
 

Ghost-gluon vertex in the presence of the Gribov horizon

B.W. Mintz,* L. F. Palhares,† and S. P. Sorella‡

UERJ—Universidade do Estado do Rio de Janeiro, Departamento de Física Teórica,
Rua São Francisco Xavier 524, Maracanã, 20550-013 Rio de Janeiro, Brazil

A. D. Pereira§

Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany

(Received 9 January 2018; published 20 February 2018)

We consider Yang-Mills theories quantized in the Landau gauge in the presence of the Gribov horizon
via the refined Gribov-Zwanziger (RGZ) framework. As the restriction of the gauge path integral to the
Gribov region is taken into account, the resulting gauge field propagators display a nontrivial infrared
behavior, being very close to the ones observed in lattice gauge field theory simulations. In this work, we
explore a higher correlation function in the refined Gribov-Zwanziger theory: the ghost-gluon interaction
vertex, at one-loop level. We show explicit compatibility with kinematical constraints, as required by the
Ward identities of the theory, and obtain analytical expressions in the limit of vanishing gluon momentum.
We find that the RGZ results are nontrivial in the infrared regime, being compatible with lattice Yang-Mills
simulations in both SU(2) and SU(3), as well as with solutions from Schwinger-Dyson equations in
different truncation schemes, Functional Renormalization Group analysis, and the renormalization group-
improved Curci-Ferrari model.
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I. INTRODUCTION

Being two of the most fundamental and difficult
problems in theoretical physics for many years, the
issues of color confinement and chiral symmetry breaking
in the strong interactions have been investigated by
many methods in quantum field theory (QFT). Some
of the most successful of them include the Functional
Renormalization Group [1,2], the Schwinger-Dyson equa-
tions [3,4], or effective models as, for example, the
Nambu-Jona-Lasinio model [5,6] and the Quark-Meson
model [7], among others, with their many extensions
[8,9]. From a discretized QFT perspective, Monte Carlo
simulations of quantum chromodynamics on a spacetime
lattice have been long considered a major theoretical
cornerstone. All these approaches share a common trait,
the one of being able to capture features of the theory
which can not be grasped by a standard perturbative
expansion.

Another continuum approach derives from a deep
observation by V. N. Gribov in [10] when analyzing
gauge-fixed Yang-Mills theories. As Gribov argued in
[10], the Faddeev-Popov quantization of gauge theories
is not enough to fully eliminate gauge copies from the
generating functional. More specifically, there exist field
configurations for which the Faddeev-Popov operator
MðAÞ possesses nontrivial zero modes which give rise
to Gribov copies, i.e. to equivalent field configurations
which obey the same gauge condition, meaning that the
counting of the degrees of freedom in the functional
integral has not been properly done.
In order to face this problem in the Landau gauge,

Gribov suggested to constrain the domain of integration in
the gauge field not to the whole field space, but rather to a
closed region, which is now called the Gribov region [11].
As long as the gauge field configurations in the path
integral are taken from inside the Gribov region, the
determinant of the Faddeev-Popov operator is nonzero
or, in other words, the ghost propagator does not display a
pole other than the one at vanishing momentum. This
nonperturbative constraint on the ghost propagator is called
the no-pole condition.
The restriction to the Gribov region can be effectively

implemented by the introduction of a weight function in the
action and then taking the integration domain back to all
gauge configurations. This weight function is known as
Zwanziger’s horizon function and has been originally cast

*brunomintz@gmail.com
†leticiapalhares@gmail.com
‡silvio.sorella@gmail.com
§a.pereira@thphys.uni-heidelberg.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 034020 (2018)

2470-0010=2018=97(3)=034020(15) 034020-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.034020&domain=pdf&date_stamp=2018-02-20
https://doi.org/10.1103/PhysRevD.97.034020
https://doi.org/10.1103/PhysRevD.97.034020
https://doi.org/10.1103/PhysRevD.97.034020
https://doi.org/10.1103/PhysRevD.97.034020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


as a nonlocal functional of the gauge field,HðAÞ in [12]. In
order to express the resulting action as a local functional,
one has to introduce auxiliary fields, i.e. a pair of bosonic
fields, (φ, φ̄), as well as a pair of anticommuting ones,
(ω, ω̄).
The resulting Gribov-Zwanziger (GZ) action is then

local, renormalizable and effectively constrains the gauge
field to the interior of the Gribov region. A further
important development of the GZ framework has taken
place when it was realized that some dimension-two
condensates, such as the gluon condensate hA2i, would
be nonvanishing according to the GZ effective action and
therefore should be considered from the starting
Lagrangian. This gave birth to what was called the refined
Gribov-Zwanziger (RGZ) action. For more technical
details on the construction of the GZ and RGZ actions
and some of its consequences we refer to [13–20] and
references therein.
Although the horizon function has been introduced for

mainly theoretical reasons, it may have relevant implica-
tions for observables. For example, the presence of
Gribov’s horizon has a significant impact on correlation
functions of the gauge theory. Such correlation functions,
on their turn, can be used as building blocks for the
description of observable quantities like particle spectra,
via Bethe-Salpeter or Faddeev equations, or thermodynam-
ical properties of a finite temperature medium. Indeed, the
two-point function of the RGZ effective theory compares
quite well to lattice results in different contexts as well as to
other nonperturbative approaches, like the Dyson-
Schwinger equations or the Functional Renormalization
Group. Note that such an agreement has been obtained for
the RGZ propagator at the tree level of the effective theory.
In this work, we intend to explore a higher correlation

function, namely the gluon-ghost-antighost triple vertex,
within the RGZ framework. Starting from the tree-level
RGZ action, the gluon-ghost vertex is the same as in a
purely perturbative Yang-Mills theory. However, as loop
corrections are considered, nontrivial propagators, as well
as vertices containing the auxiliary fields which, when
integrated out, can be recast as nonlocal momentum-
dependent gluon vertices, give rise to contributions to
the correlation function containing the nonperturbative
Gribov parameter. In this sense, the RGZ framework
may be able to probe nonperturbative features of the
gluon-ghost vertex and might provide some information
on the infrared behavior of the Yang-Mills coupling. For
more results on the vertices of the (R)GZ action in the
Landau gauge, we refer the reader to [21].
In Sec. II, we briefly present the recently developed

Becchi-Rouet-Stora-Tyutin (BRST)-invariant framework
of the Gribov-Zwanziger theory. Next, in Sec. III, we
present our results for the ghost-gluon vertex. For the
benefit of the reader, the technical details of the calculation
have been collected in Appendix D. Finally, in Sec. IV we

compare our results to other nonperturbative methods and
discuss some of their possible implications for future work
in Sec. V.

II. THE BRST-INVARIANT REFINED
GRIBOV-ZWANZIGER ACTION

In order to establish our notation, let us first write down
the action of the refined Gribov-Zwanziger (RGZ) theory in
linear covariant gauges. It reads

SlocRGZ ¼ SFP þ Sm þ Sτ þ SH; ð1Þ

where

SFP ¼
Z

ddx
1

4
Fa
μνFa

μν

þ
Z

ddx

�
ba∂μAa

μ −
α

2
baba − c̄aMabðAÞcb

�
ð2Þ

is the standard Faddeev-Popov action, while MabðAÞ
stands for the Faddeev-Popov operator

MabðAÞð•Þ ¼ −δab∂2ð•Þ þ gfabc∂μðAc
μ•Þ: ð3Þ

As discussed in [22] it is possible to introduce a mass
term for the gluon field, given by

Sm ¼
Z

ddx
m2

2
ðAhÞaμðAhÞaμ: ð4Þ

Note that the mass term is not directly given in terms of the
gauge field A, but rather as a function of the composite
gauge-invariant field Ah, which is defined as [20,23]

Ah
μ ¼ h†Aμhþ i

g
h†∂μh; ð5Þ

with

h ¼ eigξ
aTa ≡ eigξ; ð6Þ

where ξa is the Stueckelberg field discussed in [18–20,
22–24]. One also imposes a transversality constraint on Ah,
so that

∂μA
h;a
μ ¼ 0; ð7Þ

as enforced by the Lagrange multiplier field τ in

Sτ ¼
Z

ddxiτa∂μðAhÞaμ −
Z

ddxη̄aMabðAhÞηb: ð8Þ

Note that the fermionic auxiliary fields η̄ and η in (8) appear
as a consequence of the constraint δð∂μAh

μÞ in the path
integral expression for the partition function [25].
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We stress that the constraint (7) is crucial for the
renormalizability of the action (1), since otherwise a
propagator like hξðpÞξð−pÞi, for example, would be ill-
defined, leading to nonpower-counting divergences that
spoil the renormalizability of the theory [26]. This is the
case in the usual formulation of Stueckelberg-like theories.
However, in the presence of the constraint (7), all propa-
gators are well behaved and the theory can be shown to be
renormalizable [22,27].
Within the RGZ framework, the origin of such a mass

term is motivated by the fact that, in the presence of the
Gribov horizon, the theory is unstable with respect to the
formation of some condensates of operators of mass dimen-
sion d ¼ 2. In particular, one can show that hA2i ≠ 0, so
that the parameterm2 can even be interpreted as a Lagrange
multiplier that ensures that the gluon condensate is non-
vanishing in the deep infrared [14,16,28–30].
The Zwanziger horizon term, in its local form, is given

by [31]

SH ¼
Z

ddxðφ̄ac
μ ½MðAhÞ þ μ2�abφbc

μ − ω̄ac
μ ½MðAhÞ þ μ2�ab

×ωbc
μ þ gγ2fabcðAhÞaμðφbc

μ − φ̄bc
μ ÞÞ: ð9Þ

There are some reasons to consider the composite field
Ah instead of the gauge field A itself in both the mass term
(4) and in the local horizon term (9). It is crucial to recall
from [20,23] that Ah defined in (5) actually corresponds to a
local version of the gauge configuration that minimizes the
functional

fA½u�≡ Tr
Z

d4xAu
μðxÞAu

μðxÞ ð10Þ

along the gauge orbit, parametrized by the gauge trans-
formation u. Being a minimum of fA along the gauge orbit,
the gauge variation of Ah is zero, and so is its BRST
variation: sAh ¼ 0, where s is the nilpotent BRSToperator.
This immediately implies the BRST invariance of the mass
term Sm. Analogously, taking into account that the BRST
variations of the auxiliary fields are all zero, the horizon
term SH turns out to be BRST invariant as well [32].
Finally, we stress that, for practical loop calculations, one

must expand the h field (6) in powers of the Stueckelberg
field ξ up to the desired order. However, in the present
work, we shall work in the Landau gauge, α ¼ 0, in which
the ξ field decouples completely and no internal lines with ξ
propagators are present, see [22,27].
Now that the action has been established, let us proceed

to the explicit calculation of the ghost-gluon vertex in the
one-loop approximation in the Landau gauge, α ¼ 0.

III. THE THREE-POINT GHOST-GLUON
CORRELATION FUNCTION

From the action (1), one can derive the Feynman rules of
the theory. The rules which are relevant to the calculation of
the ghost-gluon vertex at one-loop are listed in
Appendix A. They allow us to calculate the connected
correlation function

hAa
μðkÞc̄bðpÞccðqÞiq¼−p−k

¼ δ3Zc

δðJĀÞaμðkÞδJbc̄ðpÞδJccðqÞ
����
q¼−p−k

ð11Þ

at one-loop order, where Zc is the generator of connected
correlation functions and Ji (i ¼ c̄; c; A) are external
sources linearly coupled to the fields i. As usual, the
sources are taken to zero at the end of the calculation.
Before proceeding, let us remark that since the RGZ

action contains bilinear couplings between fields, the
theory contains mixed propagators, such as hAφi and
hAφ̄i. Therefore, the relation between connected and 1PI
functions has to take such mixed propagators into account.
This is made explicit in the Feynman diagrams of
Fig. 1. Such mixed propagators and vertices involving
Zwanziger’s auxiliary fields φ and φ̄ as well as their
fermionic counterparts ω and ω̄, arise as consequence of
the local formulation of the Gribov horizon [33]. We give
further details for the interested reader in Appendix B.
The 1-loop connected function (11) is then

decomposed as

hAa
μðkÞc̄bðpÞccðqÞi ¼ GðpÞGðqÞDAAðkÞPμνðkÞ

�
δ3Γ

δAa
νð−kÞδcbð−pÞδc̄cð−qÞ

þ 2gγ2fade

k2 þ μ2
δ3Γ

δcbð−pÞδc̄cð−qÞδφde
ν ð−kÞ

�
q¼−p−k

ð12Þ

FIG. 1. Feynman diagram expansion up to one-loop order for
the ghost-gluon vertex in the refined Gribov-Zwanziger theory.
Dashed lines represent ghosts and antighosts, while the curly
lines stand for gluons. Full lines, that only appear in mixed
propagators, correspond to the auxiliary fields φ; φ̄. The roman
numbers identifying the one-loop diagrams will be used as
reference in the appendices.
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or, in a compact notation,

hAc̄cic
ðhc̄cicÞ2hAAic

¼ ΓAc̄c þ
hAφic
hAAic

Γφc̄c þ
hAφ̄ic
hAAic

Γφ̄ c̄ c: ð13Þ

There are clearly some differences between perturbative
Yang-Mills and RGZ calculations of the vertex function.
The first of them is the modification of the gluon propa-
gator brought about by the restriction to the Gribov
horizon, which can be understood as the appearance of a
pair of generally complex conjugate poles. A second
difference is the presence of the tree-level Aφ̄φ vertex,
which couples the gluon to the auxiliary Zwanziger fields.
This allows not only diagrams with auxiliary fields running
in the internal loops, but also in the external legs, as long as
the external propagator is a mixed one like, for example,
hAφi. This possibility is realized in (13), giving rise to the
contributions Γφc̄c and Γφ̄ c̄ c, not present in perturbative
Yang-Mills (YM) theory. Finally, note that these mixed
contributions only appear from one-loop order onwards, as
such vertices are absent from the classical action (1).

A. The one-loop ghost-gluon vertex
in the soft-gluon limit

As is well known, the full ghost-gluon vertex function
has a nontrivial tensor structure (see, e.g. [34]). Given the

many extra terms that the restriction to the Gribov horizon
brings to the calculation, a full one-loop evaluation of the
vertex function demands in practice some automated
algorithm, which will be deferred to future work. Here,
we present an analytic calculation in the physically inter-
esting soft-gluon limit, i.e. as the gluon momentum k → 0.
The diagrams contributing to the dressing of the ghost-

gluon vertex up to one-loop order in the RGZ theory are
displayed in Fig. 1. Diagrams in the first line are the ones
which appear in perturbative YM one-loop calculations,
while the second line displays two extra diagrams that
appear in RGZ theory due to the presence of the auxiliary
fields φ; φ̄ that localize the Gribov horizon function.
Since the gluon propagator is deeply altered in the
infrared regime by the presence of the Gribov horizon,
even the standard diagrams in the first line of Fig. 1.
yield nonperturbative effects, dependent on the Gribov
parameter and on the dimension-two condensates of the
RGZ framework.
The details of the computation can be found in

Appendix D. Here, we notice that, in the soft-gluon limit,
the contribution containing a three-gluon vertex simplifies
tremendously. Besides, the Γφc̄c and Γφ̄ c̄ c kernels vanish in
this limit, yielding a vanishing diagram (IV) in Fig. 1.
Finally, the k → 0 limit of the one-loop ghost-gluon kernel
can be written as

½Γð1Þ
Ac̄cð0; p;−pÞ�abcμ ¼ ig3

Nfabc

2

�
RþJμðaþ;pÞ þ R−Jμða−;pÞ þ 2R2þKμðaþ; aþ;pÞ þ 2R2

−Kμða−; a−;pÞ

þ 4RþR−Kμðaþ; a−;pÞ þ
N
2

�
gγ2

a2þ − a2−

�
2

½Kμðaþ; aþ;pÞ þ Kμða−; a−;pÞ

− 2Kμðaþ; a−;pÞ�
�
; ð14Þ

where the master integrals

Jμðm1;pÞ ≔
Z
l

1

l2

1

l2 þm2
1

p2l2 − ðp · lÞ2
½ðl − pÞ2�2 ðl − pÞμ; ð15Þ

related to diagram (I), and

Kμðm1; m2;pÞ ≔
Z
l

1

ðlþ pÞ2
1

l2 þm2
1

1

l2 þm2
2

�
l2p · p − ðp · lÞ2

l2

�
lμ; ð16Þ

which appears in diagrams (II) and (III), have been
explicitly calculated in the Appendix D. The incoming
antighost momentum is given by p. Therefore, the ghost
momentum is −p, since k ¼ 0. The massive parameters
−a2� are, the generally complex, poles of the RGZ gluon
propagator (A1) and R� are their corresponding residues. It
is interesting to point out that the last terms in Eq. (14)

come from new diagram (III) in Fig. 1 which is absent in
standard YM theories, being completely nonperturbative
and proportional to γ4. Note that the integrals are also valid
for complex arguments.
Before proceeding to the numerical analysis of the next

section, it is important to remark that the one-loop vertex
functionexplicitly respects the so-calledTaylorkinematics, i.e.
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ðΓAc̄cÞabcμ ðp; 0;−pÞ ¼ 0; ð17Þ

and the so-called nonrenormalization theorem of the ghost-
gluon vertex, namely

ðΓAc̄cÞabcμ ð−p; p; 0Þ ¼ −igfabcpμ; ð18Þ

which are the same in the RGZ framework as in perturbative
Yang-Mills theory [35]. These are direct consequences of the
Ward identities of the action (1), as shown in Appendix C.

IV. RESULTS AND DISCUSSION

The final result for the one-loop correction of the gluon-
ghost vertex in the soft-gluon limit in the RGZ theory is
given in Eq. (14) as a function of the poles a� and residues
R� of the tree-level gluon propagator, as well as of the
Gribov parameter γ. The gluon propagator in the RGZ
theory is modified with respect to standard YM, even at tree
level, by the presence of the Gribov parameter and of
dimension-two condensates of the gluon and auxiliary
fields. The gluon dressing function in d ¼ 4 takes the form:

Dðp2Þ ¼ p2 þM2

p4 þ ðM2 þm2Þp2 þM2m2 þ 2g2Nγ4

≡ p2 þ a
p4 þ bp2 þ c

; ð19Þ

where M and m are mass parameters related to dimension-
two condensates, summing up to the total of three param-
eters (M, m, γ) in the RGZ theory, besides the gauge
coupling g and possible renormalization scale.
The self-consistency of the RGZ theory allows one in

principle to compute all of these three parameters, using the
Gribov gap equation, renormalization group invariance and
a minimization of the RGZ effective potential. The calcu-
lation of these parameters can however only be done up to a
certain order of approximation and involves lengthy analy-
ses that are not the aim of the current work. For more details
on how to proceed in these lines, the reader is referred to the
review in Ref. [14] and references therein.
We shall proceed to make quantitative predictions and

comparisons with other results in the literature by fixing the
three RGZ parameters through a fit of the lattice YM data
for the gluon propagator with the tree-level form obtained
in the RGZ theory. As discussed in the introduction, this
type of fit works remarkably well for low and intermediate
momenta [36]. This success is reassuring in the sense that
the RGZ theory might indeed be capturing a significant
fraction of the nonperturbative phenomena of infrared YM
theory. The current one-loop analysis of the ghost-gluon
vertex goes in the direction of further verifying how much
of the nonperturbative YM correlations may be described
by the RGZ theory to a reasonably low order in perturba-
tion theory.

A. Parameter fixing

In the next subsections, results for the ghost-gluon vertex
for the SU(2) and SU(3) cases will be presented. Each non-
Abelian gauge group gives rise to a different parameter set
from the corresponding fits of the lattice gluon propagator.
For SU(2) we use the fit displayed in Fig. 2 of Ref. [37],
corresponding to the largest volume (V ¼ 1284) data set
and improved momenta. The SU(3) parameters are given in
Ref. [38] (cf. their Fig. 7; β ¼ 6.2) and include an infinite-
volume extrapolation. The parameter sets are summarized
in Table I [39].
Since all integrals are finite (see Appendix D), and,

therefore, there is no explicit renormalization scale depend-
ence in the results, the only missing free parameter is the
coupling constant g. Results will be shown for different
values of g, within the perturbative range, and also for a
running coupling corresponding to the standard one-loop
YM beta function in the modified minimal subtraction
scheme, i.e. [40]

g2ðpÞ ¼ g2ðμÞ
1þ 11N

3

g2ðμÞ
8π2

logðpμÞ
: ð20Þ

B. SU(2) case

Let us now present the results for the SU(2) ghost-gluon
vertex form factor in the soft-gluon limit, in which the
gluon momentum is taken to zero. The full vertex tensor in
this limit becomes:

½ΓAc̄cð0; p;−pÞ�abcμ ¼ −igfabcpμΓAc̄cðpÞ; ð21Þ

where the form factor ΓAc̄cðpÞ is the scalar function of the
momentum which shall be analyzed in what follows.
In general, the antighost-momentum dependence of the

effect of interactions on the vertex is that of rising from
the tree-level value at p ¼ 0 reaching a peak around
p ∼ 1 GeV and slowly falling again at very large momen-
tum, eventually saturating at the perturbative result for
fixed coupling

ΓAc̄cðpÞ ¼ 1þ g2N
3

64π2
; ð22Þ

which corresponds exactly to the infinite momentum limit
of Eq. (14). Therefore, interactions are consistently sup-
pressed in the deep ultraviolet as expected from asymptotic

TABLE I. RGZ parameters fitted from lattice results for SU(2)
[37] and SU(3) [38], with error estimates in parentheses.

Gauge group M2 (GeV2) m2 (GeV2) 2g2Nγ4 (GeV4)

SU(2)—Ref. [37] 2.508(78) ½0.768ð17Þ�2 ½0.720ð9Þ�2
SU(3)—Ref. [38] 4.473(21) 0.704(29) 0.3959(54)
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freedom, which remains untouched in the RGZ theory as
already proven via algebraic renormalization analyses [16].
Moreover, the nonmonotonic momentum dependence
observed as contrasted to the flatness of the one-loop
perturbative result is a sign of the nonperturbative nature of
the current analysis. In fact, these properties are consis-
tently found in all nonperturbative methods that we
compare to here—from the Curci-Ferrari model and
Dyson-Schwinger equations to lattice simulations [41]—
as well as other approaches (cf. e.g. [42]).
Figure 2 displays our results, i.e. Eq. (14) with the

parameters from the SU(2) line in Table I, as compared to
lattice data from Ref. [43]. We plot the form factor of the
ghost-gluon vertex here for three different values of the
coupling g. For momenta below ∼1 GeV and above
∼2 GeV the RGZ results with a coupling of g ¼
2.5–3 GeV provide a reasonable description of the avail-
able lattice data. It is interesting to point out that these

values of coupling correspond to α ¼ g2N
12π < 0.5, being in

principle within a regime of applicability of the perturbative
approximation. In the region of intermediate momenta
(p ¼ 1–2 GeV), there is an apparent disagreement between
different lattice data sets and improved simulations on
larger lattices with more statistics are probably needed to
resolve this issue.
One can further compare the RGZ vertex results with the

outcome of different nonperturbative methods. In Fig. 3
findings for the SU(2) ghost-gluon vertex in the soft-gluon
limit in the renormalization group (RG)-improved Curci-
Ferrari model at one-loop order [44] are added in the
comparison. The qualitative behavior is the same, but the
peak is more pronounced and shifted towards lower
momenta; the intensity of those effects being dependent
on the renormalization scheme adopted. The stronger fall of
the correlator for large momenta may be seen as the direct
effect of the running coupling due to asymptotic freedom,

which is absent from our fixed-g curves. In the SU(3) case
below, we shall discuss a naïve inclusion of RG corrections
in our RGZ one-loop vertex results that will show exactly
this property.
It should also be noted that the RG schemes adopted in

[44] are nonstandard, with the absence of a Landau pole
being an important feature at this one-loop implementation.
Since the Curci-Ferrari model includes a mass term for the
gluon, the RG flow will in general involve coupled
equations for the coupling, the mass and the field renorm-
alizations. Choosing a convenient scheme, with a mass-
dependent beta function, the authors of [44] (cf. also [45])
provide a fully smooth behavior for the RG-improved
correlation functions down to zero momentum.

C. SU(3) case

In the SU(3) case, we adopt the parameters fitted from
lattice propagators in the last line of Table I. The form
factor of the ghost-gluon vertex is again plotted as a
function of the antighost momentum p in Fig. 4, for fixed

coupling α ¼ g2

4π ¼ 0.23, 0.3, 0.42, and compared to lattice
data [46].
Qualitatively, the same peak structure around p ∼ 1 GeV

is also observed in the SU(3) case. Moreover, Fig. 4 shows
that the RGZ results are once again compatible with the
available SU(3) lattice data for a large range of (fixed)
values of the coupling, α ¼ 0.23–0.42, falling nicely within
a perturbative domain, so that our one-loop approximation
in RGZ theory is, in principle, consistent.
For SU(3) there are dynamical solutions of the Dyson-

Schwinger equations (DSE) for the ghost-gluon vertex in
the soft-gluon limit available within different truncation
schemes in the literature (cf. e.g. [47,48]). Overall, the
qualitative behavior is the same one observed here and a

1 2 3 4 5
p (GeV)

1.1

1.2

1.3

SU(2) Ghost–gluon vertex (soft-gluon limit)

g = 3

g = 2.5

g = 2

FIG. 2. The form factor ΓAc̄cðpÞ of the SU(2) ghost-gluon
vertex in the soft-gluon limit as a function of the antighost
momentum for d ¼ 4 is compared to lattice simulations. The
solid lines represent our results for different values of the
coupling: g ¼ 2, 2.5, 3, from the bottom to the top curve, res-
pectively. Data points correspond to lattice results from Ref. [43].

1 2 3 4 5
p (GeV)

1.1

1.2

1.3

SU(2) Ghost–gluon vertex (soft-gluon limit)

FIG. 3. The scalar function ΓAc̄cðpÞ of the SU(2) ghost-gluon
vertex in the soft-gluon limit as a function of momentum for
d ¼ 4. The solid lines represent our results for different values of
the coupling: g ¼ 2, 2.5, 3, from the bottom to the top curve,
respectively. Perturbative calculations with RG improvement in
the Curci-Ferrari model [44] are displayed as the dashed and the
dotted lines, which correspond to different renormalization
schemes. Lattice data points from Ref. [43].
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quantitative comparison with one of these DSE results is
shown in Fig. 5. For antighost momenta above ∼1 GeV one
has a steeper fall of the form factor in the DSE case as
compared to our fixed-coupling results. If we consider
asymptotic freedom, it is reasonable to assume that the
coupling will indeed decrease for large momenta, giving
thus rise to the stronger suppression of the ghost-gluon
vertex. The dashed (red) lines in Fig. 5 show that a naïve
implementation of the perturbative running coupling
[cf. (20)] generates a steeper fall of the vertex form factor
for large momenta, being very close to the one observed in
the DSE solution [47]. One may conclude thus that the

quantitative difference for large momenta between the RGZ
results and dynamical DSE solutions for the ghost-gluon
vertex is naturally accounted for by the effect of the running
coupling. For small momenta, nonanalytical behavior is
observed, being related to the presence of a Landau pole in
the one-loop perturbative running adopted.
This naïve implementation of the running coupling is,

however, not the full RG flow in RGZ theories. Due to the
existence of extra operators—related to the Gribov horizon
and the dimension-two condensates—the RG flow in RGZ
theory corresponds to a set of coupled equations for the
running coupling as well as the running massive parameters
m, M, γ. Even though we shall not attempt here to derive
the full flow, it is, in principle, feasible and could be done in
an infrared safe scheme, similar to the one developed in
[45] and free of Landau poles.

V. FINAL REMARKS

Nonperturbative descriptions of the infrared regime
of YM theories are crucial to understand the physics
of confinement in QCD. Among several available
approaches, the refined Gribov-Zwanziger framework
partially solves the problem of Gribov ambiguities in the
gauge path integral and provides a description that repro-
duces perturbative YM in the ultraviolet regime, while
displaying nontrivial infrared physics via the Gribov
horizon background.
The RGZ theory has been successfully tested against

the nonperturbative benchmark of lattice data for two-point
correlation functions and has provided reasonable estimates
for observables like, e.g. the glueball mass spectra. Up
to now most of these applications have considered the
leading-order perturbative approximation and have not
explored higher-order correlation functions. In this paper,
we compute the one-loop ghost-gluon vertex in the RGZ
theory. The trivial result in the Taylor kinematics (vanishing
antighost momentum), as well as the tree-level vertex when
the ghost momentum goes to zero, have both been
reproduced and shown to be direct consequences of
Ward identities of the RGZ action. Moreover, we obtain
an analytical result for the one-loop ghost-gluon vertex in
the limit of vanishing gluon momentum. This calculation is
an important test of the capability of the RGZ approach to
provide a consistent nonperturbative description of YM
theories that goes beyond two-point correlation functions.
Our findings for both SU(2) and SU(3) cases qualita-

tively agree with other nonperturbative approaches, such as
dynamical DSE solutions in different truncation schemes
[47,48] and the RG-improved Curci-Ferrari model [44].
Quantitative differences at large momenta have been shown
to be accounted for by the running of the strong coupling
and asymptotic freedom. The RGZ one-loop ghost-gluon
vertex is also quantitatively compatible with the available
lattice data for SU(2) [43] and SU(3) [46] gauge groups in
the soft-gluon limit, even for fixed coupling. It is important

DSE
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SU(3) Ghost–gluon vertex [soft-gluon limit]

FIG. 5. The scalar function ΓAc̄cðpÞ of the SU(2) ghost-gluon
vertex in the soft-gluon limit as a function of momentum for
d ¼ 4. Solid thick (black) lines represent our results for different

values of the strong coupling: α ¼ g2

4π ¼ 0.18 (bottom) and α ¼
0.3 (top), while the dashed (red) lines include a one-loop
perturbative running coupling with different renormalization
conditions: αðμ ¼ 4.3 GeVÞ ¼ 0.15, 0.18, 0.22, from the bottom
to the top curve, respectively. A DSE result from Ref. [47] is
represented as the thin (blue) line.
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1.0

1.1

1.2

1.3

SU(3) Ghost–gluon vertex [soft-gluon limit]

FIG. 4. The form factor ΓAc̄cðpÞ of the SU(3) ghost-gluon
vertex in the soft-gluon limit as a function of the antighost
momentum for d ¼ 4 is compared to lattice simulations. The
solid lines represent our results for different values of the strong

coupling: α ¼ g2

4π ¼ 0.23, 0.3, 0.42, from the bottom to the top
curve, respectively. Data points correspond to lattice results
from Ref. [46].
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to note that the momentum behavior of the form factor of
the ghost-gluon vertex is not fitted. All massive parameters
of the RGZ theory are fixed by lattice data for the gluon
propagator; the only free parameter in the vertex correction
being an overall factor g2, where g is the gauge coupling. In
general, the set of results for the ghost-gluon vertex
provides further indication that indeed the RGZ action
may be seen as a nonperturbative infrared description of
YM dynamics.
Even though the results are already encouraging, there

are many improvements that could be done in the current
analysis. A fully dynamical calculation of the RGZ
dimension-two condensates (i.e. the massive parameters
m, M) would allow one to have a self-consistent prediction
of the theory. One step further with respect to the
calculation presented here would be to implement the full
RG flow given by the set of coupled equations of the
massive parameters, possibly in an infrared safe scheme.
Another interesting analysis made possible by the action (1)
is the study of the gauge-parameter dependence—within
linear covariant gauges—of the gluon-ghost vertex we have
just investigated in the Landau gauge.
Finally, it is worth mentioning that the investigation

started in [30] at one-loop order to achieve a numerical
determination of the three dynamical parameters
ðγ2; m2;M2Þ entering the RGZ action (1) is currently
underway. As pointed out in [30], besides the original
Gribov-Zwanziger gap equation determining the parameter
γ2, in the RGZ case one has to minimize the effective
potential to determine all dimension-two condensates and
thus obtain ðm2;M2Þ. We have therefore three coupled
equations which would allow for a self-consistent deter-
mination of all parameters entering the RGZ action. So far,
the high level of complexity of these three coupled
equations even at one-loop order is the main reason to
rely on estimates for the parameters ðγ2; m2; μ2Þ obtained
from direct comparison with the available lattice data on the
gluon propagator. This pragmatic approach also has the
advantage of providing parameter values that are not

limited to a one-loop approximation. Nevertheless it is
possible and of course highly desirable to have fully self-
consistent predictions of the RGZ theory and the one-loop
setup is currently under investigation. Once these three
coupled gap equations would have been worked out, one
could also proceed to the introduction of a RG-invariant
effective coupling, as suggested e.g. in [49], and check out
how the dynamical parameters ðγ2; m2;M2Þ would influ-
ence its behavior in the deep infrared region, providing a
nonperturbative running coupling prediction in the RGZ
theory. We hope to report soon on this relevant topic.
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APPENDIX A: RELEVANT FEYNMAN RULES
(LANDAU GAUGE)

Given its many fields and interactions, the RGZ theory
has a large number of propagators and vertices. However,
for the calculation of the ghost-gluon vertex at one-loop
level (and in the Landau gauge), only a few of them are
required. The Feynman rules corresponding to these
propagators and vertices are shown below.

1. Tree-level propagators

In order to calculate the ghost-antighost-gluon 3-point
function in the refined Gribov-Zwanziger theory, only a
subset of the propagators of the theory are needed.
These are

hAa
μðpÞAb

νð−pÞi ¼ δab
�

p2 þM2

p4 þ ðm2 þM2Þp2 þm2M2 þ 2Ng2γ4
PμνðpÞ

�
≡ δabPμνðpÞDAAðpÞ ðA1Þ

hAa
μðpÞφbc

ν ð−pÞi ¼ gγ2fabc

p4 þ p2ðm2 þM2Þ þm2M2 þ 2Ng2γ4
PμνðpÞ ¼ gγ2fabcPμνðpÞ

DAAðpÞ
p2 þM2

ðA2Þ

hAa
μðpÞφ̄bc

ν ð−pÞi ¼ −
gγ2fabc

p4 þ p2ðm2 þM2Þ þm2M2 þ 2Ng2γ4
PμνðpÞ ¼ −hAa

μðpÞφbc
ν ð−pÞi ðA3Þ

hc̄aðpÞcbð−pÞi ¼ 1

p2
δab ≡ δabDc̄cðpÞ; ðA4Þ

where
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PμνðpÞ ¼ δμν −
pμpν

p2
ðA5Þ

is the transverse projector, such that pμPμνðpÞ ¼ pνPμνðpÞ ¼ 0.

2. Tree-level vertices

The only vertices needed for the computation of the ghost-antighost-gluon at one-loop in the RGZ theory are

tree½ΓAAAðk; p; qÞ�abcμνρ ¼ −
δ3Stree

δAa
μðkÞδAb

νðpÞδAc
ρðqÞ

����
Φ¼0

¼ igfabc½ðkν − qνÞδρμ þ ðpρ − kρÞδμν þ ðqμ − pμÞδνρ�

tree½ΓAc̄cðk; p; qÞ�abcμ ¼ −
δ3Stree

δAa
μðkÞδc̄bðpÞδccðqÞ

����
Φ¼0

¼ −igfabcpμ

tree½ΓAφ̄φðk; p; qÞ�abcdeμνρ ¼ −
δ3Stree

δAa
ρðkÞδφ̄bc

μ ðpÞδφde
ν ðqÞ

����
Φ¼0

¼ −igfabdδceδνρpμ: ðA6Þ

Note that, for higher orders in the perturbative expansion, or for a general linear covariant gauge, or for other correlation
functions, extra correlators and vertices will be needed.

APPENDIX B: ON THE RELATION BETWEEN CONNECTED AND 1PI CORRELATION
FUNCTIONS IN THE PRESENCE OF MIXED PROPAGATORS

Let us denote the generating functional of connected correlation functions as W½J⃗�, where Ji are external sources
associated with the different elementary fields, and let Γ½ϕ⃗� be the quantum action, that is, the generating functional of 1PI
correlation functions. Using this notation, we start from the well-known relation

δ2Γ½ϕ⃗�
δϕjδϕl

����
ϕ⃗¼Φ⃗½J⃗�

δ2W½J⃗�
δJlδJk

¼ −δjk: ðB1Þ

Taking a further derivative with respect to the source Ji, one finds

δ3W½J⃗�
δJiδJpδJk

¼ −
δ2W½J⃗�
δJpδJj

�
δ3Γ½ϕ⃗�

δϕjδϕlδϕm

����
ϕ⃗¼Φ⃗½J⃗�

�
δ2W½J⃗�
δJiδJm

δ2W½J⃗�
δJlδJk

: ðB2Þ

For the present calculation of the ghost-gluon vertex, we are specifically interested in the choice

i ¼ Ae
μðkÞ

p ¼ c̄aðpÞ
k ¼ cbðqÞ: ðB3Þ

Since there are no mixed propagators involving the Faddeev-Popov ghosts c and c̄, the only nonvanishing contributions
are such that j ¼ c and l ¼ c̄. Therefore, running the remaining sum for m ¼ A;φ; φ̄, we have

δ3W½J⃗�
δJAδJc̄δJc

¼ −
δ2W½J⃗�
δJcδJc̄

��
δ3Γ½ϕ⃗�
δcδc̄δA

����
φ⃗¼Φ⃗½J⃗�

�
δ2W½J⃗�
δJAδJA

þ
�
δ3Γ½ϕ⃗�
δcδc̄δφ

����
φ⃗¼Φ⃗½J⃗�

�
δ2W½J⃗�
δJAδJφ

þ
�
δ3Γ½ϕ⃗�
δcδc̄δφ̄

����
φ⃗¼Φ⃗½J⃗�

�
δ2W½J⃗�
δJAδJφ̄

�
δ2W½J⃗�
δJc̄δJc

; ðB4Þ

which can be written as
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hc̄aðpÞcbðqÞAc
μðkÞi ¼ Dc̄cðpÞDc̄cðqÞDAAðkÞPμνðkÞ

�
δ3Γ

δcað−pÞδc̄bð−qÞδAc
νð−kÞ

þ 2gγ2fcde

k2 þ μ2
δ3Γ

δcað−pÞδc̄bð−qÞδφde
ν ð−kÞ

�

ðB5Þ

or, in a shorthand notation,

hAc̄cic
ðhc̄cicÞ2hAAic

¼ ΓAc̄c þ
hAφic
hAAic

Γc̄cφ þ
hAφ̄ic
hAAic

Γc̄cφ̄: ðB6Þ

Therefore, besides the contribution ΓAc̄c, that would be
present at pure Yang-Mills, there are also contributions
from 1PI functions involving the auxiliary fields φ and φ̄,
as well as the respective mixed propagators.

APPENDIX C: SYMMETRIES OF THE ACTION
AND WARD IDENTITIES

In this appendix, we wish to establish important sim-
plifying relations between correlation functions in the RGZ
framework. With this in mind, let us consider its sym-
metries and the corresponding Ward identities. First, let us
notice that the RGZ action (1) is left invariant by the
following nilpotent BRST transformations [20]:

sAa
μ ¼ −Dab

μ cb; sca ¼ g
2
fabccbcc;

sc̄a ¼ ba; sba ¼ 0;

sφab
μ ¼ 0; sωab

μ ¼ 0;

sω̄ab
μ ¼ 0; sφ̄ab

μ ¼ 0;

shij ¼ −igcaðTaÞikhkj; sAh;a
μ ¼ 0;

sτa ¼ 0; ðC1Þ

from which the BRST transformation of the field ξa,
Eq. (6), can be evaluated iteratively, leading to

sξa ¼ −ca þ g
2
fabccbξc −

g2

12
famrfmpqcpξqξr þOðg3Þ

≡ gabðξÞcb: ðC2Þ

Such relations allow one to demonstrate the important
properties

s2 ¼ 0;

sSlocRGZ ¼ 0: ðC3Þ

The BRST invariance of the action is particularly
important since it leads to the independence of important
quantities (such as the poles of the hAAi correlator, or the
Gribov parameter) from the gauge parameter α [24]. In
order to write the Ward identities that follow from the

BRST invariance, one adds a set of sources to the action,
each coupled to a nonlinear BRST variation [50], that is

Sext ¼
Z

d4xðΩa
μðsAa

μÞ þ LaðscaÞ þ KaðsξaÞÞ

¼
Z

d4x

�
−Ωa

μDab
μ cb þ g

2
fabcLacbcc þ KagabðξÞcb

�
:

ðC4Þ

Defining the full classical action as

Σ ¼ SlocRGZ þ Sext; ðC5Þ

one can express the BRST symmetry in terms of the
functional identity [50]

SðΣÞ≡
Z

d4x

�
δΣ
δΩa

μ

δΣ
δAa

μ
þ δΣ
δLa

δΣ
δca

þ δΣ
δKa

δΣ
δξa

þ ba
δΣ
δc̄a

�

¼ 0; ðC6Þ

which is the Slavnov-Taylor identity. Furthermore, the
equation of motion for the b-field,

δΣ
δba

¼ ∂μAa
μ − αba; ðC7Þ

is regarded as a Ward identity. It implies that the most
general counterterm is independent of ba.
We also have the identity

δΣ
δc̄a

þ ∂μ
δΣ
δΩa

μ
¼ 0; ðC8Þ

which is known as the antighost equation. This identity
assures that the field c̄a and the source Ωa

μ present in the
counterterm action appear only in the combination

Ω̂a
μ ¼ Ωa

μ þ ∂μc̄a: ðC9Þ

1. Kinematical constraints from Ward identities

The Ward identities in the previous subsection have been
written for the classical action (C5). However, it is well-
known that they are also valid for the quantum action Γ at
all orders, since the theory is renormalizable. Therefore,
such identities can be used to provide important relations
that correlation functions must obey to all orders of
perturbation theory.
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Let us now consider two particular cases related to the ghost-gluon vertex, which are known as the Taylor kinematics
[35]. In the Landau gauge, one can show that

Z
d4x

�
δΓ

δcaðxÞ þ gfabcc̄b
δΓ
δbc

�
¼ g

Z
d4xfabcðΩb

μAc
μ − LbccÞ; ðC10Þ

which is known as the ghost Ward identity. By taking a functional derivative of (C10) with respect to A and Ω, one finds

δ2

δAd
μðyÞδΩe

νðzÞ
Z

d4x

�
δΓ

δcaðxÞ þ gfabcc̄b
δΓ

δbcðxÞ
�

¼ gfabc
δ2

δAd
μðyÞδΩe

νðzÞ
Z

d4xðΩb
ρAc

ρ − LbccÞ
Z

d4x

�
δ3Γ

δAd
μðyÞδΩe

νðzÞδcaðxÞ
þ gfabcc̄b

δ3Γ
δAd

μðyÞδΩe
νðzÞδbcðxÞ

�
¼ gfabc

Z
d4xδνρδebδðx − zÞδμρδcdδðy − xÞ

Z
d4x

�
δ3Γ

δAd
μðyÞδΩe

νðzÞδcaðxÞ
�

¼ gfaedδμνδðy − zÞ: ðC11Þ

Now, deriving both sides with respect to z and using the antighost identity (C8), one finds

∂ðzÞ
ν

Z
d4x

�
δ3Γ

δAd
μðyÞδΩe

νðzÞδcaðxÞ
�

¼ gfaedδμν∂ðzÞ
ν δðy − zÞ; ðC12Þ

which implies

−
Z

d4x
�

δ3Γ
δAd

μðyÞδc̄eðzÞδcaðxÞ
�

¼ gfaedδμν∂ðzÞ
ν δðy − zÞ: ðC13Þ

Taking the Fourier transform of the identity (C12), we finally see that the ghost-gluon vertex function in the Landau
gauge reduces to

ðΓAc̄cÞabcμ ð−p; p; 0Þ ¼ −igfabcpμ; ðC14Þ

at the limit of vanishing ghost momentum, to all orders.
A second identity can be derived from the antighost equation. Integrating (C8), one finds

0 ¼
Z

d4x

�
∂ðxÞ
μ

δΓ
δΩa

μðxÞ
þ δΓ
δc̄aðxÞ

�
⇒ 0 ¼ δ2

δAd
μðyÞδceðzÞ

Z
d4x

�
δΓ

δc̄aðxÞ
�

¼
Z

d4x

�
δ3Γ

δAd
μðyÞδceðzÞδc̄aðxÞ

�
: ðC15Þ

This means that the vertex function vanishes for zero antighost momentum at all orders, that is

ðΓAc̄cÞabcμ ðp; 0;−pÞ ¼ 0: ðC16Þ

Therefore, we find that, thanks to the BRST transformations (C1), the nontrivial kinematic relations (18) and (17) are true
not only in Yang-Mills [35], but also in the RGZ framework. In the next appendix, we show the calculation of the Ac̄c vertex
function within the RGZ framework at one-loop order, verifying that the exact results (18) and (17) are indeed satisfied
explicitly at this order.

APPENDIX D: EXPLICIT CALCULATION OF THE DIAGRAMS THAT
CONTRIBUTE TO THE GHOST-GLUON VERTEX

Let us now calculate the one-loop diagrams for the three-point one-particle irreducible function

½ΓAc̄cðk; p;−p − kÞ�abcμ ¼ hAa
μðkÞc̄bðpÞccð−p − kÞi1PI

¼ −igfabcpμ þ ðIÞabcμ þ ðIIÞabcμ þ ðIIIÞabcμ þ ðIVÞabcμ þOðg5Þ; ðD1Þ
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where each of the four terms above equals the corresponding one-loop diagram in Fig. 1. In order to simplify our analysis,
we will only consider the soft-gluon limit (k → 0). Since all integrals are IR- and UV-convergent, the k → 0 limit simply
amounts to taking k ¼ 0 in all expressions. Let us calculate each of the integrals defined in the previous section in this limit.

1. Diagram I

Using the Feynman rules listed in Appendix A, one finds

ðIÞabcμ ¼ i
Ng3

2
fabc

Z
l
ðl − pÞμDAAðlÞDc̄cðl − p − kÞDc̄cðl − pÞ

�
p · ðpþ kÞ − ðp · lÞ½ðpþ kÞ · l�

l2

�
: ðD2Þ

The soft-gluon limit of this diagram reads

ðIÞabcμ ðk → 0Þ ¼ i
Ng3

2
fabc

Z
l
ðl − pÞμDAAðlÞDω̄ωðl − pÞDω̄ωðl − pÞ

�
p · p −

ðp · lÞ2
l2

�

¼ i
Ng3

2
fabc½RþJμðaþ;pÞ þ R−Jμða−;pÞ�; ðD3Þ

where a� are the (complex) poles of the gluon propagator and R� are their respective residues. Explicitly,

DAAðp2Þ ¼ p2 þM2

ðp2 þm2Þðp2 þM2Þ þ Λ4
≡ Rþ

p2 þ a2þ
þ R−

p2 þ a2−
; ðD4Þ

with

a2þ ¼ m2 þM2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −M2Þ2 − 4Λ4

p
2

;

a2− ¼ m2 þM2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −M2Þ2 − 4Λ4

p
2

;

Rþ ¼ m2 −M2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −M2Þ2 − 4Λ4

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −M2Þ2 − 4Λ4

p ;

R− ¼ −m2 þM2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −M2Þ2 − 4Λ4

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −M2Þ2 − 4Λ4

p ¼ 1 − Rþ; ðD5Þ

where Λ4 ¼ 2Ng2γ4. In (D3) we used the integral defined by

Jμðm1;pÞ ≔
Z
l

1

l2

1

l2 þm2
1

p2l2 − ðp · lÞ2
½ðl − pÞ2�2 ðl − pÞμ: ðD6Þ

Using the standard technique of Feynman parameters [40] and integrating in the loop momentum, we find after a
straightforward calculation,

Jμðm1;pÞ ¼ −
1

64π2
pμ ×

2m2
1p

2ðp2 þm2
1Þ þ p6 log ð1þ m2

1

p2Þ − ð3p2 þ 2m2
1Þm4

1 log ð1þ p2

m2
1

Þ
m2

1p
4

: ðD7Þ

2. Diagram II

The second diagram of (D1) is the most complicated of the four diagrams, due to the presence of the triple gluon vertex.
After some simplifications, it is given by

ðIIÞabcμ ¼ i
Ng3

2
fabcpϕðkþ pÞγ

Z
l
Dc̄cðlþ pÞDAAðlÞDAAðl − kÞPηϕðlÞPγδðl − kÞ½ð2l − kÞμδηδ þ 2kηδμδ − 2kδδημ�:

ðD8Þ

MINTZ, PALHARES, SORELLA, and PEREIRA PHYS. REV. D 97, 034020 (2018)

034020-12



In the soft-gluon limit (k → 0), the tensor structure of diagram (II) simplifies tremendously, and one has

ðIIÞabcμ ðk → 0Þ ¼ i
Ng3

2
fabcpϕpγ

Z
l
Dc̄cðlþ pÞDAAðlÞDAAðlÞPηϕðlÞPγδðlÞ½ð2lÞμδηδ�

¼ iNg3fabc½R2þKμðaþ; aþ;pÞ þ R2
−Kμða−; a−;pÞ þ 2RþR−Kμðaþ; a−;pÞ�; ðD9Þ

where we defined the integral

Kμðm1; m2;pÞ ≔
Z
l

1

ðlþ pÞ2
1

l2 þm2
1

1

l2 þm2
2

�
p2l2 − ðp · lÞ2

l2

�
lμ: ðD10Þ

Once again we use the standard technique to find, for spacetime dimension d,

Kμðm1; m2;pÞ ¼ −
d − 1

2ð4πÞd/2 p
2pμΓð3 − d/2Þ

Z
1

0
dx1dx2dx3dx4

δð1 −P
4
i¼i xiÞx1

½x1ð1 − x1Þp2 þ x2m2
1 þ x3m2

2�3−d/2
: ðD11Þ

Therefore, for d ¼ 4, the integral is finite and yields

Kμðm1; m2;pÞ ¼
1

256π2
pμ

1

m2
1m

2
2p

4ðm2
1 −m2

2Þ
�
2m2

1m
6
2p

2 − 2m6
1m

2
2p

2 þ 3m2
1m

4
2p

4 − 3m4
1m

2
2p

4

þ 2m8
1m

2
2 log

�
1þ p2

m2
1

�
− 2m2

1m
8
2 log

�
1þ p2

m2
2

�
þ 4m6

1m
2
2p

2 log

�
1þ p2

m2
1

�

−4m2
1m

6
2p

2 log

�
1þ p2

m2
2

�
þ 4m2

1m
2
2p

6 log

�
p2 þm2

2

p2 þm2
1

�

þ2m2
1p

8 log

�
1þm2

2

p2

�
− 2m2

2p
8 log

�
1þm2

1

p2

��
: ðD12Þ

3. Diagram III

Including the two equal contributions from φ ↔ φ̄ in the diagram,

ðIIIÞabcμ ¼ i
Ng3

4
ðNg2γ4Þfabcpϕðpþ kÞγ

Z
l
Dc̄cðlÞ

DAAðl − p − kÞ
ðl − p − kÞ2 þ μ2

DAAðl − pÞ
ðl − pÞ2 þ μ2

Pγδðl − p − kÞPδϕðl − pÞðl − pÞμ:

ðD13Þ

Similarly to the diagram ðIIÞ, the soft-gluon limit of diagram (III) can also be written in terms of the integrals of the
type (D10)

ðIIIÞabcμ ðk → 0Þ ¼ i
Ng3

4

Ng2γ4

½a2þ − a2−�2
fabc½Kμðaþ; aþ;pÞ þ Kμða−; a−;pÞ − 2Kμðaþ; a−;pÞ�: ðD14Þ

4. Diagram IV

Let us finally consider diagram (IV). It is given by

ðIVÞabcμ ¼ −ig3ðgγ2Þfahofhcjfjknfkmoδbdδμνpϵðpþ kÞγkϕ
Z
l
Dc̄cðlÞ

DAAðl − p − kÞ
ðl − p − kÞ2 þ μ2

DAAðl − pÞ

× Pγδðl − p − kÞPϵϕðl − pÞ: ðD15Þ

Note that this diagram is proportional to the gluon momentum k. Therefore, given that the integral is also finite, it does
not contribute to the soft-gluon limit of the vertex function (D1).

GHOST-GLUON VERTEX IN THE PRESENCE OF THE … PHYS. REV. D 97, 034020 (2018)

034020-13



Finally we would like to point out that all diagrams (I)–(IV) are proportional to pαðpþ kÞβ, so that the one-loop
contributions to the vertex function (which are perfectly finite) all vanish at the limits p → 0 and pþ k → 0, as expected
from the symmetries of the theory (e.g. the so-called Taylor kinematics [35]) and discussed in Appendix C.
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