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A continuum approach to the three valence-quark bound-state problem in quantum field theory is used to
perform a comparative study of the four lightest ðI ¼ 1=2; JP ¼ 1=2�Þ baryon isospin doublets in order to
elucidate their structural similarities and differences. Such analyses predict the presence of nonpointlike,
electromagnetically active quark-quark (diquark) correlations within all baryons; and in these doublets,
isoscalar-scalar, isovector-pseudovector, isoscalar-pseudoscalar, and vector diquarks can all play a role. In
the two lightest ð1=2; 1=2þÞ doublets, however, scalar and pseudovector diquarks are overwhelmingly
dominant. The associated rest-frame wave functions are largely S-wave in nature; and the first excited state
in this 1=2þ channel has the appearance of a radial excitation of the ground state. The two lightest
ð1=2; 1=2−Þ doublets fit a different picture: accurate estimates of their masses are obtained by retaining only
pseudovector diquarks; in their rest frames, the amplitudes describing their dressed-quark cores contain
roughly equal fractions of even- and odd-parity diquarks; and the associated wave functions are
predominantly P-wave in nature, but possess measurable S-wave components. Moreover, the first excited
state in each negative-parity channel has little of the appearance of a radial excitation. In quantum field
theory, all differences between positive- and negative-parity channels must owe to chiral symmetry
breaking, which is overwhelmingly dynamical in the light-quark sector. Consequently, experiments that
can validate the contrasts drawn herein between the structure of the four lightest ð1=2; 1=2�Þ doublets will
prove valuable in testing links between emergent mass generation and observable phenomena and,
plausibly, thereby revealing dynamical features of confinement.

DOI: 10.1103/PhysRevD.97.034016

I. INTRODUCTION

Developing a unified understanding of the four lightest
ðI ¼ 1=2; J ¼ 1=2�Þ baryon isospin doublets in the hadron
spectrum presents a challenging problem. Whilst the proton
is plainly a bound state seeded by three valence quarks, u,
u, d, and the neutron is similar, the nature of the next three
doublets, Nð1440Þ1=2þ, Nð1535Þ1=2−, Nð1650Þ1=2−, is
far less certain. For example, the Nð1440Þ1=2þ “Roper
resonance” [1–5] has long been a source of puzzlement

because a wide array of constituent-quark potential models
produce a spectrum in which the second positive-parity
doublet lies above the first negative-parity doublet. This
confusion was only resolved following [6]: the acquisition
and analysis of a vast amount of high-precision nucleon-
resonance electroproduction data with single- and double-
pion final states on a large kinematic domain of energy and
photon virtuality, development of a sophisticated dynami-
cal reaction theory capable of simultaneously describing all
partial waves extracted from available, reliable data, and
formulation and wide-ranging application of a Poincaré
covariant approach to the continuum bound state problem
in relativistic quantum field theory. Today, it is widely
judged that the Roper is, at heart, the first radial excitation
of the nucleon, consisting of a well-defined dressed-quark
core that is augmented by a meson cloud, which both
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reduces the Roper’s core mass by approximately 20% and
contributes materially to the electroproduction transition
form factors at low-Q2.
Regarding the Nð1535Þ1=2− and Nð1650Þ1=2−, an

analogous picture ought to be correct. However, new
questions arise. In constituent-quark models it is typical
to describe these states as P-wave baryons [7], i.e. quantum
mechanical systems with one unit of constituent-quark
orbital angular momentum, L, and classify them as mem-
bers of the ð70; 1−1 Þ supermultiplet of SUð3Þ ⊗ Oð3Þ: the
lighter state is associated with L ¼ 1, constituent-quark
total spin S ¼ 1=2 coupled to J ¼ Lþ S ¼ 1=2 and the
heavier with L ¼ 1, S ¼ 3=2. In relativistic quantum field
theory, however, L and S are not good quantum numbers.
Moreover, even if they were, owing to the loss of particle
number conservation, it is not clear a priori just with which
degrees of freedom L, S should be connected. This issue is
related to the fact the constituent quarks used in building
quantum mechanical models have no known mathematical
connection with the degrees of freedom featuring in
quantum chromodynamics (QCD). Plainly, there is still a
great deal to learn about the nature of the nucleon’s parity
partner and its excitations.
The importance of this problem is all the greater

because, in a symmetry-preserving treatment using rela-
tivistic quantum field theory, one may generate the inter-
polating field for the parity partner of any given state via a
chiral rotation of that associated with the original state. It
follows that parity partners will be degenerate in mass and
alike in structure in all theories that possess a chiral
symmetry realized in the Wigner-Weyl mode. (There is
evidence of this, e.g. in both continuum [8,9] and lattice
[10,11] analyses that explore the evolution of hadron
properties with temperature.) Such knowledge has long
made the mass splittings between parity partners in the
strong-interaction spectrum a subject of interest. The best
known example, perhaps, is that provided by the ρð770Þ-
and a1ð1260Þ-mesons: viewed as chiral and hence parity
partners, it has been argued [12] that their mass and
structural differences can be attributed entirely to dynami-
cal chiral symmetry breaking (DCSB), viz. realization of
chiral symmetry in the Nambu-Goldstone mode. It is
plausible that this profound emergent feature of the
Standard Model is tightly linked with confinement [13];
and regarding DCSB’s role in explaining the splitting
between parity partners, additional insights have been
developed by studying the quantum field theory bound-
state equations appropriate to the ρ- and a1-mesons. In
their rest frames, one finds that their Poincaré-covariant
wave functions are chiefly S-wave in nature [14–19], even
though both possess nonzero angular momentum [20,21],
whose magnitude influences the size of the splitting [16].
Given the value of understanding the nature of the four

lightest ð1=2; 1=2�Þ doublets in the hadron spectrum,
herein we employ the methods of continuum quantum

field theory in order to elucidate their structure, with one
aim being to expose and clarify any commonalities
that might exist between their appearance in this approach
and the quantum mechanical picture of these states.
Complementing Ref. [22], the results will also prove useful
in subsequent calculations of the Nð1535Þ1=2− and
Nð1650Þ1=2− electroproduction form factors, existing
empirical information on which [23–28] will be enlarged
by forthcoming experiments at the Thomas Jefferson
National Accelerator Facility (JLab).
We describe our approach to the baryon bound-state

problem in Sec. II; detail and explain the character of the
solutions for the four lightest ð1=2; 1=2�Þ doublets in
Sec. III; and summarize in Sec. IV.

II. BARYON BOUND STATE PROBLEM

A. Faddeev equation

The problem of baryon structure in relativistic quantum
field theory can be tackled using the Poincaré-covariant
Faddeev equation introduced in Refs. [29–33]. The
Faddeev equation sums all possible exchanges and inter-
actions that can take place between the three dressed quarks
that express the baryon’s valence-quark content; and, used
with a realistic quark-quark interaction [34–36], it predicts
the appearance of soft (nonpointlike) fully interacting
diquark correlations within baryons, whose characteristics
are greatly influenced by DCSB [37].1 Consequently, the
problem of determining a baryon’s internal structure is
transformed into that of solving the linear, homogeneous
matrix equation depicted in Fig. 1.

B. Dressed quarks

In connection with the four lightest ð1=2; 1=2�Þ
baryon doublets in the hadron spectrum, the kernel of
the Faddeev equation in Fig. 1 involves three basic
elements, viz. the dressed light-quark propagator, SðpÞ,
and the correlation amplitudes and propagators for all
participating diquarks. A great deal is known about
SðpÞ, and in constructing the kernel we use the algebraic
form described in Appendix A, which has proven to be a
very efficient parametrization in the explanation and uni-
fication of a wide range of hadron observables [22,41,42].
(N. B. We assume isospin symmetry throughout, i.e. the u-
and d-quarks are mass degenerate and described by the
same propagator. Moreover, all members of an isospin
multiplet are also degenerate.)

1Whilst the notion of diquark correlations was introduced long
ago [38,39], the representation and understanding of these
correlations has since evolved greatly, so that the dynamical
correlations we exploit herein are vastly different from the
pointlike constituents used in constituent spectroscopic models
to analyze, e.g. the missing resonance problem [40].
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C. Correlation amplitudes

Regarding the diquarks in Fig. 1, all participating
correlations are color antitriplets because they must com-
bine with the bystander quark to form a color singlet.
Notably, the color-sextet quarkþ quark channel does not
support correlations because gluon exchange is repulsive in
this channel [43].
Diquark isospin-spin structure is more complex.

Accounting for Fermi-Dirac statistics, five types of corre-
lation are possible in a J ¼ 1=2 bound state: isoscalar scalar
(I ¼ 0, JP ¼ 0þ), isovector pseudovector, isoscalar pseu-
doscalar, isoscalar vector, and isovector vector. The leading
structures in the correlation amplitudes for each case are,
respectively,

Γ0þðk;KÞ ¼ g0þγ5Cτ2H⃗F ðk2=ω2
0þÞ; ð1aÞ

Γ⃗1þ
μ ðk;KÞ ¼ ig1þγμCt⃗ H⃗F ðk2=ω2

1þÞ; ð1bÞ

Γ0−ðk;KÞ ¼ ig0−Cτ2H⃗F ðk2=ω2
0−Þ; ð1cÞ

Γ1−
μ ðk;KÞ ¼ g1−γμγ5Cτ2H⃗F ðk2=ω2

1−Þ; ð1dÞ

Γ⃗1̄−

μ ðk;KÞ ¼ ig1̄− ½γμ; γ · K�γ5Ct⃗ H⃗F ðk2=ω2
1̄−
Þ; ð1eÞ

where K is the total momentum of the correlation, k is a
two-body relative momentum, F is the function in
Eq. (A4), ωJP is a size parameter, and gJP is a coupling
into the channel, which is fixed by normalization; C ¼ γ2γ4
is the charge-conjugation matrix:

ftj; j ¼ þ; 0;−g ¼ 1p
2
fðτ0 þ τ3Þ;p2τ1; ðτ0 − τ3Þg;

ð2Þ

τ0 ¼ diag½1; 1�, fτi; i ¼ 1; 2; 3g are the Pauli matrices; and
H⃗ ¼ fiλ7c;−iλ5c; iλ2cg, with fλkc; k ¼ 1;…; 8g denoting
Gell-Mann matrices in color space, expresses the diquarks’
color antitriplet character.

The amplitudes in Eq. (1) are normalized canonically:

2Kμ ¼
∂

∂Qμ
ΠðK;QÞ

����
K2¼−m2

JP

Q¼K

; ð3aÞ

ΠðK;QÞ ¼ tr
Z

d4k
ð2πÞ4 Γ̄ðk;−KÞSðkþQ=2Þ

× Γðk;KÞSTð−kþQ=2Þ; ð3bÞ

where Γ̄ðk;KÞ ¼ C†Γð−k;KÞC and ½·�T denotes matrix
transpose. When the correlation amplitudes involved carry
Lorentz indices μ, ν, the left-hand side of Eq. (3b) also
includes a factor δμν. It is apparent now that the strength of
coupling in each channel, gJP in Eq. (1), is fixed by the
associated value of ωJP .

D. Diquark propagators, masses, couplings

A propagator is associated with each quark-quark
correlation in Fig. 1, and we use [41]

Δ0�ðKÞ ¼ 1

m2
0�
F ðk2=ω2

0�Þ; ð4aÞ

Δ1�
μν ðKÞ ¼

�
δμν þ

KμKν

m2
1�

�
1

m2
1�
F ðk2=ω2

1�Þ: ð4bÞ

These algebraic forms ensure that the diquarks are confined
within the baryons, as appropriate for colored correlations:
whilst the propagators are free-particle-like at spacelike
momenta, they are pole-free on the timelike axis; and this is
sufficient to ensure confinement via the violation of
reflection positivity (see, e.g. Ref. [44], Sec. III).
The diquark masses and widths are related via [41]

m2
JP ¼ 2ω2

JP ; ð5Þ

an identification which accentuates the free-particle-like
propagation characteristics of the diquarks within the
baryon. The mass scales are constrained by numerous
studies, and we use (in GeV)

m0þ ¼ 0.8; m1þ ¼ 0.9; m0− ¼ 1.2; m1− ¼ 1.3; ð6Þ

where the first two values are drawn from Refs. [22,41],
because they provide for a good description of numerous
dynamical properties of the nucleon, Δ-baryon and Roper
resonance; and the masses of the odd-parity correlations
are based on those computed in Ref. [45]. (Such values
are typical [19,46]; and in truncations of the two-body
scattering problem that are most widely used, isoscalar- and
isovector-vector correlations are degenerate.) The impact
of variations in these masses is readily estimated, e.g.
baryon masses typically respond linearly to changes in
mJP [17].

FIG. 1. Poincaré covariant Faddeev equation: a homogeneous
linear integral equation for the matrix-valued function Ψ, being
the Faddeev amplitude for a baryon of total momentum
P ¼ pq þ pd, which expresses the relative momentum correla-
tion between the dressed quarks and diquarks within the baryon.
The shaded rectangle demarcates the kernel of the Faddeev
equation: single line, dressed-quark propagator; Γ, diquark
correlation amplitude; and double line, diquark propagator.
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Using the values in Eq. (6) and Eqs. (1) and (3), one finds

g0þ ¼ 14.8; g1þ ¼ 12.7;

g0− ¼ 12.8; g1− ¼ 5.4; g1̄− ¼ 2.5: ð7Þ

Given that it is the coupling squared which appears in the
Faddeev kernels, then vector-diquark correlations should
typically play a lesser role in the structure of J ¼ 1=2
baryons. (There is some support for this expectation in
Refs. [45,47].) Isovector-vector correlations should be
especially suppressed because g2

1̄−
=g2

0þ ¼ 0.03. Notably,
too, isovector-vector diquarks are not supported in standard
implementations of contact-interaction kernels [45], which
normally provide a good guide to the baryon spectrum.
Hereafter, therefore, we neglect isovector-vector correla-
tions. This expedient serves to simplify the Faddeev
kernels: 22 × 22 matrices are reduced to 16 × 16. (Here
we also capitalize on isospin symmetry, which reduces the
number of independent terms associated with isovector-
pseudovector diquarks.)

E. Remarks on the Faddeev kernels

The elements described in the preceding subsections are
sufficient to specify a Faddeev kernel in the JP ¼ 1=2�
channels associated with the four lightest I ¼ 1=2, J ¼ 1=2
baryon doublets. Moreover, owing to our deliberate use of
algebraic parametrizations for these inputs, the Faddeev
equations thus obtained can be solved directly on the
baryon mass shells, providing simultaneously the associ-
ated on-shell Faddeev amplitudes and wave functions.
The inputs we use for the propagators and correla-

tion amplitudes are constrained by observables and hence
they express many effects that are lost in straightforward
implementations of the lowest-order (rainbow-ladder, RL)
truncation of the bound-state equations [48]. Not-
withstanding that, some correction of the Faddeev kernels
is necessary to overcome an intrinsic weakness of the
equation depicted in Fig. 1, whose structure is based on
the rainbow-ladder truncation. Solving this equation, one
finds that ground-state positive-parity octet baryons are
primarily constituted from like-parity diquarks, with neg-
ligible contributions from negative-parity correlations. This
makes sense. However, the parity partners of the ground-
state baryons are also overwhelmingly dominated by the
positive-parity diquarks and, consequently, too light. It is
possible that something important is missing.
A failure to generate adequate splitting between

parity partners is a familiar flaw: the masses of odd-
parity mesons are also too low when computed in RL
truncation; and the cause there is an absence of spin-orbit
repulsion owing to an oversimplification of the gluon-quark
vertex when formulating the RL bound-state equations
[16,19,34,48,49]. It is now possible to solve meson
bound-state problems with more sophisticated kernels,

which incorporate crucial nonperturbative mechanisms
and hence better express the role of spin-orbit repulsion
and related effects. However, that is not yet the case in the
baryon sector; and we therefore employ a simple artifice in
order to implement the missing interactions. Namely [45],
we introduce a single parameter into the Faddeev equation
for JP ¼ ð1=2ÞP baryons: gDB, a linear multiplicative factor
attached to each opposite-parity ð−PÞ diquark amplitude in
the baryon’s Faddeev equation kernel. For example, in the
Faddeev kernel for the Nð1535Þ1=2−, each entry is multi-
plied by gnDB, where n counts the number of positive-parity
diquark correlation amplitudes that are present. gDB is the
single free parameter in our study.

F. Faddeev amplitudes and wave functions

In solving the Faddeev equation, Fig. 1, one obtains both
the mass-squared and bound-state amplitude of all baryons
with a given value of JP. In fact, it is the form of the
Faddeev amplitude which fixes the channel. A 1=2� baryon
is described by

Ψ� ¼ ψ�
1 þ ψ�

2 þ ψ�
3 ; ð8Þ

where the subscript identifies the bystander quark, i.e. the
quark that is not participating in a diquark correlation, ψ�

1;2

are obtained from ψ�
3 ≕ψ� by a cyclic permutation of all

quark labels, and

ψ�ðpi; αi; σiÞ ¼ ½Γ0þðk;KÞ�α1α2σ1σ2
Δ0þðKÞ½φ�

0þðl;PÞuðPÞ�α3σ3
þ ½Γ1þj

μ �Δ1þ
μν ½φj�

1þνðl;PÞuðPÞ�
þ ½Γ0− �Δ0− ½φ�

0−ðl;PÞuðPÞ�
þ ½Γ1−

μ �Δ1−
μν ½φ�

1−νðl;PÞuðPÞ�; ð9Þ
where ðpi; σi; αiÞ are the momentum, spin and isospin
labels of the quarks constituting the bound state;
P ¼ p1 þ p2 þ p3 ¼ pd þ pq is the total momentum
of the baryon; k ¼ ðp1 − p2Þ=2, K ¼ p1 þ p2 ¼ pd,
l ¼ ð−K þ 2p3Þ=3; j is the label in Eq. (2); and uðPÞ
is a Euclidean spinor (see Ref. [41], Appendix B for
details). The remaining elements in Eq. (9) are the
following matrix-valued functions:

φ�
0þðl;PÞ ¼

X2

i¼1

s�i ðl2;l · PÞSiðl;PÞG�; ð10aÞ

φj�
1þνðl;PÞ ¼

X6

i¼1

aj�
i ðl2;l · PÞγ5Ai

νðl;PÞG�; ð10bÞ

φ�
0−ðl;PÞ ¼

X2

i¼1

p�
i ðl2;l · PÞSiðl;PÞG∓; ð10cÞ

φ�
1−νðl;PÞ ¼

X6

i¼1

v�
i ðl2;l · PÞγ5Ai

νðl;PÞG∓; ð10dÞ
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where Gþð−Þ ¼ IDðγ5Þ and

S1 ¼ ID; S2 ¼ iγ · l̂ − l̂ · P̂ID

A1
ν ¼ γ · l⊥P̂ν; A2

ν ¼ −iP̂νID; A3
ν ¼ γ · l̂⊥l̂⊥

ν

A4
ν ¼ il̂⊥

ν ID; A5
ν ¼ γ⊥ν −A3

ν; A6
ν ¼ iγ⊥ν γ · l̂⊥ −A4

ν;

ð11Þ

with l̂2 ¼ 1, P̂2 ¼ −1, l⊥¼ l̂νþ l̂ · P̂P̂ν, γ⊥¼ γνþ γ · P̂P̂ν.
The (unamputated) Faddeev wave function can be

computed from the amplitude specified by Eqs. (9) and
(10) simply by attaching the appropriate dressed-quark
and diquark propagators. It may also be decomposed in
the form of Eq. (10). Naturally, the scalar functions are
different, and we label them ~s�i , ~aj�

i , ~p�
i , ~v

�
i .

Both the Faddeev amplitude and wave function are
Poincaré covariant, i.e. they are qualitatively identical in
all reference frames. Naturally, each of the scalar functions
that appears is frame independent, but the frame chosen
determines just how the elements should be combined. In
consequence, the manner by which the dressed quarks’
spin, S, and orbital angular momentum, L, add to form
J ¼ 1=2P is frame dependent: L, S are not independently
Poincaré invariant.2 Hence, in order to enable comparisons
with typical formulations of constituent quark models, here
we list the set of baryon rest-frame quark-diquark angular
momentum identifications [51,52]:

2S∶ S1;A2
ν; ðA3

ν þA5
νÞ; ð12aÞ

2P∶ S2;A1
ν; ðA4

ν þA6
νÞ; ð12bÞ

4P∶ ð2A4
ν −A6

νÞ=3; ð12cÞ
4D∶ ð2A3

ν −A5
νÞ=3; ð12dÞ

viz. the scalar functions associated with these combinations
of Dirac matrices in a Faddeev wave function possess the
identified angular momentum correlation between the
quark and diquark. Those functions are

2S∶ ~s�1 ; ~a
�
2 ; ð ~a�

3 þ 2a�
5 Þ=3; ð13aÞ

2P∶ ~s�2 ; ~a
�
1 ; ð ~a�

4 þ 2 ~a�
6 Þ=3; ð13bÞ

4P∶ ð ~a�
4 − ~a�

6 Þ; ð13cÞ
4D∶ ð ~a�

3 − ~a�
5 Þ; ð13dÞ

with analogous associations for f ~p�
i ; i ¼ 1; 2g,

f ~v�
i ; i ¼ 1;…; 6g.

III. SOLUTIONS AND THEIR PROPERTIES

A. Masses of the dressed-quark cores

Using the information provided in Sec. II, it is straight-
forward to generalize the procedures detailed, e.g. in
Ref. [41], and obtain the linear, homogeneous matrix
integral equations satisfied by the Faddeev amplitudes of
ð1=2; 1=2�Þ baryons. Capitalizing on isospin symmetry,
there are just two equations, corresponding to P ¼ �, and
herein we are interested in the two lowest-mass solutions
of each equation. (In the absence of chiral symmetry
breaking, dynamical and explicit, these two equations
are indistinguishable.)
We have one parameter, i.e. gDB, described in Sec. II E;

and guided by dynamical coupled channels calculations
which report core masses for the nucleon’s lightest exci-
tations [53], we choose gDB ¼ 0.43 so as to produce a mass
splitting of 0.1 GeV between the lowest-mass P ¼ − state
and the first excited P ¼ þ state, viz. the empirical value.
(N. B. In the following we typically compare results
obtained using gDB ¼ 0.43 with those generated by the
unmodified [gDB ¼ 1.0] Faddeev kernel; and as will be
seen, they are qualitatively equivalent.)
Our computed values for the masses of the four lightest

1=2� baryon doublets are listed here, in GeV:

gDB mN m1=2þ
Nð1440Þ m1=2−

Nð1535Þ m1=2−

Nð1650Þ
0.43 1.19 1.73 1.83 1.91

1.0 1.19 1.73 1.43 1.61

0.0 1.19 1.73 2.16 2.31

: ð14Þ

In order to understand the results, recall that gDB ¼ 0
ensures P ¼ −ðþÞ diquarks are eliminated from the
Faddeev kernel of P ¼ þð−Þ baryons, whereas gDB ¼ 1
means they appear with unmodified strength. Evidently,
therefore, pseudoscalar and vector diquarks have no impact
on the mass of the two positive-parity baryons, whereas
scalar and pseudovector diquarks are important to the
negative parity systems. (A� 10% change in gDB around
our fitted value only alters each P ¼ − mass by less than
2%.) It is worth noting, too that, although 1=2− solutions
exist even if one eliminates isoscalar-pseudoscalar and -
vector diquarks, 1=2þ solutions do not exist in the absence
of scalar and pseudovector diquarks. The first clause here
is, perhaps, surprising. It indicates that, with our Faddeev
kernel, the so-called P-wave (negative-parity) baryons can
readily be built from positive-parity diquarks. This indi-
cates that the energy-cost associated with introducing
quark-diquark orbital angular momentum is not very
high. As noted elsewhere [45], in the absence of a true

2The nature of the combination is also scale dependent because
the definition of a dressed quark and the character of the
correlation amplitudes changes with resolving scale, ζ, in a
well-defined manner [50]. Our analysis is understood to be valid
at ζ ≃ 1 GeV.
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beyond-RL Faddeev kernel, one cannot judge whether this
is a veracious feature of the strong interaction within
baryons or an artifact of existing kernels.
It is now worth highlighting that the kernel in Fig. 1

omits all those resonant contributions which may be
associated with meson-baryon final-state interactions that
are resummed in dynamical coupled channels models in
order to transform a bare baryon into the observed state
[53–58]. The Faddeev equations analyzed to produce the
results in Eq. (14) should therefore be understood as
producing the dressed-quark core of the bound state, not
the completely dressed and hence observable object
[59,60]. In consequence, a comparison between the empiri-
cal values of the resonance pole positions and the masses in
Eq. (14) is not pertinent. Instead, one should compare the
masses of the quark core with values determined for the
meson-undressed bare excitations, e.g.,

mN m1=2þ
Nð1440Þ m1=2−

Nð1535Þ m1=2−

Nð1650Þ
herein 1.19 1.73 1.83 1.91

M0
B ½53� 1.76 1.80 1.88

; ð15Þ

where M0
B is the relevant bare mass inferred in the

associated dynamical coupled-channels analysis [53].
Notably, the rms-relative difference between our predicted
quark core masses and the bare masses determined in
Ref. [53] is just 1.7%, even though no attempt was made to
secure agreement. We consider this to be a success of our
formulation of the bound-state problem for a baryon’s
dressed-quark core.

B. Rest-frame orbital angular momentum

It is interesting now to dissect the results in various ways
and thereby sketch the character of the quark cores that
constitute the four lightest 1=2� baryon doublets. We begin
with an exposition of their rest-frame orbital angular
momentum content, to which purpose we compiled
Table I. Plainly, the nucleon andNð1440Þ1=2þ are primarily
S-wave in nature, since they are not supported by the Faddeev
equation unless S-wave components are contained in the
wave function. On the other hand, the N−

0 ¼ Nð1535Þ1=2−,
N−

1 ¼ Nð1650Þ1=2− are essentially P-wave in character.
These observations provide support in quantum field theory
for the constituent-quark model classifications of these
systems, so long as angular momentum is understood at
the hadronic scale to be that between the quark and diquark.
To elucidate, we turn our attention to the Faddeev wave

functions themselves. Connected with each matrix in
Eq. (12), there is a scalar function, the collection of which
we denote as fE�

i ; i ¼ 1;…; 8g, e.g. the six rest-frame
1S-components in a P ¼ þ baryon are connected with
E�
1;2;3 and, using Eq. (13a), these functions are fð~sþ1 ; ~pþ

1 Þ;
ð ~aþ

2 ; ~v
þ
2 Þ; ð½ ~aþ

3 þ 2 ~aþ
5 �=3; ½ ~vþ

3 þ 2 ~vþ
5 �=3Þg. For each

baryon, we compute

L�
i ¼

Z
d4l
ð2πÞ4 jE

�
i ðl2;l · PÞj2 ð16Þ

and subsequently define the following rest-frame angular
momentum strengths:

S ¼ T−1
X

k¼�

X

i∈2S

Lk
i ; ð17aÞ

P ¼ T−1
X

k¼�

X

i∈2P;4P

Lk
i ; ð17bÞ

D ¼ T−1
X

k¼�

X

i∈4D

Lk
i ; ð17cÞ

T ¼
X

k¼�

X8

i¼1

Lk
i : ð17dÞ

Constructed thus, T defines a four-dimensional L2-norm of
the baryon’s rest-frame Faddeev wave function and the
ratios S, P, D express the relative size of the contribution
from each angular momentum component to this norm.
Our computed values for these rest-frame quark-diquark

angular momentum fractions are depicted in Fig. 2(a).
As telegraphed by Table I, in their rest frames, the two
lightest 1=2þ doublets are predominantly S-wave in
character, whereas the negative parity states are chiefly
P-wave. Evidently, gDB < 1 has the effect of suppressing
the P-wave component in the negative-parity baryons for
reasons we will subsequently elucidate. In all cases the
D-wave components are negligible.

TABLE I. Computed quark-core masses of the low-lying 1=2�
baryons. Row 1: results obtained using the complete Faddeev
wave function, i.e. with all angular momentum components
included. Subsequent rows: masses obtained when the indicated
rest-frame angular momentum component(s) is(are) excluded
from the Faddeev wave function. Empty locations indicate
that a solution is not obtained under the conditions indicated.
Legend: Nþ

0 is the ground-state nucleon, Nþ
1 ¼ Nð1440Þ1=2þ,

N−
0 ¼ Nð1535Þ1=2−, N−

1 ¼ Nð1650Þ1=2−. (All dimensioned
quantities are listed in GeV.)

gDB ¼ 0.43 gDB ¼ 1.0

L content Nþ
0 Nþ

1
N−

0 N−
1 N−

0 N−
1

S, P, D 1.19 1.73 1.83 1.91 1.43 1.61
−; P;D 1.89 1.98 1.55 1.75
S;−; D 1.24 1.71
S; P;− 1.20 1.74 1.83 1.91 1.44 1.61
S;−;− 1.24 1.71
−; P;− 1.90 1.98 1.57 1.75
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It is interesting to note that if one makes all diquarks
equally massive, setting mqq ¼ 1.2 GeV, then S-waves are
enhanced in 1=2þ systems, whereas the D-wave compo-
nent becomes larger in 1=2− systems at the cost of a
roughly 10% reduction in the sum of S- and P-waves.
Plainly, details of baryon internal structure are sensitive to
the size and ordering of diquark masses.
Another, perhaps better, way to sketch the relative

importance of different partial waves within a baryon is
to depict their contributions to a given observable. Herein,
we consider the mass. Using the information in Table I, in
Fig. 2(b) we depict the relative contribution to a hadron’s
mass that derives from a given angular momentum com-
ponent in the baryon’s rest-frame Faddeev wave function.
For the purpose of this illustration, we draw all bars as
positive, even though it is usually the case that the dominant
partial wave produces a baryon with mass greater than the
final result and adding an angular momentum component
introduces attraction. As an example, the nucleon entries
are drawn from

fS∶ 1.24; P∶ 1.24 − 1.20; D∶ 1.20 − 1.19g=T ; ð18Þ

T ¼ ð1.24þ 0.04þ 0.01Þ GeV. This measure delivers the
same qualitative picture of each baryon’s internal structure
as that presented in Fig. 2(a): apparently, therefore, there is
little mixing between partial waves in the computation of a
baryon’s mass.

C. Diquark content

Accounting for isospin symmetry in the pseudovector
diquark component, the Faddeev amplitude of each baryon
is readily decomposed into a sum of sixteen distinct terms,
fF i; i ¼ 1;…; 16g, each one of which is uniquely identi-
fied with a particular diquark type. In connection with each
term, we define

Di ¼
Z

d4l
ð2πÞ4 jF iðl2;l · PÞj2 ð19Þ

and subsequently compute

Qt ¼ W−1
X

i∈t
Di; W ¼

X16

i¼1

Di; ð20Þ

where t ¼ sð¼ 0þÞ, að¼ 1þÞ, pð¼ 0−Þ, vð¼ 1−Þ.
Analogous to Eq. (17), W here defines a four-dimensional
L2-norm of the baryon’s Faddeev amplitude and the ratios
Qt¼s;a;p;v express the relative size of the contribution from
each diquark correlation to this norm. The values of these
fractions are one indication of the relative strengths of the
various diquark components within a baryon.
Our results for the diquark fractions defined by Eq. (20)

are depicted in Fig. 3(a). This measure indicates that
gDB < 1 has little impact on the nucleon and Roper, so
we do not draw gDB ¼ 1 results. On the other hand, it has
a significant effect on the structure of the negative parity
baryons, serving to enhance the net negative-parity diquark
content.
One can now explain the impact of gDB < 1 on the

rest-frame quark-diquark angular momentum fractions in
negative parity baryons. Within such systems, it increases
both the effective energy-cost (mass) of positive parity
diquarks and the fraction of pseudoscalar and vector
diquarks they contain. Each of these effects serves indi-
vidually to lower the total rest-frame angular momentum,
and they are mutually reinforcing.
It is worth remarking that if one makes all diquarks

equally massive, setting mqq ¼ 1.2 GeV, then the isosca-
lar-vector fraction is enhanced in 1=2þ baryons, at the cost
of a ∼30% reduction in the sum of scalar and pseudovector
fractions, whereas the pseudoscalar and vector diquark
fractions in negative-parity baryons both increase substan-
tially, so that they become dominant, at the cost of the same
size reduction in the sum of scalar and pseudovector

(a)

(b)

FIG. 2. Upper panel: (a) Baryon rest-frame quark-diquark
orbital angular momentum fractions, as defined in Eq. (17).
Lower panel: (b) Relative contribution of various quark-diquark
orbital angular momentum components to the mass of a given
baryon. In both panels, the results were computed with gDB ¼
0.43, except for the identified bar triplets with lighter shading,
for which gDB ¼ 1. Legend: Nþ

0 is the ground-state nucleon,
Nþ

1 ¼Nð1440Þ1=2þ, N−
0 ¼Nð1535Þ1=2−, N−

1 ¼ Nð1650Þ1=2−.
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fractions. These changes highlight once again that details of
baryon structure are sensitive to the size and ordering of
diquark masses.
Diquark fractions for the nucleon and Roper resonance,

computed using the same Faddeev equations, are presented
in Ref. [22]. The measure used therein is different, based on
the Faddeev amplitudes’ canonical normalization, which is
a Poincaré invariant quantity related to baryon number.
There are similarities, e.g. using either scheme, the nucleon
and Roper possess very similar diquark content; and
differences, e.g. using the normalization measure, the scalar
diquark is dominant. The latter emphasises that in the
computation of an observable quantity, there is significant
interference between the distinct diquark components in a
baryon’s Faddeev amplitude. One learns from these obser-
vations that comparisons between diquark fractions com-
puted for different baryons using the same indicator are
easily interpreted, whereas that is not always the case for
comparisons between results obtained for the same baryon
using different schemes.

In order to draw a closer connection herein with the
standard used in Ref. [22], in Fig. 3 we depict the relative
contributions to a hadron’s mass owing to each of the
diquark components in the baryon’s Faddeev amplitude.
Here, the difference between the upper and lower panels
of Fig. 3 is marked. In each case depicted in the lower
panel, there is a single dominant diquark component; and
each new correlation adds binding, reducing the computed
mass. In some cases, e.g. the subleading s and p corre-
lations in N−

1 , there is significant constructive interference.
Measuring the relative strength of diquark correlations
through their contribution to a baryon’s mass and the
canonical normalization, one arrives at an understanding
which is quite different from that suggested by Fig. 3(a),
viz. to a fair degree of accuracy, a range of observable
nucleon and Roper properties are largely determined by
their scalar diquark content and those of the lightest states
in the negative-parity channel are primarily fixed by their
pseudovector diquark content.

D. Pointwise structure

The results described hitherto reveal global (integrated)
features of the four lightest JP ¼ 1=2� baryon doublets.
It is also worth exposing aspects of their local structure as it
is expressed in the pointwise behavior of their Faddeev
amplitudes. To this end, we consider the zeroth Chebyshev
moment of all S- and P-wave components in a given
baryon’s Faddeev amplitude, i.e. projections of the form

Eðl2;P2Þ ¼ 2

π

Z
1

−1
du

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
Eðl2; u;P2Þ; ð21Þ

where u ¼ l · P=
ffiffiffiffiffiffiffiffiffiffi
l2P2

p
. (The D-wave components are

uniformly small.)
The order-zero Chebyshev projections of the quark-core

Faddeev amplitudes for the nucleon and its positive-parity
excitation are plotted in Fig. 4. Evidently, whilst these
projections of the nucleon’s Faddeev amplitude are each of
a single sign, either positive or negative, those associated
with the quark core of the nucleon’s first positive-parity
excitation are quite different: all S-wave components
exhibit a single zero at zR ≈ 0.4 GeV ≈ 1=½0.5 fm�; and
four of the P-wave projections also possess a zero. Drawing
upon experience with quantum mechanics and with
excited-state mesons studied via the Bethe-Salpeter equa-
tion [61–65], this pattern of behavior for the first excited
state indicates that it may be interpreted as a radial
excitation. (These observations and conclusions match
those in Ref. [22].) Notably, too, the relative magnitudes
of these Faddeev amplitude projections are consistent with
the angular momentum contents indicated by Fig. 2(a).
We depict the order-zero Chebyshev projections of the

Faddeev amplitudes associated with the Nð1535Þ1=2−,
Nð1650Þ1=2− quark cores in Fig. 5. The contrast with
the positive-parity states is stark. In particular, there is no

(a)

(b)

FIG. 3. Upper panel: (a) Relative strengths of various diquark
components within the indicated baryon’s Faddeev amplitude, as
defined in Eq. (20). Lower panel: (b) Relative contribution to a
baryon’s mass from a given diquark correlation in that baryon’s
Faddeev amplitude. In both panels, the results were computed
with gDB ¼ 0.43, except for the identified bar quadruplets
with lighter shading, for which gDB ¼ 1. Legend: Nþ

0 is the
ground-state nucleon, Nþ

1 ¼Nð1440Þ1=2þ, N−
0 ¼ Nð1535Þ1=2−,

N−
1 ¼ Nð1650Þ1=2−.
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simple pattern of zeros, with all panels containing at least
one function that possesses a zero.
Combining the results in Table I and Figs. 3(a) and 5, our

analysis indicates that, in their rest frames, the amplitudes
associated with these negative-parity states contain roughly
equal fractions of even and odd parity diquarks. Con-
cerning quark-diquark orbital angular momentum, these
systems are predominantly P-wave in nature, both with
strong 2P and 4P fractions, but possess material S-wave
components; and the first excited state in this negative
parity channel—Nð1650Þ1=2−—has little of the appear-
ance of a radial excitation, since most of the functions
depicted in the right panels of Fig. 5 do not possess a zero.
Similar conclusions may be drawn from the studies in
Refs. [19,46].
These observations provide partial support for the

constituent-quark model picture, in which Nð1535Þ1=2−,
Nð1650Þ1=2− are identified with the ð70; 1−1 Þ supermultip-
let, viz. they are states with a single unit of orbital angular
momentum located in one of the two-quark relative
coordinates. With such features, the character of the
negative parity baryons produced by our QCD-kindred
kernel is markedly different from that generated by a
contact interaction [45], which suppresses orbital angular
momentum and enhances like-parity diquark content. In

particular, although Nð1440Þ1=2þ and Nð1650Þ1=2− are
naturally identified as parity partners, owing to their
appearance as the second states in the 1=2� channels,
respectively, they are remarkably different in structure.
The structural dissimilarity just described suggests that

the mere observation of a collection of (nearly) degenerate
parity partners above some mass scale is insufficient to
claim the restoration of chiral symmetry at and above that
scale in the hadron spectrum. Although similar in mass, the
structure of opposite-parity partner states might never-
theless be very different, in which case DCSB would still
be playing a decisive role and numerous other measurable
properties would remain as signals to distinguish between
the partners. Such an outcome is particularly likely if there
is a tight link between DCSB and dynamical quark
confinement in QCD [13]; and we have seen this in
preliminary investigations of higher excitations in the
ð1=2; 1=2�Þ channels.
Complementing Refs. [66–70], our analysis indicates

that the pointwise behavior of nucleon-to-resonance
electroproduction form factors, e.g. N → Nð1535Þ1=2−,
N → Nð1650Þ1=2−, on Q2 ≳ 2 GeV2 should serve well in
discriminating between otherwise viable pictures of baryon
and resonance structure, as has already been found with the
Nð1440Þ1=2þ [6]. In this connection, experimental results

FIG. 4. Order-zero Chebyshev projections, Eq. (21), of the nucleon (left) and Roper (right) quark-core Faddeev wave functions, with
S-wave in the top row and P-wave in the bottom. For a given baryon, all functions are rescaled by the associated l2 ¼ 0 value of the
zeroth moment of ~sþ1 .
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for theN→Nð1535Þ1=2− electromagnetic transition ampli-
tudes on Q2 ≳ 2 GeV2 are already available [27]
and they are expected soon from data on N →
Nð1650Þ1=2− [71].

IV. SUMMARY

Using a Faddeev kernel that is known to support a
uniformly good description of the observed properties of
the nucleon, Δ-baryon and the Roper resonance, we
performed a comparative study of the four lightest
ðI¼ 1=2;JP ¼ 1=2�Þ baryon isospin doublets in order to
both elucidate their structural similarities and differences,
and draw whatever relationships might exist with quark
model descriptions of these systems.
A basic prediction of such Faddeev equation studies is

the presence of strong nonpointlike, fully interacting quark-
quark (diquark) correlations within all baryons. In keeping
with earlier studies, we found that a complete description of
the two lightest ðI ¼ 1=2; JP ¼ 1=2þÞ doublets is obtained
by retaining only isoscalar-scalar ðI ¼ 0; JP ¼ 0þÞ and
isovector-pseudovector correlations, i.e. even allowing for
the possibility of isoscalar-pseudoscalar and -vector corre-
lations, strong interaction dynamics in the 1=2þ baryon
channels ensure that pseudoscalar and vector diquarks play
a negligible role in forming the bound states. Consequently,

the Faddeev amplitudes which describe the dressed-quark
cores of the two lightest ðI ¼ 1=2; JP ¼ 1=2þÞ doublets
are dominated by scalar and pseudovector diquarks; the
associated rest-frame Faddeev wave functions are primarily
S-wave in nature; and the first excited state in this 1=2þ
channel has very much the appearance of a radial excitation
of the ground state.
In connection with the two lightest ðI¼ 1=2;JP¼ 1=2−Þ

doublets, one might imagine that the situation is reversed,
viz. that isoscalar-pseudoscalar and -vector correlations are
the dominant diquark constituents. However, this is not the
case. In these systems, too, scalar and pseudovector
diquarks play a material role. Indeed, a good approximation
to their masses is obtained by retaining solely pseudovector
correlations; in their rest frames, the Faddeev amplitudes
describing the dressed-quark cores of these negative-parity
states contain roughly equal fractions of even and odd
parity diquarks; the associated wave functions of these
negative-parity systems are predominantly P-wave in
nature, both with strong 2P and 4P fractions, but possess
measurable S-wave components; and, interestingly, the first
excited state in this negative parity channel has little of the
appearance of a radial excitation: instead, it is distinguished
from the ground state by its angular momentum structure.
There are some similarities here with quark model

descriptions of these systems, so long as rest-frame

FIG. 5. Order-zero Chebyshev projections, Eq. (21), of the Nð1535Þ1=2− (left) and Nð1650Þ1=2− (right) quark-core Faddeev
amplitudes, with S-wave in the top row and P-wave in the bottom. For a given baryon, all functions are rescaled by the associated l2 ¼ 0
value of the zeroth moment of ~a−

2 .
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orbital angular momentum is identified with that existing
between dressed quarks and diquarks, which are the correct
strong-interaction quasiparticle degrees of freedom at the
hadronic scale and on a material domain extending beyond.
On the other hand, it is important to stress that in our
quantum field theory analysis the negative parity states
are not purely angular-momentum excitations of the
ð1=2; 1=2þÞ ground state. Their Faddeev wave functions
contain both P- and S-wave components, and also express
some features of radial excitations.
To test these pictures, we introduced a parameter, gDB:

reducing its value from unity worked to suppress the role
of opposite-parity diquarks in the Faddeev kernel of a given
1=2P baryon. Its value had no impact on the P ¼ þ
systems; and in P ¼ − systems, a value of gDB < 0.1
was needed in order to enforce dominance of pseudoscalar
and vector diquarks. It appears, therefore, that the four
lightest ðI ¼ 1=2; JP ¼ 1=2�Þ doublets are indeed pri-
marily constituted from even-parity diquarks and hence
the findings described above are robust.
At this point it is worth reiterating that the interpolating

fields for positive and negative parity states may simply be
related by chiral rotation of the quark spinors used in their
construction. Hence, any differences between the bound-
state equations and their solutions in these channels are
generated by chiral symmetry breaking, which is over-
whelmingly dynamical in the light-quark sector. In the pre-
sent context, this entails that the following pairs are parity
partners: Nð940Þ1=2þ−Nð1535Þ1=2−, Nð1440Þ1=2þ−
Nð1650Þ1=2−. It is common to ascribe the mass splitting
between such parity partners to dynamical chiral symmetry
breaking (DCSB); but our analysis reveals very material
differences between their internal structure, too, and those
differences must also be attributable to DCSB because the
channels are identical when chiral symmetry is restored.
Since a strong link very probably exists between DCSB and
confinement in the Standard Model, then experiments which
can test the contrasts we have drawn between the internal
structure of the four lightest ðI ¼ 1=2; JP ¼ 1=2�Þ doublets
will serve a very valuable purpose. In this connection,
resonance electroproduction experiments on Q2 ≳ 2 GeV2

provide one clear example.
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Amparo à Pesquisa do Estado de São Paulo–FAPESP
Grant No. 2015/21550-4; U.S. Department of Energy,
Office of Science, Office of Nuclear Physics, under
Contract No. DE-AC02-06CH11357; Chinese Ministry
of Education, under the International Distinguished
Professor program; European Union’s Horizon 2020

research and innovation program under the Marie
Skłodowska-Curie Grant No. 665919; Spanish
MINECO’s Juan de la Cierva-Incorporación program,
Grant No. IJCI-2016-30028; Spanish Ministerio de
Economía, Industria y Competitividad under Contracts
No. FPA2014-55613-P and No. SEV-2016-0588;
Forschungszentrum Jülich GmbH; and National Natural
Science Foundation of China, Contract No. 11275180.

APPENDIX: DRESSED QUARK PROPAGATOR

The dressed-quark propagator can be written

SðpÞ ¼ −iγ · pσVðp2Þ þ σSðp2Þ ðA1aÞ

¼ 1=½iγ · pAðp2Þ þ Bðp2Þ�: ðA1bÞ

It is known that for light quarks the wave function
renormalization and dressed-quark mass,

Zðp2Þ ¼ 1=Aðp2Þ; Mðp2Þ ¼ Bðp2Þ=Aðp2Þ; ðA2Þ

respectively, receive strong momentum-dependent correc-
tions at infrared momenta [35,72–76]: Zðp2Þ is suppressed
and Mðp2Þ enhanced. These features are an expression of
DCSB and, plausibly, of confinement [44]; and their impact
on hadron phenomena has long been emphasized [77].
Numerical solutions of the quark gap equation are now

readily obtained. However, the utility of an algebraic
form for SðpÞ when calculations require the evaluation
of numerous multidimensional integrals is self-evident. An
efficacious parametrization of SðpÞ, which exhibits the
features described above, has been used extensively in
hadron studies [78]. It is expressed via

σ̄SðxÞ ¼ 2m̄F ð2ðxþ m̄2ÞÞ
þ F ðb1xÞF ðb3xÞ½b0 þ b2F ðϵxÞ�; ðA3aÞ

σ̄VðxÞ ¼
1

xþ m̄2
½1 − F ð2ðxþ m̄2ÞÞ�; ðA3bÞ

with x ¼ p2=λ2, m̄ ¼ m=λ,

F ðxÞ ¼ 1 − e−x

x
; ðA4Þ

σ̄SðxÞ ¼ λσSðp2Þ and σ̄VðxÞ ¼ λ2σVðp2Þ. The mass scale,
λ ¼ 0.566 GeV, and parameter values,

m̄ b0 b1 b2 b3
0.00897 0.131 2.90 0.603 0.185

; ðA5Þ

associated with Eq. (A3) were fixed in a least-squares fit to
light-meson observables [79,80]. [ϵ ¼ 10−4 in Eq. (A3a)
acts only to decouple the large- and intermediate-p2

domains.]
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The dimensionless u ¼ d current-quark mass in Eq. (A5)
corresponds to m ¼ 5.08 MeV and the parametrization
yields the following Euclidean constituent-quark mass,

defined as the solution of p2¼M2ðp2Þ: ME
u;d¼0.33GeV.

The ratio ME=m ¼ 65 is one expression of DCSB in the
parametrization of SðpÞ. It emphasizes the dramatic
enhancement of the dressed-quark mass function at infrared
momenta.
The dressed-quark mass function generated by this

parametrization is depicted in Fig. 6, wherein it is
compared with that computed using the DCSB-improved
gap equation kernel described in Refs. [16,81] and used
subsequently to predict pion parton distribution ampli-
tudes [82,83]. Evidently, although simple and introduced
long beforehand, the parametrization is a sound repre-
sentation of contemporary numerical results. [We note
that the numerical solutions depicted in Fig. 6 were
obtained in the chiral limit, which explains why the
(green) band in the figure falls below the parametrization
at larger p.
As with the diquark propagators in Eq. (4), the expres-

sions in Eq. (A3) ensure confinement of the dressed quarks
via the violation of reflection positivity (see, e.g. Ref. [44],
Sec. III).
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