
 

Locating the QCD critical endpoint through finite-size scaling
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Considering the 3D Ising universality class of the QCD critical endpoint, we use a universal effective
action for the description of the baryon-number density fluctuations around the critical region. Calculating
the baryon-number multiplicity moments and determining their scaling with system’s size, we show that
the critical region is very narrow in the direction of the baryon chemical potential μ and wider in the
temperature (T) direction. In this context, published experimental results on local proton density-
fluctuation measurements, obtained by intermittency analysis in transverse momentum space in NA49
central Aþ A collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 17.2 GeV (A ¼ C;Si; Pb), restrict significantly the location ðμc; TcÞ of
the QCD critical endpoint. The main constraint is provided by the freeze-out chemical potential of the
Siþ Si system, which shows nonconventional baryon density fluctuations. An indicative solution, ignoring
experimental uncertainties, is 119 MeV ≤ Tc ≤ 162 MeV, 252 MeV ≤ μc ≤ 258 MeV.

DOI: 10.1103/PhysRevD.97.034015

I. INTRODUCTION

The search for the QCD critical endpoint (CEP), remnant
of the chiral symmetry breaking, at a finite baryon density
and high temperature, is the main task in contemporary
relativistic ion collision experiments [1,2]. Fluctuation
analysis with global [3,4] and local measures [5] is the
basic tool to achieve this goal. Up to now, an indication of
such nonconventional fluctuations, which can be related to
the CEP, has been observed in the freeze-out state of
Siþ Si central collisions at the NA49 Super Proton
Synchrotron (SPS) experiment with beam energy

ffiffiffiffiffiffiffiffi
sNN

p ¼
17.2 GeV [6]. However, the strong background and the
poor statistics in the corresponding data set did not allow
for convincing statements concerning the existence and the
location of the CEP. Similarly, in Relativistic Heavy Ion
Collider (RHIC) beam energy scan (BES)-I program, a
nonmonotonic behavior of κσ2 (kurtosis times the variance)
for net-proton distribution, compatible with theoretical
proposals [7], was observed [4,8], but conclusive evidence
for the location of the critical point is still pending, so its
experimental hunt continues. From the theoretical side, the
efforts are focused on lattice QCD calculations at a finite

chemical potential in order to obtain the QCD phase
diagram from first principles and predict the location of
the CEP. Unfortunately, the lattice results obtained until
now depend strongly on the method used to handle the
well-known sign problem, and they do not converge to a
well-defined critical chemical potential value [9,10].
Therefore, a first-principle prediction of the QCD CEP
location, the holy grail of the physics of strongly interacting
matter in our times, is still missing.
In the present work, we will make an effort to estimate

the QCD CEP location employing an appropriate effective
action for the thermodynamic description of the baryonic
fluid around the critical region. To this end, we will assume
that CEP belongs to the 3D Ising universality class, a
hypothesis which is strongly supported by several theo-
retical works [11–15]. In this context, a universal effective
action, found on the basis of a Monte Carlo simulation of
the 3D Ising system in an external field [16], is an
appropriate tool for the formulation of the QCD critical
properties. In Sec. II, we adapt this action to the conditions
implied by the formation of the critical fluid with a
conserved baryon number in Aþ A collisions of QCD
matter introducing the Ising-QCD partition function to
describe the associated thermal properties. Based on this
partition function, in Sec. III, we calculate the moments
of the baryon-number density and explore their finite-size
scaling properties. We demonstrate that the Ising-QCD
partition function reproduces consistently the finite-size
scaling behavior expected for the 3D Ising universality
class. In Sec. IV, we employ experimental data for the
freeze-out parameters (chemical potential μ and temper-
ature T) of the fireball formed in Aþ A collisions in the
NA49 experiment at CERN SPS with the highest beam
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energy (
ffiffiffi
s

p ¼ 17 GeV) [17] as well as the result of the
recent ϕ2 measurement in “Si”þ Si collisions at the same
experiment [6] to estimate the size of the finite-size scaling
region. To achieve this, we first show that finite-size scaling
in configuration space leads to a critical intermittency effect
in transverse momentum space [5]. As a consequence the
associated intermittency index ϕ2 is determined by the
corresponding finite-size scaling exponent of the mean
baryon number. Utilizing this relationship, we demonstrate
the predictive power of an accurate measurement of ϕ2

combined with accurate estimates of ðμ; TÞ for a system
expected to freeze out within the finite-size scaling region.
Thus, ignoring in our treatment experimental errors, we
obtain an indicative solution for the location of the QCD
CEP in the ðμ; TÞ plane. Finally, in Sec. V, we present our
concluding remarks.

II. ISING-QCD PARTITION FUNCTION

Introducing a dimensionless scalar field ϕ ¼ β3cnb (order
parameter) with βc ¼ 1/kBTc and nb the baryon-number
density, the 3D Ising effective action, after integrating out
short-wavelength fluctuations of ϕ, is written, in the
neighborhood of T ≈ Tc and μ ≈ μc, as follows:

Seff ¼
Z
V
d3x̂

�
1

2
j∇̂ϕj2 þ UðϕÞ − ĥϕ

�
;

UðϕÞ ¼ 1

2
m̂2ϕ2 þ m̂g4ϕ4 þ g6ϕ6: ð1Þ

In Eq. (1), the variables with a “hat” are dimensionless:
x̂i ¼ xiβ−1c , m̂ ¼ βcm (m ¼ ξ−1, ξ being the correlation
length), ĥ ¼ ðμ − μcÞβc (ordering field), and g4 ¼ 0.97�
0.02, g6 ¼ 2.05� 0.15 are universal dimensionless cou-
plings [16]. At this point, it is of interest to note that the
Ising-QCD description through the potential (1) is a valid
approximation close to the critical point where there is no
fundamental distinction between the two phases (quark
matter versus hadronic matter in our case). As a result, the
freeze-out states in nuclear collisions may occupy, in this
restricted area of the phase diagram, both sectors of the
temperature (T ≳ Tc or T ≲ Tc) and not necessarily the
conventional one T ≲ Tc. In fact, since the correlation
length differs as we approach from above or below the
critical temperature Tc, the parameter m is defined with
two branches: m ¼ mþ ¼ ξ−1þ j T−Tc

Tc
jν for T > Tc and m ¼

m− ¼ ξ−1− j Tc−T
Tc

jν for T < Tc, with a universal amplitude

ratio ξþ
ξ−
≈ 2 [18] and critical exponent ν ≈ 2/3 [19] in the 3D

Ising universality class.
The partition function, on the basis of Eq. (1), is written

schematically:

Z ¼
X
fϕg

expð−SeffÞ: ð2Þ

Because of baryon-number conservation, nb is a slow
mode of the order parameter at macroscopic scales
(long-wavelength fluctuations). Thus, the sum in Eq. (2)
is dominated by approximately constant configurations
(∇̂ϕ ¼ 0). Employing this ensemble to saturate the sum
in Eq. (2), a discrete variable ϕN ¼ β3c

N
V is introduced in the

summation (N is the proton multiplicity and V the volume
of the finite system) leading to the expansion:

Z ¼
XM
N¼0

ζN exp

�
−
1

2
m̂2

N2

M
− g4m̂

N4

M3
− g6

N6

M5

�
; ð3Þ

where ζ ¼ expðμ−μckBTc
Þ,M ¼ V

β3c
, m̂ ¼ βcξ

−1 ¼ βcξ
−1
� jtjν, with

t ¼ T−Tc
Tc

the reduced temperature, βcξ−1þ ¼ 1 (T > Tc), and

βcξ
−1
− ¼ 2 (T < Tc). Using the partition function (3), it is

straightforward to calculate the baryon-number distribution
moments:

hNki ¼ 1

Z

XM
N¼0

NkζN exp

�
−
1

2
m̂2

N2

M
− g4m̂

N4

M3
− g6

N6

M5

�

ð4Þ

with k ¼ 1; 2;… and explore their scaling behavior with
the system’s size M around the critical region. At the
critical point ζc ¼ 1 (μ ¼ μc), m̂c ¼ 0 (T ¼ Tc), these
moments obey the scaling law:

hNki ∼Mkq; q ¼ dF/d; k ¼ 1; 2;…; ð5Þ

where d is the embedding dimension of the considered
system and dF the fractal dimension related to the critical
fluctuations of the baryon density [20].

III. FINITE-SIZE SCALING IN THE
ISING-QCD MODEL

It is important to demonstrate that the effective action (1)
is fully compatible with the theory of finite-size scaling
within the 3D Ising universality class. In fact, summarizing
the general aspects of this theory [21,22] for the basic
thermodynamic quantities (density n, specific heat c, and
susceptibility χ) of a critical system, we obtain the behavior
for large but finite volume V (with V ¼ MV0):

n ∼ V−β/νd; c ∼ Vα/νd; χ ∼ Vγ/νd ð6Þ

at the critical point t ¼ 0, ζ ¼ 1. The exponents (α, β, γ)
are linked to the scaling power laws of the infinite system:
n ∼ tβ, c ∼ t−α, and χ ∼ t−γ . In the case of the Ising-QCD
system, we have found on the basis of the partition
function (3) nb ∼ Vq−1 with q ¼ dF

d , dF ¼ d − β
ν leading

to the behavior nb ∼ V−β/νd.
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For the specific heat, we have c ¼ − T3

V
∂2 lnZ
∂T2 leading,

through differentiation, to the components c1 ∼ 1
V ð1Z ∂2Z

∂2t Þ
and c2 ∼ 1

V ð1Z ∂Z
∂t Þ2. In the limit t → 0, we obtain the leading

behavior: c1 ∼ tν−2

V4 hN4i, c2 ∼ t2ν−2

V7 hN8i, and, on the basis of
Eq. (5), we may write

c1 ∼ tν−2V4ðq−1Þ; c2 ∼ t2ν−2V8q−7 ð7Þ

with q ¼ 5
6
for the 3D Ising case. Approaching the regime

of finite-size scaling, the correlation length grows with the
size of the system, ξ ∼ V1/3, and the appropriate path in
Eq. (7) towards this regime is t ∼ V−1/3ν. As a result, both
components c1 and c2 have the same scaling behavior
c1;2 ∼ Vð2−3νÞ/3ν leading to the finite-size scaling law for the
specific heat:

c ∼ Vα/νd; d ¼ 3; α ¼ 2 − νd ðJosephson lawÞ:
ð8Þ

Finally, for the susceptibility, we employ fluctuation-
dissipation relations:

χ ¼ T
T2
cV

hðδNÞ2i; hðδNÞ2i ¼ ζ
∂
∂ζ

�
ζ
∂ logZ
∂ζ

�
ð9Þ

at the critical point, where hNki ∼Mkq. As a result,
hðδNÞ2i ∼ V2q and χ ∼ V2q−1 with 2q − 1 ¼ γ

νd, recovering
the finite-size scaling behavior χ ∼ Vγ/νd in Eq. (6).
For completeness, we have also studied the behavior of

the infinite system (M → ∞) in the limit T → Tc, where we

expect χðTÞ ∼ jT − Tcj−γ with γ ≈ 4
3

in the 3D Ising
universality class. In Fig. 1, plotting T2

cχðTÞ/ðTM2q−1Þ
for various values ofM, calculated numerically through the
partition function (3), we clearly show the validity of both
scaling laws, for finite and infinite systems.
Summarizing the discussion in this section, we have

argued that the effective action (1) captures correctly all the
scaling aspects of the critical behavior with the appropriate
Ising exponents: α ≈ 0, β ≈ 1

3
, γ ≈ 4

3
, δ ≈ 5, and ν ≈ 2

3
.

In particular, we have demonstrated that the fractal fluc-
tuations hNi ∼ VdF/d, discussed in the previous section, are
linked to the finite-size scaling of the system (n ∼ V−β/νd),
which is the origin of critical fluctuations in a finite system.

IV. LOCATING THE QCD CEP WITH
FINITE-SIZE SCALING

Our strategy to determine the location of the QCD CEP
is the following. First, we will estimate the size of the
critical region based on the scaling behavior of hNiwith the
system’s size M. Then, using the published NA49 results
on proton intermittency analysis in central Aþ A collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 17.2 GeV [6], we will constrain the location of
the CEP. For the second step, it is crucial that the critical
exponent q in Eq. (5) is directly related to the intermittency
index ϕ2 measured in the proton intermittency analysis.
Let us start with the estimation of the critical region. We
determine the dependence of hNi onM for different values
of ζ and m̂. Exactly at the critical point ðζc; m̂cÞ ¼ ð1; 0Þ,
the critical exponent q attains the value 5/6 for the 3D Ising
universality class (δ ¼ 5) extracted from the representation
(3). A direct calculation of hNi as a function ofM from the
partition function in Eq. (3) shows that departing slightly
from the critical point leads to a behavior hNi ∼Mq̃ for
M ≫ 1 with q̃ ≠ q. Outside the critical region, q̃ ¼ 1.
Varying m̂ and ζ, we may also enter to the ϕ4-dominance
region when the last term in the effective action (1)
becomes suppressed with respect to the other two effective
potential terms. In that case, q̃ ¼ 3/4 (mean field univer-
sality class, δ ¼ 3), and the information of the 3D Ising
critical exponent q is again lost. Thus, we consider as a
critical region of the QCD CEP the domain in the ðζ; m̂Þ or,
equivalently, the ðln ζ; tÞ plane for which

hNi ∼Mq̃; 3/4 < q̃ < 1; ð10Þ

holds.
Since the critical region depends, in general, on the size

M, a supplementary constraint that the correlation length
is greater than the linear size of the system, compatible with
the finite-size scaling theory [21,23], is certainly needed.
To keep contact with M values realistic for the size of the
fireball produced in relativistic ion collisions, we explore
the validity of the scaling law (6) for 20 < M < 700. This
estimated range of M values contains all sizes of nuclei

FIG. 1. The baryon-number susceptibility scaled by TM2/3/T2
c

versus ðT − TcÞ/Tc plotted in the double logarithmic scale for
three different values of the size M: 103 (red circles), 104 (green
circles), and 105 (blue circles). The slope in the linear fit
determines the critical exponent γ. All sets converge to the same
value for the scaled susceptibility for T → Tc, verifying the finite-
size scaling relation (6).
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ranging from Be (RBe ≈ 2.6 fm) to Pb (RPb ≈ 7.5 fm),
assuming Tc ≈ 150 MeV. In Fig. 2(a), the red shaded area
denotes the critical region, i.e., the domain in ðln ζ; tÞ plane
for which the above constraints hold. We observe that the
critical region is quite extended in the t direction but it is
very narrow in the ln ζ direction. This is a crucial property
restricting the location of the CEP. The blue line in Fig. 2(a)
is the location of the ðln ζ; tÞ pairs, which lead to a scaling
of hNi with q̃ ¼ 0.96. The origin of this value of the
exponent q̃ is explained in the following: It can be proven
that q̃ is, in fact, the value of the intermittency index ϕ2 in
transverse momentum space. The proof is based on the
following simple rules of fractal geometry: Owing to finite-
size scaling, the two-particle correlator, at scales close to the
correlation length, jδxj ∼ ξ, has a power-law behavior of
the form hnbðδxÞnbð0Þi ∼ jδxjdF−d which reveals fluctua-
tions of the critical system at large distances. In transverse

space and in the central region of a nuclear collision
(d ¼ 3), where longitudinal and transverse geometries are

disentangled [5,24], the fractal dimension is dð2ÞF ¼ 2
3
dF.

Finally, in momentum space, the density-density correlation
hnbðδq⊥Þnbð0Þi at small scales jδq⊥j ∼ ξ−1, reflecting the
fluctuations at large distances (in transverse plane), satisfies a
power law which gives rise to 2D intermittency as follows:

hnbðδq⊥Þnbð0Þi ∼ jδq⊥j−ð2/3ÞdF ;
ð2nd factorial momentÞ ∼ ðsize of 2D binÞ−ϕðcrÞ

2 ð11Þ
with ϕðcrÞ

2 ¼ dF
3
. As a result, the measurable exponent ϕ2 in

intermittency experiments is identified with the finite-size
scaling exponent q̃.
Coming back to Fig. 2(a), according to the previous

discussion, the mean value of the intermittency index
ϕ2 ≈ 0.96 found in the SPS NA49-data analysis of the
proton-density fluctuations in transverse momentum
space for Siþ Si central collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 17.2 GeV
corresponds to q̃ ¼ 0.96. Thus, the Siþ Si freeze-out state
should lie on the blue line (q̃ ¼ 0.96) plotted in Fig. 2(a).
Taking the freeze-out data of the fireball created in
central collisions of Siþ Si at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 17.2 GeV to be
ðμ; TÞ ¼ ð260; 162Þ MeV, as reported in Ref. [17], the
condition of lying on the blue line provides a relation
between μc and Tc. This relation, determining all possible
values for the critical parameters of theQCDCEPcompatible
with our analysis and with the intermittency results in
Ref. [6], is presented graphically in Fig. 2(b). The freeze-
out temperature of Siþ Si sets an upper bound on the critical
temperature Tc < 162 MeV. A lower bound on Tc is
provided by the requirement that the correlation length ξ
is greater than the linear system size for the occurrence of
critical fluctuations as stated above. For the smallest con-
sidered system, Be, with a radius of ≈2.6 fm, we obtain the
upper bound jtj < 0.36, which covers also the case of Si and
leads [Fig. 2(b)] to the lower bound on the critical temper-
ature Tc > 119 MeV. Thus, in the plot in Fig. 2(b), we show
only the allowed range 119 MeV < Tc < 162 MeV. We
observe that the corresponding critical chemical potential
domain is very narrow: 252 MeV < μc < 258 MeV. The
size of this domain is mainly due to the narrowness of the
critical region along the ln ζ direction for T ≈ Tc, and it is
not sensitive to the experimental input. In fact, using the
available lattice QCD estimates of the critical temperature
Tc ≈ 146 MeV [10] andTc ≈ 153 MeV [9] as the borders of
a critical zone [red shaded domain in Fig. 1(b)], we obtain a
very narrow range for the critical chemical potential
256 MeV < μc < 257 MeV. For completeness, we add in
Fig. 2(a) the freeze-out states for the central collisions of
the other two systems, Pbþ Pb and Cþ C, considered in
the NA49 experiment (at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 17.2 GeV). We clearly
observe that these systems lie outside the critical (shaded)
region, although their freeze-out chemical-potential values
do not differ so much. The reason is the narrowness of

FIG. 2. (a) The critical region (red shaded area) in the plane
ðμ − μcÞ/Tc, ðT − TcÞ/Tc where the scaling law hNi ∼Mq̃ with
q̃ ∈ ð0.75; 1Þ holds. The blue line is the line for which q̃ ¼ 0.96.
The freeze-out states for central Aþ A collisions in the NA49
experiment at maximum SPS energy according to Ref. [17] are
given by the stars: A ¼ Pb (black), A ¼ Si (blue), and A ¼ C
(orange). (b) The line describes the possible pairs ðTc; μcÞ
compatible with the finite-size analysis in the current work.
The red patterned region is determined employing the different
lattice QCD results for the critical temperature Tc [9,10].
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the critical region in the chemical potential direction
which possesses a linear size of 4.5 MeV for T ¼ Tc and
Tc ≈ 150 MeV.
To illustrate in more detail how our strategy, leading to

the critical region in Fig. 2(a), works in practice, we plot in
Fig. 3, in the double logarithmic scale, the mean value hNi
versus M for various values of t and ζ. The plot focuses
on the relevant region 310 ≤ M ≤ 700. To facilitate the
comparison, we have scaled all moments to a common
value atM ¼ 310 using as a reference the black line (t ¼ 0
and ζ ¼ 1). In Fig. 3(a), we show hNi for t ¼ 0, 0.02, 0.06
and ζ ¼ 1. We observe that, although t increases by a factor
of 3—or, equivalently, m̂ by a factor of 2—, the corre-
sponding slope change is relatively small. This slow change
of the exponent q̃ with increasing t (or m̂) explains why the
critical region in the t (or m̂) direction is wide. On the other
hand, assuming T ¼ Tc and varying ζ across the real axis,
we observe that the critical scaling goes over to the
conventional behavior hNi ∼M quite rapidly. This behav-
ior is in accordance with the plot of the critical region in
Fig. 2(a), and it is clearly demonstrated in Fig. 3(b), where
we plot in the double logarithmic scale hNi versus M for
three different ζ values (1, 1.01, and 1.02) and for T ¼ Tc.
Notice that in Fig. 3(a) the slope decreases as we depart
from the critical (black) line, going over to the mean field
behavior, while in Fig. 3(b) it increases, going over to the

conventional behavior mentioned above. Furthermore, it is
worth also to mention that the value of hNi, obtained
through Eq. (4), is a prediction for the total mean baryon-
number multiplicity in the critical freeze-out state, since
there are no free parameters in the calculation. This
information is shown by the black line in Fig. 3(a) [or
Fig. 3(b)], which gives the mean baryon number as a
function of the system’s size M.

V. CONCLUSIONS

Concluding remarks are now in order. We have proposed
the effective action (1) for the description of critical QCD
fluctuations, very close to the critical point, in a region
where the two phases (hadron and quark) are indistinguish-
able. It is inspired by the universal effective potential,
simulating the 3D Ising system for T > Tc, found in
Ref. [16]. In this Ising-QCD description, two fundamental
critical indices (q ¼ 5

6
, ν ¼ 2

3
) are incorporated with their

values dictated by the 3D Ising universality class. In fact, in
Sec. III, we have shown that this description is compatible
with all requirements of the scaling theory for finite and
infinite critical systems within the above universality class.
In Sec. IV, we have demonstrated on the basis of (1) that the
critical region linked to the CEP is relatively wide along the
temperature direction (of the order of 30 MeV) and very
narrow along the chemical potential axis (of the order of
5 MeV). This property becomes instrumental in our effort
to locate the critical point in the phase diagram. In fact,
using published results on the intermittency analysis of
proton-density fluctuations in the SPS NA49 experiment
[6] and lattice QCD estimates of the critical temperature, it
is possible to give a prediction for the location of the QCD
CEP: ðμc; TcÞ ≈ ð256; 150Þ MeV as shown in Fig. 1(b).
However, this is only an indicative solution, since we have
ignored experimental uncertainties, underlining the need
for high-precision experimental measurements of proton-
proton correlations (for the accurate determination of
intermittency index ϕ2) and particle yields (for the accurate
extraction of the corresponding freeze-out parameters).
These very accurate measurements require high statistics
as well as control of some spurious effects occurring in ion
collision experiments like volume and temperature fluctu-
ations, acceptance constraints, impact of centrality bin
width, critical slowing down, influence of resonance
decays, etc. Concerning intermittency analysis, the use
of local fluctuation measures ensures insensitivity to
acceptance and global (size and temperature) fluctuations.
Furthermore, in the same context, resonance decays do not
contribute to local power-law fluctuations, as shown in
Ref. [6] employing the EPOS Monte Carlo generator for
ion collisions. High statistics would also allow to reduce the
width of the centrality bins avoiding the influence of related
effects to the intermittency analysis. Finally, the approach
presented here assumes that the freeze-out states produced
in ion collisions are equilibrated, as supported also by the

FIG. 3. (a) The first moment of the baryon-number density hNi
as a function ofM for t ¼ 0, 0.02, 0.06 (corresponding to m̂ ¼ 0,
0.07, 0.15) and ζ ¼ ζc ¼ 1. (b) The mean value hNi as a function
of M for T ¼ Tc (m̂ ¼ 0) and ζ ¼ 1, 1.01, 1.02.
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experimental data. Therefore, critical slowing down is not
expected to have any impact on intermittency analysis.
Thus, overall, the accurate measurement of ϕ2 in current
ion collision experiments is a feasible task.
From the analysis above, onemay draw conclusions about

the most promising, crucial measurements in the experi-
ments, currently in progress, at CERN and Brookhaven
National Laboratory (BNL) (SPS-NA61 and RHIC-BES).
It is suggestive from the constraints of the critical region in
Fig. 2 that 2D intermittency [25] of net-proton density in
transverse momentum space (in the central rapidity region)
combined with chemical freeze-out measurements may
capture the systems, for different energies (

ffiffiffiffiffiffiffiffi
sNN

p
) and size

of nuclei (A), which freeze out very close to the critical point.
To this end, we consider two classes of experiments with
heavy (I) and medium or small size (II) nuclei.

(1) Pbþ Pb, Auþ Au.—The crucial energy range for
these processes in the experiments at CERN
(Pbþ Pb) and BNL (Auþ Au), compatible with
the requirements of the critical region (Fig. 2), is
(a) Pbþ Pb at 12.3 GeV <

ffiffiffiffiffiffiffiffi
sNN

p
< 17.2 GeV

(SPS-NA61) corresponding to lab-energies
80 AGeV < Elab < 158 AGeV and

(ii) Auþ Au at 11.5 GeV <
ffiffiffiffiffiffiffiffi
sNN

p
< 14.5 GeV

(RHIC-BES).
(2) Beþ Be, Ar þ Sc, Xeþ La.—The crucial measure-

ments in these processes, regarding 2D intermit-
tency, are in progress at the experiment SPS-NA61,
at the highest SPS energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 17.2 GeV. To
complete the picture, however, a detailed study of
chemical freeze-out in these collisions is also
needed.
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