz

2jL⃗j

s 0
BBB@

1
LxþiLy

jL⃗jþLz

0

0

1
CCCA ¼

�
ψ ð−Þ
L

0

�
: ð54bÞ

We note here that ψ ð�Þ
L and ψ ð�Þ

R are only chiral eigenstates
but neither the spin nor the helicity eigenstates.

2. For lowest Landau level (LLL)

(1) R2
LLL ¼ 0 in (31b) indicates that R0 ¼ �Rz,

Rx ¼ Ry ¼ 0. The two solutions obtained, respec-
tively, in (B5) and (B6) in Appendix B are given as

ðiÞ R0 ¼ Rz; mode RðþÞ;

URðþÞ ¼

0
BBB@

0

0

1

0

1
CCCA ¼

�
0

χþ

�
: ð55aÞ

ðiiÞ R0 ¼ −Rz; mode Rð−Þ;

URð−Þ ¼

0
BBB@

0

0

0

1

1
CCCA ¼

�
0

χ−

�
; ð55bÞ

where χþ ¼ ð1
0
Þ and χ− ¼ ð0

1
Þ.

(2) For LLL, L2
LLL ¼ 0 in (31a) indicates that

L0 ¼ �Lz, Lx ¼ Ly ¼ 0. The two solutions ob-
tained, respectively, in (B7) and (B8) in Appendix B
are given as

ðiÞ L0 ¼ Lz; mode LðþÞ;

ULðþÞ ¼

0
BBB@

0

1

0

0

1
CCCA ¼

�
χ−

0

�
; ð56aÞ

ðiÞ L0 ¼ −Lz; mode Lð−Þ;

ULð−Þ ¼

0
BBB@

1

0

0

0

1
CCCA ¼

�
χþ
0

�
: ð56bÞ

The spin operator along the z direction is given by

Σ3 ¼ σ1
2 ¼ i

2
½γ1; γ2� ¼ iγ1γ2 ¼

�
σ3 0

0 σ3

�
; ð57Þ

where σ with single index denotes Pauli spin matrices and
that with double indices denotes the generator of the
Lorentz group in spinor representation. Now,

Σ3URð�Þ ¼
�
σ3 0

0 σ3

��
0

χ�

�
¼

�
0

σ3χ�

�

¼ �
�

0

χ�

�
¼ �URð�Þ ; ð58Þ

Σ3ULð�Þ ¼
�
σ3 0

0 σ3

��
χ∓
0

�
¼

�
σ3χ∓
0

�

¼∓
�
χ∓
0

�
¼∓ ULð�Þ : ð59Þ

So, the modes Lð−Þ and RðþÞ have spins along the direction
of magnetic field whereas LðþÞ and Rð−Þ have spins
opposite to the direction of magnetic field. Now we discuss
the helicity eigenstates of the various modes in LLL. The
helicity operator is defined as

Hp⃗ ¼ p̂ · Σ⃗: ð60Þ

When a particle moves alongþz direction, p̂ ¼ ẑ and when
it moves along −z direction, p̂ ¼ −ẑ. Thus,

Hp⃗ ¼
	
Σ3; for pz > 0;

−Σ3; for pz < 0:
ð61Þ

Thus,

Hp⃗URð�Þ ¼
	�URð�Þ ; for pz > 0;

∓ URð�Þ ; for pz < 0:
ð62Þ

and

Hp⃗ULð�Þ ¼
	∓ ULð�Þ ; for pz > 0;

�ULð�Þ ; for pz < 0:
ð63Þ
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E. Dispersion

In the presence of a magnetic field, the component of
momentum transverse to the magnetic field is Landau
quantized and takes discrete values given by p2⊥ ¼ 2ljqfBj,
where l is a given Landau levels. In the presence of a pure
background magnetic field and no heat bath (T ¼ 0), the
Dirac equation gives rise to a dispersion relation,

E2 ¼ p2
z þm2

f þ ð2νþ 1ÞqfjQjB − qfQBσ; ð64Þ
where ν ¼ 0; 1; 2;…, Q ¼ �1, σ ¼ þ1 for spin up and
σ ¼ −1 for spin down. The solutions are classified by
energy eigenvalues,

E2
l ¼ p2

z þm2
f þ 2lqfB; ð65Þ

where one can define

2l ¼ ð2νþ 1ÞjQj −Qσ: ð66Þ
Now we discuss the dispersion properties of a fermions in a
hot magnetized medium. For the general case (for higher
LLs, l ≠ 0), the dispersion curves are obtained by solving
L2 ¼ 0 and R2 ¼ 0 given in (30a) and (30b), numerically.
We note that the roots of L0 ¼ �jL⃗j ⇒ L0 ∓ jL⃗j ¼ 0 are
represented by Lð�Þ with energy ωLð�Þ, whereas those for
R0 ¼ �jR⃗j ⇒ R0 ∓ jR⃗j ¼ 0 by Rð�Þ with energy ωRð�Þ.
The corresponding eigenstates are obtained in (54a), (54b),
(52a) and (52b) in subsection III D 1. We have chosen
T ¼ 0.2 GeV, αs ¼ 0.3 and qfB ¼ 0.5m2

π , where mπ is the
pion mass. In Fig. 2, the dispersion curves for higher
Landau levels are shown where all four modes can
propagate for a given choice of Q. This is because the
corresponding states for these modes are neither spin nor
helicity eigenstates as shown in subsection III D 1. We also
note that there will be negative energy modes which are not
displayed here but would be discussed in the analysis of the
spectral representation of the effective propagator Sec. V.
At LLL l ¼ 0 → p⊥ ¼ 0 and the roots of R0 ¼ �Rz give

rise to two right-handed modes Rð�Þ with energy ωRð�Þ

whereas those for L0 ¼ �Lz produce4 two left-handed
modes Lð�Þ with energy ωLð�Þ. In Appendix D, the analytic
solutions for the dispersion relations in LLL are presented
which show four different modes and the corresponding

eigenstates are obtained in subsection III D 2. Now, at LLL,
we discuss two possibilities below:

(i) for positively charged fermionQ ¼ 1, σ ¼ 1 implies
ν ¼ 0 and σ ¼ −1 implies ν ¼ −1. Now we note
that ν can never be negative. This implies that the
modes with Q ¼ 1 and σ ¼ −1 (spin down) cannot
propagate in LLL. Now, the right-handed mode RðþÞ

and the left-handed mode Lð−Þ have spin up as
shown in subsection III D 2, will propagate in LLL
for pz > 0. The RðþÞ mode has helicity to chirality
ratio þ1 is a quasiparticle whereas the mode Lð−Þ
left-handed has that of −1 known as plasmino (hole).
However, for pz < 0, the right-handed mode flips to
plasmino (hole) as its chirality to helicity ratio
becomes -1 whereas the left-handed mode becomes
particle as its chirality to helicity ratio becomes þ1.
The dispersion behavior of the two modes are shown
in the left panel of Fig. 3 which begins at mass
m�−

LLLjpz¼0 as given in (D13).
(ii) for negatively charged fermion Q ¼ −1, σ ¼ 1

implies ν ¼ −1 and σ ¼ −1 implies ν ¼ 0. Thus,
the modes with Q ¼ −1 and σ ¼ þ1 (spin up)
cannot propagate in LLL. However, the modes
LðþÞ and Rð−Þ have spin down as found in sub-
section III D 2 will propagate in LLL. Their
dispersion are shown in the right panel of Fig. 3
which begin at mass m�þ

LLL as given in (D13). For
pz > 0, the mode LðþÞ has helicity to chirality ratio
þ1 whereas Rð−Þ has that of −1 and vice-versa
for pz < 0.

In the absence of the background magnetic field (B ¼ 0),
the two modes, the left-handed LðþÞ and the right-handed
RðþÞ fermions, merge together whereas the other two
modes, the left-handed Lð−Þ and the right-handed Rð−Þ
fermions, also merge together. This leads to degenerate
(chirally symmetric) modes for which the dispersion plots
start atmth and one gets back the usual HTL result [49] with
quasiparticle and plasmino modes in the presence of a heat
bath as shown in Fig. 4.
As evident from the dispersion plots (Figs. 2 and 3) both

left- and right-handed modes are also degenerate at pz ¼ 0
in the presence of a magnetic field but at nonzero jpzj both
left- and right-handed modes get separated from each
others, causing a chiral asymmetry without disturbing
the chiral invariance (subsection III C 1) in the system.
Also in subsection III C 2 it was shown that the fermion
propagator does not obey the reflection symmetry in the
presence of a medium, which is now clearly evident from
all dispersion plots as displayed above.

= +
FIG. 1. Diagrammatic representation of the Dyson-Schwinger equation for one-loop effective fermion propagator.

4We make a general note here for left-handed modes at LLL.
At small pz, Lz itself is negative for LLL and becomes positive
after a moderate value of pz. This makes the left-handed modes
LðþÞ and Lð−Þ to flip in LLL than those in higher Landau levels.
For details, see Appendix D.
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IV. THREE-POINT FUNCTION

The (N þ 1)-point functions are related to the N-point functions through Ward-Takahashi (WT) identity. The three-point
function is related to the two-point function as

QμΓμðP;K;QÞ ¼ S−1ðPÞ − S−1ðKÞ ¼ P − =K − ΣðPÞ þ ΣðKÞ
¼ ðP − =KÞ|fflfflfflffl{zfflfflfflffl}

Free

− ðΣB¼0ðP; TÞ − ΣB¼0ðK; TÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Thermal or HTL correction

− ðΣB≠0ðP; TÞ − ΣB≠0ðK; TÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Thermomagnetic correction

¼ =Qþ aðp0; jp⃗jÞPþ bðp0; jp⃗jÞ=u − aðk0; jk⃗jÞ=K − bðk0; jk⃗jÞ=uþ b0ðp0; p⊥; pzÞγ5=u
þ c0ðp0; p⊥; pzÞγ5=n − b0ðk0; k⊥; kzÞγ5=u − c0ðk0; k⊥; kzÞγ5=n; ð67Þ

FIG. 3. Dispersion plots for LLL, l ¼ 0. The energy ω is scaled with the thermal mass mth for convenience. For details, see the text.

FIG. 2. Dispersion plots for higher Landau level, l ≠ 0. The energy ω is scaled with the thermal mass mth for convenience.
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where Q ¼ P − K. We note that recently the general form of the thermomagnetic corrections for three-point [66,67] and
four-point [67] functions have been given in terms of the involved angular integrals, which satisfy WT identities.
Nevertheless, to validate the general structure of the self-energy in (16) vis-a-vis the inverse propagator in (25), we obtain

below the temporal component of the three-point function at q⃗ ¼ 0; p⃗ ¼ k⃗ and p ¼ k.
Using (23a), (23b), (23c) and (23d), we can obtain

Γ0ðP;K;QÞjq⃗¼0 ¼ γ0−
m2

th

pq0
δQ0γ

0 þ m2
th

pq0
δQ1ðp̂ · γ⃗Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Thermal or HTL correction

−
M02

pq0
½δQ0γ5 þ

pz

p
δQ1ðiγ1γ2Þ�γ3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Thermomagnetic correction

¼ γ0 þ δΓ0
HTLðP;K;QÞ þ δΓ0

TMðP;K;QÞ; ð68Þ

with

γ5γ
0 ¼ −iγ1γ2γ3;

M02 ¼ 4CFg2M2ðT;m; qfBÞ;

δQj ¼ Qj

�
p0

p

�
−Qj

�
k0
p

�
: ð69Þ

where Qj are the Legendre functions of the second kind
given in (A7a) and (A7b). Important to note that the
thermomagnetic (TM) correction δΓ0

TM matches exactly
with that from direct calculation in (C5) in Appendix C.
The result also agrees with the HTL three-point function
[66,67] in the absence of the background magnetic field by
setting B ¼ 0 ⇒ M0 ¼ 0 as

Γ0
HTLðP;K;QÞjq⃗¼0 ¼

�
1 −

m2
th

pq0
δQ0

�
γ0 þ m2

th

pq0
δQ1ðp̂ · γ⃗Þ

¼ γ0 þ δΓ0
HTLðP;K;QÞ; ð70Þ

where all components, i.e., (0,1,2,3), are relevant for a pure
thermal background.
Now in the absence of a heat bath, setting T ¼ 0 ⇒

mth ¼ 0 and M02 ¼ 4CFg2M2ðT ¼ 0; m; qf; BÞ, the tem-
poral three-point function in (68) reduces to

Γ0
BðP;K;QÞjq⃗¼0 ¼ γ0−

M02

pq0

h
δQ0γ5 þ

pz

p
δQ1ðiγ1γ2Þ

i
γ3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pure magnetic correction

ð71Þ
¼ γ0 þ δΓ0

MðP;K;QÞ: ð72Þ
We now note that this is the three-point function with pure
background magnetic field but no heat bath. The gauge
boson is oriented along the field direction and there is no
polarization in the transverse direction. Thus, only the
longitudinal components (i.e., (0, 3) components) of the
three-point function would be relevant for pure background
magnetic field in contrast to that of (70) for pure thermal
background.

V. SPECTRAL REPRESENTATION OF THE
EFFECTIVE PROPAGATOR

In this section, we obtain the spectral representation of
the effective propagator in a hot magnetized medium. This
quantity is of immense interest for studying the various
spectral properties, real and virtual photon production,
damping rates and various transport coefficients etc. of
the hot magnetized medium, in particular, for hot magnet-
ized QCD medium.

A. General case

The effective propagator as obtained in (29) is given by

S� ¼ P−
=L
L2

Pþ þ Pþ
=R
R2

P−; ð73Þ

where =L and =R can be written in the rest frame of the heat
bath and the magnetic field in the z-direction following
(27a) and (27b), respectively, as

FIG. 4. The dispersion plots corresponding to HTL propagator
in the absence of a magnetic field, i.e., B ¼ 0.
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=L ¼ ½ð1þ aðp0; pÞÞp0 þ bðp0; pÞ þ b0ðp0; p⊥; pzÞ�γ0 − ½ð1þ aðp0; pÞÞpz þ c0ðp0; p⊥; pzÞ�γ3
− ð1þ aðp0; pÞÞðγ · pÞ⊥

¼ ½ð1þ aðp0; pÞÞp0 þ bðp0; pÞ þ b0ðp0; p⊥; pzÞ�γ0 − ½pð1þ aðp0; pÞÞ�ðγ · p̂Þ − c0ððp0; p⊥; pzÞγ3
¼ g1Lðp0; p⊥; pzÞγ0 − g2Lðp0; p⊥; pzÞðγ · p̂Þ − g3Lðp0; p⊥; pzÞγ3; ð74Þ

=R ¼ ½ð1þ aðp0; pÞÞp0 þ bðp0; pÞ − b0ðp0; p⊥; pzÞ�γ0 − ½ð1þ aðp0; pÞÞpz − c0ðp0; p⊥; pzÞ�γ3
× ð−1þ aðp0; pÞÞðγ · pÞ⊥

¼ ½ð1þ aðp0; pÞÞp0 þ bðp0; pÞ − b0ðp0; p⊥; pzÞ�γ0 − ½pð1þ aðp0; pÞÞ�ðγ · p̂Þ þ c0ðp0; p⊥; pzÞγ3
¼ g1Rðp0; p⊥; pzÞγ0 − g2Rðp0; p⊥; pzÞðγ · p̂Þ þ g3Rðp0; p⊥; pzÞγ3; ð75Þ

where p̂ ¼ p/jpj, p ¼ jpj and, pz and p⊥ are given, respectively, in (22b) and (22c). We also note that though g2L ¼ g2R;
g3L ¼ g3R, but they are treated separately for the sake of notations that we would be using, for convenience, as g

i
L and g

i
R. One

can decompose the effective propagator into six parts by separating out the γ matrices as

S� ¼ P−γ
0Pþ

g1Lðp0; p⊥; pzÞ
L2

− P−ðγ · p̂ÞPþ
g2Lðp0; p⊥; pzÞ

L2
− P−γ

3Pþ
g3Lðp0; p⊥; pzÞ

L2

þ Pþγ0P−
g1Rðp0; p⊥; pzÞ

R2
− Pþðγ · p̂ÞP−

g2Rðp0; p⊥; pzÞ
R2

þ Pþγ3P−
g3Rðp0; p⊥; pzÞ

R2
: ð76Þ

In subsection III E, we have discussed that L2 ¼ 0 yields four poles, leading to four modes with both positive and negative
energy as �ωLðþÞ ðp⊥; pzÞ and �ωLð−Þ ðp⊥; pzÞ. Similarly, R2 ¼ 0 also yields four poles, namely �ωRðþÞ ðp⊥; pzÞ
and �ωRð−Þ ðp⊥; pzÞ.
With this information one can obtain the spectral representation [49,72–74] of the effective propagator in (76) as

ρ ¼ ðP−γ
0PþÞρ1L − ðP−ðγ · p̂ÞPþÞρ2L − ðP−γ

3PþÞρ3L þ ðPþγ0P−Þρ1R − ðPþðγ · p̂ÞP−Þρ2R þ ðPþγ3P−Þρ3R: ð77Þ

where the spectral function corresponding to each of the term can be written as

ρiL ¼ 1

π
Im

�
giL
L2

�
¼ Ziþ

LðþÞ ðp⊥; pzÞδðp0 − ωLðþÞ ðp⊥; pzÞÞ þ Zi−
LðþÞ ðp⊥; pzÞδðp0 þ ωLðþÞ ðp⊥; pzÞÞ

þ Ziþ
Lð−Þ ðp⊥; pzÞδðp0 − ωLð−Þ ðp⊥; pzÞÞ þ Zi−

Lð−Þ ðp⊥; pzÞδðp0 þ ωLð−Þ ðp⊥; pzÞÞ þ βiL; ð78Þ

ρiR ¼ 1

π
Im

�
giR
R2

�
¼ Ziþ

RðþÞ ðp⊥; pzÞδðp0 − ωRðþÞ ðp⊥; pzÞÞ þ Zi−
RðþÞ ðp⊥; pzÞδðp0 þ ωRðþÞ ðp⊥; pzÞÞ

þ Ziþ
Rð−Þ ðp⊥; pzÞδðp0 − ωRð−Þ ðp⊥; pzÞÞ þ Zi−

Rð−Þ ðp⊥; pzÞδðp0 þ ωRð−Þ ðp⊥; pzÞÞ þ βiR; ð79Þ

where i ¼ 1, 2, 3. We note that the delta functions are associated with pole parts originating from the timelike domain
(p2

0 > p2), whereas the cut parts βiLðRÞ are associated with the Landau damping arises from the spacelike domain, p2
0 < p2,

of the propagator. The residues Zi
LðRÞ are determined at the various poles as

Zi sgn of pole
LðRÞ ðp⊥; pzÞ ¼ giLðRÞðp0; pÞ

���� ∂L2ðR2Þ
∂p0

����−1
p0¼pole

ð80Þ

As a demonstration, we present analytical expressions of three residues corresponding to the pole p0 ¼ þωLðþÞ as
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Z1þ
LðþÞ ¼

pðp2 − ω2
LðþÞ Þ

h
p2

�
m2

th log
�
ω
LðþÞþp

ω
LðþÞ−p

�
− 2pωLðþÞ

�
þM02pzð2p − ωLðþÞ Þ log

�
ω
LðþÞþp

ω
LðþÞ−p

�i
m2

th

h
8p4ðωLðþÞ þM02/m2

thpzÞ þ log
�
ω
LðþÞþp

ω
LðþÞ−p

�
X
i ;

Z2þ
LðþÞ ¼

p2ðp2 − ω2
LðþÞ Þ

h
2pðm2

th þ p2Þ −m2
thωLðþÞ log

�
ω
LðþÞþp

ω
LðþÞ−p

�i
m2

th

h
8p4ðωLðþÞ þM02/m2

thpzÞ þ log
�
ω
LðþÞþp

ω
LðþÞ−p

�
X
i ;

Z3þ
LðþÞ ¼

−M02p5ðp2 − ω2
LðþÞ Þ log

�
ω
LðþÞþp

ω
LðþÞ−p

�
m4

th

h
8p4ðωLðþÞ þM02/m2

thpzÞ þ log
�
ω
LðþÞþp

ω
LðþÞ−p

�
X
i ;

where X ¼ 2p3ðM02 − 2m2
thÞ þ 2M02pp2

z þM02ωLðþÞp2⊥ logðωLðþÞþp
ω
LðþÞ−p

Þ. The other poles of L2 ¼ 0 can trivially be found out

by replacing ωLðþÞ in the above expressions. The expressions for the residues for R parts can similarly be expressed as the L
parts, but we do not show them.

Below, in Fig. 5, we present the residues corresponding
to the first Landau level where all the terms are present. We
take the value of the magnetic field asm2

π/2 and temperature
to be 200 MeV.
Now, the expressions for the cut parts βiLðRÞ are given

below:

βiL¼
1

π
Θðp2−p2

0Þ
ImðgiLÞReðL2Þ− ImðL2ÞReðgiLÞ

ðReðL2ÞÞ2þðImðL2ÞÞ2 ; ð81Þ

βiR¼
1

π
Θðp2−p2

0Þ
ImðgiRÞReðR2Þ− ImðR2ÞReðgiRÞ

ðReðR2ÞÞ2þðImðR2ÞÞ2 ; ð82Þ

where

Reðg1LÞ ¼ p0 −M02 pz

p2
−
m2

th

p

�
1 −

M02

m2
th

pzp0

p2

�
Q0

�����p0

p

����
�
;

ð83Þ

Imðg1LÞ ¼
π

2

m2
th

p

�
1 −

M02

m2
th

pzp0

p2

�
; ð84Þ

Reðg2LÞ ¼ Reðg2RÞ ¼ pþm2
th

p

�
1 −

p0

p
Q0

�����p0

p

����
��

; ð85Þ

Imðg2LÞ ¼ Imðg2RÞ ¼ πm2
th

p0

2p2
; ð86Þ

Reðg3LÞ ¼ Reðg3RÞ ¼
M02

p
Q0

�����p0

p

����
�
; ð87Þ

FIG. 5. Different Residues for the first LL (l ¼ 1) are plotted with scaled momentum along the magnetic field direction.
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Imðg3LÞ ¼ Imðg3RÞ ¼ −
πM02

2p
; ð88Þ

and

Reðg1RÞ ¼ p0 þM02 pz

p2
−
m2

th

p

�
1þM02

m2
th

pzp0

p2

�
Q0

�����p0

p

����
�
;

ð89Þ

Imðg1RÞ ¼
π

2

m2
th

p

�
1þM02

m2
th

pzp0

p2

�
: ð90Þ

Also, we obtain

ReðL2Þ ¼ AL þ BLQ0

�����p0

p

����
�
þ C

�
Q2

0

�����p0

p

����
�
−
π2

4

�
;

ð91Þ

ImðL2Þ ¼ −
πBL

2
− πQ0

�����p0

p

����
�
C; ð92Þ

ReðR2Þ ¼ AR þ BRQ0

�����p0

p

����
�
þ C

�
Q2

0

�����p0

p

����
�
−
π2

4

�
;

ð93Þ

ImðR2Þ ¼ −
πBR

2
− πQ0

�����p0

p

����
�
C; ð94Þ

where

AL ¼ p2
0 − p2 − 2m2

th −
m4

th

p2
−
2M02p0pz

p2
þM04p2

z

p4
; ð95Þ

AR ¼ p2
0 − p2 − 2m2

th −
m4

th

p2
þ 2M02p0pz

p2
þM04p2

z

p4
; ð96Þ

BL ¼ 2m4
thp0

p3
−
2M02pz

p
þ 2M02p2

0pz

p3
−
2M04p0p2

z

p5
; ð97Þ

BR ¼ 2m4
thp0

p3
þ 2M02pz

p
−
2M02p2

0pz

p3
−
2M04p0p2

z

p5
; ð98Þ

C ¼ m4
th −M04

p2
−
p2
0m

4
th

p4
þM04p2

0p
2
z

p6
: ð99Þ

B. LLL case

For LLL, as p⊥ ¼ 0, so g2LðRÞ and g3LðRÞ in (74) and (75)

can now be merged as

g2þ3
L ¼ ½ð1þ aðp0; pÞÞpz þ c0ðp0; pÞ�γ3;
g2þ3
R ¼ ½ð1þ aðp0; pÞÞpz − c0ðp0; pÞ�γ3:

The spectral function corresponding to LLL reads as

ρLLL ¼ ðP−γ
0PþÞρ1L − ðP−γ

3PþÞρ2þ3
L

þ ðPþγ0P−Þρ1R − ðPþγ3P−Þρ2þ3
R : ð100Þ

where one needs to determine

FIG. 6. Different Residues for the LLL (l ¼ 0) are plotted with scaled momentum along the magnetic field direction.
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ρ2þ3
LðRÞ ¼

1

π
Im

� g2þ3
LðRÞ

L2ðR2Þ
�
;

which can again be represented in terms of different
residues corresponding to different poles of L2ðR2Þ ¼ 0
as in Eq. (79). In Fig. 6, the variation of the residues for the
lowest Landau level are shown.
In Appendix E, we have demonstrated how one gets back

the HTL spectral functions when magnetic field is with-
drawn from the thermal medium.

VI. CONCLUSIONS

In this article, the general structure of fermionic self-
energy for a chirally invariant theory has been formulated
for a hot and magnetized medium. Using this we have
obtained a closed form of the general structure of the
effective fermion propagator. The collective excitations in
such a nontrivial background have been obtained for
timelike momenta in the weak-field and HTL approxima-
tion in the domain m2

thð∼g2T2 < jqfBj < T2. We found
that the left- and right-handed modes get separated and
become asymmetric in the presence of a magnetic field
which were degenerate and symmetric otherwise. The
transformation of the effective propagator in a hot mag-
netized medium under some of the discrete symmetries
have been studied and its consequences are also reflected in
the collective fermion modes in the Landau levels. We have
also obtained the Dirac spinors of the various collective
modes by solving the Dirac equation with the effective two-
point function. Further, we checked the general structure of
the two-point function by obtaining the three-point function
using the Ward-Takahashi identity, which agrees with the
direct calculation of one-loop order in weak-field approxi-
mation. We also found that only the longitudinal compo-
nent of the vertex would be relevant when there is only
background magnetic field. The spectral function corre-
sponding to the effective propagator is explicitly obtained
for a hot magnetized medium which will be extremely
useful for studying the spectral properties, e.g., photon/
dilepton production, damping rate, and transport coeffi-
cients for a hot magnetized medium. This has pole
contribution due to the various collective modes originating
from the timelike domain and a Landau cut contribution
appearing from the spacelike domain. It has explicitly been
shown that the spectral function reduces to that obtained for
thermal medium in the absence of the magnetic field. Our
formulation is in general applicable to both QED and QCD
with nontrivial background such as a hot magnetized
medium.

ACKNOWLEDGMENTS

The authors would like to acknowledge useful discus-
sions with Palash B Pal, Najmul Haque, Chowdhury
Aminul Islam, Arghya Mukherjee and Bithika Karmakar.

A. B. and M. G.M. were funded by the Department of
Atomic Energy (DAE), India, via the project TPAES,
whereas A. D. and P. K. R. were funded by the project
DAE/ALICE/SINP. A. B. was also partially supported by
the National Post Doctoral Program CAPES (PNPD/
CAPES), Govt. of Brazil.

APPENDIX A: COMPUTATIONS OF
STRUCTURE FUNCTIONS IN ONE LOOP
IN A WEAK-FIELD APPROXIMATION

FOR A HOT MAGNETIZED QCD MEDIUM

Here, we present the computations of the various
structure functions in (21a) to (21d) in one-loop order
(Fig. 7) in a weak-field and HTL approximations following
the imaginary time formalism. In Fig. 7, the modified quark
propagator (bold line) due to background magnetic field is
given in (A3). Since glouns are chargeless, their propa-
gators do not change in the presence of a magnetic field.
The gluon propagator in Feynman gauge, is given as [41]

Dμν
abðQÞ ¼ −iδab

gμν

Q2
: ðA1Þ

We note that we would like to explore the fermion spectrum
in a hot magnetized background in the limit m2

f < qfB <
T2. In this domain, the fermion propagator is obtained by
expanding the sum over all Landau levels in powers of qfB
in (7) and keeping up to Oð½qfBÞ2�, it reads as

SðKÞ ¼ i
=K þmf

K2 −m2
þ iγ1γ2

=Kk þmf

ðK2 −m2
fÞ2

qfB

þ 2

�
=Kk þmf

ðK2 −m2
fÞ4

K2⊥ −
K2

k −m2
f

ðK2 −m2
fÞ4

=K⊥
�
ðqfBÞ2

¼ i
=K þmf

K2 −m2
f

þ iγ1γ2
=Kk þmf

ðK2 −m2
fÞ2

qfBþO½ðqfBÞ2�;

ðA2Þ

where the first term is the free propagator and the second
one is O½qfB� correction to it. Now combining (A2) and
(11) the fermion propagator in background magnetic field
reads as

FIG. 7. One-loop fermion self-energy in a hot magnetized
medium.
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SðKÞ ¼ i
=K

K2 −m2
f

−
γ5½ðK:nÞ=u − ðK:uÞ=n�

ðK2 −m2
fÞ2

× ðqfBÞ þO½ðqfBÞ2�
¼ SB¼0

1 ðKÞ þ SB≠02 ðKÞ þO½ðqfBÞ2�; ðA3Þ

where the fermion mass in the numerator has been
neglected in the weak-field domain, m2

f < ðqfBÞ < T2.
The one-loop quark self-energy up to OðjqfBjÞ can be

written as

ΣðPÞ ¼ g2CFT
XZ

fKg
γμ

�
=K

K2 −m2
f

−
γ5½ðK:nÞ=u − ðK:uÞ=n�

ðK2 −m2
fÞ2

qfB

�
γμ

1

ðP − KÞ2
≃ ΣB¼0ðP; TÞ þ ΣB≠0ðP; TÞ≡ Σ0 þ ΣB: ðA4Þ

where g is the QCD coupling constant, CF ¼ 4/3 is the
Casimir invariant of SUð3Þ group, T is the temperature of
the system. The first term is the thermal bath contribution in
the absence of a magnetic field (B ¼ 0) whereas the second
one is from the magnetized thermal bath.
Using (A4) in (21a) and (21b), the structure functions a

and b, respectively, become

aðp0; jp⃗jÞ ¼
1

4

TrðΣ0PÞ − ðP:uÞTrðΣ0=uÞ
ðP:uÞ2 − P2

; ðA5aÞ

bðp0; jp⃗jÞ ¼
1

4

−ðP:uÞTrðΣ0PÞ þ P2TrðΣ0=uÞ
ðP:uÞ2 − P2

; ðA5bÞ

where the contributions coming from ΣB vanish due to the
trace of odd number of γ matrices. Following the well-
known results in Ref. [69], one can write

aðp0; jp⃗jÞ ¼ −
m2

th

jp⃗j2Q1

�
p0

jp⃗j
�
; ðA6aÞ

bðp0; jp⃗jÞ ¼
m2

th

jp⃗j
�
p0

jp⃗jQ1

�
p0

jp⃗j
�
−Q0

�
p0

jp⃗j
��

; ðA6bÞ

where the Legendre functions of the second kind read as

Q0ðxÞ ¼
1

2
ln

�
xþ 1

x − 1

�
; ðA7aÞ

Q1ðxÞ ¼ xQ0ðxÞ − 1 ¼ x
2
ln

�
xþ 1

x − 1

�
− 1; ðA7bÞ

and the thermal mass [69,72] of the quark is given as

m2
th ¼ CF

g2T2

8
: ðA8Þ

The thermal part of the self-energy in (A4) becomes

ΣB¼0ðP; TÞ≡ Σ0ðP; TÞ

¼ g2CFT
XZ

K
γμ

=K
K2 −m2

γμ
1

ðP − KÞ2
¼ −aðp0; jp⃗jÞP − bðp0; jp⃗jÞ=u: ðA9Þ

Again using (A4) in (21c) and (21d), the structure
functions b0 and c0, respectively, become

b0 ¼ −
1

4
Trð=uγ5ΣBÞ; ðA10Þ

c0 ¼ 1

4
Trð=nγ5ΣBÞ; ðA11Þ

where the contributions coming from Σ0 vanish due to the
trace of odd number of γ matrices. For computing the above
thermomagnetic structure functions, one needs to use the
following two traces:

Tr½=uγ5γμγ5½ðK:nÞ=u − ðK:uÞ=n�γμ� ¼ 8ðK:nÞ; ðA12Þ

Tr½=nγ5γμγ5½ðK:nÞ=u − ðK:uÞ=n�γμ� ¼ 8ðK:uÞ: ðA13Þ

With this one can obtain

b0 ¼ 2g2CFTqfB
XZ

fKg
ðK:nÞΔ2

FðKÞΔBðP − KÞ; ðA14Þ

c0 ¼ −2g2CFTqfB
XZ

fKg
ðK:uÞΔ2

FðKÞΔBðP − KÞ; ðA15Þ

where the boson propagator in Saclay representation is
given by

ΔBðKÞ ¼ −
Z

β

0

dτek0τΔ̃Bðτ; kÞ

and

Δ̃Bðτ; kÞ ¼
X
k0

e−k0τΔBðKÞ

¼ 1

2ωk
f½1þ nBðωkÞ�e−ωkτ þ nBðωkÞeωkτg

where the sum is over k0 ¼ 2πinT and ω2
k ¼ k2 þm2

f. Also
the fermion propagator in Saclay representation reads

ΔFðKÞ ¼ −
Z

β

0

dτek0τΔ̃Fðτ; kÞ

and
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Δ̃Fðτ; kÞ ¼
X
k0

e−k0τΔFðKÞ

¼ 1

2ωk
f½1 − nFðωkÞ�e−ωkτ − nFðωkÞeωkτg

where the sum above is over k0 ¼ ð2nþ 1ÞπiT. Now
following HTL approximation in the presence of a mag-
netic field [66,68] the (A14) and (A15) are simplified as

b0 ¼ −4g2CFM2ðT;mf; qfBÞ
Z

dΩ
4π

K̂ · n

P · K̂
;

c0 ¼ 4g2CFM2ðT;mf; qfBÞ
Z

dΩ
4π

K̂ · u

P · K̂
:

Using the results of the HTL angular integrations [67]

Z
dΩ
4π

K̂ · u

P · K̂
¼ 1

jp⃗jQ0

�
p0

jp⃗j
�
; ðA16Þ

Z
dΩ
4π

K̂ · n

P · K̂
¼ −

p3

jp⃗j2Q1

�
p0

jp⃗j
�
; ðA17Þ

the thermomagnetic structures functions become

b0 ¼ 4g2CFM2ðT;mf; qfBÞ
p3

jp⃗j2Q1

�
p0

jp⃗j
�
; ðA18Þ

c0 ¼ 4g2CFM2ðT;mf; qfBÞ
1

jp⃗jQ0

�
p0

jp⃗j
�
; ðA19Þ

with the magnetic mass is obtained as

M2ðT;mf; qfBÞ ¼
qfB

16π2

�
lnð2Þ − T

mf

π

2

�
: ðA20Þ

We note here that for mf → 0, the magnetic mass
diverges but it can be regulated by the thermal mass mth
in (A8) as is done in Refs. [66,67]. Then the domain of
applicability becomes m2

thð∼g2T2Þ < qfB < T2 instead
of m2

f < qfB < T2.
The thermomagnetic part of the self-energy in (A4)

becomes

ΣB≠0ðP; TÞ≡ ΣBðP; TÞ ¼ −g2CFTqfB
XZ

γμ

×
γ5½ðK:nÞ=u − ðK:uÞ=n�

ðK2 −m2
fÞ2

γμ
1

ðP − KÞ2
¼ −b0ðp0; jp⃗jÞγ5=u − c0ðp0; jp⃗jÞγ5=n: ðA21Þ

Now combining (A9), (A21) and (A4), the general
structure of quark self-energy in hot magnetized QCD
becomes

Σðp0; jp⃗jÞ ¼ −aðp0; jp⃗jÞP − bðp0; jp⃗jÞ=u
− γ5b0ðp0; jp⃗jÞ=u − γ5c0ðp0; jp⃗jÞ=n: ðA22Þ

which agrees quite well with the general structure as
discussed in (16) and also with results directly calculated
in Refs. [66–68].

APPENDIX B: SOLUTION OF THE MODIFIED
DIRAC EQUATION AT LOWEST LANDAU

LEVEL (LLL)

At LLL, l → 0 ⇒ p⊥ ¼ 0 and the effective Dirac
equation becomes

ðPþ=Lþ P−=RÞU ¼ 0�
0 R0 − σ3Rz

L0 þ σ3Lz 0

�
U ¼ 0; ðB1Þ

where U ¼ ðψL
ψR
Þ with ψLðRÞ are 2 × 1 blocks. Now, the

condition for the nontrivial solution to exist is given as

det
�

0 R0 − σ3Rz

L0 þ σ3Lz 0

�
¼ 0

½ðR0Þ2 − ðRzÞ2�½ðL0Þ2 − ðLzÞ2� ¼ 0

or; R0 ¼ �Rz; L0 ¼ �Lz; ðB2Þ

(i) Case-I: For R0 ¼ Rz, one can write (B1) as0
BBB@

0 0 0 0

0 0 0 2Rz

L0 þ Lz 0 0 0

0 L0 − Lz 0 0

1
CCCA

:

0
BBBBB@

ψ ð1Þ
L

ψ ð2Þ
L

ψ ð1Þ
R

ψ ð2Þ
R

1
CCCCCA ¼ 0; ðB3Þ

which leads to the following conditions:

2Rzψ
ð2Þ
R ¼ 0;

ðL0 þ LzÞψ ð1Þ
L ¼ 0;

ðL0 − LzÞψ ð2Þ
L ¼ 0;

ψ ð1Þ
R ¼ arbitrary: ðB4Þ

For normalization, we choose only the nonzero

component, ψ ð1Þ
R ¼ 1, which leads to
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UðþÞ
R ¼

0
BBB@

0

0

1

0

1
CCCA: ðB5Þ

Now, for R0 ¼ −Rz, similarly, one can obtain

Uð−Þ
R ¼

0
BBB@

0

0

0

1

1
CCCA: ðB6Þ

(ii) Case-II: For L0 ¼ Lz, one gets

UðþÞ
L ¼

0
BBB@

0

1

0

0

1
CCCA; ðB7Þ

whereas for L0 ¼ −Lz, one finds

Uð−Þ
L ¼

0
BBB@

1

0

0

0

1
CCCA: ðB8Þ

APPENDIX C: VERIFICATION OF THE
THREE-POINT FUNCTION FROM

DIRECT CALCULATION

In this appendix, we would verify the general structure of
the temporal three-point function as obtained in sec. IV
using the general structure of the self-energy.
We begin with the one-loop level three-point function in

a hot magnetized medium in [67] within HTL approxima-
tion [48,75] as

ΓμðP;K;QÞ ¼ γμ þ δΓμ
HTLðP;KÞ þ δΓμ

TMðP;KÞ; ðC1Þ

where the external four-momentum Q ¼ P − K. The HTL
correction part [49,74,75] is given as

δΓμ
HTLðP;KÞ ¼ m2

thG
μνγν

¼ m2
th

Z
dΩ
4π

ŶμŶν

ðP · ŶÞðK · ŶÞ γν
¼ δΓμ

HTLð−P;−KÞ; ðC2Þ

where Ŷμ ¼ ð1; ŷÞ is a lightlike four-vector, and the
thermomagnetic (TM) correction part [66,67] is given

δΓμ
TMðP;KÞ ¼ 4γ5g2CFM2

Z
dΩ
4π

1

ðP · ŶÞðK · ŶÞ
× ½ðŶ · nÞ=u − ðŶ · uÞ=n�Ŷμ: ðC3Þ

Now, choosing the temporal component of the thermo-
magnetic correction part of the three-point function and
external three momentum q⃗ ¼ 0, we get

δΓ0
TMðP;KÞjq⃗¼0

¼ γ5M02
Z

dΩ
4π

1

ðP · ŶÞðK · ŶÞ ½ðŶ · nÞ=u − ðŶ · uÞ=n�

¼ γ5M02
Z

dΩ
4π

1

ðP · ŶÞðK · ŶÞ ½ðŶ · nÞγ0 þ ðŶ · uÞγ3�

ðC4Þ

Along with this following identity:�
1

K · Ŷ
−

1

P · Ŷ

�
¼ Q · Ŷ

ðP · ŶÞðK · ŶÞ ¼
q0

ðP · ŶÞðK · ŶÞ ;

and, (A16) and (A17), we one finally obtain

δΓ0
TMðP;KÞjq⃗→ ¼ M02pz

p2q0
δQ1γ5γ

0 −
M02

pq0
δQ0γ5γ

3

¼ −
M02

pq0

�
δQ0γ5 þ

pz

p
δQ1ðiγ1γ2Þ

�
γ3;

ðC5Þ

where δQn ¼ Qnðp0

p Þ −Qnðk0pÞ. We note that this expres-
sion matches exactly with the expression obtained in (72)
from the general structure of fermion self-energy.

APPENDIX D: ANALYTICAL SOLUTION
OF THE DISPERSION RELATIONS AND

THE EFFECTIVE MASS IN LLL

The dispersion relations at LLL can be written the
Eqs. (31a) and (31b) as

L2
LLL ¼ ðAp0 þ BþÞ2 − ðApz þ c0Þ2 ¼ L2

0 − L2
z ¼ 0;

ðD1aÞ

R2
LLL ¼ ðAp0 þ B−Þ2 − ðApz − c0Þ2 ¼ R2

0 − R2
z ¼ 0;

ðD1bÞ

each of which leads to two modes, respectively, as

L0 ¼ �Lz

Ap0 þ Bþ ¼ �ðApz þ c0Þ; ðD2aÞ
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and

R0 ¼ �Rz

Ap0 þ B− ¼ �ðApz − c0Þ: ðD3aÞ

Below we try to get approximate analytical solution of
these equations at small and high pz limits.

1. Low pz limit

In the low pz region, one needs to expand aðp0; jpzjÞ,
bðp0; jpzjÞ, b0ðp0; 0; pzÞ and c0ðp0; jpzjÞ defined in (23a),
(23b), (23c) and (23d), respectively, which depend on
Legendre function of second kind Q0ðxÞ and Q1ðxÞ as
given in Eqs. (A7a) and (A7b), respectively. The Legendre
function Q0 and structure coefficients are expanded in

powers of jpzj
p0

as

Q0

�
p0

jpzj
�

¼ jpzj
p0

þ 1

3

jpzj3
p3
0

þ 1

5

jpzj5
p5
0

þ � � � ðD4Þ

aðp0; jpzjÞ ¼ −
m2

th

p2
0

�
1

3
þ 1

5

jpzj2
p2
0

þ � � �
�
; ðD5Þ

bðp0; jpzjÞ ¼ −2
m2

th

p0

�
1

3
þ 1

15

jpzj2
p2
0

þ � � �
�
; ðD6Þ

b0ðp0;0;pzÞ¼4g2CFM2ðT;m;qBÞpz

�
1

3p2
0

þjpzj2
5p4

0

þ���
�
;

ðD7Þ

c0ðp0; jpzjÞ ¼ 4g2CFM2ðT;m; qBÞ
�
1

p0

þ jpzj2
p3
0

þ � � �
�
:

ðD8Þ

Now retaining the terms that are up to the order of pz in
(D5), (D6), (D7), (D8), we obtain the following expressions
for the dispersion relation of various modes:
(1) L0 ¼ Lz leads to a mode LðþÞ as

ωLðþÞ ðpzÞ ¼ m�þ
LLL þ 1

3
pz: ðD9Þ

(2) L0 ¼ −Lz leads to a mode Lð−Þ as

ωLð−Þ ðpzÞ ¼ m�−
LLL −

1

3
pz: ðD10Þ

(3) R0 ¼ Rz leads to a mode RðþÞ as

ωRðþÞ ðpzÞ ¼ m�−
LLL þ 1

3
pz: ðD11Þ

(4) R0 ¼ −Rz leads to a mode Rð−Þ as

ωRð−Þ ðpzÞ ¼ m�þ
LLL −

1

3
pz: ðD12Þ

where the effective masses of various modes are given as

m��
LLL¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

thþ4g2CFM2ðT;M;qfBÞ
q

; forLðþÞ&Rð−Þ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

th−4g2CFM2ðT;M;qfBÞ
q

; forRðþÞ&Lð−Þ:

ðD13Þ

2. High pz limit

We note that pz can be written as

pz ¼
	 jpzj; for pz > 0

−jpzj: for pz < 0

In high pz limit, we obtain
(i)

½1þ aðp0; jpzjÞ�ðp0 − pzÞ þ bðp0; jpzjÞ

¼
8<
:

p0 − jpzj − m2
th

jpzj ; for pz > 0

2jpzj þ m2
th

jpzj −
m2

th
jpzj ln

�
2jpzj

p0−jpzj
�
; for pz < 0

ðD14Þ

(ii)

½1þ aðp0; jpzjÞ�ðp0 þ pzÞ þ bðp0; jpzjÞ

¼
8<
:

2jpzj þ m2
th

jpzj −
m2

th
jpzj ln

�
2jpzj

p0−jpzj
�
; for pz > 0

p0 − jpzj − m2
th

jpzj ; for pz < 0

ðD15Þ

(iii)

b0ðp0; 0; pzÞ þ c0ðp0; jpzjÞ

¼
8<
:

4g2CFM2

jpzj ln
�

2jpzj
p0−jpzj

�
− 4g2CFM2

jpzj ; for pz > 0

4g2CFM2

jpzj for pz < 0

ðD16Þ
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(iv)

b0ðp0;0; pzÞ− c0ðp0; jpzjÞ

¼
8<
:

− 4g2CFM2

jpzj for pz > 0

− 4g2CFM2

jpzj ln
�

2jpzj
p0−jpzj

�
þ 4g2CFM2

jpzj : for pz < 0

ðD17Þ

(1) L0 ¼ Lz leads to a mode LðþÞ:
For pz > 0,

ωLðþÞ ðpzÞ ¼ jpzj þ
ðm�þ

LLLÞ2
jpzj

: ðD18Þ

For pz < 0,

ωLðþÞ ðpzÞ ¼ jpzj þ
2jpzj
e

exp
�
−

2p2
z

ðm�þ
LLLÞ2

�
: ðD19Þ

(2) L0 ¼ −Lz leads to a mode Lð−Þ:
For pz > 0,

ωLð−Þ ðpzÞ¼ jpzjþ
2jpzj
e

exp

�
−

2p2
z

ðm�−
LLLÞ2

�
: ðD20Þ

For pz < 0,

ωLð−Þ ðpzÞ ¼ jpzj þ
ðm�−

LLLÞ2
jpzj

: ðD21Þ

(3) R0 ¼ Rz leads to a mode RðþÞ:
For pz > 0,

ωRðþÞ ðpzÞ ¼ jpzj þ
ðm�−

LLLÞ2
jpzj

: ðD22Þ

For pz < 0,

ωRðþÞ ðpzÞ¼ jpzjþ
2jpzj
e

exp

�
−

2p2
z

ðm�−
LLLÞ2

�
: ðD23Þ

(4) R0 ¼ −Rz leads to a mode Rð−Þ:
For pz > 0,

ωRð−Þ ðpzÞ¼ jpzjþ
2jpzj
e

exp

�
−

2p2
z

ðm�þ
LLLÞ2

�
: ðD24Þ

For pz < 0,

ωRð−Þ ðpzÞ ¼ jpzj þ
ðm�þ

LLLÞ2
jpzj

: ðD25Þ

Note that, in the high-momentum limit, the above
dispersion relations are given in terms of absolute values
of pz, i.e., jpzj.
We further note that the above dispersion relations in the

absence of the magnetic field reduce to HTL results, where
left- and right-handed are degenerate.

APPENDIX E: RECOVERING HTL
SPECTRAL FUNCTION

One can easily get back to the HTL thermal spectral
function from (77) by turning off the magnetic field, i.e.,
B ¼ 0 ⇒ b0 ¼ c0 ¼ 0, and one gets the following simpli-
fications:

g1LjB¼0 ¼ g1RjB¼0 ¼ g1; g2LjB¼0 ¼ g2RjB¼0 ¼ g2;

g3LjB¼0 ¼ g3RjB¼0 ¼ 0; ðE1Þ
L2jB¼0 ¼ R2jB¼0 ¼ H2; ωLð�Þ jB¼0 ¼ ωRð�Þ jB¼0 ¼ ω�;

ðE2Þ
ρ1LjB¼0 ¼ ρ1RjB¼0 ¼ ρ1; ρ2LjB¼0 ¼ ρ2RjB¼0 ¼ ρ2;

ρ3jB¼0 ¼ 0: ðE3Þ
These implies that the spectral function can be written as

ρjB¼0 ¼ γ0ρ1 − ðγ · p̂Þρ2: ðE4Þ
Now the HTL spectral function [49,73] is given by

ρHTL ¼ 1

2
ðγ0 − γ · p̂Þρþ þ 1

2
ðγ0 þ γ · p̂Þρ−

¼ 1

2
γ0ðρþ þ ρ−Þ −

1

2
ðγ · p̂Þðρþ − ρ−Þ; ðE5Þ

where ρ� are the HTL spectral function. Since the spectral
has both pole and cut part, comparing (E4) and (E5), one
gets for the pole parts

ρ1jB¼0
pole ¼ 1

2
½ρþjHTLpole þ ρ−jHTLpole � ðE6Þ

ρ2jB¼0
pole ¼ 1

2
½ρþjHTLpole − ρ−jHTLpole �; ðE7Þ

and for the cut parts

β1jB¼0
cut ¼ 1

2
½βþjHTLcut þ β−jHTLcut � ðE8Þ

β2jB¼0
cut ¼ 1

2
½βþjHTLcut − β−jHTLcut �: ðE9Þ

Now one can obtain either (78) or (79):
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ρ1jB¼0
pole ¼ ½Ziþ

þ δðp0 − ωþÞ þ Zi−þ δðp0 þ ωþÞ�
þ ½Z1þ

− δðp0 − ω−Þ þ Z1−
− δðp0 þ ω−Þ�: ðE10Þ

When the magnetic field is turned off, the different residues
can be read from their analytical expressions as given in
Sec. V as

Z1þ
þ ¼ Z1−þ ¼ ω2þ − p2

4m2
th

¼ 1

2
Zþ; ðE11Þ

Z1þ
− ¼ Z1þ

− ¼ ω2
− − p2

4m2
th

¼ 1

2
Z−; ðE12Þ

where Z� ¼ ðω�2 − p2Þ/2m2
th are the residues correspond-

ing to the modes ω�. Using these, one can write (E10) as

ρ1jB¼0
pole ¼ 1

2
½Zþδðp0 − ωþÞ þ Zþδðp0 þ ωþÞ�

þ 1

2
½Z−δðp0 − ω−Þ þ Z−δðp0 þ ω−Þ�

¼ 1

2
½Zþδðp0 − ωþÞ þ Z−δðp0 þ ω−Þ�

þ 1

2
½Z−δðp0 − ω−Þ þ Zþδðp0 þ ωþÞ�

¼ 1

2
½ρþjHTLpole þ ρ−jHTLpole �; ðE13Þ

which agrees with (E6).
Now the other nonzero component of the spectral

function can be reduced as

ρ2jB¼0
pole ¼ ½Z2þ

þ δðp0 − ωþÞ þ Z2−þ δðp0 þ ωþÞ�
þ ½Z2þ

− δðp0 − ω−Þ þ Z2−
− δðp0 þ ω−Þ�; ðE14Þ

along with the remaining nonzero residues as

Z2þ
þ ¼ −Z2−þ ¼ ω2þ − p2

4m2
th

×
ωþm2

th logðωþþp
ωþ−p

Þ − 2pðm2
th þ p2Þ

2p2ωþ − pm2
th logðωþþp

ωþ−pÞ
¼ ω2þ − p2

4m2
th

¼ 1

2
Zþ; ðE15Þ

and

Z2þ
− ¼ −Z2−

− ¼ ω2
− − p2

4m2
th

×
ω−m2

th logðω−þp
ω−−pÞ − 2pðm2

th þ p2Þ
2p2ω− − pm2

th logðω−þp
ω−−p

Þ ¼ ω2
− − p2

4m2
th

¼ 1

2
Z−: ðE16Þ

Note that we have used the respective dispersion
relations coming from H2 ¼ 0, in the last line of (E15)
and (E16) for further simplifications. Now (E14) can be
rewritten as

ρ2jB¼0
pole ¼ 1

2
½Zþδðp0 − ωþÞ − Zþδðp0 þ ωþÞ�

−
1

2
½Z−δðp0 − ω−Þ − Z−δðp0 þ ω−Þ�

¼ 1

2
½Zþδðp0 − ωþÞ þ Z−δðp0 þ ω−Þ�

−
1

2
½Z−δðp0 − ω−Þ þ Zþδðp0 þ ωþÞ�

¼ 1

2
½ρþjHTLpole − ρ−jHTLpole �; ðE17Þ

which agrees with (E7).
In the absence of a magnetic field, one can write the cut

parts from the general expression of βiL in (82) as

β1 ¼ 1

π
Θðp2 − p2

0Þ
Imðg1ÞReðH2Þ − ImðH2ÞReðg1Þ

jH2j2 ;

ðE18Þ

β2 ¼ 1

π
Θðp2 − p2

0Þ
Imðg2ÞReðH2Þ − ImðH2ÞReðg2Þ

jH2j2 ;

ðE19Þ

where, for the zero magnetic field case,

H2 ¼ L2jB¼0 ¼ R2jB¼0 ¼ ðg1 þ g2Þðg1 − g2Þ ¼ H−Hþ;

ðE20Þ

where following the same convention as before H− ¼
g1 þ g2 and Hþ ¼ g1 − g2.
The real and imaginary parts of H2 can be written in

terms of H− and Hþ as
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ReðH2Þ þ iImðH2Þ ¼ ðReðH−Þ þ iImðH−ÞÞðReðHþÞ þ iImðHþÞÞ
¼ ½ReðH−ÞReðHþÞ − ImðH−ÞImðHþÞ� þ i½ReðH−ÞImðHþÞ þ ReðHþÞImðH−Þ�: ðE21Þ

Now we can write down

β1 þ β2 ¼ 1

π
Θðp2 − p2

0Þ
ðImðg1Þ þ Imðg2ÞÞReðH2Þ − ImðH2ÞðReðg1Þ þ Reðg2ÞÞ

jH−j2jHþj2

¼ 1

π
Θðp2 − p2

0Þ
ImðH−ÞReðH2Þ − ImðH2ÞReðH−Þ

jH1j2jH2j2

¼ −
1

π
Θðp2 − p2

0Þ
ImðHþÞ
jHþj2

¼ −
1
2pm

2
thð1 − p0

p Þ
½fp0 − pþ m2

th
2p ðð1 − p0

p Þ log j p0þp
p0−p

j þ 2Þg2 þ π2m4
th

4p2 ð1 − p0

p Þ2�
¼ βþ: ðE22Þ

and similarly

β1 − β2 ¼ −
1

π
Θðp2 − p2

0Þ
ImðH−Þ
jH−j2

;

¼ −
1
2pm

2
thð1þ p0

p Þ
½fp0 þ p − m2

th
2p ðð1þ p0

p Þ log j p0þp
p0−p

j − 2Þg2 þ π2m4
th

4p2 ð1þ p0

p Þ2�
;

¼ β−; ðE23Þ

where both (E22) and (E23) agree with the HTL cut parts [49,73].
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