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We perform real-time lattice simulations of nonequilibrium quark production in the longitudinally
expanding QCD plasma. Starting from a highly occupied gluonic state with vacuum quark sector, we
extract the time evolution of quark and gluon number densities per unit transverse area and rapidity. The
total quark number shows after an initial rapid increase an almost linear growth with time. Remarkably,
this growth rate appears to be consistent with a simple kinetic theory estimate involving only two-to-two
scattering processes in small-angle approximation. This extends previous findings about the role of two-to-
two scatterings for purely gluonic dynamics in accordance with the early stages of the bottom-up
thermalization scenario.
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I. INTRODUCTION AND OUTLINE

Recently, much progress has been achieved in under-
standing the spatio-temporal evolution of the QCD plasma
for relativistic heavy-ion collisions at sufficiently high
energies. In such collisions a nonequilibrium plasma of
highly occupied gluons with characteristic momentum Qs
is expected to form shortly after the initial impact [1,2].
While the running QCD gauge coupling αsðQsÞ is weak for
sufficiently large Qs, strong correlations occur because the
typical gluon occupancy fgðQsÞ ∼ 1/αsðQsÞ is high. As a
consequence, perturbative descriptions are not expected to
apply. However, in this regime the nonequilibrium quantum
dynamics can be mapped onto a classical-statistical field
theory description with quantum initial conditions, which
can be solved with lattice simulation techniques. For
instance, real-time lattice simulations identified which
thermalization scenario is realized in the limit of very high
collision energies [3,4]. The results have been implemented
into effective kinetic descriptions to compute the later
stages and thermalization of the quark-gluon plasma [5,6].
Subleading quantum corrections, including dynamical
quarks, have been taken into account in fixed-box lattice
simulations [7], imposing boost invariance for 2þ 1

dimensional simulations [8] and in kinetic descriptions
with longitudinal expansion [9].
To some extend the progress in our understanding of the

complex many-body dynamics is based on the presence of
attractors in the space-time evolution of the longitudinally
expanding non-Abelian plasma [3,4,9]. Attractors lead to a
certain insensitivity of the dynamics at later times to
variations of the initial conditions. As a consequence, they
diminish the problem of our insufficient knowledge about
the system’s details at the time of collisional impact.
Moreover, attractors imply another aspect of great practical
importance: they reflect the presence of a large number of
irrelevant operators in the renormalization group sense,
such that rather simple effective descriptions of the relevant
dynamics may be expected.1 In fact, previous lattice
simulation results of the longitudinally expanding pure
gauge theory identified, after a short period of highly
complex dynamics with gluon number changing processes,
a number conserving regime that is consistently described
by two-to-two scattering processes [3,4] in agreement with
the earlier stages of the bottom-up thermalization scenario
[18]. No consistent perturbative power counting has yet
been able to justify this relatively simple effective descrip-
tion, since e.g., also plasma instabilities would play a major
role according to state-of-the-art descriptions [19,20].
In this work we present the first results on 3þ 1

dimensional real-time lattice simulations of the longitudinally
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expanding non-Abelian plasmawith dynamical quarks.More
precisely, we employSU(2) lattice gauge field theorywithNf

flavors of degenerate quarks at weak coupling. We compute
the plasma’s time evolution starting from a highly occupied
gluonic statewithvacuumquarks and study its dependenceon
the quark mass and αsNf. To describe nonequilibrium quark
production and its interplay with the gluon sector, we extract
quark and gluon distribution functions for their number
densities per unit transverse area and rapidity. For small
enough αsNf the gluons turn out to be little affected by the
backreaction of the quarks, which only changes as αsNf is
increased. In contrast, the high gluon occupancies always
result in a strongly enhanced quark production. We find that
the total quark number shows after an initial rapid increase an
almost linear growth with time. Remarkably, this growth rate
appears to be consistent with a simple kinetic theory estimate
involving only two-to-two scattering processes in small-angle
approximation.
The paper is organized as follows: In Sec. II we describe

the framework of real-time lattice simulations with dynami-
cal quarks in the longitudinally expanding geometry. This
includes a detailed discussion of the initial conditions for the
nonequilibrium evolution and how observables are extracted
from the lattice data. Sec. III reviews some relevant formulas
from effective kinetic theory that are employed to analyze
aspects of our simulation data. In Sec. IV we present our
numerical simulation results for awide range of quarkmasses
and Nf. After the conclusions in Sec. V, we provide two
appendices on details about the treatment of fermion dou-
blers on a real-time lattice inAppendixA and a discussion on
lattice cutoff dependencies in Appendix B.

II. REAL-TIME DYNAMICS ON THE
LONGITUDINALLY EXPANDING

LATTICE

We consider a nonequilibrium situation with strong
initial gauge fields A ∼Qs/g and vacuum quarks for weak
coupling g ≪ 1 with αs ¼ g2/ð4πÞ. By systematic power
counting in g, to leading order the quantum dynamics is
described by the corresponding classical-statistical gluonic
field theory for given quantum initial correlations. The
subleading order involves genuine quantum corrections to
the dynamical evolution, which requires taking into account
the quarks [21,22] that is described in the following.
In this section, we present the framework to compute the

real-time dynamics of SUðNcÞ gauge fields and Nf-flavor
quarks in a longitudinally expanding geometry. We employ
the co-moving coordinates xμ ¼ ðτ; x⊥; ηÞ, where τ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
is the proper time, x⊥ ¼ ðx; yÞ are the transverse

coordinates and η ¼ atanhðz/tÞ is the space-time rapidity.
(Here natural units will be employed where the reduced
Planck constant and the speed of light are set to one.) The
metric in this coordinate system is gμν ¼ diagð1;−1;
−1;−τ2Þ. The space coordinates ðx⊥; ηÞ are discretized on

an anisotropic lattice of size N⊥ × N⊥ × Nη and spacings
a⊥ × a⊥ × aη with periodic boundary condition. The proper
time τ is treated as a continuum variable in this formulation.

A. Equations of motion

Throughout this paper, we employ the Fock-Schwinger
gauge in which the temporal component of the gauge
potential vanishes, Aτ ¼ 0. On the spatial lattice with a
continuum time variable, the gauge fields are represented
by link variables UiðxÞ, UηðxÞ and electric fields EiðxÞ,
EηðxÞ, where i ¼ 1, 2 denotes the transverse directions. The
equations of motion for the (c-number) gauge fields in the
presence of quarks are2

∂τUiðxÞ ¼ ig
ai
τ
EiðxÞUiðxÞ; ð1Þ

∂τUηðxÞ ¼ igaητEηðxÞUηðxÞ; ð2Þ

∂τEiðxÞ ¼ −
X
j≠i

τ

gaia2j
Im½Ui;jðxÞ þ Ui;−jðxÞ�traceless

−
1

gτaia2η
Im½Ui;ηðxÞ þUi;−ηðxÞ�traceless − τJiðxÞ;

ð3Þ
and

∂τEηðxÞ ¼ −
X
i¼1;2

1

gτaηa2i
Im½Uη;iðxÞ þ Uη;−iðxÞ�traceless

− JηðxÞ: ð4Þ
Here, Uμ;νðxÞ and Uμ;−νðxÞ are the plaquettes variables
given by

Uμ;νðxÞ ¼ UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ; ð5Þ

and

Uμ;−νðxÞ ¼ UμðxÞU†
νðxþ μ̂ − ν̂ÞU†

μðx − ν̂ÞUνðx − ν̂Þ: ð6Þ

The subscript “traceless” means

½X�traceless ¼ X −
1

Nc
trðXÞ: ð7Þ

In Eqs. (3) and (4), JiðxÞ and JηðxÞ denote the color
currents induced by the quark fields, which are responsible
for the backreaction of quarks onto the gauge fields. Their

2The transverse electric fields Ei have canonical mass-dimen-
sion one and Ei/τ corresponds to the physical electric field, while
the longitudinal electric field Eη has mass-dimension two as usual
electric fields.
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explicit expressions are presented below [Eq. (10)]. Gauge
field expectation values and correlation functions are
obtained from sampling the initial configurations for the
gauge fields (as described in Sec. II C) that are evolved
according to the above equations of motion.
To the order considered, the quark dynamics is governed

by the Dirac equation in the presence of the sampled gauge
fields. In the expanding geometry, the quark field operator
ψ̂ðxÞ obeys [23]�

iγ0∂τ þ iγiDi þ
i
τ
γ3Dη −m

�
ψ̂ðxÞ ¼ 0; ð8Þ

where summation over the transverse index i ¼ 1, 2 is
implied. As a lattice covariant derivative, we employ the
Oða3Þ-improved expression [24,25]

DμψðxÞ ¼
c1
2aμ

½UμðxÞψðxþ μ̂Þ −U†
μðx − μ̂Þψðx − μ̂Þ�

þ c2
2aμ

½UμðxÞUμðxþ μ̂Þψðxþ 2μ̂Þ

−U†
μðx − μ̂ÞU†

μðx − 2μ̂Þψðx − 2μ̂Þ�; ð9Þ

with coefficients c1 ¼ 4/3 and c2 ¼ −1/6. Here we have
written down the Dirac equation for “naive” fermions.
Ways to remove fermion doublers are discussed in Sec. II C
and Appendix A. We have assumed, for simplicity, that
all fermion flavors are degenerated. In terms of the quark
field operator, the color current components appearing in
Eqs. (3) and (4) read

Ja;μðxÞ¼ g
2
NfRehΩ0jðc1½ ¯̂ψðxÞ;TaγμUμðxÞψ̂ðxþ μ̂Þ�

þc2½ ¯̂ψðxÞ;TaγμUμðxÞUμðxþ μ̂Þψ̂ðxþ2μ̂Þ�
þc2½ ¯̂ψðx− μ̂Þ;TaγμUμðx− μ̂ÞUμðxÞψ̂ðxþ μ̂Þ�ÞjΩ0i;

ð10Þ

where Ta ða ¼ 1;…; N2
c − 1Þ are the generators of the

gauge group SU(Nc), and hΩ0j · jΩ0i denotes the expect-
ation with respect to the initial quantum state. For μ ¼ η, γμ

is to be understood as γ3.
The color current is proportional to gNf, while we

consider strong initial color fields of the order of 1/g.
Therefore, the relative strength of the quark backreaction to
the gauge fields is governed by the factor g2Nf in this case.

B. Stochastic low-cost method for quark dynamics

The Dirac equation (8) is an operator equation, which in
general is difficult to solve on a computer. Thanks to the
fact that Eq. (8) is linear with respect to the field operator,
instead one may consider without loss of generality a
c-number equation for the fermion mode functions, which
can be solved numerically [21]. The mode functions

ψ�
p⊥;ν;s;cðxÞ are introduced by the mode expansion of the

field operator,

ψ̂ðxÞ ¼
X
s¼↑;↓

XNc

c¼1

1

L2⊥Lη

×
X
p⊥;ν

½ψþ
p⊥;ν;s;cðxÞap⊥;ν;s;c þ ψ−

p⊥;ν;s;cðxÞb†p⊥;ν;s;c�;

ð11Þ

where ap⊥;ν;s;c and bp⊥;ν;s;c are annihilation operators of a
quark and an antiquark, respectively, with spin s, color c
and momenta ðp⊥; νÞ, which are conjugate to ðx⊥; ηÞ. The
superscripts “þ” and “−” for the mode functions distin-
guish positive and negative energy solutions. Flavor indices
are omitted since we assume that all flavors are degenerate.
The volume factor L2⊥Lη is comprised of the linear system
sizes in the transverse directions L⊥ ¼ N⊥a⊥ and in the
longitudinal direction Lη ¼ Nηaη. The mode functions
satisfy the same equation as the field operator,

h
iγ0∂τ þ iγiDi þ

i
τ
γ3Dη −m

i
ψ�
p⊥;ν;s;cðxÞ ¼ 0: ð12Þ

If one solves this equation with an appropriate initial
condition, which will be specified in Sec. II C, one can
compute expectation values of any quark operator. For
example, the expectation value of the commutator of two
quark fields, i.e., the fermion “statistical” two-point func-
tion, is defined by

Fðx; yÞ ¼ 1

2
h0j½ψ̂ðxÞ; ¯̂ψðyÞ�j0i: ð13Þ

It can be expressed in terms of the mode functions as

Fðx; yÞ ¼ 1

2

X
s;c

1

L2⊥Lη

X
p⊥;ν

½ψþ
p⊥;ν;s;cðxÞψþ

p⊥; ν;s;cðyÞ

− ψ−
p⊥;ν;s;cðxÞψ−

p⊥; ν;s;cðyÞ�: ð14Þ

The numerical cost to solve the equations for the mode
functions is proportional to ðNcN2⊥NηÞ2, which is not
amenable to large lattices. The numerical effort may be
reduced by a stochastic method employing “low-cost”
fermions [26], where we will use a variant of this method

]23,27 ]. In this approach, one employs two kinds of
stochastic fermion fields corresponding to positive and
negative energy modes,

Ψ�ðxÞ ¼
X
s;c

1

L2⊥Lη

X
p⊥;ν

ψ�
p⊥;ν;s;cðxÞc�p⊥;ν;s;c: ð15Þ

Here, c�p⊥;ν;s;c are complex random Gaussian numbers
whose ensemble averages satisfy
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hcϵp⊥;ν;s;cðcϵ
0
p0⊥;ν0;s0;c0

Þ�i ¼ L2⊥Lηδ
ϵ;ϵ0δs;s0δc;c0δp⊥;p0⊥δν;ν0 ; ð16Þ

and

hcϵp⊥;ν;s;ccϵ
0
p0⊥;ν0;s0;c0

i ¼ 0: ð17Þ

The stochastic fermion fields obey the same Dirac equation

�
iγ0∂τ þ iγiDi þ

i
τ
γ3Dη −m

�
Ψ�ðxÞ ¼ 0: ð18Þ

Once we compute the initial condition for them following
Eq. (15), the numerical cost to solve the Dirac equation
for the stochastic fields is proportional to NcN2⊥NηNconf ,
where Nconf is the number of configurations for the
stochastic fields. The value of Nconf depends on the
quantity one computes and, of course, on the computational
accuracy demanded. In particular for space-averaged quan-
tities, Nconf can often be much smaller than NcN2⊥Nη, such
that the stochastic fermion method is more efficient than the
mode function method.
In terms of the stochastic fields, the fermion statistical

function (13) can be computed by the ensemble average as

Fðx; yÞ ¼ 1

2

X
ϵ¼�

ϵhΨϵðxÞΨϵðyÞi: ð19Þ

Similarly, the vacuum expectation of the color current
operator is expressed by the fermion ensemble average as

Ja;μðxÞ ¼ −
g
2
NfRe

X
ϵ¼�

ϵhc1ΨϵðxÞTaγμUμðxÞΨϵðxþ μ̂Þ

þ c2ΨϵðxÞTaγμUμðxÞUμðxþ μ̂ÞΨϵðxþ 2μ̂Þ
þ c2Ψϵðx − μ̂ÞTaγμUμðx − μ̂ÞUμðxÞΨϵðxþ μ̂Þi:

ð20Þ

C. Initial conditions

In the gauge sector, we initialize the fields according to a
Gaussian initial density matrix [3,4], which translates into

Aa
μðτ0; x⊥; ηÞ ¼

X
λ¼1;2

1

L2⊥Lη

X
p⊥;ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fgðτ0; p⊥; νÞ

q

× ½ξðλÞμ;p⊥;νðτ0Þeip⊥·x⊥þiνηcλ;ap⊥;ν þ c:c�; ð21Þ

Ea;μðτ0; x⊥; ηÞ ¼ −τ0gμρ
X
λ¼1;2

1

L2⊥Lη

X
p⊥;ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fgðτ0; p⊥; νÞ

q

× ½̇ξðλÞρ;p⊥;νðτ0Þeip⊥·x⊥þiνηcλ;ap⊥;ν þ c:c�; ð22Þ

with Gaussian random numbers cλ;ap⊥;ν that satisfy

hcλ;ap⊥;νðcλ
0;a0
p0⊥;ν0

Þ�i ¼ L2⊥Lηδ
λ;λ0δa;a

0
δp⊥;p0⊥δν;ν0 ð23Þ

and

hcλ;ap⊥;νcλ
0;a0
p0⊥;ν0

i ¼ 0: ð24Þ

Here, ξðλÞμ;p⊥;νðτ0Þ are the transverse polarization vectors with
polarization λ, and ̇ξðλÞμ;p⊥;νðτÞ ¼ ∂τξ

ðλÞ
μ;p⊥;νðτÞ.3 Their explicit

forms can be found in Ref. [4]. The factor fgðτ0; p⊥; νÞ
corresponds to the initial gluon momentum distribution
function. To describe the highly occupied plasma, we
employ

fgðτ0; p⊥; νÞ ¼
n0
g2

Θ
�
Qs −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ ðξ0ν/τ0Þ2

q �
; ð25Þ

whereQs is the characteristic (saturation) momentum scale,
n0 parametrizes the initial overoccupation, and ξ0 is the
initial anisotropy parameter. The link variable Uμ and the
gauge field (21) are related by

UμðxÞ ¼ exp ½igaμAa
μðxÞTa�: ð26Þ

In this construction of the gauge fields, the Gauss law

X
μ¼1;2;η

1

aμ
½EμðxÞ − U†

μðx − μ̂ÞEμðx − μ̂ÞUμðx − μ̂Þ� ¼ 0

ð27Þ

is initially not satisfied. We restore the Gauss law at the
initial time by using the relaxation method described in
Ref. [28]. If the Gauss law is satisfied at the beginning, the
evolution equations preserve it within the accuracy of the
time discretization employed.4

The overoccupied gluonic plasma that can be charac-
terized by the distribution (25) is expected to appear after
the coherent initial gauge fields decay by instabilities, and
its typical time scale is parametrically τ0 ∼Q−1

s ln2α−1s [29].
In this study, we take the value of the coupling g ¼ 10−2

and correspondingly we adopt the initial time Qsτ0 ¼ 100.
In the quark sector, we assume vacuum initial condition;

all the expectations are computed with the vacuum state j0i,
and the quark mode functions are initialized to be free ones,

ψ�
p⊥;ν;s;cðτ0; x⊥; ηÞ ¼ ψ free�

p⊥;ν;s;cðτ0; x⊥; ηÞ: ð28Þ

The expressions for the free spinors in the τ − η coordinates
can be found in Ref. [23]. Our assumption corresponds to

3The polarization vectors are constructed such that the
Coulomb-type gauge condition

P
i∂iAiðxÞ þ τ−2∂ηAηðxÞ ¼ 0

is satisfied at the initial time.
4We have used the fourth-order Runge-Kutta method for the

time evolution.
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neglecting the quark production at earlier times before
τ0 ∼Q−1

s ln2α−1s . The quark production can happen at the
instant of a collision (τ ¼ 0) and also in the earlier stage of
the Glasma evolution (0 < τ ≲Q−1

s ln2α−1s ) [8,23], which
can in principle be computed by the framework presented
in this paper. However, real-time lattice computations in the
expanding geometry at early times τ ≲Q−1

s are extremely
demanding because of the rapid change of longitudinal
scales. In the present study, we focus on the quark
dynamics in the incoherent gluon plasma for times
Qsτ ≥ 100.
The momenta ðpx; py; νÞ in Eq. (28) are lattice momenta

that are related to integers by

px ¼
c1
a⊥

sin

�
2π

kx
N⊥

�
þ c2
a⊥

sin

�
4π

kx
N⊥

�
ð29Þ

for kx ¼ −N⊥/2þ 1;…; 0;…; N⊥/2, and similarly for
the y and η components. A schematic plot of the lattice
momentum is shown in Fig. 1. There are two zero-modes in
each dimension (fermion doubling). We will refer to modes
that exist between the maximum and the minimum of the
lattice momentum as physical modes Λphys, which are
denoted by black filled circles in Fig. 1, while other modes
are called doubler modes. Because of the improvement of
the classical action, the regions of the physical modes and
the doubler modes become asymmetric. The maximum
of the lattice momentum occurs at

kmax ¼ ⌊N⊥
π

atan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2

ffiffiffi
6

p

5

s
⌋ ≈ ⌊0.286N⊥⌋; ð30Þ

where ⌊⌋ denotes the floor function giving the largest
integer that is less than or equal to its argument.
We eliminate the doubler modes from the initial con-

dition by initializing the fermion stochastic field as

Ψ�ðxÞ ¼
X
s;c

1

L2⊥Lη

X
ðkx;ky;kηÞ∈Λphys

ψ�
p⊥;ν;s;cðxÞc�p⊥;ν;s;c ð31Þ

instead of Eq. (15). On the other hand, we do not modify
the evolution equation (18). Therefore, the doubler modes
can be, in principle, excited during the time evolution.
However, as long as the momentum cutoffs are sufficiently
large and we do not continue the time evolution for too long
times, the contamination from doubler modes is found to be
negligible [30]. We have explicitly checked this for our
results as is described in more detail in Appendix A, where
we also make comparisons to employing a generalized
Wilson term for the suppression of doublers in the
expanding geometry.5

D. Observables

As outputs of the lattice numerical computations, we
compute correlation functions of gauge and quark fields. In
order to be able to make comparisons also to effective
kinetic descriptions, we mainly focus here on momentum
distribution functions (occupation numbers) of gluons and
quarks. The quasi-particle distribution function provides us
with useful insights into the nonequilibrium evolution of
the system, although it has shortcomings that it is gauge-
dependent and no unique definition of quasiparticle num-
bers exist in the interacting theory.
The quasiparticle distributions can be extracted from the

equal-time two-point correlation functions [31]. For the
gluon distribution function, we employ the definition used
in Refs. [3,4]:

fgðτ; p⊥; pzÞ ¼
τ2

νgL2⊥Lη

XN2
c−1

a¼1

X
λ¼1;2

× hja2⊥aη
X
x⊥;η

gμρ½ðξðλÞμ;p⊥;νðτÞÞ�∂τ

⟷
Aa
ρðτ; x⊥; ηÞ

× e−ip⊥·x⊥−iνη�j2i; ð32Þ

where νg ¼ 2ðN2
c − 1Þ denotes the number of internal

degrees of freedom. The gauge field Aa
μðτ; x⊥; ηÞ can be

extracted from the link variable by the inverse of (26), and
the time derivative of the gauge field is related to the
electric field as Ea;μ ¼ τgμν∂τAa

ν . In the longitudinally
expanding geometry, we take pz and ν as related by
pz ¼ ν/τ. The bracket hi in Eq. (32) denotes the ensemble
average over the random initial conditions for the gauge
field, such that the residual gauge freedom in the

FIG. 1. A schematic plot of the lattice momentum (29) as a
function of the integer k. We call the modes in −kmax ≤ k ≤ kmax
physical modes, which are denoted by black filled circles, while
the modes denoted by open circles correspond to doublers. The
continuum dispersion is shown by a gray solid line.

5Employing a Wilson term, one needs to compute additional
contributions to the evolution equations. Furthermore, one has to
have smaller time steps compared to the naive fermion case in
order to correctly compute the evolution of heavy doubler modes.
As a consequence, suppressing doublers by initial conditions
turns out to be very efficient for our purposes.
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Fock-Schwinger gauge (Aτ ¼ 0) is fixed by the Coulomb-
type gauge condition

X
i

∂iAiðxÞ þ τ−2∂ηAηðxÞ ¼ 0: ð33Þ

Although this condition is satisfied by the initial condition
(21), it is not preserved by the time evolution. When we
compute the distribution functions for τ > τ0, we transform
the gauge field so that the condition (33) is fulfilled. Of
course, the quark fields must be transformed accordingly.
We define the quark distribution function in a similar

way by the projection onto the free mode functions. In
terms of the stochastic fermion fields,

fqðτ; p⊥; pzÞ

¼ 1

νqL2⊥Lη

X
s¼↑;↓

XNc

c¼1DD			a2⊥aηX
x⊥;η

½ðψ freeþ
p⊥;ν;s;cðτ; x⊥; ηÞÞ†Ψ−ðτ; x⊥; ηÞ�

			2
þ
			a2⊥aηX

x⊥;η
½ðψ free−

p⊥;ν;s;cðτ; x⊥; ηÞÞ†Ψþðτ; x⊥; ηÞ�j2
EE
;

ð34Þ

where νq ¼ 4NcNf is the number of the internal degrees of
freedom for quarks and antiquarks. As noted before, the
flavor indexes are omitted. The double bracket hhii denotes
the ensemble averages over both the initial gauge field
configurations and the stochastic fermion field configura-
tions. This definition corresponds to the expectation of the
number operators averaged over all degrees of freedom,

fqðτ; p⊥; pzÞ ¼
1

νq

X
s¼↑;↓

XNc

c¼1

h0jða†p⊥;ν;s;cap⊥;ν;s;c

þ b†p⊥;ν;s;cbp⊥;ν;s;cÞj0i: ð35Þ

If applied to the non-expanding system, our definition is
equivalent to the definition in terms of the statistical two-
point function employed in Refs. [7,12,32]. As with the
gluon distribution, we compute the quark distribution after
doing the gauge transformation to the Coulomb gauge (33).
We will also frequently consider the total quasiparticle

number densities per unit transverse area and per unit
rapidity:

dNg/q

d2x⊥dη
¼ νg/q

L2⊥Lη

X
p⊥;ν

fg/qðτ; p⊥; pz ¼ ν/τÞ: ð36Þ

For quarks, this quantity involves the total particle number
of quarks and antiquarks.

III. EFFECTIVE KINETIC THEORY
DIAGNOSTICS

To gain physical insight into results from lattice simu-
lations, we will make comparisons with effective kinetic
theory for QCD at weak coupling as described in Ref. [33],
and applied to numerical computations in the expanding
geometry in Refs. [5,34,35]. To this end, we give in this
section some relevant formulas that will be employed as
diagnostic tools to help analyzing the lattice simulation
data.
We emphasize that since we are considering the over-

occupied regime with very high gluon occupancies ∼1/αs it
cannot be approximated by power counting in αs under-
lying kinetic descriptions. What is remarkable is the fact
that simple/naive estimates seem to give nevertheless the
right order of magnitude of quark production from over-
occupied gluons at least for integrated quantities, which we
will be focusing on.
The kinetic equations for gluons and quarks in the

expanding system are of the form

� ∂
∂τ −

pz

τ

∂
∂pz

�
fgðτ; pÞ ¼ Cg½fg; fq�; ð37Þ

� ∂
∂τ −

pz

τ

∂
∂pz

�
fqðτ; pÞ ¼ Cq½fq; fg�; ð38Þ

where Cg/q denote the collision terms. In the effective
kinetic theory to leading order the collision terms involve
2 ↔ 2 scattering processes as well as effective 1 ↔ 2
processes. However, earlier lattice simulation results for the
pure gauge theory indicate that the earlier-stage dynamics
of the plasma in weak coupling may be characterized by
2 ↔ 2 scatterings [3,4] in accordance with the bottom-up
thermalization scenario [18]. Therefore, we will compare
our lattice results in the time regime considered to a kinetic
description that takes into account only 2 ↔ 2 scattering
processes.
In the comparison to lattice results, we will deal with the

integrated total number densities defined in Eq. (36). By
integrating the kinetic equations over spatial momenta, one
can relate the time derivative of the number density to the
collision terms as

dNg/q

dτd2x⊥dη
¼ νg/q

L2⊥Lη

X
p⊥;ν

Cg/q: ð39Þ

To simplify the analysis, we furthermore apply the small-
angle approximation, which is expected to be justified for
long-ranged processes such that an exchanged particle is
massless [36,37]. By the small-angle approximation, each
collision term takes the form of the sum of a diffusion term
and a source term Sg/q [38],
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Cg/q ¼ −∇p · Jg/q þ Sg/q: ð40Þ

The diffusion terms do not contribute to the momentum
integral in Eq. (39). The source terms read

Sgðτ; pÞ ¼
g4

4π
CFNfLIc

1

p
½fqðτ; pÞð1þ fgðτ; pÞÞ

− fgðτ; pÞð1 − fqðτ; pÞÞ�; ð41Þ

Sqðτ; pÞ ¼ −
g4

4π
C2
FLIc

1

p
½fqðτ; pÞð1þ fgðτ; pÞÞ

− fgðτ; pÞð1 − fqðτ; pÞÞ�; ð42Þ

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ p2

z

p
, CF ¼ ðN2

c − 1Þ/ð2NcÞ and

IcðτÞ ¼
1

τL2⊥Lη

X
p⊥;ν

1

p
½fgðτ; pÞ þ fqðτ; pÞ�: ð43Þ

Here, L denotes the “Coulomb logarithm,” which encodes
the infrared divergence of the scattering amplitude regu-
lated by the Debye mass scale,

L ¼
Z

qmax

qmin

dq
q
: ð44Þ

As cutoffs, we employ qmax ¼ Qs and qmin ¼ mD, where
mD is the Debye mass scale given in terms of the
distribution functions as

m2
D ¼ 4g2

1

τL2⊥Lη

X
p⊥;ν

1

p
½Ncfgðτ; pÞ þ Nffqðτ; pÞ�: ð45Þ

This expression denotes the screening mass for gluons,
while that for quarks has different numerical factors of
order one in front of fg and fq [33]. When an exchanged
particle is a quark, it is more adequate to use the screening
mass for quarks as the infrared cutoff. However, here
we only want to set the characteristic scale. Moreover, the
difference between the two screening masses may be
absorbed by the ambiguity in the choices of the cutoff
scales of the Coulomb logarithm in the small-angle
approximation for the kinetic equation, which results in
a logarithmic uncertainty for the production rate.
Since we consider only 2 ↔ 2 scatterings, the total

particle number is conserved, which is guaranteed by the
relation νgSg þ νqSq ¼ 0.

By substituting Eq. (42) into Eq. (39), we obtain

dNq

dτd2x⊥dη
¼ g4

4π

ðN2
c − 1Þ2
Nc

NfLIc
1

L2⊥Lη

×
X
p⊥;ν

1

p
½fgðτ; pÞð1 − 2fqðτ; pÞÞ − fqðτ; pÞ�:

ð46Þ
The process contributing to this production rate is
gg ↔ qq̄. The factor ð1 − 2fqÞ reflects the phenomenon
of Pauli blocking for fermionic degrees of freedom. In the
overoccupied gluon plasma with fg ≫ 1, the last term in
the square bracket is negligible, while the Pauli blocking
term is not negligible as is discussed in Sec. IV.
The rather simple expressions above will be employed to

further analyze lattice simulation results in the following
way. We will evaluate the effective kinetic theory expres-
sions by inserting on their right hand sides the distribution
functions obtained from lattice simulation data. The left-
hand side outcomes of these expressions can be compared
with results directly extracted from lattice simulations
according to Eq. (36). Comparing both gives information
about the validity of the simplifying assumptions under-
lying the effective kinetic description employed. Such an
agreement provides a necessary condition for the successful
description of the lattice QCD dynamics by the effective
kinetic theory. A comparison of the lattice data to a separate
dynamical solution of the full kinetic theory with quarks is
beyond the scope of the present work, and our analysis in
this respect should be thought of as providing evidence that
such an enterprise is worth doing.

IV. LATTICE SIMULATION RESULTS AND
COMPARISON TO KINETIC ESTIMATES

In this section we present numerical results for the lattice
QCD simulations with Nc ¼ 2 in the expanding geometry.
The values of the coupling constant, the initial time, and
the initial anisotropy parameter are fixed to g ¼ 10−2,
Qsτ0 ¼ 100, and ξ0 ¼ 2. Quarks with Nf-flavors are taken
to have a common massm. At first, we consider Nf ¼ 1. In
this case, the backreaction from the quark sector to the
gluon sector is expected to be negligible since its strength is
governed by the factor g2Nf according to Sec. II A. In
Sec. IV C, we consider the case of larger Nf such that the
effects of the backreaction may not be neglected. Unless
stated otherwise, the lattice parameters used in computa-
tions for this section are N⊥ ¼ 48, Nη ¼ 256, Qsa⊥ ¼
0.625, aη ¼ 1.95 × 10−3. We discuss the dependence on
the lattice parameters in Appendix B.

A. Time evolution

We first investigate the time evolution of the distribution
functions and the number densities for Nf ¼ 1 and
m/Qs ¼ 0.1.
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In Fig. 2, we show the gluon distribution fg as a

function of transverse momentum p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
evalu-

ated at pz ¼ 0 at different times Qsτ. Since the initial
gluon occupation number is as large as n0/g2, we plot
g2fg. The initial occupation parameter is set to n0 ¼ 1.
Due to infrared and ultraviolet cascades, the occupation
numbers in the low and high momentum regions grow at
early times, while the intermediate momentum region
decreases. In fact, the results for the gluon sector are in
line with previous studies in the absence of backreactions
from the quarks as expected from the smallness of the
factor g2Nf ¼ 10−4 employed. The gluon distribution
approaches a nonthermal fixed point characterized by a
self-similar scaling behavior [3,4] reflecting, in particular,
the longitudinal expansion and the longitudinal momen-
tum broadening due to scatterings. To precisely compute
that later-time behavior, one needs to employ larger
lattices than those employed in the present study. Since
the numerical cost to simulate fermion fields is much
higher than the case of pure Yang-Mills simulations, we
restrict ourself to the time rangeQs ≲ 300, in which lattice
artifacts can be well controlled with the lattice sizes we
employ in this study. For more detailed discussions on the

pure gauge theory dynamics, we refer readers to
Refs. [3,4], and we will mainly focus on the quark sector
when backreactions onto the gluons play no important
role.
In order to analyze the quark dynamics, it is advanta-

geous to start with the evolution of the total quark number
density per unit transverse area and per unit rapidity given
by Eq. (36). Figure 3 shows this quark number density as a
function of time. (The number of stochastic fermion
configurations used in this computation is Nconf ¼ 20.)
One observes two characteristic regimes: As shown in more
detail in the inset, initially the quark number density
increases very rapidly showing a strongly nonlinear behav-
ior which even turns over with a slight intermediate
reduction. At later times Qsτ ≳ 130, the quark number
density increases almost linearly in time. This rate turns out
to be consistent with the kinetic theory estimates based on
2 ↔ 2 scatterings as indicated by the dashed line in Fig. 3.
In the following, we first analyze the earlier-time behavior
and then discuss the later times together with the com-
parison to kinetic theory.
Figure 4 shows the evolution of the quark momentum

distribution function fq during the earlier stage with

FIG. 3. Time evolution of the quark number density. The inset
shows the early-time behavior. The lattice result is compared to
the kinetic theory estimate based on 2 ↔ 2 scatterings.

FIG. 2. Time evolution of the gluon transverse momentum
distribution evaluated at pz ¼ 0 for different times Qsτ.

FIG. 4. Time evolution of the quark distribution function at earlier times Qsτ ≤ 110. Left: The transverse momentum distribution at
pz ¼ 0. Right: The longitudinal momentum distribution at p⊥ ¼ 0.
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Qsτ ≤ 110. The left panel displays the transverse momen-
tum distribution evaluated at pz ¼ 0, while the right gives
the longitudinal momentum distribution at p⊥ ¼ 0.
Since this early evolution stage far from equilibrium may

be expected to be not amenable to a simple quasi-particle
picture, we will analyze this in more detail. At very early
times Qsðτ − τ0Þ≲ 1, the occupation number is still much
smaller than one. However, the integrated total particle
number shows a rapid increase in this time range as shown
in Fig. 3. These seemingly inconsistent observations can be
understood as a consequence of the fact that the quark
spectrum at very early times is dominated by higher
momentum modes. To confirm this, we show in Fig. 5
the second moment of the transverse distribution p2⊥fq.
Although the distribution itself is much smaller at Qsτ ¼
101 compared to later times, the second moment at Qsτ ¼
101 is as large as those at later times, since it is dominated
by large momenta. At Qsτ ¼ 101, the peak position of the
moment is larger than Qs. As time goes on, the peak
position is shifted to lower momenta and eventually
stabilizes around p ∼Qs, which is the natural scale of this
system. In terms of a quasi-particle picture, this behavior
is hard to understand. In the very early stage, it is more

adequate to interpret the distribution function defined by
Eq. (34) as a two-point correlation function of the field
ψðxÞ rather than the momentum distribution of stable quasi-
particles. Since we start with the vacuum initial condition
for the quark field and the interaction with the overoccupied
gauge field is suddenly turned on at the initial time,
nontrivial correlations of the quark field are developed at
relatively short length scales first and they extend to larger
length scales as time proceeds. After this early-time
transient stage, the two-point correlation stabilizes, which
results in the steady peak position of the moment at later
times. Then, in the time range 101≲Qsτ ≲ 110, the
occupation number of quarks at low momenta p≲ 0.5Qs
exhibits significant increase.
In Fig. 6, we show the time evolution of the quark

distribution function at later timesQsτ ≥ 110. The evolution
behavior of the distribution function looks quite different
compared to the earlier times shown inFig. 4. Theoccupation
number gradually decreases in time. This behavior can be
understood as a consequence of the expansion of the system
and the momentum broadening in the longitudinal direction.
If there is no interaction (free streaming), the transverse
distribution would be unchanged, while the width of the

FIG. 5. The second moment of the quark transverse momentum distribution at earlier times Qsτ ≤ 110 (left) and at later times
Qsτ ≥ 110 (right). (Here we used a smaller transverse lattice spacing Qsa⊥ ¼ 0.417 in order to have better resolution in the high
momentum region.)

FIG. 6. Time evolution of the quark distribution function at later times Qsτ ≥ 110. Left: The transverse momentum distribution at
pz ¼ 0. Right: The longitudinal momentum distribution at p⊥ ¼ 0.
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longitudinal distribution would shrink in time as pz ∼ τ−1.
In Fig. 6, the width of the longitudinal distribution seems to
approach a nearly constant value forQsτ ≳ 150. This means
that the longitudinal distribution is broadened by scatterings.
For gluons undergoing 2 ↔ 2 elastic scatterings, the com-
petition between the system’s expansion and the scatterings
are expected to result in the behavior of the longitudinal
momentum as pz ∼ τ−1/3 [18]. The same behavior can be
observed for the quark distribution if the effect of quark
production is minor [9]. The almost constant width of the
longitudinal distribution as seen in the right panel of Fig. 6
indicates the quark production with a nearly constant
production rate. Indeed, as shown in Fig. 3, the total quark
number density increases almost linearly in this time range.
Remarkably, the increase rate of the total quark number

density for Qsτ ≳ 130 turns out to be consistent with the
simple kinetic estimate (46). We have inserted the distri-
bution functions obtained from the lattice computations
into the kinetic formula (46) and integrate it over time. The
result is plotted with a dashed line in Fig. 3, where the
constant offset, which corresponds to a time-integration
constant, has been adjusted to account for the early-time
quark production that cannot be described by the simple
kinetic theory. The slope of the curve, i.e., the production
rate, is well reproduced by the kinetic estimate with our
choice for the cutoff scales in the Coulomb logarithm. This
result is remarkable because we have taken into account
only 2 ↔ 2 scattering processes in the kinetic estimate.
We emphasize that one has a priori no reason to expect

the kinetic description to agree with the lattice results even
in the order of magnitude accuracy. As shown in Fig. 2, the
occupation number of gluons at their typical momenta is of
order 1/g2 in this time range. In this case, general n ↔ m
scattering processes that involve arbitrary number of gluons
are as important as the 2 ↔ 2 scattering processes consid-
ered in our simple kinetic estimate. In accordance with the
earlier findings for the pure gauge theory [3,4], this
observation indicates that the effective kinetic description
may be more robust than one can expect based on
perturbative power counting. We have to note, though,
that here we compare only the integrated number density
and that we perform a rather indirect comparison by
inserting the distribution functions obtained from the lattice
simulations into the kinetic formula. Furthermore, we have
applied the small-angle approximation for the kinetic
theory, that involves logarithmic uncertainty. To establish
a firmer connection between the real-time lattice simula-
tions and the kinetic theory, one has to make a direct
comparison for the unintegrated distribution functions
without employing the small-angle approximation as was
done in Ref. [39] in a nonexpanding system. We leave such
computations for future investigations.
One may notice that the agreement between the lattice

result and the kinetic estimate becomes worse for Qsτ ≳
250 in Fig. 3. This can be attributed to a lattice artifact

rather than the failure of the kinetic description. In the
kinetic description discussed in Sec. III, the Debye mass
scale mD plays a crucial role. Indeed, the production rate
(46) is proportional tom4

D if we drop the contributions from
the quark distribution. Therefore, it is important to pre-
cisely resolve the Debye mass scale on the lattice. The time
evolution of the Debye mass scale is shown in Fig. 7 for
three different transverse system sizes. Since the contribu-
tion from quarks to the Debye mass is negligible for
g2Nf ≪ 1, we show results obtained by pure Yang-Mills
simulations. As long as the gluon distribution is dominated
by the hard scale Qs, we can expect that the Debye mass
scale decreases in time as τ−1/2 except at very early times.
This behavior has been confirmed by large-scale lattice
gauge theory simulations [4] and kinetic theory calcula-
tions [9]. For the smallest system size (QsL⊥ ¼ 20), hence
for the coarsest resolution in the infrared, significant
deviations from the behavior mD ∼ τ−1/2 is seen. For the
largest system size (QsL⊥ ¼ 40), the temporal evolution of
the Debye mass is better resolved. Because of the signifi-
cant numerical costs of the quark sector, we have used the
transverse system size QsL⊥ ¼ 30 in the computations
with quarks. Therefore, the infrared sector is not suffi-
ciently well resolved at later times. This is likely to be the
reason for the discrepancy between the lattice result and the
kinetic estimate that appears for Qsτ ≳ 250 in Fig. 3.
To gain more insight into physical processes realized in

the real-time lattice simulations, we make a comparison to
the kinetic theory estimate also in the gluon sector. In
Fig. 8, the total gluon number density per unit transverse
area and per unit rapidity is plotted as a function of time, as
well as the total quark number density. Since the occupa-
tion number of gluons is the order of 1/g2, which is much
larger than that of quarks, we multiply the factor g2 ¼ 10−4

to the gluon number density. The kinetic theory estimates

FIG. 7. Time evolution of the Debye mass scale. Three different
transverse system sizes are compared. The smallest nonzero
transverse momenta are indicated by gray horizontal lines for
each system size. The expected temporal power law τ−1/2 is
also indicated by a gray dashed line. These results are obtained
by pure Yang-Mills simulations with the lattice parameters
Qsa⊥ ¼ 0.625, Nη ¼ 256, and aη ¼ 1.95 × 10−3.
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are indicated by gray dashed lines. For 1/g2 ≫ 1, the
decrease of the gluon number by the kinetic 2 ↔ 2
scattering process is negligible. Therefore, the kinetic
estimate for the gluon number gives essentially a horizontal
line in this figure. Indeed, the gluon number obtained from
the lattice simulations seems to approach a constant value.
This observation indicates that the dynamics of the over-
occupied gluon plasma at weak coupling is dominated by
the elastic 2 ↔ 2 scatterings among gluons, and reinforces
the observations made in previous studies [3,4,9].
Compared to quarks, the time at which the kinetic estimate
starts to agree well with the lattice result appears to be
somewhat later for gluon. Being fermions, quarks respect
the exclusion principle which might help in behaving more
like quasiparticles.
So far, we have fixed the initial occupation parameter for

gluons to be n0 ¼ 1. Before closing this subsection, we
discuss a result with larger n0. Figure 9 shows the time
evolution of the total quark number density for n0 ¼ 10.
Compared to the case of smaller gluon occupancies, the
quark production is more efficient as expected. However,
the produced quark number is not linear in n0 because of
Pauli’s exclusion principle. Also for n0 ¼ 10, the kinetic

theory estimate (46) well reproduces the quark production
rate. This is somewhat surprising because for too large
gluon occupancies the kinetic theory description is
expected to become unreliable. Our results indicate that
the simple 2 ↔ 2 kinetic theory estimate for the quark
production rate is quite robust. In the figure, we also plot
the kinetic estimate after dropping the Pauli blocking factor
ð1 − 2fqÞ in Eq. (46). Without this term, the kinetic theory
overestimates the lattice result for quark production. Since
the quark occupation number of order one is developed in
the time range 101≲Qsτ ≲ 110, the kinetic quark pro-
duction at later times is affected by Pauli blocking.

B. Quark mass dependence

In this subsection, we investigate the quark mass
dependence of our lattice simulation results. We still keep
the number of fermion flavor to be Nf ¼ 1. We note that as
long as g2Nf ≪ 1 the effect of backreactions from quarks
onto gluons is minor and, therefore, the corresponding
results are linear in Nf.
We compare different quark masses in units of the

saturation scale, m/Qs ¼ 0.01, 0.1, 0.5, and 1. For
Qs ≃ 1 GeV, up and down quark masses are of the order

FIG. 8. Time evolution of the number densities of gluons and
quarks. The gluon number is multiplied by g2 ¼ 10−4. The kinetic
theory estimates are indicated by gray dashed lines.

FIG. 9. Quark number density for n0 ¼ 10. The kinetic estimate
(46) well fits the lattice result. Without the Pauli blocking term,
the production rate is overestimated.

FIG. 10. Quark transverse momentum distribution for different
quark masses at the time Qsτ ¼ 250.

FIG. 11. Time evolution of the quark number density for
different quark masses.
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of or lighter thanm/Qs ¼ 0.01, the strange quark mass is of
the order ofm/Qs ¼ 0.1, and the charm quark mass is of the
order of m/Qs ¼ 1. In Fig. 10, the quark transverse
momentum distribution evaluated at pz ¼ 0 and Qsτ ¼
250 is plotted for the different quark masses. The produc-
tion of heavy quarks is suppressed and the natural mass
ordering becomes apparent. The total quark number density
is plotted as a function of time in Fig. 11 for the different
masses. The quark production rate especially at later times
is lower for heavier quarks. We have confirmed that the
kinetic theory estimate agrees well with the lattice results
for m/Qs ¼ 0.01 and m/Qs ¼ 0.1. The small-angle
approximation is not expected to apply to larger quark
masses, since it is valid only if the mass of an exchanged
particle, i.e., quark in the present case, is negligible
compared to the typical scale of the distributions. Indeed
we even find that the small-angle approximation over-
estimates the lattice results for heavier masses m/Qs ¼ 0.5
and 1, which we attribute to the fact that the approximation
is used beyond its range of validity. We leave the important
task of a comparison to kinetic theory without employing
the small-angle approximation for future investigations.
In the τ-η coordinates, pz ¼ ν/τ denotes the longitudinal

momentum measured in the co-moving frame with velocity

vz ¼ tanhðηÞ [40]. Therefore, it is not directly measurable
in experiments. The transverse momentum spectrum inte-
grated over longitudinal momentum would be of more
direct experimental interest. It can be computed from the
distribution function fqðτ; p⊥; pzÞ as

ð2πÞ2 dNq

d2x⊥dηd2p⊥
¼ 4NcNf

Lη

X
ν

fqðτ; p⊥; ν/τÞ: ð47Þ

In the left panels of Figs. 12 and 13, this quantity is plotted
as a function of the transverse momentum for different
quark masses at times Qsτ ¼ 110 and 250, respectively.
The same mass ordering as seen in the transverse momen-
tum distribution at pz ¼ 0 is observed. In the right panels,
the same quantity is plotted as a function of transverse mass
m⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þm2

p
. Interestingly, at Qsτ ¼ 110, all points

for different masses lie on top of each other in the regionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þm2

p ≳Qs. This means that the quark transverse
spectrum in this region is only a function of trans-
verse mass.
At a later time, Qsτ ¼ 250, the transverse-mass scaling

becomes less accurate as shown in the right panel of
Fig. 13. This observation indicates that the scaling is valid

FIG. 12. The integrated transverse spectrum for different quark masses at Qsτ ¼ 110 as a function of the transverse momentum (left)
and of the transverse mass (right).

FIG. 13. The integrated transverse spectrum for different quark masses at Qsτ ¼ 250 as a function of the transverse momentum (left)
and of the transverse mass (right).

NAOTO TANJI and JÜRGEN BERGES PHYS. REV. D 97, 034013 (2018)

034013-12



only for the early-time nonperturbative quark production,
which appears not to be described by the kinetic theory.6

In contrast, the perturbative scattering amplitude, which is
encoded in the collision term of the kinetic equation,
generally does not satisfy the transverse-mass scaling as
it depends on p⊥ and m individually. Since the later-time
quark production is well described by the 2 ↔ 2 kinetic
process, the transverse-mass scaling is broken at later times.

C. Large Nf

So far, we have studied Nf ¼ 1 at weak coupling
g ¼ 10−2. In this case, the backreaction from quarks to
gauge fields has little effects. While the real-time lattice
simulation method requires a weak coupling, by consid-
ering large Nf, such that g2Nf becomes sizable, we can
investigate the impact of the backreaction of the produced
quarks onto the gluons [7].
In the following, we show results for g2Nf ¼ 0.5. Since

the statistical fluctuations in the color current (20) are
amplified by the factor Nf, the number of the stochastic
fermion fields Nconf needs to be larger than for the case of
small Nf in order to achieve the same accuracy. We use
Nconf ¼ 480, with which we have confirmed a good
convergence of the results. Because the numerical costs
are high for large Nconf , we have employed a smaller
lattice size, N⊥ ¼ 32, Nη ¼ 256, Qsa⊥ ¼ 0.625, and
aη ¼ 1.95 × 10−3.
In Fig. 14, we compare the quark one-particle distribu-

tion function for g2Nf ¼ 0.5 to that for g2Nf ¼ 10−4. With
larger Nf, the distribution decreases slightly. This is a result
of the fact that the gauge fields are more diminished by the
backreaction from the quarks for larger Nf, and hence
the quark production per flavor gets less efficient. We can
observe the same tendency in Fig. 15, where the quark
number density per flavor is compared for g2Nf ¼ 0.5

and 10−4. At very early times, the difference between the two
cases is not significant because the effects of the backreaction
is still minor then. As time goes on, the effects of the
backreaction accumulate and the difference becomes visible.
We find that the later-time quark production is still

consistent with the kinetic theory description also for the

FIG. 14. Quark distribution functions at Qsτ ¼ 200 for g2Nf ¼ 0.5 as compared to g2Nf ¼ 10−4. Left: Transverse momentum
dependence at pz ¼ 0. Right: Longitudinal momentum dependence at p⊥ ¼ 0.

FIG. 15. Quark number density per flavor for g2Nf ¼ 0.5 as
compared to g2Nf ¼ 10−4.

FIG. 16. Comparison of the gluon number density and the
quark number density for g2Nf ¼ 0.5. Both of the number
densities are multiplied by g2 ¼ 10−4. The kinetic theory esti-
mates based on Eq. (46) are indicated by gray dashed lines.

6We note that nonperturbative particle production by the
Schwinger mechanism satisfies the same scaling.
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case of large Nf. In Fig. 16, the number densities of
quarks and gluons for g2Nf ¼ 0.5 are plotted as a
function of time. Both of the number densities are
multiplied by the factor g2 ¼ 10−4. Similarly to Fig. 8,
the kinetic theory estimates based on Eq. (46) are
indicated by gray dashed lines. For large Nf, the
Debye mass scale and the kinetic production rate (46)
have large contribution from the quark sector. It seems
highly nontrivial that the production rate for quarks still
shows a remarkably good agreement with the simple
kinetic estimate for this strongly correlated case. In
contrast, the decrease of the gluon number exhibits
sizable deviations from the kinetic estimate.

V. CONCLUSIONS

We have studied the nonequilibrium time evolution of
the longitudinally expanding non-Abelian plasma with two
colors and Nf degenerate quark flavors of mass m. While
the initially highly occupied gluons at weak coupling are
found to lead to strongly enhanced quark production, the
backreaction of the quark sector on the gluon distribution
has only minor consequences for small g2Nf at not too late
times. In contrast, the backreaction of quarks becomes
sizable for g2Nf approaching order one. In view of
applications to heavy-ion collisions, taking g2Nf of order
one is expected to be a reasonable assumption and our
results provide valuable insights into real-time QCD
dynamics from first principles.
We find that the nonequilibrium quark production is

characterized—after a short period of an initial rapid
increase—by an almost linear growth of total quark number
with time. The same qualitative behavior is observed for
a wide range of g2Nf and quark masses employed, while
the production rate of quark number density per flavor
decreases for larger g2Nf because of a reduction of
scattering rates by the diminished gluon occupation num-
bers for enhanced quark backreactions.
Remarkably, for not too large quark masses the linear

growth of the total quark number appears to be consistent
with a simple kinetic estimate including only 2 ↔ 2
scatterings in the small-angle approximation. We empha-
size that there is no reason to expect this a priori in a far-
from-equilibrium regime of highly occupied gluons and, in
particular, even for a strongly correlated quark sector where
g2Nf is not small. This apparent “unreasonable effective-
ness” of effective kinetic descriptions, at least for some
important aspects of the nonequilibrium dynamics, still
poses major open questions that require further studies
featuring a direct solution of kinetic theory with quarks.
While this is beyond the scope of the real-time lattice

simulation study we have focused on in this work, hope-
fully the first-principles lattice results help to shed some
light on the problem of finding a consistent approximation
scheme justifying employed effective kinetic descriptions
for the thermalization dynamics of heavy-ion collisions.
By investigating the quark production for different quark

masses, we have also found that quarks produced in the
early-time nonlinear regime satisfy a nonequilibrium scal-
ing law, namely “transverse-mass” scaling. The transverse
momentum spectra for a wide range of quark mass depend
on transverse momentum and quark mass only through the
transverse mass term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þm2

p
. Since this scaling law is

characteristic for the early-time nonperturbative quark
production, it may help differentiating the quark production
mechanisms in the dynamical evolution history of a heavy-
ion collision.
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APPENDIX A: REMOVAL OF DOUBLERS

In this Appendix, we show results that justify the method
to remove doublers introduced in Sec. II C. In that method,
the doublers are removed in the initial condition, Eq. (31),
and the evolution equation is not modified. We will refer
to this procedure as initial condition (IC) removal method,
and compare it with the Wilson fermion method.
In the Wilson fermion method, fermion doublers are

suppressed by a Wilson term Wψ in the Dirac equation,

½iD −mþW�ψ ¼ 0: ðA1Þ

In contrast to conventional Euclidean lattice simulations,
where such a Wilson term is added to suppress all temporal
and spatial doubler modes, in real-time calculations typ-
ically only a Wilson term for the suppression of spatial
doublers is added while temporal doublers are suppressed
in the initial conditions [41]. For longitudinally expanding
systems this has to be suitably generalized. A possible form
of the (improved) spatial Wilson term in the longitudinally
expanding geometry is
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WψðxÞ ¼ r⊥
2a⊥

X2
i¼1

fc1½UiðxÞψðxþ îÞ − 2ψðxÞ þ U†
i ðx − îÞψðx − îÞ�

þ 2c2½UiðxÞUiðxþ îÞψðxþ 2îÞ − 2ψðxÞ þU†
i ðx − îÞU†

i ðx − 2îÞψðx − 2îÞ�g
þ rη
2Taη

fc1½UηðxÞψðxþ η̂Þ − 2ψðxÞ þ U†
ηðx − η̂Þψðx − η̂Þ�

þ 2c2½UηðxÞUηðxþ η̂Þψðxþ 2η̂Þ − 2ψðxÞ þ U†
ηðx − η̂ÞU†

ηðx − 2η̂Þψðx − 2η̂Þ�g; ðA2Þ

where r⊥ and rη are arbitrary parameters, and T is a
quantity that has the dimension of time. One natural choice
for the latter quantity is T ¼ τ. In this case, the Wilson term
amounts to a time-dependent mass term. One of the
consequences is that the definition of a fermion quasipar-
ticle distribution becomes more problematic. Another
possibility is to identify T with a fixed time. In order to
explore the impact of such longitudinal Wilson terms in the
longitudinally expanding geometry, we implement two
cases for comparison:

(i) Only the transverse Wilson term, r⊥ ¼ 1 and rη ¼ 0.
(ii) The full spatial Wilson term with r⊥ ¼ 1, rη ¼ 1

and T ¼ τ0.
In the Wilson fermion method, the fermion fields are
initialized according to Eq. (15) with the dispersion relation
modified by the Wilson term.
In Fig. 17, the three different methods are compared for

the transverse momentum distribution of quarks in the
physical momentum region at the time Qsτ ¼ 250. These
computations are done on a lattice of size N⊥ ¼ 32,
Nη ¼ 256, Qsa⊥ ¼ 0.625, and aη ¼ 1.95 × 10−3. The
three different procedures agree well for p⊥ < ΛUV, where
ΛUV is the ultraviolet (UV) cutoff in one transverse
direction. Since we plot the distribution as a function of

p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
, there are data points in the region

p⊥ > ΛUV. In that region, the IC removal method shows
a deviation from the Wilson fermion method. However, this

region is affected by the cutoff which would become
irrelevant approaching the continuum limit.7

The same comparison is made for the longitudinal
distribution in Fig. 18. Since the longitudinal distribution
is more affected by the expansion of the system, it is plotted
for two different times. At Qsτ ¼ 150, the three results lie
on top of each other, indicating that the different ways to
remove doublers do not affect the physical region. At a later
time, Qsτ ¼ 250, the results with the IC removal method
and the full Wilson term still show a good agreement.
However, the result with the transverse Wilson term
exhibits deviations at large momentum regions. This is
natural, because the longitudinal doublers are not sup-
pressed in this method and they can interact with the
physical modes.
To have a closer look at how doubler modes are sup-

pressed, we directly compare the distributions for the
physical modes and for the doubler modes in each method.
As shown in Fig. 19, the transverse doubler modes are
suppressed by all the methods. For the longitudinal dis-
tributions plotted in Fig. 20, we can see that the IC removal
method and the full Wilson term successfully suppress
doubler modes. In the result with the transverse Wilson
term, the longitudinal doublers are not suppressed as
expected. Since the longitudinal UV cutoff is decreasing
in time, the longitudinal doubler modes starts to interact
with the physical modes at later times resulting in the
deviation seen in Fig. 18.
To summarize, we have demonstrated that both of the IC

removal method and the Wilson fermion method with a
choice of T ¼ τ0 can suppress doubler modes successfully
without affecting the physical modes for the times of
interest in this study. In the main part of this paper, we
show numerical results computed in the IC removal method
as its numerical cost is lower than for the Wilson fermion
method.
Two final remarks are in order. To address the physics

related with the chiral anomaly, one cannot use the IC
removal method, since this method amounts to introduc-
ing the UV cutoff to canonical momentum and therefore

FIG. 17. Comparison of the three methods for the transverse
distribution function at Qsτ ¼ 250.

7In the figures shown in the main sections, this region is not
plotted.
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cannot describe the chiral anomaly [42]. We expect that
the chiral anomaly in the expanding geometry can be
described by using the full Wilson term. However, with a
choice of T ¼ τ0, there is a limitation associated with the
separation of time scales. The longitudinal Wilson term is
time-independent for a fixed T, while the longitudinal

momentum scales decrease in time as 1/τ. Therefore,
the longitudinal Wilson term would start affecting the
physical modes at some later times. We will leave the
investigation of the chiral anomaly on the longitudinally
expanding lattice to future work.

FIG. 18. Comparison of the three methods for the longitudinal distribution function at Qsτ ¼ 150 and Qsτ ¼ 250.

FIG. 19. Comparison of the transverse distributions for physi-
cal modes and doubler modes computed by three methods.

FIG. 20. Comparison of the longitudinal distributions for
physical modes and doubler modes computed by three
methods.
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APPENDIX B: CUTOFF DEPENDENCE

In this Appendix, we discuss lattice cutoff dependencies
of physical quantities. The UV momentum cutoff ΛUV and
the smallest nonzero momentum ΛIR, which plays a role of
the infrared (IR) cutoff, are related with the lattice spacing a
and the system size L, respectively, as

ΛUV ≃ 1.37/a; ΛIR ≃ 2π/L: ðB1Þ

Figure 21 shows the transverse momentum distributions
at pz ¼ 0 and Qsτ ¼ 200 for three different sets of the
transverse lattice parameters. Two vertical dashed lines
indicate the UV cutoff in one transverse direction that
corresponds to the lattice spacing Qsa⊥ ¼ 0.625 and
Qsa⊥ ¼ 0.417, respectively. As discussed in Fig. 17, there

is a region where p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
is larger than ΛUV. We

can confirm that the distribution function for p⊥ < ΛUV is
rather insensitive to variations of either the UV cutoff or the
IR cutoff. Similarly, the longitudinal momentum distribu-
tions for three different sets of the longitudinal lattice
parameters are plotted in Fig. 22. Also, in this case, both of
the UVand the IR cutoffs do practically not affect the shape
of the distribution.
Next, we check the cutoff dependence of the total

quark number density. Figure 23 shows the time evolution
of the quark number density for different transverse
lattice parameters (left) and for different longitudinal
lattice parameters (right). While the dependence on the
longitudinal lattice parameters is relatively minor, the
dependence on the transverse lattice parameters is
notable. This is because the contribution from the high
p⊥ tail that is contaminated by the UV cutoff is still large
for the lattice parameters we employ. As shown in
Fig. 21, the shape of the distribution in the region p⊥ >
ΛUV depends on the UV cutoff. Since the phase-space
factor enhances the contribution from the high p⊥ tail, the
integrated particle number exhibits strong dependence
on the UV cutoff. We expect that the dependence on the
transverse UV cutoff would become milder if the cutoff is
sufficiently large. Indeed, we have obtained smaller
dependence on the longitudinal UV cutoff as we have
larger longitudinal UV cutoff than transverse in our
computations. Furthermore, as discussed in Fig. 7, the
system size needs to be sufficiently large in order to
resolve the IR sector, and hence to correctly describe
the later-time kinetic processes.

FIG. 21. Transverse momentum distributions at Qsτ ¼ 200.
Three different transverse lattice parameters are compared.

FIG. 22. Longitudinal momentum distributions at Qsτ ¼ 200.
Three different longitudinal lattice parameters are compared.

FIG. 23. Time evolution of the quark number density for different lattice parameters. Left: Dependence on transverse lattice
parameters. Right: Dependence on the longitudinal lattice parameters.
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