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In this work we calculate the mass spectra of charmonium for 1P;…; 4P states of 0þþ and 1þþ, for
1S;…; 5S states of 0−þ, and for 1S;…; 4D states of 1−− along with the two-photon decay widths of the
ground and first excited states of 0þþ quarkonia for the process Oþþ → γγ in the framework of a QCD-
motivated Bethe-Salpeter equation (BSE). In this 4 × 4 BSE framework, the coupled Salpeter equations are
first shown to decouple for the confining part of the interaction (under the heavy-quark approximation) and
are analytically solved, and later the one-gluon-exchange interaction is perturbatively incorporated, leading
to mass spectral equations for various quarkonia. The analytic forms of wave functions obtained are used
for the calculation of the two-photon decay widths of χc0. Our results are in reasonable agreement with data
(where available) and other models.
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I. INTRODUCTION

An important role in applications of QCD to hadronic
physics is played by charmonium (cc̄) and bottomonium
(bb̄), which are built from a heavy quark and heavy
antiquark. By definition, a heavy quark has a mass m,
which is large in comparison to the typical hadronic scale
ΛQCD. Quarkonium systems are crucially important to
improving our understanding of QCD. Heavy-light mesons
are much more complicated, as here one really tests the
wide range of soft, hard, and soft-collinear scales [1]. The
ground-state quarkonia, on the other hand, have been
shown over the past decade to be rather well described
in nonrelativistic QCD and nonrelativistic potential models.
There has a been a renewed interest in recent years in the

spectroscopy of these heavy hadrons in the charm and
beauty sectors, which was primarily due to experimental
facilities around the world—such as BABAR, Belle, CLEO,
DELPHI, and BES [2–6]—which have been providing
accurate data on cc̄ and bb̄ hadrons with respect to their
masses and decays. In the process, many new states have
been discovered, such as χb0ð3PÞ, χc0ð2PÞ, Xð3915Þ,
Xð4260Þ, Xð4360Þ, Xð4430Þ, and Xð4660Þ [6]. The data

strongly suggests that among these new resonances there
may be exotic four-quark states, hybrid states with gluonic
degrees of freedom in addition to a cc̄ pair, or loosely
bound states of heavy hadrons, i.e., charmonium mole-
cules. Further, there are also open questions about the
quantum number assignments of some of these states such
as Xð3915Þ [as to whether it is χc0ð2PÞ or χc2ð2PÞ [7,8]].
Thus, charmonium offers us intriguing puzzles.
However, since themass spectrum and the decays of all of

these bound states of heavy quarks can be tested exper-
imentally, theoretical studies on them may provide valuable
insight about the heavy-quark dynamics and lead to a deeper
understanding of QCD. Studies of the mass spectrum of
these hadrons are particularly important as they shed light on
the QQ̄ potential, since the long-range confinement poten-
tial has not been derived from QCD so far. Further, though
these states appear to be simple, their productionmechanism
is still not properly understood. These mesons are involved
in a number of reactions which are of great importance for
the study of the Cabibbo-Kobayashi-Maskawa matrix and
CP violation. In this paper we also study the two-photon
decays of scalar quarkonia, χc0. These decays are sensitive
probes of quarkonium wave functions.
The nonperturbative approaches—such as effective field

theory [9], lattice QCD [10–12], chiral perturbation theory
[13], QCD sum rules [14,15], nonrelativistic QCD [16], the
Bethe-Salpeter equation (BSE) [17–28], and potential mod-
els [29–31]—have been employed to study heavy quarko-
nia. Recent progress in the understanding of nonrelativistic
field theories make it possible to go beyond phenomeno-
logical models, and for the first time face the possibility of
providing a unified description of all aspects of heavy
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quarkonium physics. This allows us to use quarkonium as a
benchmark for understanding QCD, for a precise determi-
nation of Standard Model parameters (e.g., heavy quark
masses, the QCD coupling constant, αs), and for new
physics searches.
All of this opens up new challenges in our theoretical

understanding of heavy hadrons, and also provides an
important tool for exploring the structure of these simplest
bound states in QCD and for studying the nonperturbative
(long-distance) behavior of strong interactions. The more
recent and sophisticated QCD-modeled treatment of the
BSE can be found in Refs. [32–42].
In the present work, we calculate the full mass spectra of

charmonium for 1P;…; 3P states of 0þþ and 1þþ and for
1S;…; 4S states of 0−þ and 1−−, along with the two-photon
decay widths of the ground and first excited states of
scalar quarkonia (χc0) for the process Oþþ → γγ in the
framework of a QCD-motivated Bethe-Salpeter equation
under the covariant instantaneous ansatz (CIA), employing
the full BS kernel comprising both the long-range confine-
ment and the short-range one-gluon-exchange (Coulomb)
interactions.
We do understand that inQQ̄ quarkonia, the constituents

are close enough to each other to warrant a more accurate
treatment of the Coulomb term. On the other hand, for bb̄
systems the Coulomb term will be extremely dominant in
comparison to the confining term, and it should not be
treated perturbatively. However, given our mass spectral
results for cc̄ systems, it may not be so unreasonable to treat
the Coulomb term perturbatively for cc̄ systems. This is
especially so for orbital excitations of these states, where
the centrifugal effects [43] ensure that the c − c̄ separation
is large enough to feel the effect of the confining term
more strongly than the Coulomb term. We further wish to
state that some earlier works [43–45] have treated the one-
gluon-exchange (OGE) (Coulomb) term perturbatively for
charmed mesons and baryons, while other works [46,47]
did not take into account the importance of the Coulomb
term for heavy quarkonium systems.
Thus, in the present paper the coupled Salpeter equations

for scalar (0þþ) and axial-vector (1þþ) quarkonia are first
shown to decouple for the confining part of the interaction,
under the heavy-quark approximation, and the analytic
forms of mass spectral equations are worked out, which
are then solved in approximate harmonic oscillator basis to
obtain the unperturbed wave functions for various states of
these quarkonia.We then perturbatively incorporate the one-
gluon-exchange into the unperturbed spectral equation, and
obtain the full spectrum. Thewave functions of scalar (0þþ)
quarkonia are then used to calculate their two-photon decay
widths. We further extend the mass spectral calculations of
pseudoscalar (0−þ) and vector (1−−) quarkonia in Ref. [48]
with the perturbative inclusion of one-gluon-exchange
effects. The approximations used in this analytic treatment
of the confining interaction are shown to be fully under

control. This work is an improvement on our earlier work
[48] on the mass spectral problem for pseudoscalar and
vector states of quarkonia, in line with some of the earlier
works [49–51] wherewe used only the confining interaction.
A quarkonium state is classified by quantum numbers

JPC, where J ¼ Lþ S, the parity P ¼ ð−1ÞLþ1, and the
charge conjugation C ¼ ð−1ÞLþS. With this classification,
the lowest states (l ¼ 0) are present in 0−þ (pseudoscalar)
quarkonia, while the lowest state (l ¼ 0) and the second
orbitally excited (l ¼ 2) state are present in 1−− (vector)
quarkonia. However, the first orbitally excited (l ¼ 1) states
are present in 0þþ (scalar) and 1þþ (axial-vector) quarko-
nia. The same holds true for their radial excitations.
This paper is organized as follows. Section II deals with

the mass spectral calculations of the ground and excited
states of 0þþ quarkonia. Section III deals with the mass
spectral calculation of the ground and excited states of 0−þ
and 1−− quarkonia, while Sec. IV deals with the mass
spectral calculations of the ground and excited states of 1þþ
quarkonia. Section V deals with the calculation of the
two-photon decay widths of χc0. Section VI contains our
numerical results and discussions.

II. FORMULATION OF THE BSE UNDER THE CIA

Here we cover the main points of the BSE under the
CIA, which is a Lorentz-invariant generalization of
instantaneous approximation, which is used to derive the
three-dimensional (3D) Salpeter equations. We start with a
four-dimensional (4D) BSE for a qq̄ system with quarks
of constituent masses m1 and m2, written in a 4 × 4
representation of the 4D BS wave function ΨðP; qÞ as

S−1F ðp1ÞΨðP;qÞS−1F ð−p2Þ¼
i

ð2πÞ4
Z

d4q0Kðq;q0ÞΨðP;q0Þ;

ð1Þ
where Kðq; q0Þ is the interaction kernel between the quark
and antiquark, and p1;2 are the momenta of the quark and
antiquark, which are related to the internal 4-momentum q
and total momentum P of a hadron of mass M as

p1;2μ ¼ m̂1;2Pμ � qμ, where m̂1;2 ¼ 1
2
½1� ðm2

1
−m2

2
Þ

M2 � are the
Wightman-Garding definitions of the masses of individual
quarks, which ensure that P:q ¼ 0 on the mass shells of
each quark, i.e., p2

1 þm2
1 ¼ p2

2 þm2
2 ¼ 0 for both m1 ¼

m2 and m1 ≠ m2, and m̂1;2 reduce to m̂1;2 ¼ m1;2

m1þm2
in the

nonrelativistic limit. [These constituent masses m1;2 are
strictly momentum dependent, since they contain the
mass function mðpÞ, but may be regarded as almost
constant, mðpÞ ¼ mð0Þ, for low-energy phenomena.]
With these Wightman-Garding definitions, m̂1;2 always
satisfy m̂1 þ m̂2 ¼ 1, and they are a natural choice that
allocates most of the momentum to the heavy quark, while
a smaller part of the momentum goes to the lighter quark in
a heavy-light meson. However, for equal-mass mesons
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(such as in cc̄ systems, where m1 ¼ m2 ¼ m), we have
m̂1 ¼ m̂2 ¼ 1

2
. Then, p1;2μ becomes p1;2μ ¼ 1

2
Pμ � qμ (as

in Refs. [37,38]) where the momentum is shared equally
between the two quarks.
Now it is convenient to express the internal momentum of

the hadron qμ as the sum of two parts. They are (i) the
transverse component q̂μ ¼ qμ − ðq · PÞPμ/P2, which is
orthogonal to the total hadron momentum Pμ [i.e., q̂ · P ¼
0 regardless of whether the individual quarks are on-shell
ðP:q ¼ 0Þ or off-shell ðP:q ≠ 0Þ], and (ii) the longitudinal
component σPμ ¼ ðq · PÞPμ/P2, which is parallel to Pμ.
Thus, we can decompose qμ as qμ ¼ ðq̂; iMσÞ, where the
transverse component q̂ is an effective 3D vector, while the
longitudinal component Mσ plays the role of the time
component. It should be noted that, although q̂μ is an effective
3D vector, it is indeed a 4-vector, and q̂2 ¼ q2 − ðq · PÞ2/P2

is positive definite throughout the entire 4D space.
The 4D volume element in this decomposition is

d4q ¼ d3q̂Mdσ. To obtain the 3D BSE and the hadron-
quark vertex, we use an ansatz on the BS kernelK in Eq. (1)
which is assumed to depend on the 3D variables q̂μ, q̂0μ as

Kðq; q0Þ ¼ Kðq̂; q̂0Þ: ð2Þ
Hence, the longitudinal component Mσ of qμ does not
appear in the form Kðq̂; q̂0Þ of the kernel. To reduce Eq. (1)
to a 3D form, we define the 3D wave function ψðq̂Þ as

ψðq̂Þ ¼ i
2π

Z
MdσΨðP; qÞ: ð3Þ

Substituting Eq. (5) into Eq. (1), with the definition of the
kernel in Eq. (4), we get a covariant version of the Salpeter
equation,

ði=p1 þm1ÞΨðP; qÞð−i=p2 þm2Þ ¼
Z

d3q̂0

ð2πÞ3Kðq̂; q̂0Þψðq̂0Þ;

ð4Þ
and the 4D BS wave function becomes

ΨðP; qÞ ¼ SFðp1ÞΓðq̂ÞSFð−p2Þ; ð5Þ
where

Γðq̂Þ ¼
Z

d3q̂0

ð2πÞ3Kðq̂; q̂0Þψðq̂0Þ ð6Þ

plays the role of the hadron-quark vertex function, which
satisfies a 4D BSE with a natural off-shell extension over
the entire 4D space (due to the positive definiteness of the
quantity q̂2), and thus provides a fully Lorentz-invariant
basis for the evaluation of various transition amplitudes
through various quark loop diagrams. Here due to γμ ⊗ γμ
form of the kernel, details of which are given in [48], we

can write Γðq̂Þ ¼ R d3q̂0

ð2πÞ3 Vðq̂; q̂0Þγμψðq̂0Þγμ (where V is

spatial part of the kernel), where we can to a good

approximation express γμψðq̂0Þγμ ≈ Θψðq̂0Þ, where Θ
involves the spin-spin interactions alone, on taking the
dominant Dirac structures in ψðq̂0Þ in Eq. (9), and ignoring
terms like q̂2/M2 in expressions for hadron-quark vertex
function, Γðq̂Þ and the full 4D BSwave function,ΨðP; qÞ in
Eqs. (6), and (5) respectively that have negligible contri-
butions in the heavy-quark limit. Following a sequence of
steps outlined in Ref. [48], we get the covariant forms of the
Salpeter equations (in the 4D variable q̂), which are effective
3D forms of the BSE and are valid for hadrons in arbitrary
motion. The complete 3DBSwave function is a 4 × 4matrix
in spinor space, and separates into four parts as [21,48]
ψðq̂Þ ¼ ψþþðq̂Þ þ ψþ−ðq̂Þ þ ψ−þðq̂Þ þ ψ−−ðq̂Þ, where
each of these is a 4 × 4 matrix.
The four independent Salpeter equations are [21,48]

ðM − 2ωÞψþþðq̂Þ ¼ −Λþ
1 ðq̂ÞΓðq̂ÞΛþ

2 ðq̂Þ;
ðM þ 2ωÞψ−−ðq̂Þ ¼ Λ−

1 ðq̂ÞΓðq̂ÞΛ−
2 ðq̂Þ;

ψþ−ðq̂Þ ¼ 0;

ψ−þðq̂Þ ¼ 0; ð7Þ
where Λ� are the projection operators [48] for each of the
constituents. The framework is quite general so far. Thus,
to obtain the mass spectral equation we have to start with the
above four equations to solve the instantaneousBS equation.

III. MASS SPECTRA OF SCALAR QUARKONIA

We start with the most general decomposition of a 4D BS
wave function for a scalar meson [17,19],

ψðP; qÞ ¼ f1ðq; PÞ − i=Pf2ðq; PÞ − i=qf3ðq; PÞ
− ½=P; =q�f4ðq; PÞ; ð8Þ

which is expressible as a linear superposition of four Dirac
covariants, each multiplied by a Lorentz scalar amplitude fi
that have different dimensions of mass. We first reexpress
ψðP; qÞ bymaking these amplitudes fiðq; PÞ dimensionless
byweighing eachDirac structure by an appropriate power of
the meson mass M. Thus, each term in the expansion of
ψðP; qÞ is associated with a certain power of M [25,27].
Further, making use of the 3D reduction, and making use of
the fact that q̂:P ¼ 0, we can write the general decom-
position of the instantaneous BS wave function for scalar
mesons ðJpc ¼ 0þþÞ of dimensionality M as

ψðq̂Þ ¼ Mf1ðq̂Þ − i=Pf2ðq̂Þ − i=̂qf3ðq̂Þ −
2=P=̂q
M

f4ðq̂Þ: ð9Þ

Until now these amplitudes have all been independent, and
per the power-counting rule [25–27] proposed by us earlier,
f1 and f2 are the amplitudes associated with the leading
Dirac structures, namely, M and =P, while f3 and f4 will
be the amplitudes associated with the subleading Dirac

structures, namely, =̂q, and 2=P=̂q
M .
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We now use the last two Salpeter equations, that act as
two constraint conditions ψþ−ðq̂Þ ¼ 0, and ψ−þðq̂Þ ¼ 0 in
the 3D Salpeter equations, Eq. (7). Due to these two
equations, the scalar functions fiðq̂Þði ¼ 1;…; 4Þ are no
longer independent, but rather are tied together by the
relations (for the equal-mass case)

f1ðq̂Þ ¼
−q̂2f3ðq̂Þ

Mm
;

f2ðq̂Þ ¼ 0: ð10Þ

Thus, after applying the constraint conditions, the ampli-
tudes get mixed up, and the distinction between the leading
and subleading Dirac structures (which was applicable
when amplitudes were independent) gets lost.
This is in contrast to the BSE approach [27] [involving

the 16 × 1 structure of the two-body BS amplitude
ΨðP; qÞ], which leads to an exact connection [27] between
the 3D and 4D forms of the BSE. After the 3D reduction,
we get a single 3D Salpeter equation [as in Eq. (30) of
Ref. [27]], and the 3D BS amplitudes (fis) remain
independent, and thus they remain classified in terms of
leading and subleading amplitudes.

However, as mentioned above, with the present BSE
approach [which involves the 4 × 4 BS amplitude ΨðP; qÞ]
used in this paper we get four Salpeter equations, and due to
the last two Salpeter equations (acting as constraint con-
ditions) the amplitudes get mixed up, and this distinction
between leading and subleading amplitudes is lost. Further,
the second constraint condition leads to f2 ¼ 0 only on
account of equal-mass quarks. Such linkages between BS
amplitudes have been obtained before in Ref. [52].
Thus, the relativistic 3D Salpeter wave function of the

0þþ meson is determined by only two independent scalar
functions [f1 (or f3) and f4] in the form

ψðq̂Þ ¼
�
−q̂2

m
− i=̂q

�
f3ðq̂Þ −

2=P=̂q
M

f4ðq̂Þ ð11Þ

(the same is true for the 0−þ, 1−−, and 1þþ mesons). Here,
we should note that by using the above constraint equa-
tions, we have reexpressed f1 in terms of f3. Putting the
wave function in Eq. (11) above—along with the projection
operators defined in Eq. (13) of Ref. [48]—into the first two
Salpeter equations in Eq. (7), and by taking the trace on
both sides, we obtain the equations

ðM − 2ωÞ
�
f3ðq̂Þ þ

2mf4ðq̂Þ
ω

�
¼ 1

ω2q̂2

Z
d3q̂0

ð2πÞ3 Kðq̂; q̂
0Þ½q̂2q̂02f3ðq̂0Þ −m2q̂:q̂0f3ðq̂0Þ − 2mωq̂:q̂0f4ðq̂0Þ�;

ðM þ 2ωÞ
�
f3ðq̂Þ −

2mf4ðq̂Þ
ω

�
¼ 1

ω2q̂2

Z
d3q̂0

ð2πÞ3Kðq̂; q̂0Þ½−q̂2q̂02f3ðq̂0Þ þm2q̂:q̂0f3ðq̂0Þ − 2mωq̂:q̂0f4ðq̂0Þ�: ð12Þ

The solution of these equations needs information about the BS kernel Kðq̂; q̂0Þ [27,48], which is taken to be one-gluon-
exchange-like as regards the color (1

4
λ⃗1:λ⃗2) and spin (γμ ⊗ γμ) dependence, while the potential Vðq̂; q̂0Þ involves the scalar

structure of the gluon propagator in the perturbative (o.g.e), as well as the nonperturbative (confinement) regimes and is
given as

Kðq; q0Þ ¼
�
1

2
λ⃗1:

1

2
λ⃗2

�
ðγμ ⊗ γμÞVðq − q0Þ;

Vðq̂; q̂0Þ ¼ 4παs
ðq − q0Þ2 þ

3

4
ω2
qq̄

Z
d3r⃗

�
r2ð1þ 4m̂1m̂2A0M2

>r2Þ−1
2 −

C0

ω2
0

�
eiðq̂−q̂0Þ:r⃗; ð13Þ

where ω2
qq̄ ¼ 4Mm̂1m̂2ω

2
0αsðM2Þ is the flavor-dependent spring constant, and the QCD coupling constant

αsðM2Þ ¼ 12π
33−2nf

½logðM2

Λ2 Þ�−1. Here, the proportionality of ω2
qq̄ on αSðQ2Þ is needed to provide a more direct QCD

motivation [18,25] to confinement, and ω2
0 is postulated as a spring constant which is common to all flavors, and is

introduced as an input parameter. A0 ≪ 1 has been introduced to create a smooth transition from harmonic to linear
confinement as one goes from qq̄ toQQ̄ systems. C0 is a dimensionless constant. The full structure of the scalar function V
is the sum of one-gluon-exchange, VOGE, and the confining part, Vc. We first ignore the VOGE term, and work only with the
confining part Vc in Eq. (13), and write Eq. (12) as

ðM − 2ωÞ
�
f3ðq̂Þ þ

2mf4ðq̂Þ
ω

�
¼ Θs

ω2q̂2

Z
d3q̂0

ð2πÞ3 Vcðq̂; q̂0Þ½q̂2q̂02f3ðq̂0Þ −m2q̂:q̂0f3ðq̂0Þ − 2mωq̂:q̂0f4ðq̂0Þ�;

ðM þ 2ωÞ
�
f3ðq̂Þ −

2mf4ðq̂Þ
ω

�
¼ Θs

ω2q̂2

Z
d3q̂0

ð2πÞ3 Vcðq̂; q̂0Þ½−q̂2q̂02f3ðq̂0Þ þm2q̂:q̂0f3ðq̂0Þ − 2mωq̂:q̂0f4ðq̂0Þ�; ð14Þ
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where the spin dependence of the interaction is contained
in the factor ΘS ¼ γμψðq̂Þγμ [48]. The scalar part of
the confining potential (which involves the color
factor 1

2
λ⃗1: 12 λ⃗2 ¼ − 4

3
) is taken to be [48] Vcðq̂; q̂0Þ ¼

V̄cδ
3ðq̂ − q̂0Þ, where V̄cðq̂;q̂0Þ¼ω2

qq̄ð2πÞ3½κ∇⃗2
q̂þC0

ω2
0

�, and

κ¼ð1−A0M2∇⃗2
q̂Þ−1/2. Here V̄c is the part of Vc without

the delta function. To handle these equations, we first
integrate them over d3q̂0, performing the delta function
integration that arises due to the presence of Vcðq̂; q̂0Þ in the
integrand, and get two coupled algebraic equations with
V̄ðq̂Þ on the rhs. To decouple them, we first add them.
Then, we subtract the second equation from the first
equation, and get two algebraic equations which are still
coupled. Then, from one of the two equations so obtained,
we eliminate f3ðq̂Þ in terms of f4ðq̂Þ, and plug this
expression for f3ðq̂Þ into the second equation of the
coupled set so obtained, to get a decoupled equation in
f4ðq̂Þ. Similarly, we eliminate f4ðq̂Þ from the second
equation of the set of coupled algebraic equations in terms
of f3ðq̂Þ, and plug it into the first equation to get a
decoupled equation entirely in f3ðq̂Þ. Thus, we get two
identical decoupled equations: one entirely in f3ðq̂Þ, and
the other entirely in f4ðq̂Þ. The calculation up to this point
has not used any approximations. However, we notice that
if we employ the approximation ω ≈m on rhs of the two
algebraic equations1 [this is justified since in the confine-
ment region, the relative momentum between heavy quarks
in the bound state can be considered small, since the heavy
quark is expected to move with nonrelativistic speeds (see
Ref. [53]), and these quarks can be treated as almost on
mass shell], these decoupled equations can be expressed as�
M2

4
−m2 − q̂2

�
f3ðq̂Þ ¼ −mΘsV̄cf3ðq̂Þ þ

Θ2
sV̄2

cf3ðq̂Þ
4

;

�
M2

4
−m2 − q̂2

�
f4ðq̂Þ ¼ −mΘsV̄cf4ðq̂Þ þ

Θ2
sV̄2

cf4ðq̂Þ
4

:

ð15Þ
We see that we get two identical decoupled equations
which resemble the harmonic oscillator equations, except

for the term involving V̄2
c on the right-hand side of these

equations.
We wish to mention that in this study on the mass

spectra of scalar, pseudoscalar, vector, and axial-vector
quarkonia good agreement with data on masses and various
decay constants/decay widths of the ground and excited
states of ηc, ηb, J/Ψ, and ϒ is obtained for the input
parametersC0¼0.186889,ω0¼0.145GeV,Λ¼0.250GeV,
and A0 ¼ 0.01, along with the input quark mass
mc ¼ 1.490 GeV. With these numerical values for the input
parameters, we try to determine the numerical values of

ΩS ¼ mΘSω
2
qq̄, and Ω0

S ¼ Θ2
S
4
ω4
qq̄ associated with the terms

involving V̄c and V̄2
c, respectively, for scalar mesons χc0 on

the rhs of Eq. (15).We report their percentage ratio in Table I
below, where it can be seen that ω4

qq̄ ≪ ω2
qq̄ and hence the

second termon the rhs ofEq. (16) contributes∼1%of the first
term on the rhs of this equation for cc̄, and thus it can be
dropped, as in Ref. [48].
Thus, the rhs of both equations in Eq. (15) only has the

term −mΘsV̄cf3;4ðq̂Þ. Now, using the spatial part V̄c in
Eq. (15), the wave functions f3, and f4 satisfy identical 3D
BSEs for equal-mass heavy scalar mesons:

�
M2

4
−m2 − q̂2

�
f3ðq̂Þ ¼ −mΘsω

2
qq̄

�
κ∇⃗q̂

2 þ C0

ω2
0

�
f3ðq̂Þ;�

M2

4
−m2 − q̂2

�
f4ðq̂Þ ¼ −mΘsω

2
qq̄

�
κ∇⃗q̂

2 þ C0

ω2
0

�
f4ðq̂Þ;

ð16Þ

where we have used V̄ðq̂Þ ¼ ð2πÞ3ω2
qq̄½κ∇⃗2

q̂ þ C0

ω2
0

� [48], with
κ ¼ ð1þ 2A0ðN þ 3

2
ÞÞ−1/2. Thus the solutions of these

equations f3ðq̂Þ ≈ f4ðq̂Þð¼ ϕsðq̂ÞÞ. With the use of the
above equality of the amplitudes, and reexpressing f3 in
terms of f1, the complete wave function Ψsðq̂Þ can be
expressed as

Ψsðq̂Þ ¼
�
M þ i

mM=̂q
q̂2

−
2=P=q
M

�
ϕsðq̂Þ: ð17Þ

However, it should be noted that even though the
reduced Salpeter wave function in Eq. (17) is reduced to
a single amplitude ϕs, by multiplying a linear combination

TABLE I. Numerical values of the coefficients ΩS ¼ mΘSω
2
qq̄,

and Ω0
S ¼ Θ2

S
4
ω4
qq̄ associated with the terms involving V̄c and V̄2

c,
respectively, for scalar mesons χc on the rhs of Eq. (15), and
their percentage ratio for the input parameters of our model
mentioned above.

ΩS Ω0
S

Ω0
S

ΩS
%

χc0 0.1213 0.0016 1.315

1In principle, we should solve the decoupled algebraic equa-
tions numerically. However, this would not give an explicit
dependence of the mass spectra on the principal quantum number
N, nor would this give the explicit algebraic forms of wave
functions that can be employed to do analytic calculations of
various transition amplitudes for different processes. Our ap-
proach may lead to a little loss of numerical accuracy, but it does
lead to a much deeper understanding of the mass spectral
problem. The approximations used by us have been shown to
be totally under control. The plots of our algebraic forms of the
wave functions for scalar, pseudoscalar, vector, and axial-vector
quarkonia are very similar to the corresponding plots of wave
functions in Ref. [22] obtained by purely numerical methods,
which validates our approach.
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of three distinct Dirac structures all three of these Dirac
structures will contribute to the calculation of any
observable.
We can reduce this equation to the equation for a simple

quantum-mechanical 3D harmonic oscillator with coeffi-
cients depending on the hadron mass M and total quantum
number N. The wave function satisfies the 3D BSE:

�
M2

4
−m2 − q̂2

�
ϕðq̂Þ ¼ −mΘsω

2
qq̄

�
κ∇⃗q̂

2 þ Co

ω2
o

�
ϕðq̂Þ:

ð18Þ

Now, with the use of leading Dirac structures, we can to a
good approximation (as in the case of pseudoscalar and
vector mesons [48]) express ΘS ¼ 4. This is due to the fact
that γμψðq̂Þγμ ≈ γμðMf1Þγμ ¼ 4ψðq̂Þ, due to MI (with I
being the unit 4 × 4 matrix) being the most leading Dirac
structure in the scalar meson wave function, and the terms
with q̂2/m2 have negligible contributions in the heavy-
quark limit, and thus can be dropped. Thus, the above
equation can be put in the form

�
M2

4
−m2 − q̂2

�
ϕðq̂Þ ¼ −β4s

�
κ∇⃗2

q̂ þ
C0

ω2
0

�
ϕðq̂Þ; ð19Þ

which can in turn be expressed as

Esϕs ¼ ½−β4s∇⃗2
q̂ þ q̂2�ϕsðq̂Þ; ð20Þ

where βs ¼ ð 4mω2
qq̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2A0ðNþ3/2Þ
p Þ1/4 and the total energy of the

system is expressed as

E ¼ M2

4
−m2 þ β4sC0

ω2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2A0ðN þ 3/2Þ

p
: ð21Þ

Putting the expression for the Laplacian operator in
spherical coordinates, we get

dϕðq̂Þ
dq̂2

þ 2

q̂
dϕðq̂Þ
dq̂

−
lðlþ 1Þϕðq̂Þ

q̂2
þ
�
E
β4s

−
q̂2

β4s

�
ϕðq̂Þ ¼ 0;

ð22Þ

where l is the orbital quantum number with the values
l ¼ 0; 1; 2; 3…, corresponding to S; P;D;… wave states,
respectively. This is a 3D harmonic oscillator equation,
whose solutions can be found by using the power-series
method. Assuming that the solutions of this equation are of

the form ϕðq̂Þ ¼ hðq̂Þe−
q̂2

2β2s , the above equation can be
expressed as

h00ðq̂Þ þ
�
2

q̂
−
2q̂
β2s

�
h0ðq̂Þ þ

�
E
β4s

−
3

β2s
−
lðlþ 1Þ

q̂2

�
hðq̂Þ:

ð23Þ

The eigenvalues of this equation can be obtained using
the power-series method as

EN ¼ 2β2s

�
N þ 3

2

�
; N ¼ 2nþ l; ð24Þ

with l ¼ 1. Thus, to each value of n ¼ 0; 1; 2; 3;…
will correspond a polynomial hðq̂Þ of order 2nþ 1
in q̂, which are obtained as solutions of Eq. (23).
The odd-parity normalized wave functions ϕðq̂Þ thus
derived are

ϕsð1p; q̂Þ ¼
�
2

3

�
1/2 1

π3/4β5/2s
q̂e

− q̂2

2β2s ;

ϕsð2p; q̂Þ ¼
�
5

3

�
1/2 1

π3/4β5/2s
q̂

�
1 −

2

5

q̂2

β2s

�
e
− q̂2

2β2s ;

ϕsð3p; q̂Þ ¼
�
70

171

�
1/2 1

π3/4β5/2s
q̂

�
1 −

2q̂2

5β4s
þ 4q̂4

35β4s

�
e
− q̂2

2β2s

ϕsð4p; q̂Þ ¼
�
1890

46359

�
1/2 1

π3/4β5/2s
q̂

×

�
1 −

6q̂2

5β2s
þ 12q̂4

35β4s
−

24q̂6

945β6s

�
e
− q̂2

2β2s : ð25Þ

The plots of the wave functions for scalar quarkonia χc0 are
shown in Fig. 1.
The mass spectrum of ground and excited states for

equal-mass heavy scalar (0þþ) mesons is written as

FIG. 1. Plots of wave functions for scalar (0þþ) quarkonia χc0
Vs q̂ (in GeV) for the states 1P, 2P, and 3P.
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1

2β2s

 
M2

4
−m2 þ C0β

4
s

ω2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2A0

�
N þ 3

2

�s !

¼ N þ 3

2
; N ¼ 2nþ l; n ¼ 0; 1; 2;…; ð26Þ

where the orbital quantum number l ¼ 1. Now, treating the
mass spectral equation (20) as the unperturbed equation
with the unperturbed wave functions ϕSðnP; q̂Þ for scalar
mesons in Eq. (25), we now incorporate the OGE
(Coulomb) term into this equation.
Then, the above mass spectral equation can be written as

ESϕSðq̂Þ ¼ ½−β4S∇⃗2
q̂ þ q̂2 þ VS

Coul�ϕSðq̂Þ: ð27Þ

Treating the Coulomb term as a perturbation to the
unperturbed mass spectral equation, we can write the
complete mass spectra for the ground and excited states
for equal-mass heavy scalar (0þþ) mesons using first-order
perturbation theory as

1

2β2S

(
M2

4
−m2 þ β4SC0

ω2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2A0

�
N þ 3

2

�s )
þ γhVS

Couli

¼
�
N þ 3

2

�
; N ¼ 2nþ l; n ¼ 0; 1; 2…:; ð28Þ

with l ¼ 1, where hVS
Couli is the expectation value of VS

Coul
between the unperturbed states of a given quantum number
n (with l ¼ 1) for scalar mesons, and has been weighted by
a factor of γ ¼ C2

0β
2
S to have the Coulomb term be

dimensionally consistent with the harmonic term. Its
expectation values for the 1P, 2P, 3P, and 4P states are

h1PjVS
Coulj1Pi ¼ −

128παs
9β2S

;

h2PjVS
Coulj2Pi ¼ −

64παs
18β2S

;

h3PjVS
Coulj3Pi ¼ −

3712παs
213β2S

h4PjVS
Coulj4Pi ¼ −

1152παs
25β2S

: ð29Þ

We now give the mass spectrum in the BSE-CIA of the
ground and excited states of χc0 with quantum numbers
JPC ¼ 0þþ in GeV in Tables II and III. It is seen that the set
of input parameters is not unique. It is observed that the
mass spectra of mesons of various JPC (0þþ in this section,
and 0−þ, 1−−, 1þþ in other sections) is somewhat insensi-
tive to the parameter range ω0 ∈ ½0.130–0.160� GeV, as
long as C0

ω2
0

is a constant, and reasonably good fits are

obtained for the parameter ratio C0

ω2
0

¼ 8.8888 GeV−2, with

the other parameters Λ ¼ 0.250 GeV, A0 ¼ 0.01, and
mc ¼ 1.490 GeV. Thus, for ω0 ¼ 0.130 GeV, we have
C0 ¼ 0.15022, while for ω0 ¼ 0.160 GeV we have
C0 ¼ 0.227556. (Such a relationship between two para-
meters that seem to be independent was also observed
in Refs. [33,38]). These results for different values of ω0

and C0 are given in Table II. However, for comparison with
experiment, we take the values ω0 ¼ 0.145 GeV and
C0 ¼ 0.186889, along with Λ ¼ 0.250 GeV, A0 ¼ 0.01,
and mc ¼ 1.490 GeV.
From the mass spectral equation, one can see that the

mass spectra depend not only on the principal quantum
numberN, but also on the orbital quantum number l. We are
now in a position to calculate the numerical values for the

TABLE II. Mass spectrum in the BSE-CIA of ground and excited states of χc0 with quantum numbers JPC ¼ 0þþ in units of GeV with
the parameter range ω ∈ ½0.130–0.160� GeV for the parameter ratio, C0

ω2
0

¼ 8.8888 GeV−2, and the other parameters Λ ¼ 0.250 GeV,

A0 ¼ 0.01, and mc ¼ 1.490 GeV. However, for comparison with experiment, we take the values ω ¼ 0.145 GeV and C0 ¼ 0.18688.

M (ω ¼ 0.130) M (ω ¼ 0.145) M (ω ¼ 0.160) Experiment [6]

Mχc0ð1p0Þ 3.3967 3.4474 3.4995 3.4140� 0.0003
Mχc0ð2p0Þ 4.0967 4.1552 4.2039
Mχc0ð3p0Þ 4.7204 4.8463 4.9687
Mχc0ð4p0Þ 5.2961 5.5186 5.7308

TABLE III. Mass spectrum of the ground and excited states of χc0 in the BSE-CIA with quantum numbers
JPC ¼ 0þþ in units of GeV with the above set of parameters (Λ ¼ 0.250 GeV, A0 ¼ 0.01, mc ¼ 1.490 GeV,
ω0 ¼ 0.145 GeV, and C0 ¼ 0.186889), along with data and the results of other models.

BSE-CIA Experiment [6] Potential Models [29] BSE [22] RQM [30]

Mχc0ð1p0Þ 3.4474 3.4140� 0.0003 3.440 3.413
Mχc0ð2p0Þ 4.1552 3.9200 3.8368 3.8700
Mχc0ð3p0Þ 4.8463 4.1401 4.3010
Mχc0ð4p0Þ 5.5186
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mass spectra of heavy equal-mass scalar mesons with the
input parameters of our model. The results of the mass-
spectral predictions of heavy equal-mass scalar mesons for
both ground and excited states with the above set of
parameters is given in Table II.
We now derive the mass spectral equations with the

incorporation of the OGE (Coulomb) term for pseudoscalar
and vector quarkonia, and obtain their solutions in the next
section (the preliminary calculations using only the con-
fining part of the interaction were done in Ref. [48]).

IV. MASS SPECTRAL EQUATION
FOR PSEUDOSCALAR (0− + ) AND

VECTOR (1− − ) QUARKONIA

For pseudoscalar (P), and vector (V) quarkonia, the
general decomposition of the instantaneous BS wave
function of dimensionality M is given in Eqs. (18) and
(25), respectively, of Ref. [48]. Putting the wave function
in Eq. (18) (for P-mesons) or Eq. (25) (for V-mesons) of
Ref. [48] into the Salpeter equations leads to two coupled
equations in the leading amplitudes (ϕ1 and ϕ2 for
P-mesons, and χ1 and χ2 for V-mesons). Decoupling them
in the heavy-quark limit leads Eq. (37) (for both P- and
V-mesons) of Ref. [48],

EP;Vϕs ¼ ½−β4P;V∇⃗2
q̂ þ q̂2�ϕP;Vðq̂Þ; ð30Þ

where the nonperturbative energy eigenfunctions
for l ¼ 0ðSÞ and l ¼ 2ðDÞ states are obtained as sol-
utions of the above spectral equation in an approximate
harmonic oscillator basis for pseudoscalar quarkonia
(for states 1S;…; 4S) and vector quarkonia (for states
1S;…; 3D) [as in Eq. (41) in Ref. [48]], for the
perturbative calculation of the short-range one-gluon-
exchange interaction shown later in this section.
The plots of unperturbed wave functions for pseudo-

scalar and vector quarkonia were given in Ref. [48]. The
unperturbed mass spectra are expressed as (see
Ref. [48])

�
M2

4
−m2 þ β4P;VC0

ω2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2A0ðN þ 3/2Þ

p �

¼ 2β2P;V

�
N þ 3

2

�
; N ¼ 2nþ l; n ¼ 0; 1; 2;…

ð31Þ

The mass spectra of vector charmonium and bottomo-
nium states using the above spectral equation was found
to have degenerate S and D states [48]. However, with
the incorporation of the OGE (Coulomb) term the mass
spectral equation can be written as

EP;VϕP;Vðq̂Þ ¼ ½−β4P;V∇⃗2
q̂ þ q̂2 þ VP;V

Coul�ϕP;Vðq̂Þ: ð32Þ

Now, treating the Coulomb term as a perturbation to the
unperturbed mass spectral equation (30), and treating
the wave functions ϕP;Vðq̂Þ in Eq. (41) of Ref. [48] as
the unperturbed wave functions, we can write the complete
mass spectra of ground (1S) and excited states for equal-
mass heavy pseudoscalar (0−þ) and vector (1−−) mesons,
respectively, using the first-order degenerate perturbation
theory as

1

2β2P;V

(
M2

4
−m2 þ β4P;VC0

ω2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2A0

�
N þ 3

2

�s )

þ γhVP;V
Couli ¼

�
N þ 3

2

�
; N ¼ 2nþ l; n ¼ 0; 1; 2…;

ð33Þ
where hVP;V

Couli [which again has been weighted by a
factor of γP;V ¼ C2

0β
2
P;V , as in scalar (0þþ) quarkonia in

the previous section] is the matrix element of VP;V
Coul

between unperturbed states in Eq. (41) of Ref. [48] for
given quantum numbers n and l (with n ¼ 0; 1; 2; 3;…,
and l ¼ 0 for pseudoscalar mesons and l ¼ 0, 2 for
vector mesons). It should be noted that VP;V

Coul connects
only the equal-parity states with the same quantum
number n. The only nonvanishing matrix elements of the
perturbation between states with the given quantum
numbers n and l are listed below:

hnSjVP
CouljnSi ¼

παs
12

1

β2P
;

hnSjVV
CouljnSi ¼

παs
24

1

β2V
;

hnDjVV
CouljnDi ¼ παs

24

1

5β2V
: ð34Þ

Thenonzerovalues of hVCouligiven abovenot only lead to
the lifting up of the degeneracy between the S and D levels
with the same principal quantum number N in vector
quarkonia, but also lead to bringing the masses of different
states of vector and pseudoscalar quarkonia closer to data, as
can be seen from the mass spectral results for pseudoscalar
(0−þ) and vector (1−−) quarkonia, which are compared with
the experimental data [6] and other models for each state
(where available) in Tables IV and V (for 0−þ) and in
Tables VI and VII (for 1−−).

V. MASS SPECTRAL EQUATION FOR
AXIAL-VECTOR 1+ + QUARKONIA

The general form for the relativistic Salpeter wave
function of the 3P1 state with JPC ¼ 1þþ can be expressed
as in Refs. [17,19]. Making use of the 3D reduction, and the
fact that q̂:P ¼ 0, we can then write the general decom-
position of the instantaneous BS wave function for axial-
vector mesons ðJpc ¼ 1þþÞ of dimensionality M as
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TABLE V. Masses of ground and radially excited states of ηc (in GeV) in the present calculation (BSE-CIA) along with experimental
data, and their masses in other models.

BSE-CIA Experiment [6] Potential Models [54] QCD sum rule [15] Lattice QCD [12] [30]

Mηcð1SÞ 2.9759 2.983� 0.0007 2.980 3.11� 0.52 3.292 2.981
Mηcð2SÞ 3.7264 3.639� 0.0013 3.600 4.240 3.635
Mηcð3SÞ 4.4812 4.060 3.989
Mηcð4SÞ 5.1368 4.4554 4.401
Mηcð5SÞ 5.7442

TABLE IV. Masses of ground and radially excited states of ηc (in GeV) in the present calculation (BSE-CIA)
along with experimental data, for a range of variations of parameter ω0 ∈ ½0.130–0.160� GeV for the parameter ratio
C0

ω2
0

¼ 8.8888 GeV−2, and the other parameters Λ ¼ 0.250 GeV, A0 ¼ 0.01, and mc ¼ 1.490 GeV. However, for

comparison with experiment, we take the value ω0 ¼ 0.145 GeV.

M (ω0 ¼ 0.130) M (ω0 ¼ 0.145) M (ω0 ¼ 0.160) Experiment [6]

Mηcð1SÞ 3.0358 2.9759 2.9036 2.983� 0.0007
Mηcð2SÞ 3.7018 3.7264 3.7484 3.639� 0.0013
Mηcð3SÞ 4.4011 4.4812 4.5463
Mηcð4SÞ 5.0001 5.1368 5.2569
Mηcð5SÞ 5.570 5.7442 5.9132

TABLE VI. Masses of ground and radially excited states of Ψ (in GeV) in the present calculation (BSE-CIA) along with experimental
data, for a a range of variations of parameter ω0 ∈ ½0.130–0.160� GeV for the parameter ratio C0

ω2
0

¼ 8.8888, and the other parameters

Λ ¼ 0.250 GeV, A0 ¼ 0.01, and mc ¼ 1.490 GeV. However, for comparison with experiment, we take the value ω0 ¼ 0.145 GeV.

M (ω0 ¼ 0.130) M (ω0 ¼ 0.145) M (ω0 ¼ 0.160) Experiment [6]

MJ/Ψð1SÞ 3.1291 3.1017 3.0876 3.0969� 0.000011
MΨð2SÞ 3.6470 3.6854 3.7163 3.6861� 0.00034
MΨð1DÞ 3.6642 3.7010 3.7297 3.773� 0.00033
MΨð3SÞ 4.1267 4.2135 4.2923 4.03� 0.001
MΨð2DÞ 4.1643 4.2518 4.3302 4.191� 0.005
MΨð4SÞ 4.5736 4.7044 4.8257 4.421� 0.004
MΨð3DÞ 4.6302 4.7628 4.8854
MΨð5SÞ 4.9939 5.1642 5.3239
MΨð4DÞ 5.0673 5.2409 5.4032

TABLE VII. Masses of ground, radially, and orbitally excited states of heavy vector quarkonium J/ψ in the BSE-CIA, along with their
masses in other models and experimental data (all units are in GeV).

BSE-CIA Experiment [6] Relativistic Potential Models [30] Potential Models [54] BSE [22] Lattice QCD [55]

MJ/ψð1SÞ 3.1017 3.0969� 0.000011 3.096 3.0969 3.099
Mψð2SÞ 3.6854 3.6861� 0.00034 3.685 3.6890 3.686 3.653
Mψð1DÞ 3.7011 3.773� 0.00033 3.783 3.759
Mψð3SÞ 4.2154 4.03� 0.001 4.039 4.1407 4.065 4.099
Mψð2DÞ 4.2518 4.191� 0.005 4.150 4.108
Mψð4SÞ 4.7044 4.421� 0.004 4.427 4.5320 4.344
Mψð3DÞ 4.7628 4.507 4.371
Mψð5SÞ 5.1642 4.837 4.8841 4.567
Mψð4DÞ 5.2409 4.857
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ψðq̂Þ ¼ γ5

�
γμ þ

Pμ=P

M2

��
iMg1ðq̂Þ þ =Pg2ðq̂Þ − =̂qg3ðq̂Þ þ 2i

=P=̂q
M

g4ðq̂Þ
�

þ γ5½Mq̂μg3ðq̂Þ þ 2iq̂μ=Pg4ðq̂Þ�: ð35Þ

With the use of our power-counting rule [25,26], it can be checked that the Dirac structures associated with the
amplitudes g1 and g2 are OðM1Þ and are leading, and thus they would contribute the most to any axial-vector meson
calculation. Following a similar procedure as in the case of scalar mesons, we can write the Salpeter wave function in terms
of only two Dirac amplitudes: g1 and g2. Plugging this wave function together with the projection operators into the first two
Salpeter equations in Eq. (16) of Ref. [48], and taking the trace of both sides and following the same steps as for the scalar
meson case, we get the coupled integral equations in the amplitudes g1 and g2:

ðM − 2ωÞ
�
−
2mg1
ω

þ 2g2

�
¼ ΘA

Z
d3q̂0

ð2πÞ3 Vcðq̂; q̂0Þ
�
−
2mg1
ω

þ 2g2

�
;

ðM − 2ωÞ
�
−
2mg1
ω

þ 2g2

�
¼ −ΘA

Z
d3q̂0

ð2πÞ3 Vcðq̂; q̂0Þ
�
−
2mg1
ω

þ 2g2

�
: ð36Þ

To decouple these equations, we follow a similar
procedure as in the scalar meson case, and get two identical
decoupled equations: one entirely in g1ðq̂Þ, and one entirely
in g2ðq̂Þ. In the limit ω ≈m on the rhs, and due to the fact
that for axial quarkonia again ω4

qq̄ ≪ ω2
qq̄, these equations

can be expressed as

�
M2

4
−m2 − q̂2

�
g1ðq̂Þ ¼ −mΘAω

2
qq̄

�
∇⃗2

q̂ þ
C0

ω2
0

�
g1ðq̂Þ;�

M2

4
−m2 − q̂2

�
g2ðq̂Þ ¼ −mΘAω

2
qq̄

�
∇⃗2

q̂ þ
C0

ω2
0

�
g2ðq̂Þ;

ð37Þ

where it can be checked that both g1 and g2 satisfy the
same equation, and hence we can approximately write
g1 ∼ g2 ∼ ϕA. Thus,

�
M2

4
−m2− q̂2

�
ϕAðq̂Þ¼−ΘAmω2

qq̄

�
∇⃗2

q̂þ
C0

ω2
0

�
ϕAðq̂Þ; ð38Þ

where ΘA ¼ γμΨðq̂Þγμ. Now, with the use of leading
Dirac structures, we can again to a good approximation
express ΘA ¼ 2. This is due to the fact that γμψðq̂Þγμ ≈
γμγ5γνðiMg1Þγμ ¼ 2γ5γνðiMg1Þ ≈ 2ψðq̂Þ. This mass spec-
tral equation has the same form as themass spectral equation
for scalar quarkonia [Eq. (18)], except for the value of ΘA,
which is different fromΘS. Thus, the above equation can be
put in a similar form as Eq. (20) (for the scalar case), except
that the inverse range parameter βs → βA, where βA ¼
ð 2mω2

qq̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2A0ðNþ3/2Þ

p Þ1/4, and the 3D wave function ϕs → ϕA.

The mass spectral equation for 1þþ would then exactly
resemble Eq. (20) for the 0þþ case, and thus the unperturbed
wave functions ϕAðq̂Þ for 1þþ would then have the same
algebraic form as ϕsðq̂Þ in Eq. (25), but with βs → βA:

ϕAð1p; q̂Þ ¼
�
2

3

�
1/2 1

π3/4β5/2A

q̂e
− q̂2

2β2
A ;

ϕAð2p; q̂Þ ¼
�
5

3

�
1/2 1

π3/4β5/2A

q̂

�
1 −

2

5

q̂2

β2A

�
e
− q̂2

2β2
A ;

ϕAð3p; q̂Þ ¼
�
70

171

�
1/2 1

π3/4β5/2A

q̂
�
1 −

2q̂2

5β4A
þ 4q̂4

35β4A

�
e
− q̂2

2β2
A ;

ϕAð4p; q̂Þ ¼
�
1890

46359

�
1/2 1

π3/4β5/2A

q̂

�
1 −

6q̂2

5β2A
þ 12q̂4

35β4A
−

24q̂6

945β6A

�
e
− q̂2

2β2
A : ð39Þ

The plots of the wave functions for axial-vector quarko-
nia are given in Fig. 2.
Now, the perturbative inclusion of the Coulomb term will

reduce mass spectrum for axial-vector meson in the same

form as Eqs. (27)–(29) for the scalar case, except that the
inverse range parameter βs must be replaced by βA. The
complete mass spectral equation for ground and excited
states of 1þþ is
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EAϕAðq̂Þ ¼ ½−β4A∇⃗2
q̂ þ q̂2 þ VA

Coul�ϕAðq̂Þ: ð40Þ

The solutions of the above spectral equation are

1

2β2A

(
M2

4
−m2 þ β4AC0

ω2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2A0

�
N þ 3

2

�s )
þ γAhVA

Couli

¼
�
N þ 3

2

�
; N ¼ 2nþ l; n¼ 0;1;2…; ð41Þ

with l ¼ 1, where hVA
Couli is the expectation value of VA

Coul
between the unperturbed states of a given quantum number
n (with l ¼ 1) for axial-vector mesons, which has been
weighted by a factor of γA ¼ C2

0β
2
A to make the Coulomb

term dimensionally consistent with the harmonic term. Its
expectation values for the 1P, 2P, and 3P states are

h1PjVA
Coulj1Pi ¼ −

64παs
9β2A

;

h2PjVA
Coulj2Pi ¼ −

32παs
18β2A

;

h3PjVA
Coulj3Pi ¼ −

1856παs
213β2A

;

h4PjVA
Coulj4Pi ¼ −

576παs
25β2A

: ð42Þ

From the mass spectral equation one can see that the
mass spectra again depend on both the principal quantum
numberN and the orbital quantum number l. We are now in
a position to calculate the numerical values for the mass
spectra of heavy scalar quarkonia with the input parameters
of our model. The results of the mass spectral predictions of
heavy equal-mass scalar mesons for both ground and
excited states with the above set of parameters are given
in Table II. The results for the masses of ground (1P) and
excited (2P and 3P) states of quarkonia χc1 are given in
Table VIII and IX.

VI. TWO-PHOTON DECAYS OF SCALAR
QUARKONIUM

We now study the two-photon decay width of scalar
quarkonium (0þþ), which proceeds through the quark-
triangle diagrams shown in Fig. 3.
Let P be the total momentum of the scalar quarkonia, and

k1.2 be the momenta of the two emitted photons with
polarizations ε1;2, respectively. Then we can write
P ¼ k1 þ k2, and let 2Q ¼ k1 − k2. The invariant ampli-
tude for this process can be written as

FIG. 2. Plots of wave functions for axial-vector (1þþ) quarko-
nia χc1 Vs q̂ (in GeV) for the states 1P, 2P, and 3P.

TABLE VIII. Mass spectrum in the BSE-CIA of ground and excited states of χc1 with quantum numbers JPC ¼ 1þþ in units of GeV
with a range of variations of parameter ω0 ∈ ½0.130 − 0.160� GeV for the parameter ratio C0

ω2
0

¼ 8.8888 GeV−2, and the other parameters

Λ ¼ 0.250 GeV, A0 ¼ 0.01, and mc ¼ 1.490 GeV. However, for comparison with experiment, we take the value ω ¼ 0.145 GeV.

M (ω0 ¼ 0.130) M (ω0 ¼ 0.145) M (ω0 ¼ 0.160) Experiment [6]

Mχc1ð1p1Þ 3.4370 3.4782 3.5279 3.510� 0.0007
Mχc1ð2p1Þ 3.9279 3.9560 4.0333 3.871.69� 0.0017
Mχc1ð3p1Þ 4.3858 4.4650 4.6636
Mχc1ð4p1Þ 4.8155 4.9593 5.3151

TABLE IX. Mass spectrum of ground and excited states of χc1 with quantum numbers JPC ¼ 1þþ in units of GeV with the set of
parameters ω0 ¼ 0.145 GeV, C0 ¼ 0.186889, A0 ¼ 0.01, and mc ¼ 1.490 GeV.

BSE-CIA Experiment [6] Potential Models [29] BSE [22] RQM [30]

Mχc1ð1p1Þ 3.4783 3.510� 0.0007 3.440 3.413
Mχc1ð2p1Þ 3.9560 3.871.69� 0.0017 3.920 3.928 3.870
Mχc1ð3p1Þ 4.4650 4.228 4.301
Mχc1ð4p1Þ 4.9593
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MfiðS→ γγÞ¼ i
ffiffiffi
3

p ðieQÞ2
m2þM2

4

Z
d3q̂
ð2πÞ3Tr½Ψ

sðq̂Þ

× ½=ϵ1ðmþ i=QÞ=ϵ2þ=ϵ2ðmþ i=QÞ=ϵ1��; ð43Þ

where eQ ¼ þ 2
3
e for cc̄. The 3D structure of the Dirac wave

functionΨsðq̂Þ is given in Eqs. (9) and (17). The propagators
for the third quark in the two diagrams is expressed as

SFðq ∓ QÞ ¼ −ið=q∓=QÞþm
ðq∓QÞ2þm2 . Now, for heavy hadrons—where

the system can be regarded as nonrelativistic—it is a good
approximation to take the internal momentum q ≪ M, and,
hence, q2 ≪ Q2, where it can be seen that Q2 ¼ M2

4
. Using

the propagator expressions given above, and evaluating the
trace over the gamma matrices, we can write the invariant
amplitude given above as

MfiðS → γγÞ ¼ ðϵ1:ϵ2ÞFS;

FS ¼
�
16αem
3
ffiffiffi
3

p
π2

�
mM

m2 þ M2

4

Z
d3q̂ϕsðq̂Þ; ð44Þ

where FS is the decay constant for scalar quarkonium χc0.
The decay width for the process can then be expressed as

ΓðS → γγÞ ¼ 1

32πM
jFSj2: ð45Þ

For the lowest 0þþ states, we obtain Γχc0ð1p1Þ→γγ ¼
2567.06 eV (Expt ¼ 2341.50 eV [6]), and Γχc0ð2p1Þ→γγ ¼
1376.20 eV (for which data is not yet available). However
there are very large variations in results of two-photon decay
widths in various models (see Ref. [29,56,57].

VII. DISCUSSIONS

We have employed a 3D reduction of the BSE [with a
4 × 4 representation for the two-body (qq̄) BS amplitude]
under the CIA to derive the algebraic forms of the mass
spectral equations for scalar, pseudoscalar, vector, and
axial-vector quarkonia using the full BS kernel comprised
of the one-gluon-exchange and the confining part in an
approximate harmonic oscillator basis, which led to ana-
lytic solutions (both eigenfunctions and eigenvalues). We
thus obtained the mass spectra of cc̄ quarkonia for the
ground and excited states of 0þþ, 0−þ, 1−−, and 1þþ states.
The mass spectral results for all of these states—which
were compared with the experimental data [6] and other

models for each state (where available)—are given in
Tables II–IX respectively. The masses and the algebraic
forms of the eigenfunctions for each quarkonium state so
obtained will be used to calculate their various transitions.
As mentioned in Sec. II, in this work the partitioning

of relativistic internal momentum q comes from the
Wightman-Garding definitions m̂1;2 of the masses of indi-
vidual quarks (explained in detail in Sec. II). Hence, for
equal-mass quarkonia (such as cc̄ studied in this work) we
get p1;2 ¼ 1

2
P� q (as in Refs. [37,38]), and the momentum

is shared equally between the two quarks, which is a logical
choice. However, for unequal-mass mesons (where
m1 ≠ m2) the m̂1;2 allocate most of the momentum to the
heavy quark, while a smaller part of the momentum is
allocated to the lighter quark (such that the relation m̂1 þ
m̂2 ¼ 1 is always satisfied),which is a reasonable choice in a
heavy-light meson. But this choice is not needed in a
Poincaré-covariant formulation of the amplitudes [39,40],
where one could use, in general, p1 ¼ qþ αP and
p2 ¼ −qþ ð1 − αÞP, where the momentum partitioning
parameter α ∈ ½0; 1� and is arbitrary, and the numerical
results for the amplitudes and masses are independent of α.
Its arbitrariness is equivalent to a freedom in the definition of
the quark-antiquark relativemomentum, since in a Poincaré-
covariant formulation no physical observable should depend
on the choice of momentum partitioning. Hence, even
though the 3D reduction through the CIA employed by
us makes our formulation relativistically covariant, it may
not be Poincaré covariant since our results depend on the
choice of internal momentum. To have both Lorentz and
Poincaré covariance, the full 4D structure of the BS
amplitudes has to be used. With the omission of the full
structure of amplitudes comes the complication that the
results can be sensitive to the definition of the relativistic
internal momentum (see Ref. [42]). This may also be due to
the numerical approximations used.
We wish to mention that, in principle, in QQ̄ quarkonia

the constituents are close enough to each other to warrant a
more accurate treatment of the Coulomb term. Though for
bb̄ systems theCoulomb termwill be extremely dominant in
comparison to the confining term, it may not be so
unreasonable to treat the Coulomb term perturbatively for
cc̄ systems. Here we wish to point out that if we get
reasonable results for orbital cc̄ excitations, it is mainly
due to centrifugal effects [43] which ensure that the c − c̄
separation is large enough to feel the effect of the confining
term more strongly than the Coulomb term. Further, the
present approach is in line with some earlier works [43–45]
where the OGE (Coulomb) term was treated perturbatively
for charmedmesons and baryons. Similarly, in a recent work
[46] the 3D harmonic oscillator wave functions were used as
trial wave functions for obtaining the cc̄ spectrum and their
decays, where these trial wave functions did not take into
account the importance of the Coulomb potential for heavy
quarkonium systems. A similar treatment was followed
earlier in Ref. [47].

FIG. 3. Diagrams contributing to the two-photon decays of
scalar (0þþ) quarkonia.
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Also, in a recent work [48] in which one of us was
involved, we did not take into account the Coulomb
interactions between cc̄ and bb̄ states, and used only the
confining interaction to study their spectra and decays, in
line with other works [49–51].
However, in the present approach (using only the

confining interactions) we first analytically derived the
algebraic forms of the wave functions for various cc̄ states,
which are in the form of harmonic oscillators. Though we
then introduced the Coulomb term perturbatively for cc̄
(and not for bb̄), this present calculation is a substantial
improvement over our previous work in Ref. [48] (where
we did not treat the Coulomb interaction at all). However,
for bb̄ states, a more exact nonperturbative treatment of the
Coulomb interaction would be needed.
Further, our results for the cc̄ mass spectra suggest that

the perturbative incorporation of OGE with the use of
analytically derived harmonic oscillator wave functions is
closer to reality than some of the previous approaches
[46,47], where they used harmonic oscillator wave func-
tions only as trial wave functions, which did not take into
account the importance of the Coulomb potential for heavy
quarkonium systems.
All numerical calculations have been done using

MATHEMATICA. We selected the best set of five input
parameters [given after Eq. (16)] that gave reasonable
matching with data for the masses of the ground and
excited states of cc̄ quarkonia for 0þþ, 0−þ, 1−−, and 1þþ
states. It was seen that this set of input parameters is not
unique. It was observed that the mass spectra of mesons of
various JPC is somewhat insensitive (as can be seen from
Tables II–VIII) to a range of variations of parameter
ω0 ∈ ½0.130–0.160� GeV as long as C0

ω2
0

is a constant,

and reasonably good fits are obtained for the parameter
ratio C0

ω2
0

¼ 8.8888 GeV−2, with the other parameters

Λ ¼ 0.250 GeV, A0 ¼ 0.01, and mc ¼ 1.490 GeV. Thus,
for ω0 ¼ 0.130 GeV we have C0 ¼ 0.15022, while for
ω0 ¼ 0.160 GeV we have C0 ¼ 0.227556. (Such a rela-
tionship between two parameters that seem to be inde-
pendent was also observed in Refs. [33,38].) However,
for comparison with experiment, we took the values
ω ¼ 0.145 GeV, and C0 ¼ :186889, along with Λ ¼
0.250 GeV, A0 ¼ 0.01, and mc ¼ 1.490 GeV. It was seen
that only the lowest states (ground and one or two excited
states) have reasonable fits. However, the disagreement
with experiment increases as one goes to higher excited
states. The analytic forms of the wave functions derived
for 0þþ states of cc̄ were employed to calculate their
two-photon decays.
We wish to also point out that the present calculation

with perturbative incorporation of the one-gluon-exchange
interaction lifts up the degeneracy between the S and D
states of vector quarkonia, and also gives a better agreement
with the data for these states. The results obtained for the

ground (1P) state of χc0, as well as the ground and first
excited states of χc1, are in reasonable agreement with data.
However, there are open questions about the quantum
number assignments of the state Xð3915Þ, which are
available in Particle Data Group tables. Some authors
[7,8] have argued that it is difficult to assign Xð3915Þ to
χc0ð2PÞ, and that it could be χc2ð2PÞ. The possible mass
of χc0ð2PÞ was recently predicted in Ref. [7] as
3.837� 0.0115 MeV. We then worked out the decay
widths of χc0 for the ground (1P) and excited (2P) states,
and compared our results with data and other models in
Table VI. Though our results are smaller than data [6],
they compare roughly other models [56,57]. Further,
a large variation in the decay widths can be seen in
other models.
However, as mentioned earlier, our main emphasis in this

paper was to show that this problem of the 4 × 4 BSE under
the heavy-quark approximation can indeed be handled
analytically for both the masses and wave functions of
radially and orbitally excited states. In this framework, from
the beginning, we employed a 4 × 4 representation for the
two-body (qq̄) BS amplitude to calculate both the mass
spectra and the transition amplitudes. However, the pricewe
had to pay was to solve a coupled set of equations for scalar,
pseudoscalar, vector, and axial-vector quarkonia, which we
have explicitly shown get decoupled in the heavy-quark
approximation (ω ≈m), leading to a mass spectral equation
with analytical solutions for both masses—as well as
eigenfunctions for all of the above states—in an approxi-
mate harmonic oscillator basis. The analytical forms of the
eigenfunctions for ground and excited states so obtained can
be used to calculate various transitions of these quarkonia.
The heavy-quark approximation for quarkonia is valid

because not only is the relative momentum between heavy
quarks in the bound states considered small, but also these
quarks are treated as almost on mass shell [53], which is
justified for the calculation of low-energy properties like
the mass spectrum and the decays of quarkonia (cc̄
systems). This approximation, is well under control, in
the context of heavy quark systems.
We further wish to point out that this analytic approach

(giving an explicit dependence of the spectra on the
principal quantum number N) under the heavy-quark
approximation gives much deeper insight into the spectral
problem than the purely numerical approaches prevalent in
the literature. The plots of the analytical forms of wave
functions for various JPC states (obtained as solutions of
their mass spectral equations) are also given in Figs. 1 and 2
for scalar and axial-vector quarkonia. The correctness of
our approach can be gauged by the fact that these plots
are very similar to the corresponding plots of amplitudes
for these quarkonia in Ref. [22] obtained by purely
numerical methods. The analytical forms of the eigen-
functions for ground and excited states so obtained can
be used to evaluate the various other processes involving
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scalar and axial-vector quarkonia, which we intend to
do next.
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