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In this work, we explore the competition between magnetic catalysis effect and chiral rotation effect in a
general parallel electromagnetic field within the effective Nambu–Jona-Lasinio model. For a given electric
field E at zero temperature, the mass gap shows three different features with respect to an increasing
magnetic field B: increasing monotonically, decreasing after increasing, and decreasing monotonically.
By making use of strong magnetic field approximation, we illuminate that this is due to the competition
between catalysis effect and chiral rotation effect induced both by the magnetic field, and a critical electric
field

ffiffiffiffiffiffiffiffi
eEc

p ¼ 86.4 MeV is found beyond which the mass gap will eventually decrease at large B. As only
large magnetic field is relevant for the derivation, the critical electric field does not depend on the
temperature T or chemical potential μ.

DOI: 10.1103/PhysRevD.97.034014

I. INTRODUCTION

Recently, experimentalists receive two of the most
important goals in the field of high energy nuclear physics,
that is, to fix the critical end point (CEP) in the T − μ phase
diagram [1] and discover chiral magnetic effect (CME)
[2–4] in quantum chromodynamics (QCD) systems
through relativistic heavy ion collisions (HICs). The
corresponding tough technical challenges are mainly creat-
ing a large baryon density system at high temperature for the
CEP and eliminating the smearing background flow signals
for CME, respectively. The critical end point is mainly
related to chiral symmetry breaking and restoration [5] with
respect to temperature T and baryon chemical potential μ, to
which a lot of efforts have been devoted in the theoretical
aspects: In the first principal lattice QCD (LQCD) simu-
lations, the chiral transition was found to be a crossover
at small μ and the critical temperature is around Tc ¼
155 MeV [6–8]. For larger μ, chiral effectivemodels usually
predicted a first-order transition when neglecting inhomo-
geneous phases, such as the Nambu–Jona-Lasinio (NJL)
model [9], Polyakov–Nambu–Jona-Lasinio model [10],
linear sigma model [11], MIT bag model [12], quark-meson
model [13], holographic QCD model [14], etc. More
recently, since the discovery of the intriguing inverse
magnetic catalysis effect (IMCE) around the critical temper-
ature in LQCD simulations [15–17], the research on chiral
symmetry breaking and restoration has entered a newera and
a lot of work has been done to explore the QCD properties in
the background of external magnetic field [18–25]. The
CME is also a magnetic field related phenomenon, which

means an electric current induced along the magnetic field
when the chiral charge density is nonzero [26,27]. Besides,
other chiral anomaly related topicswere alsowidely studied,
such as the chiral separation effect, chiral magnetic wave,
chiral electric separation effect, chiral vortical effect, and
magnetovorticity effect [28–37].
From the previous introduction, if in any case the

spontaneous chiral symmetry breaking and restoration
can be explored together with chiral anomaly effects,
probably in the presence of electromagnetic (EM) field
[38], the discussion might be very interesting. In our
previous work, the effect of triangle anomaly to chiral
symmetry breaking and restoration was explored in the
presence of parallel EM field [39]. By varying solely the
secondLorentz invariant

ffiffiffiffi
I2

p ¼ E ¼ B, we found thatwhile
pion condensate can be developed due to the chiral rotation
effect (CRE) caused by EM chiral anomaly, the chiral
symmetry always tends to be restored with I2 as had been
found in Ref. [40]. However, according to the studies at zero
temperature [15,16,38,41–43], usually the magnetic cataly-
sis effect (MCE) was assumed due to the dimensional
reduction and high degeneracy induced by the magnetic
field. Thus, if themagnetic fieldB is varied at a fixed electric
field E, the competition between the MCE and CRE might
take place for chiral condensate. More concretely, it is just
the competition between the first Lorentz invariant I1 ≡
B2 −E2 with MCE and the second Lorentz invariant I2 ≡
E ·B with CRE. This is the main motivation of this work.
The paper is organized as the following: In Sec. II, we

give the formalism of chiral symmetry breaking and
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restoration in the presence of a general parallel EM field in
the NJL model, where the thermodynamic potential and
gap equations at zero temperature are derived in Sec. II A
and nontrivial extensions to the finite temperature and
chemical potential case are given in Sec. II B. In Sec. III,
numerical results are presented with some detailed dis-
cussions. Finally, we give the conclusions and prospectives
in Sec. IV.

II. FORMALISM IN THE
NAMBU–JONA-LASINIO MODEL

A. Thermodynamic potential and gap equations

For the case with a general parallel EM field, that is,
EkB, the initial Lagrangian of the Nambu–Jona-Lasinio
model [5,44] can be generalized to the following form in
Euclidean space [39]:

LNJL ¼ ψ̄ði=D −m0Þψ þ G½ðψ̄ψÞ2 þ ðψ̄ iγ5τψÞ2�; ð1Þ
where ψ ¼ ðu; dÞT represents the two-flavor quark field,
m0 is the current quark mass, G is the four-fermion
coupling constant, and

Dμ ¼ ∂μ − iQAμ ð2Þ

is the covariant derivative with quark charge matrix
Q ¼ diagð2/3;−1/3Þe in flavor space with Aμ represent-
ing a parallel EM field [without loss of generality, we
can set Aμ ¼ ðiEz; 0;−Bx; 0Þ]. As has been illuminated
in Ref. [39], the case with I2 ≠ 0 usually favors π0

superfluid due to the triangle anomaly; thus, the neutral
π0 condensate should also be taken into account for the
general study.
In mean field approximation, an effective action can be

derived by using Hubbard-Stratonovich transformation
σ ¼ −2Gψ̄ψ and π ¼ −2Gψ̄iγ5τψ ,

SNJL ¼
Z

d4x
ðm −m0 þ σ̂Þ2 þ ðπ0 þ π̂0Þ2 þ π̂21 þ π̂22

4G

− Tr ln½i=D −m − iγ5τ3π0 − σ̂ − iγ5τπ̂�; ð3Þ

where the expectation values have already been taken
out in the neutral sector, that is, σ ¼ m −m0 þ σ̂
and π3 ¼ π0 þ π̂0. Then, the thermodynamic potential
can be obtained by setting all the fluctuation fields σ̂
and π̂ to 0,

Ωðm;π0Þ¼ ðm−m0Þ2þðπ0Þ2
4G

−
Tr ln ½i=D−m− iγ5τ3π0�

V3þ1

;

ð4Þ

with V3þ1 being the space-time volume. And the coupled
gap equations follow directly from the extremal conditions
∂Ω/∂m ¼ 0 and ∂Ω/∂π0 ¼ 0 as

m −m0

2G
−

1

V3þ1

TrSAðxÞ ¼ 0; ð5Þ

π0

2G
−

1

V3þ1

TrSAðxÞiγ5τ3 ¼ 0; ð6Þ

where the fermion propagator in the constant EM field is
SAðxÞ ¼ −½i=D −m − iγ5τ3π0�−1, which actually decouples
for u and d quarks.
Here, we take u quark for example to show how the

explicit form of fermion propagator can be derived in
this case by following Schwinger’s method [45]. In
Euclidean space, the propagator of u quark can be formally
expressed as

Su ¼ ½γΠu þmþ iγ5π0�−1

¼ ð−γΠu þm − iγ5π0Þi
Z

∞

0

dse−i½M2−ðγΠuÞ2�s; ð7Þ

where Πμ
u¼−iDμ

u is the conjugate energy-momentum
operator and we have defined the chiral mass
M≡ ðm2 þ ðπ0Þ2Þ1/2. Then the current algebra gives the
normal interaction between quark and external EM field as

iquTrγδASu ¼ −TrδðγΠuÞγΠu

Z
∞

0

dse−i½M2−ðγΠuÞ2�s

¼ δ

�
i
2

Z
∞

0

dss−1Tre−i½M2−ðγΠuÞ2�s
�
; ð8Þ

and we can easily identify an effective Lagrangian function
in coordinate space,

Lð1ÞðxÞ ¼ i
2

Z
∞

0

dss−1e−iM
2strhxjUðsÞjxi; ð9Þ

UðsÞ ¼ e−iHs; ð10Þ

where the effectiveHamiltonian in the proper-time evolution
operator UðsÞ is

H ¼ −ðγΠuÞ2 ¼ Π2
u −

1

2
quσμνFμν; ð11Þ

with σμν ¼ i
2
½γμ; γν�. As we can see, the effective

Hamiltonian is the same as that given in Ref. [45]; thus,
trhxjUðsÞjxi, hxðsÞjx0ð0Þi, and hxðsÞjΠjx0ð0Þi can also be
evaluated in the same way. Finally, the quark propagator
with flavor f ¼ u, d can be given explicitly as
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Sfðx; x0Þ≡ e−iqf
R

x

x0 Aμdxμ Ŝfðx − x0Þ

Ŝfðx − x0Þ ¼ −i
ð4πÞ2

Z
∞

0

ds
s2

−ðqfsÞ2I2
Im coshðiqfsðI1 þ 2iI2Þ1/2Þ

�
−
1

2
γðqfF cothðqfFsÞ þ qfFÞðx − x0Þ þm − sgnðqfÞiγ5π0

�

× exp

�
−iM2sþ i

4
ðx − x0ÞqfF cothðqfFsÞðx − x0Þ þ i

2
qfσFs

�
; ð12Þ

where all the Lorentz indices are suppressed but the Einstein
summation rule should be understood; e.g., σF≡ σμνFμν,
the tensor cothðqfFsÞ should be understood in the
Taylor expansion series, Ŝfðx − x0Þ is the effective quark

propagator without Schwinger phase, and I1 ¼ B2 − E2 is
the first Lorentz invariant for EM field [45,46]. This formula
is general for any configurations of constant EM field with
π0 condensate. For the recent study with EkB, we have

exp
�
i
2
qfσFs

�
¼ cosðqfBsÞ coshðqfEsÞ þ i sinðqfBsÞ sinhðqfEsÞγ5 þ sinðqfBsÞ coshðqfEsÞγ1γ2

þ i cosðqfBsÞ sinhðqfEsÞγ4γ3: ð13Þ

It is usually more convenient and useful to transform the effective propagator to energy-momentum space. Then, by taking
Fourier transformation and variable transformation s → −is, the effective quark propagator becomes

ŜfðpÞ ¼
Z

∞

0

ds exp

�
−M2s −

tanðqfEsÞ
qfE

ðp2
4 þ p2

3Þ −
tanhðqfBsÞ

qfB
ðp2

1 þ p2
2Þ
�
½m − sgnðqfÞiγ5π0

− γ4ðp4 − tanðqfEsÞp3Þ − γ3ðp3 þ tanðqfEsÞp4Þ − γ2ðp2 − itanhðqfBsÞp1Þ − γ1ðp1 þ itanhðqfBsÞp2Þ�
× ½1 − i tanhðqfBsÞ tanðqfEsÞγ5 − i tanhðqfBsÞγ1γ2 þ tanðqfEsÞγ4γ3�: ð14Þ

Thus, the explicit forms of the gap equations follow straightforwardly by substituting the quark propagators into
Eqs. (5) and (6),

m −m0

2G
¼ mFðMÞ þm

X
f¼u;d

Nc

4π2

Z
∞

0

ds
s2

e−M
2s

�
qfEs

tanðqfEsÞ
qfBs

tanhðqfBsÞ
− 1

�
−

Nc

4π2
π0

M2
ðq2u − q2dÞEB; ð15Þ

π0

2G
¼ π0FðMÞ þ π0

X
f¼u;d

Nc

4π2

Z
∞

0

ds
s2

e−M
2s

�
qfEs

tanðqfEsÞ
qfBs

tanhðqfBsÞ
− 1

�
þ Nc

4π2
m
M2

ðq2u − q2dÞEB; ð16Þ

FðMÞ ¼ Nc
M
π2

�
Λ
�
1þ Λ2

M2

�
1/2

−M ln

�
Λ
M

þ
�
1þ Λ2

M2

�
1/2
��

; ð17Þ

where we have used the “vacuum regularization” scheme as in Refs. [22,46]. Finally, the thermodynamic potential can be
derived consistently by combining the integration over m of Eq. (15) and the integration over π0 of Eq. (16),

Ω ¼ ðm −m0Þ2 þ ðπ0Þ2
4G

−
NcM3

4π2

�
Λ
�
1þ 2Λ2

M2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

M2

r
−M ln

�
Λ
M

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

M2

r ��
þ Nc

X
f¼u;d

1

8π2

Z
∞

0

ds
s3

e−M
2s

×

�
qfEs

tanðqfEsÞ
qfBs

tanhðqfBsÞ
− 1

�
−
Nc

4π2
tan−1

�
π0

m

�
ðq2u − q2dÞEB: ð18Þ
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B. Proper thermodynamic potential at finite
temperature and chemical potential

By following Ref. [46], the effects of finite temperature
and chemical potential can be introduced by redefining
p4 → ωn þ iμ [ωn ¼ ð2nþ 1ÞπTðn ∈ ZÞ is the fermion

Matsubara frequency] in the propagator Eq. (14) in energy-
momentum space. Correspondingly, the energy integration
in the Tr should be substituted by Matsubara frequency
summation, that is,

R
dp4 → 2πT

P∞
n¼−∞, which then alters

the explicit forms of the gap equations Eqs. (5) and (6) to

m −m0

2G
¼ 4Nc

X
f¼u;d

−i
ð4πÞ2

Z
∞

0

ds
s2

e−iM
2s

�
m

tanðqfBsÞ tanhðqfEsÞ
þ sgnðqfÞπ0

�
ϑ3

�
π

2
þ i

μ

2T
; e

−ji qfE

4 tanhðqfEsÞT2
j
�
ðqfEsÞðqfBsÞ;

ð19Þ

π0

2G
¼ 4Nc

X
f¼u;d

−i
ð4πÞ2

Z
∞

0

ds
s2

e−iM
2s

�
π0

tanðqfBsÞ tanhðqfEsÞ
− sgnðqfÞm

�
ϑ3

�
π

2
þ i

μ

2T
; e

−ji qfE

4 tanhðqfEsÞT2
j
�
ðqfEsÞðqfBsÞ: ð20Þ

When integrating Eq. (19) over m and Eq. (20) over π0, we
find two inconsistent results for the thermodynamic po-
tential due to the presence of Jacobi theta function ϑ3,
which can also be verified by the inequality between ∂

∂π0
Eq. (19) and ∂

∂m Eq. (20). This only means the non-
commutative between the Matsubara frequency summation
and the derivative with respect to either m or π0, which is
very common for the chiral anomaly phenomena [47,48].
To solve the problem, we define the order parameters

in the polar coordinate way, that is, m ¼ M cosðθÞ and
π0 ¼ M sinðθÞwhere θ ∈ ½− π

2
; π
2
�without loss of generality.

Then, the formal gap equations for the chiral mass M and
anomalous angle θ are respectively

M−m0 cosðθÞ
2G

−
1

V3þ1

TrSAðxÞ½cosðθÞþ iγ5τ3 sinðθÞ� ¼ 0;

ð21Þ
Mm0 sinðθÞ

2G
−

M
V3þ1

TrSAðxÞ½−sinðθÞþ iγ5τ3 cosðθÞ� ¼ 0;

ð22Þ
which have the following explicit forms:

M −m0 cosðθÞ
2G

¼ NcM
4π2

X
f¼u;d

Z
∞

0

ds
s2

e−iM
2s qfBs
tanðqfBsÞ

qfEs
i tanhðqfEsÞ

ϑ3

�
π

2
þ i

μ

2T
; e

−ji qfE

4 tanhðqfEsÞT2
j
�
; ð23Þ

Mm0 sinðθÞ
2G

¼ i
NcM2

4π2
X
f¼u;d

qfBqfE
Z

∞

0

dse−iM
2sϑ3

�
π

2
þ i

μ

2T
; e

−ji qfE

4 tanhðqfEsÞT2
j
�
; ð24Þ

by substituting the propagator Eq. (14). Equations (23) and (24) still do not give a consistent thermodynamic potential,
which probably indicates the noncommutative between Matsubara frequency summation and the derivative with respect to
chiral anomaly parameter θ. However, it is easy to see that we have separated out the chiral anomaly part solely in Eq. (24)
which involves a subtlety: The right-hand side of Eq. (24) is just the chiral anomaly term, which must originate from the
ultraviolet region in energy-momentum space or the infrared region in the proper-time integral. Then, after taking the limit
s → 0 (which is the most important region for the proper-time integration) in the Jacobi theta function ϑ3, the integration is
found to be T, μ and M independent,

Mm0 sinðθÞ
2G

¼ Nc

4π2
ðq2u − q2dÞEB; ð25Þ

which then gives the chiral anomaly related part for the thermodynamic potential as

Ωθ ¼
−Mm0 cosðθÞ

2G
−

Nc

4π2
θðq2u − q2dÞEB; ð26Þ

consistent with the one from chiral perturbation theory [39]. The normal gap equation Eq. (23) can be transformed by
shifting s → −is and regularized as [22,46]
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M−m0cosðθÞ
2G

¼NcM2

π2

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

M2

r
−M ln

�
Λ
M

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

M2

r ��
−
NcM
π2

X
s¼�

Z
∞

0

p2dp
1

EðpÞ
2

1þeðEðpÞþsμÞ/T

þNcM
4π2

X
f¼u;d

Z
∞

0

ds
s2
e−M

2s

�
qfBs

tanhðqfBsÞ
qfEs

tanðqfEsÞ
ϑ3

�
π

2
þ i

μ

2T
;e

−j qfE

4 tanðqfEsÞT2
j
�
−ϑ3

�
π

2
þ i

μ

2T
;e−j

1

4sT2
j
��

ð27Þ

with the dispersion EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
. Then, the normal part for the thermodynamic potential is

ΩM ¼ M2 − 2Mm0 cosðθÞ þm2
0

4G
−
NcM3

4π2

�
Λ
�
1þ 2Λ2

M2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

M2

r
−M ln

�
Λ
M

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

M2

r ��

−
2Nc

π2
T
X
s¼�

Z
∞

0

p2dp lnð1þ e−ðEðpÞþsμÞ/TÞ

þ Nc

8π2
X
f¼u;d

Z
∞

0

ds
s3

e−M
2s

�
qfBs

tanhðqfBsÞ
qfEs

tanðqfEsÞ
ϑ3

�
π

2
þ i

μ

2T
; e

−j qfE

4 tanðqfEsÞT2
j
�
− ϑ3

�
π

2
þ i

μ

2T
; e−j

1

4sT2
j
��

: ð28Þ

Finally, the complete thermodynamic potential can be given
consistently as

Ω ¼ ΩM −
Nc

4π2
θðq2u − q2dÞI2; θ ∈

�
−
π

2
;
π

2

�
: ð29Þ

III. NUMERICAL CALCULATIONS AND
DISCUSSIONS

A. Zero temperature

In order to perform numerical calculations, the three
parameters of theNJLmodelwere fixed toG¼ 4.93GeV−2,
Λ ¼ 0.653 GeV, andm0 ¼ 5 MeV by fitting the pion mass
mπ ¼ 134 MeV, pion decay constant fπ ¼ 93 MeV, and
quark condensate hψ̄ψi ¼ −2 × ð0.25 GeVÞ3 [9].
The three-dimensional plots of the mass gap and pion

condensate with respect to the electric field E and magnetic
field B are given in Fig. 1. As can be seen, in the pure
electric field or magnetic field limit, the pion condensate π0

vanishes because I2 ¼ 0 for these cases and the features
of the mass gap m are similar to those found previously
[22,24,46]. For the case with both nonzero E and B, some
interesting features are found: the mass gap m keeps
increasing with B at small E, first increases and then
decreases with B at medium E, and decreases with B at
large E; the pion condensate π0 keeps increasing with B for
a given E but eventually decreases with E for a givenB. It is
proper to mention here that the phase transition around
m ¼ 0 which is just the end of chiral rotation is actually of
weak first order, as is demonstrated more explicitly in the
next section. Most significantly, the nontrivial behaviors of
m just show the competition between magnetic catalysis
effect and chiral rotation effect, both induced by B in the
presence of parallel E.
In the following, we take small electric field but large

magnetic field limit to show why m should vary with EM

field in such a way. First, we already know a general
expression for pion condensate in the parallel EM field as
can be obtained from Eq. (15) and (16) [39],

π0 ¼ NcG
2m0π

2
ðq2u − q2dÞEB: ð30Þ

Substituting this back into Eq. (15), the gap equation for m
becomes

FIG. 1. The mass gap m and pion condensate π0 as functions of
the parallel electric field E and magnetic field B.
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m − m2

M2 m0

2G
¼ mFðMÞ þmNc

X
f¼u;d

1

4π2

Z
∞

0

ds
s2

e−M
2s

×

�
qfEs

tanðqfEsÞ
qfBs

tanhðqfBsÞ
− 1

�
: ð31Þ

Ifm increases with B at large magnetic field, thenm ≫ m0.
And as the contribution FðMÞ decreases with M, both the
m0 and FðMÞ terms can be neglected here; then the gap
equation is simplified to

1

2G
¼

X
f¼u;d

Nc

4π2

Z
∞

0

ds
s2

e−M
2s

�
qfEs

tanðqfEsÞ
qfBs

tanhðqfBsÞ
− 1

�
:

ð32Þ

A comment is in order here: Usually for M ∼ Λ, artifacts
would be expected due to the regularization (see
Refs. [24,49]); but it is not the case for large magnetic
field. With increasing B, the second term on the right-hand
side of the gap equation Eq. (31) dominates over the first
one and is renormalizable even in the effective model.
Thus, the qualitative results of NJL model are still credible
for large magnetic field as quantum electrodynamics
dominates over the four fermion interactions now. Of
course, for a real QCD system, the feedback of external
EM field to the effective coupling constantG should also be
taken into account.
For later application, we work out the proper-time

integration involved in the gap equation Eq. (32) in the
pure magnetic field limit (E → 0),

Z
∞

0

ds
s2
e−M

2s

�
qfBs

tanhðqfBsÞ
−1

�

¼M2

�
1þ ln

�
2jqfBj
M2

��
þjqfBjln

�
M2

4πjqfBj
Γ2

�
M2

2jqfBj
��

:

ð33Þ

The result for the pure electric field limit (B → 0) can just
be obtained by taking the analytic continuation jqfBj →
ijqfEj when E is not too small. Then, by suppressing the
electric field in Eq. (32) and using the integral result
Eq. (33), the gap equation can be solved to give the
asymptotic form ofM for B → ∞ (and of courseM → ∞),

M2 ¼ NcG
6π2

ðq2u þ q2dÞB2; ð34Þ

which is qualitatively consistent with that found in the
LQCD calculations [15,16] if we remember M ∝ hψ̄ψi in
the pure magnetic field case within the NJL model. This
also suggests that magnetic catalysis remains for chiral
mass M. Finally, we find a critical electric field Ec below
which the mass m keeps increasing with the magnetic field
B and above which m eventually decreases with B,

NcG
2m0π

2
ðq2u − q2dÞEcB ¼

�
NcG
6π2

�
1/2
ðq2u þ q2dÞ1/2B;

eEc ¼
m0

3

�
NcG
6π2

�
−1/2 eðq2u þ q2dÞ1/2

q2u − q2d
¼ ð86.4 MeVÞ2: ð35Þ

The result is in very good agreement with the numerical
results shown in the upper panel of Fig. 1.

B. Finite temperature and chemical potential

In order to study how the features of mass gap m will be
affected by finite temperature and chemical potential, we
choose both a subcritical electric field ðeEÞ1/2 ¼ 0.08 GeV
and a supercritical electric field ðeEÞ1/2 ¼ 0.1 GeV for
illumination. The results are presented in Figs. 2 and 3,
respectively. There is one feature in common for both
figures: the behaviors of mass gap m in medium are similar
to those in vacuum in the large magnetic field region,
regardless of the temperature and chemical potential; spe-
cifically, they are very close to each other. This is because
other parameters, such as T and μ, are not so important for
large magnetic field, which definitely indicates that the
critical electric field will not change even at finite temper-
ature and chemical potential. Besides, for proper temper-
ature and chemical potential, such as T ¼ 0.15 GeV and
μ ¼ 0.2 GeV for the subcritical electric field case, the
de Haas-van Alphen (dHvA) oscillation shows up with
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FIG. 2. The mass gap m as a function of magnetic field B for
different subcritical temperatures at vanishing chemical potential
(upper panel) and for different chemical potentials at temperature
T ¼ 0.15 GeV (lower panel) for the subcritical electric field case.
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increasing magnetic field, similar to that found in Ref. [24].
There is a region, that is, ðeBÞ1/2 ∈ ð0.364; 0.579Þ GeV,
where the mass gap vanishes, which actually corresponds to
the boundary minimum of the thermodynamic potential
Eq. (29) withM ¼ 0 and θ ¼ π

2
. This sudden vanishing ofM

is very important for Schwinger pair production even
at subcritical electric field. For the parallel EM field, the
pair production rate will be simply modified by magnetic
field as [50]

Γ ¼
�X

f¼u;d

NcðqfEÞ2
4π3

e−πM
2/jqfEj

�
πB/E

tanhðπB/EÞ ; ð36Þ

which seems to increase with magnetic field B. However,
one should remember the magnetic catalysis effect:
dynamical mass usually increases with magnetic field as
a power law M ∝ ðeBÞαðα > 0Þ (see the previous section
and Ref. [38]), which just means exponential suppression
of the pair production rate. Thus, in order to facilitate pair
production rate with magnetic field, we need some special
mechanism, such as dHvA oscillation, to suppress the
magnetic catalysis effect. As shown in Fig. 4, in the
dHvA suppression region, the pair production rate is greatly
enhanced and almost linearly increases with magnetic field
B as tanhðxÞ ≈ 1 for not too small x.
Finally, it is illuminative to demonstrate the chiral

rotation with respect to
ffiffiffiffi
I2

p ¼ E ¼ B at finite temperature;

see Fig. 5. For brevity, we do not explore the region beyond
the end of chiral rotation where θ ¼ π

2
is the boundary

minimum of thermodynamic potential. At zero temper-
ature, it can be seen explicitly in the lower panel of Fig. 5
that the transition is of weak first order around the end of
chiral rotation where θ jumps from ≲ π

2
to π

2
. For a larger

temperature, the first-order transition is even more obvious,
where the chiral rotation ends at a smaller anomalous angle
than π

2
. This feature suggests that chiral symmetry restora-

tion (such as that induced by temperature here) facilitates
chiral rotation, which is consistent with the fact that θ
is a monotonic decreasing function of M from Eq. (25).
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FIG. 4. The pair production rate as a function of magnetic field
B at T ¼ 0.15 GeV and μ ¼ 0.2 GeV for the subcritical electric
field case.
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FIG. 3. The mass gap m as a function of magnetic field B for
different subcritical temperatures at vanishing chemical potential
(upper panel) and for different chemical potentials at temperature
T ¼ 0.15 GeV (lower panel) for the supercritical electric
field case.
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IV. CONCLUSIONS AND PROSPECTIVES

In this paper, the competition between magnetic catalysis
effect and chiral rotation effect is studied in the presence of
a general parallel EM field. At zero temperature, three
different features are found for the mass gap at different
fixed electric fields: m increases with B for small E,
increases and then decreases for medium E, and decreases
for large E. This is analytically shown to be a result of the
competition between MCE and CRE in the large magnetic
field limit and a critical electric field Ec is found that plays
the role of the boundary between the small and medium
electric field regions. However, the decreasing of m does
not necessarily mean inverse magnetic catalysis effect to
chiral symmetry breaking: As has been stated in Ref. [39],
the chiral mass M is now the actual order parameter of
chiral symmetry in parallel EM field, and the magnetic
catalysis effect can be discovered to continue from either
the analytic result Eq. (34) or the numerical results shown
in Fig. 1. The fate of pion condensate after chiral rotation is
also analyzed in more detail with respect to the electric field
and magnetic field: While π0 increases with B for a fixed E,
it decreases with E for a fixed B thanks to the Landau levels
induced by B.
At finite temperature T and chemical potential μ, a

proper thermodynamic potential is found by taking into
account the fact that chiral anomaly is only related to the
ultraviolet dynamics in energy-momentum space. Then,
the numerical calculations show that the critical electric
field Ec does not change with T or μ, because only the large
magnetic field region is important for the derivation of Ec.
For large T and μ, the dHvA oscillation is found with
respect to increasing B, which then greatly enhances the

pair production rate even at subcritical electric field. This is
important for searching Schwinger pair production of light
quarks in peripheral HICs where the magnetic field is
usually much larger than the electric field. In real QCD,
the features might be rather different due to the inverse
magnetic catalysis effect at finite temperature but this
further favors pair production. We leave the more realistic
study to the future since the mechanism of IMCE is still
not clear. Finally, the chiral rotation effect is explored
with respect to

ffiffiffiffi
I2

p ¼ E ¼ B at finite temperature, which
indicates that chiral symmetry restoration usually facilitates
chiral rotation.
The work can be extended by exploring the properties of

collective modes for different E and B: they are expected to
distinguish the subcritical region from the supercritical
region. Previously, the domain wall of π0 was found to exist
in the presence of both μ and B [51], thus it is important to
check if the homogeneous π0 condensation is stable or not
under the competition between E and μ.
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