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We calculate the masses and sigma terms of the doubly charmed baryons up to next-to-next-to-next-to-
leading order [i.e., Oðp4Þ] in a covariant baryon chiral perturbation theory by using the extended-on-mass-
shell renormalization scheme. Their expressions both in infinite and finite volumes are provided for chiral
extrapolation in lattice QCD. As a first application, our chiral results of the masses are confronted with the
existing lattice QCD data in the presence of finite-volume corrections. Up toOðp3Þ, all relevant low-energy
constants can be well determined. As a consequence, we obtain the physical values for the masses of Ξcc

andΩcc baryons by extrapolating to the physical limit. Our determination of the Ξcc mass is consistent with
the recent experimental value by LHCb Collaboration, however, larger than the one by SELEX
Collaboration. In addition, we predict the pion-baryon and strangeness-baryon sigma terms, as well as
the mass splitting between the Ξcc and Ωcc states. Their quark mass dependences are also discussed. The
numerical procedure can be applied to the chiral results ofOðp4Þ order, where more unknown constants are
involved, when more data are available for unphysical pion masses.

DOI: 10.1103/PhysRevD.97.034012

I. INTRODUCTION

A doubly charmed baryon termed as Ξþ
cc was first

reported by SELEX Collaboration [1] and its mass was
observed to be 3519� 2 MeV [2]. Unfortunately, for a
very long time this state was not confirmed by any other
experimental collaborations: FOCUS [3], BABAR [4],
Belle [5], or LHCb [6]. Very recently, renewed interest
has been triggered in studying doubly charmed baryons due
to the confirmation of the existence of the doubly charged
state Ξþþ

cc with a mass of 3621.4� 0.78 MeV by LHCb
Collaboration [7]. Relevant theoretical efforts have accu-
mulated rapidly, for instance, in the investigations of their
magnetic moments [8], weak decays [9,10], strong and
radiative decays [11,12], and interactions with light states
[13], etc.
The masses of the doubly charmed baryons are basic

quantities classifying the baryon spectrum. Understanding
the origin of the masses of ground-state baryons is one
of the most important issues in hadron physics. Especially
for the Ξcc baryons, the difference between the reported
values of the masses by SELEX and LHCb Collaborations
is abnormally large, which is in conflict with the fact that
the isospin breaking effect should be small as it is propor-
tional to the mass difference of the u and d quarks. More
specifically, the isospin splitting in Ξcc baryons is estimated
to be mðΞþþ

cc Þ −mðΞþ
ccÞ ¼ 1.41� 0.12þ0.76 MeV [14],

while the corresponding value calculated from experimen-
tal results is around 100 MeV. On the other hand, there is a
multitude of theoretical determinations using various
methods such as the relativistic quark model [15,16] and
effective potential [17]. Interestingly, they all tend to
support the LHCb result rather than the SELEX one. On
the side of lattice QCD (LQCD), calculations of the masses
are performed by many collaborations [18–23], whereas
only the result in Ref. [20] agrees with the SELEX value.
Nevertheless, as pointed out in Ref. [22], the chiral
extrapolation of the lattice data of Ref. [20], especially
the datum at Mπ ¼ 260 MeV, using the next-to-leading-
order (NLO) heavy baryon chiral perturbation theory
would lead to a sizeable systematic uncertainty of the
baryon mass in physical limit. Hence, a more appropriate
and higher-order extrapolating formula for the masses is
required. To that end, we will calculate the masses of the
doubly charmed baryons up to next-to-next-to-next-to-
leading (N3LO) within the framework of covariant baryon
chiral perturbation theory (BChPT).
Chiral perturbation theory (ChPT) [24–27] nowadays

plays a prominent role in the study of modern hadronic
physics at low energies. It has been intensively applied to
calculate a multitude of physical quantities and extrapolate
lattice QCD data to a physical point, see e.g., Ref. [28].
Moreover, within ChPT, the finite-volume corrections
(FVCs) can be systematically obtained by discretizing
the integrations involved in the loop contributions
[29–33]. For baryon masses, calculations can be performed*Deliang.Yao@ific.uv.es
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by using various subtraction methods such as the heavy
baryon (HB) approach [34,35], infrared regularization (IR)
[36,37], and extended-on-mass-shell (EOMS) scheme
[38–40]. Such methods are proposed to settle the power
counting issue caused by the presence of a nonvanishing
baryon mass in the chiral limit; see Refs [41,42] for
reviews. Nevertheless, the EOMS scheme is more appro-
priate for the extrapolation of LQCD data. This is because it
respects the proper analytical properties when the pion
mass is set to certain unphysically large values [43,44] and,
on the other hand, it leads to results of faster chiral
convergence, see, e.g., Refs. [45–48].
Within the EOMS scheme, though the masses of light

baryons have been abundantly studied up to one-loop
order, for instance, in Refs. [49–53], the ones of
charmed baryons are less investigated. For the doubly
charmed baryons, a first calculation of their masses in
BChPT was done up to N3LO in Ref. [54] using HB
formalism. The calculation using EOMS is given in
Ref. [55] but only up to next-to-next-to-leading order
(N2LO). In the present work, we extend the calculation
up to N3LO. We show explicitly the ultraviolet (UV)
divergent and the power counting breaking (PCB) pieces
can be absorbed in the low-energy constants (LECs).
After renormalization, we obtain very compact forms for
the mass formulas, which respect correct power count-
ing and also keep proper analytical properties. On top of
that, we derive the relevant FVCs by discretizing the
loop contributions. Compared to the results in previous
literature, here the so-obtained mass formulas are better
suited for chiral extrapolation of LQCD data, especially
when more data appears for unphysical values of pion
masses. In addition, by imposing the Hellmann-
Feynman theorem to the obtained mass formulas, we
get the expressions for pion-baryon and strangeness-
baryon sigma terms, denoted by σπB and σsB with
B ∈ fΞcc;Ωccg.
As an application, we confront the chiral results of

the masses (including FVCs) with the LQCD data of
Ref. [20] as already mentioned above. Unfortunately,
those data are not sufficient to pin down all the LECs in
the N3LO expressions of masses. Thus we prefer to
carry out the numerical analysis with the help of N2LO
formulas, where the involved parameters can be well
determined through a fit to the data with Mπ ≤
500 MeV. We extrapolate the masses of Ξcc and Ωcc
to the physical limit and compare them with the existing
experimental values. It is found that our result of the Ξcc
mass is in good agreement with the recent determination
by LHCb Collaboration [7] within uncertainties.
However, it is larger than the value by SELEX
Collaboration [2]. We predict the sigma terms, σπB
and σsB, as well as the mass splitting between Ξcc
and Ωcc. Their quark mass dependences are also shown
for later use when relevant lattice results are available.

This paper is organized as follows. The details of our
calculation of the masses and sigma terms within BChPT
are elaborated in Sec. II. In Sec. II A, the relevant effective
Lagrangians are introduced. Chiral results of self-energies
and masses together with sigma terms are specified in
Secs. II B and II C, respectively. Finite-volume corrections
to the masses are calculated in Sec. II D. In Sec. III, the
numerical study is described. The properties of finite-
volume corrections are discussed in Sec. III A. Fit to lattice
QCD data are explained in Sec. III B. In Sec. III C, the
prediction of the masses, sigma terms, and mass splitting
are discussed. Summary is given in Sec. IV. Definition of
loop integrals and β functions are relegated to Appendixes A
and B, respectively.

II. MASSES AND SIGMA TERMS IN BCHPT

A. Chiral effective Lagrangian

The chiral effective Lagrangian relevant for our calcu-
lation of the masses and sigma terms up to Oðp4Þ can be
written as

Leff ¼ Lð1Þ
πΨ þ Lð2Þ

πΨ þ Lð4Þ
πΨ; ð1Þ

where the numbers in the superscripts denote the chiral
orders. The leading order (LO) chiral Lagrangian reads

Lð1Þ
πΨ ¼ Ψ̄

h
iDμγ

μ −mþ gA
2
uμγμγ5

i
Ψ; ð2Þ

where gA and m are the axial coupling and the mass of the
doubly charmed baryons in the chiral limit, respectively.
According to SU(3) symmetry of light quarks, the doubly
charmed baryons of spin-1

2
are compiled in the triplet

Ψ ¼ ðΞþþ
cc ;Ξþ

cc;Ωþ
ccÞT: ð3Þ

The covariant derivative acting on the baryon fields is
defined by

Dμ ¼ ∂μ þ
1

2
ðu†∂μuþ u∂μu†Þ;

u ¼ exp

�
i
λaϕaffiffiffi
2

p
F0

�
; ð4Þ

where F0 is the decay constant of the Goldstone
bosons (GBs) in the chiral limit. The GBs are collected
in the octet

λaϕa ¼

0BBB@
1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 − 2ffiffi
6

p η

1CCCA: ð5Þ
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Here the λa (a ¼ 1;…; 8) denote theGell-Mannmatrices and
summation over repeated indices is implied. Furthermore,
the so-called chiral vielbein uμ is given by

uμ ¼ iðu†∂μu − u∂μu†Þ: ð6Þ

Analogous to the procedure in Ref. [56], the NLO
Lagrangian is constructed in Ref. [54] and has the form

Lð2Þ
πΨ ¼ Ψ̄

�
c1hχþi −

�
c2
8m2

huμuνifDμ; Dνg þ H:c:

�
−
�

c3
8m2

fuμ; uνgfDμ; Dνg þ H:c:

�
þ c4

2
hu2i

þ c5
2
u2 þ ic6

4
σμν½uμ; uν� þ c7χ̂þ

�
Ψ: ð7Þ

Here h� � �i denotes the trace in the flavor space. The chiral
block χþ is given by

χþ ¼ u†χu† þ uχ†u ð8Þ

with the mass matrix χ ¼ diagðM2
π;M2

π; 2M2
K −M2

πÞ.
The corresponding traceless chiral operator χ̂þ is defined
as χ̂þ ¼ χþ − 1

3
hχþi. The low-energy constants ci

(i ¼ 1;…; 7) are unknown parameters and have dimension
GeV−1.
At Oðp4Þ, the following counter terms are needed,

Lð4Þ
πΨ ¼ Ψ̄½e1hχþi2 þ e2χ̂þhχþi þ e3hχ̂2þi þ e4χ̂2þ�Ψ; ð9Þ

where ei (i ¼ 1;…; 4) are unknown LECs with mass
dimension GeV−3.

B. Self-energies of doubly charmed baryons

The one-particle irreducible Feynman diagrams contrib-
uting to the baryon two-point functions up to Oðp4Þ are
displayed in Fig. 1.
At Oðp2Þ, the tree level contribution corresponding to

diagram (a) reads

Σð2Þ
a ð=pÞ ¼ −2ðĉ1hχi þ c7χÞ; ð10Þ

with the combination ĉ1 ¼ c1 − 1
3
c7. The tree contribution

of Oðp4Þ is from diagram (b) and its explicit expression is

Σð4Þ
b ð=pÞ ¼ −4ðê1hχi2 þ ê2χhχi þ e3hχ2i þ e4χ2Þ ð11Þ

with ê1 ¼ e1 − 1
3
e2 − 1

3
e3 þ 1

9
e4 and ê2 ¼ e2 − 2

3
e4.

At Oðp3Þ, the leading one-loop order, diagram (c) gives

zero contribution, i.e. Σð3Þ
c ð=pÞ ¼ 0, while diagram (d) yields

Σð3Þ
d ð=pÞ ¼ −

g2A
4F2

λaλaGDð=p;Ma;mÞ; ð12Þ

where summation over repeated indices is implied. The
loop functionGD, together withGEi;F, appearing below, are
defined in Appendix A.
At Oðp4Þ, the N3LO loop contributions to the self-

energy are

Σð4Þ
e ð=pÞ ¼ −

1

4F2

�
4ĉ1hχλaλai

þ c7
X2
m¼0

Cm
2 λ

m
a χλ

2−m
a

�
GE1ð=p;Ma;mÞ

þ 1

2m2F2
½c2hλaλai þ 2c3λaλa�GE2ð=p;Ma;mÞ

þ 1

2F2
½c4hλaλai þ c5λaλa�GE3ð=p;Ma;mÞ; ð13Þ

and

Σð4Þ
f ð=pÞ¼−

g2A
2F2

½ĉ1λahχiλaþc7λaχλa�GFð=p;Ma;mÞ: ð14Þ

The above self-energies are expressed in matrix form.
For a specific doubly charmed baryon B ∈ fΞþþ

cc ;Ξþ
cc;Ωþ

ccg
the expression can be obtained using

ΣBð=pÞ ¼ χTB½Σð2Þ
a þ Σð4Þ

b þ Σð3Þ
d þ Σð4Þ

e þ Σð4Þ
f �χB; ð15Þ

where the unit vectors in the SUð3Þ flavor space are

χΞþþ
cc

¼

0B@1

0

0

1CA; χΞþ
cc
¼

0B@0

1

0

1CA; χΩþ
cc
¼

0B@0

0

1

1CA: ð16Þ

C. The mass and the sigma term

The dressed propagator iSB of the doubly charmed
baryon is expressed as

(a) (b) (c)

(d) (e) (f)

FIG. 1. One-particle-irreducible diagrams. Dashed and solid
lines represent pions and nucleons, respectively. Numbers in the
squares mark the chiral orders of the vertices.
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iSB ¼ i
=p −m − ΣBð=pÞ

¼ i
=p −m − ½ΣBðmÞ þ ð=p −mÞΣ0

BðmÞ þRBð=pÞ�
¼ iZB

=p −m − ZBΣBðmÞ − ZBRBð=pÞ
; ð17Þ

with the wave function renormalization constant

ZB ¼ 1

1 − Σ0
BðmÞ ¼ 1þ Σ0

BðmÞ þOðp4Þ: ð18Þ

The mass is defined as the pole at =p ¼ mB,

mB ¼ mþ ZBΣBðmÞ þ ZBRBðmBÞ: ð19Þ

Using the self-energies calculated in the above section and
truncating at Oðp4Þ, one has

mB ¼ mþ ΣBðmÞ þ χTB½Σð2Þ
a ðmÞΣð3Þ

d
0ðmÞ�χB; ð20Þ

where the derivative is defined by

Σð3Þ
d

0ð=pÞ≡ −
g2A
4F2

λaλa
∂
∂=pGDð=p;Ma;mÞ:

In Eq. (20), the UV divergences from loop contributions are
subtracted using the modified minimal subtraction (gMS)
scheme [57] and cancelled by the counter terms generated
by the effective Lagrangian. Further, the finite PCB terms
due to presence of the internal baryon propagators are
absorbed in the LECs. To that end, one needs to perform the
following substitutions of the LECs,

X → X þ βXmR
16π2F2

þ β̄Xm
16π2F2

; X ∈ fm; ĉ1; c7g;

Y → Y þ βYR
16π2F2

; Y ∈ fê1; ê2; e3; e4g; ð21Þ

where the β functions are all given in Appendix B. Here
R ¼ 2/ðd − 4Þ þ γE − 1 − lnð4πÞ, with d the number of
spacetime dimensions and γE the Euler constant.
To be specific, one can organize the explicit expressions

of the masses up to Oðp4Þ as

mB ¼ mþmð2Þ
B þmð3Þ

B þmð4Þ
B ; ð22Þ

where the Oðp2Þ contribution reads

mð2Þ
B ¼

X
ϕ¼π;K

CðaÞB;ϕM
2
ϕ; ð23Þ

with the coefficients CðaÞB;ϕ given in Table I. The N2LO
corrections to the masses of doubly charmed baryons are

mð3Þ
B ¼ −

X
ϕ¼π;K;η

g2A
64π2F2

ϕ

CðdÞB;ϕHDðMϕÞ; ð24Þ

while the N3LO ones read

mð4Þ
B ¼CðbÞB;πM

4
πþCðbÞB;KM

4
KþCðbÞB;πKM

2
πM2

K

−
X

ϕ¼π;K;η

Cðe1ÞB;ϕ

64π2F2
ϕ

HE1ðMϕÞþ
X

ϕ¼π;K;η

Cðe2ÞB;ϕ

32π2m2F2
ϕ

HE2ðMϕÞ

þ
X

ϕ¼π;K;η

Cðe3ÞB;ϕ

32π2F2
ϕ

HE3ðMϕÞ−
X

ϕ¼π;K;η

g2AC
ðfÞ
B;ϕ

32π2F2
ϕ

HFðMϕÞ

−
X

ϕ¼π;K;η

g2AC
ðwfÞ
B;ϕ

32π2F2
ϕ

HwfðMϕÞ: ð25Þ

TABLE I. Coefficients in the mass formulas: Eqs. (23), (24),
and (25). In the table, σ17 ¼ ĉ1 þ c7 and δ17 ¼ ĉ1 − c7.

Ξþþ
cc ðΞþ

ccÞ Ωþ
cc

CðaÞB;π
−2σ17 −2δ17

CðaÞB;K
−4ĉ1 −4σ17

CðbÞB;π
−4ðê1 þ ê2 þ 3e3 þ e4Þ −4ðê1 − ê2 þ 3e3 þ e4Þ

CðbÞB;K
−16ðê1 þ e3Þ −16ðê1 þ ê2 þ e3 þ e4Þ

CðbÞB;πK
−8ð2ê1 þ ê2 − 2e3Þ 16ð−ê1 þ e3 þ e4Þ

CðdÞB;π
3 0

CðdÞB;K
2 4

CðdÞB;η
1
3

4
3

Cðe1ÞB;π
12ð2ĉ1 þ c7ÞM2

π 24ĉ1M2
π

Cðe1ÞB;K
8ð4ĉ1 þ c7ÞM2

K 16ð2ĉ1 þ c7ÞM2
k

Cðe1ÞB;η
4
3
½6ĉ1M2

η þ c7M2
π � 8

3
½3σ17M2

η − c7M2
π�

Cðe2ÞB;π
6ðc2 þ c3Þ 6c2

Cðe2ÞB;K
4ð2c2 þ c3Þ 8ðc2 þ c3Þ

Cðe2ÞB;η
2
3
ð3c2 þ c3Þ 2

3
ð3c2 þ 4c3Þ

Cðe3ÞB;π
3ð2c4 þ c5Þ 6c4

Cðe3ÞB;K
2ð4c4 þ c5Þ 4ð2c4 þ c5Þ

Cðe3ÞB;η
1
3
ð6c4 þ c5Þ 2

3
ð3c4 þ 2c5Þ

CðfÞB;π
6ĉ1M2

K þ 3σ17M2
π 0

CðfÞB;K
4σ17M2

K þ 2δ17M2
π 8ĉ1M2

K þ 4σ17M2
π

CðfÞB;η
1
3
ð2ĉ1M2

K þ σ17M2
πÞ 4

3
ð2σ17M2

K þ δ17M2
πÞ

CðwfÞB;π
−6ĉ1M2

K − 3σ17M2
π 0

CðwfÞB;K
−4ĉ1M2

K − 2σ17M2
π −8σ17M2

K − 4δ17M2
π

CðwfÞB;η
− 1

3
½2ĉ1M2

K þ σ17M2
π � − 4

3
½2σ17M2

K þ δ17M2
π�
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All the relevant coefficients are listed in Table I. In
AppendixA, the expressions of the subtracted loop integrals
are shown.
The sigma terms can be obtained by applying the

Hellmann-Feynman theorem to the masses,

σπB ¼ m̂
∂mB

∂m̂ ; σsB ¼ ms
∂mB

∂ms
; ð26Þ

where m̂ ¼ ðmu þmdÞ/2. Here the up, down and strange
quark masses are denoted by mu, md and ms, respectively.
In the isospin limit, i.e. mu ¼ md ¼ m̂, the quark masses
are simply related to the LO masses of the GBs though:

M2
π ¼ 2B0m̂; M2

K ¼ B0ðm̂þmsÞ;
M2

η ¼ 2B0ðm̂þ 2msÞ/3; ð27Þ

with B0 being a constant related to quark condensate.
Therefore, in practice, the derivatives can be rewritten with
respect to the GBs masses, instead of the quark masses.

D. Finite-volume corrections

On the lattice, simulations are performed for a system of
interest enclosed in a finite box. The momentum is
discretized and can only take values of 2πn⃗/L with n⃗ a
vector of integers and L the side length of the hypercube.
Consequently, an integration over spatial momenta in
infinite volume corresponds to a summation over the
momentum modes in finite volume. The difference caused
by such a replacement is named as a finite-volume
correction. Specifically, the finite-volume correction for
a given quantity Q is given by

δL½Q� ¼ QðLÞ −Qð∞Þ; ð28Þ

where QðLÞ and Qð∞Þ are calculated in finite-volume L3

and infinite volume, respectively. In the so-call p-regime
where MϕL ≫ 1, ChPT provides a systematical tool to
investigate the finite-volume dependence of observables.
To that end, one just needs to calculate the integrals
stemming from loop diagrams in a finite box, while the
temporal dimension can be treated as infinite since it is
generally much larger than the spatial components in
LQCD simulation for zero-temperature.
To obtain finite-volume corrections to the masses of

doubly charmed baryons, we choose to work in the rest
frame of the baryons and follow the procedure demon-
strated in Ref. [32,51]. For the loop integralHD, we obtain

δL½HD� ¼
Z

1

0

dx

�
m

�
1

2
þ x

�
δ1
2
ðL;M2

BÞ

−
m
4
½x3m2 þ ð2þ xÞM2

B�δ3
2
ðL;M2

BÞ
�
; ð29Þ

withM2
B ¼ x2m2 þ ð1 − xÞM2

ϕ − i0þ. Here the integration
is performed over the Feynman parameter x. Furthermore,
the master function is given by

δrðL;M2Þ ¼ 2−1/2−rð ffiffiffiffiffiffi
M

p Þ3−2r
π3/2ΓðrÞ

X∞
n¼1

MulðnÞ

× ðL
ffiffiffiffiffiffi
M

p ffiffiffi
n

p ÞK3/2−rðL
ffiffiffiffiffiffi
M

p ffiffiffi
n

p Þ; ð30Þ

where KrðzÞ is the modified Bessel function of the second
kind, and MulðnÞ is multiplicity whose value up to n ¼ 20
can be found in, e.g., Ref. [31]. Analogously, the FVCs for
HEi (i ¼ 1, 2, 3) read

δL½HE1� ¼ −
1

2
δ1
2
ðL;M2

ϕÞ; ð31Þ

δL½HE2� ¼ −
1

2
m2δ−1

2
ðL;M2

ϕÞ; ð32Þ

δL½HE3� ¼ −
1

2
M2

ϕδ1
2
ðL;M2

ϕÞ: ð33Þ

There are no integrations over Feynman parameters in the
above expressions since only one internal propagator is
involved in each tadpole loop. The calculation of the FVCs
corresponding to diagram (f) in Fig. 1 is more complicated
because of the presence of three internal propagators.
Nonetheless, the result can be obtained straightforwardly,
which is

δL½HF� ¼−
Z

1

0

dxx

�
δ1
2
ðL;M2

BÞ−
1

2
½3m2ð1þx2Þ

þ2M2
B�δ3

2
ðL;M2

BÞþ
3

8
½x4m4þ2m2M2

Bð2þx2Þ

þM4
B�δ5

2
ðL;M2

BÞ
�
; ð34Þ

where MB is the same as the one in Eq. (29). Lastly, the
contribution due to the wave function renormalization is
given by

δL½Hwf� ¼
Z

1

0

dx
4
f4xδ1

2
ðL;M2

BÞ − ½m2xð9x2 − x − 6Þ

þ ð1þ xÞM2
B�δ3

2
ðL;M2

BÞ þ 3m2ðx − 1Þx
× ½m2x3 þ ð2þ xÞM2

B�δ5
2
ðL;M2

BÞg: ð35Þ

In the end of this section, it is worth stressing that the
calculations of FVCs are performed in four dimensions: a
finite hypercube plus an infinite time interval. This is
feasible due to the fact that QðLÞ and Qð∞Þ have the
same ultraviolet property which guarantees that δL½Q� is
finite in four dimensions. Besides, as pointed out in
Ref. [51], there are no PCB terms in δL½Q� either, since
the short-distance behaviors of QðLÞ and Qð∞Þ should
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be exactly identical. Thus, the quantities respecting
power counting in finite volume can be easily obtained
just by adding the FVCs to the corresponding EOMS-
renormalized ones in infinite volume.

III. NUMERICAL RESULTS AND DISCUSSION

A. Properties of finite-volume corrections

We compute the finite-volume corrections given in
Sec. II D as functions of the lattice sizeLwith three different
Goldstone masses Mϕ ¼ 0.2, 0.4 and 0.6 GeV. The baryon
massm is fixed to 3.6 GeV. The results are shown in Fig. 2.
From the figure, on the one hand, it is found that all the
relevant FVCs decrease rapidly as L increases up to ∼2 fm,
behaving quite typically as the FVCs for the nucleons shown
inRef. [51]. The latticeQCDdata used in our fit are obtained
using lattice spaces ranging from 1.8 fm to 2.7 fm, which are
in thevicinity of the turning point. The data corresponding to
L ¼ 1.8 fm might receive a larger FVC than the others. On
the other hand, the smaller the Goldstone mass Mϕ is, the
bigger the modules of the FVCs are. Therefore, contribu-
tions due to coupling of light pions dominate and for lattice
data FVCs are larger when simulations are donewith values
of masses close to physical ones. Note that we checked that
the influence of changing the baryon mass m, e.g., in the
range [2.6, 4.6] GeV, is negligible.
The finite-volume corrections δL½HF� and δL½Hwf� are

rather similar. Both of them are respectively larger than the
other ones in Fig. 2. Nonetheless, for the FVCs to the
masses in Eq. (25), there should exist sizeable cancellation
between the two relevant terms in the last two rows, since

their corresponding coefficients have opposite signs, as can
be seen in Table I.

B. Fit to lattice QCD data

We are now in the position to confront the chiral
expression of doubly charmed baryons with lattice QCD
determinations by explicitly including finite-volume cor-
rections. As already discussed in the introduction, it is
interesting to study the lattice QCD data given in Ref. [20].
Unfortunately, in our theoretical formula, Eq. (22), there
are too many unknown LECs, twelve in total: m, ci
(i ¼ 1;…; 5; 7), gA and ej (j ¼ 1;…; 4). Hence, we start
with mass formula just at Oðp3Þ order where only four
parameters, m, c1;7 and gA, are involved.
The lattice QCD data are obtained by numerical simu-

lations with unphysical quark masses. The u-, d- and
s-quark mass dependence can be always expressed in
terms of the dependence on the leading-order masses of
the Goldstone bosons shown in Eq. (27). More specifically,
the light u- or d-quark mass dependence is usually re-
expressed as pion mass dependence. The s-quark mass
dependence can be casted to the kaon mass in the limit of

M2
πð∝ m̂Þ → 0, denoted as M

∘ 2

K. Then, with the help of
Eq. (27), the pion- and strange-mass dependence of the
kaon mass can be written as

MK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
∘ 2

K þM2
π/2

q
; M

∘ 2

K ¼ B0ms: ð36Þ

The data for the strange-doubly-charmed baryon Ωcc is
obtained with a strange quark mass very close to the tuned
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FIG. 2. Finite-volume corrections to loop integrals as functions of the lattice size L.
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value using physical kaon mass [20]. Therefore, as a good

approximation, one can fix M
∘ 2

K just by imposing the
physical values of the pion and kaon masses: Mphy

π ¼ 139

andMphy
K ¼ 496 MeV.As forMη, it is always obtained from

pion and kaon masses through the Gell-Mann-Okubo mass
relation: 3M2

η ¼ 4M2
K −M2

π. Themasses of doubly charmed
baryons also depend on the valence c-quark mass. In SU(3)
chiral limit, all the light quark masses are zero and the
baryon mass is equal to m, i.e., the first term on the right-
hand side of Eq. (22). It is thus reasonable to assume that
only the chiral-limit baryonmass,m, carries the information
of the dependence on the c quark mass. In line with heavy
quark expansion, such a dependence can be expressed in the
form of

m ¼ m̃þ 2mc þ α/mc þOð1/m2
cÞ; ð37Þ

where m̃ and α are unknown constants. Since the QCD data
of Ref. [20] are provided for various values of the c-quark

TABLE II. Fit results (with finite-volume corrections).

Value Correlation matrix

χ2/d:o:f: 5.29
35−4 m̃ α ĉ1 c7

m̃ [GeV] 3.101(0.111) 1 −0.68 0.69 −0.19
α [GeV2] −0.453ð0.047Þ 1 0.01 −0.05
ĉ1 [GeV−1] −0.064ð0.055Þ 1 −0.56
c7 [GeV−1] −0.085ð0.085Þ 1
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FIG. 3. Masses of doubly charmed baryons as functions of mc for different pion masses and lattice sizes.
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mass, those two constants should be treated as fitting
parameters, instead of m.
In our fitting procedure, we employ Fπ ¼ 92.2 MeV,

FK ¼ 112 MeV and Fη ¼ 110 MeV as done in Ref. [54].
The pion mass dependences of the decay constants are not
taken into account, since the caused differences are of
higher orders—at least Oðp5Þ. Furthermore, the axial
coupling constant is fixed to gA ¼ −0.2 [55]. The gA here
is related to a common coupling g involved in an effective
Lagrangian respecting heavy quark-diquark symmetry
[58], whose value can be further estimated by fitting to
the D�þ decay width. Finally, it is better to use the
combination ĉ1 rather than c1 as a fitting parameter such
that possible large correlation between c1 and c7 can be
avoided. In summary, the fitting parameters in our fit at
Oðp3Þ order are m̃, α, ĉ1 and c7.
To proceed, we perform fit to the lattice QCD data

corresponding to different values of Mπ , mc and L. The
best-fitted results of the parameters and their correlations
are collected in Table II. As one can see from the table,
the values come out to be very natural and the corre-
lations are quite acceptable. It is also found that the
inclusion of FVCs does not change the values of the
parameters dramatically when compared to the results in
Ref. [55] obtained regardless of FVCs. In Fig. 3, we plot
the masses of Ξcc and Ωcc as functions of mc for
different pion masses Mπ and lattice sizes L. The grey
bands are obtained by varying the parameters within
their 1-σ uncertainties. All the data with Mπ ≤ 500 MeV
are included in the fit. The fit results remain almost the
same if we lessen the range of pion mass to
Mπ ≤ 400 MeV. It is not feasible to decrease further
the range as the data included are not sufficient to
achieve a stable fit.
The above discussions are dedicated to the fit using

mass formula truncated at Oðp3Þ. Extension to Oðp4Þ is
straightforward. Nonetheless, similar to the case for
nucleon mass at Oðp4Þ [52], one has to replace the

LO meson masses in mð2Þ
B by their corresponding Oðp4Þ

counterparts, which can be found, for instance, in
Ref. [26]. Such a replacement generate Oðp4Þ contri-

butions to mð4Þ
B . The relevant LECs of Li in Oðp4Þ

Goldstone masses can be fixed to the empirical values
given in Ref. [59]. We fitted to the lattice QCD data but
no stable results can be achieved. The data set is not
sufficient to pin down twelve fitting parameters.

C. Predictions

We can make predictions based on the fitted values
of the parameters in Table II. In Fig. 4, the masses of the
doubly charmed baryons are plotted as functions of mc

with Mπ ¼ Mphy
π and L → ∞. In Ref. [20], three differ-

ent values of lattice spacing are used in the simulations,
which are denoted by β ¼ 3.9, β ¼ 4.05 and β ¼ 4.2.

The corresponding physical values of the charm quark
mass are mphy

c ½β1� ¼ 0.598 GeV, mphy
c ½β2� ¼ 0.591 GeV

and mphy
c ½β3� ¼ 0.598 GeV, respectively. We take the

average as the central value of mphy
c and the standard

deviation as the error, which leads to mphy
c ¼ 0.596ð4Þ.

Correspondingly, in Fig. 4, the vertical green slashed
band corresponds to the physical region of mc within its
1-σ standard deviation. In addition, the purple back-
slashed band is obtained by varying the parameters
within their 1-σ uncertainties given in Table II. Our
predicted physical masses of the baryons are located in
the overlaps of the two bands. In the top panel of Fig. 4,
we also show the experimental values of the mass of Ξcc
by LHCb [7] and SELEX [1]. Interestingly, it is found
that our prediction is in good agreement with the LHCb
determination. On the contrary, the SELEX value is just
below the border of our predicted region. For easy
reference, our predicted physical masses and sigma
terms of the doubly charmed baryon are compiled in
Table III. Note that the predicted strangeness sigma
terms of the doubly charmed baryon are comparable to
those of the ground-state octet baryons, see, e.g., in
Ref. [60]. For instance, the strangeness sigma terms of
the Ξcc and the nucleon, i.e., states without valence s
quark in quark-model interpretation, turn out to be of the
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FIG. 4. Physical masses of the doubly charmed baryons.

TABLE III. Physical masses and sigma terms.

B ¼ Ξcc B ¼ Ωcc

mB 3.591� 0.067 GeV 3.657� 0.100 GeV
σπB 10.5� 3.4 MeV 4.0� 2.8 MeV
σsB 48.7� 34.7 MeV 118.0� 76.1 MeV
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same order, i.e., tens of MeV. However, regarding the
pion sigma terms, unlike the case for the nucleon that a
large value of σπN (≥ 50 MeV) was obtained [61–64],
our predicted values of σπΞcc

and σπΩcc
are small.

Likewise, themc-dependence of sigma terms, at physical
pion mass and in infinite volume, are shown in first line of
Fig. 5. The grey bands are due to the variation of the fitted

parameters within their uncertainties. The vertical green
bands represent the physical mc region. Our predicted
values for the sigma terms are inside the overlaps. Unlike
the masses in Fig. 4, which strongly depend onmc, one can
notice from Fig. 5 that the dependence of sigma terms on
mc is negligible. In other words, the influence of the heavy
c quark is almost absent for the sigma terms. This
observation verifies that the sigma terms are more appro-
priate than the masses to explore the chiral dynamics of the
doubly charmed baryons. In the second line of Fig. 5 we
show M2

πð∝ m̂Þ dependence of σπB where the other quark
masses are set to physical values. As expected, the values of
σπB with B ¼ Ξcc;Ωcc increase with M2

π . We checked also
that the σsB are not sensitive to the variation of M2

π .

Nonetheless, there exists strong M
∘ 2

Kð∝ msÞ dependence
for σsB as one can see from the last two plots in Fig. 5.
Another interesting quantity related to the light quarks is

the mass splitting between the Ξcc and Ωcc. In Fig. 6, the

M2
π and M

∘ 2

K dependences of the mass splitting Δm are

shown. It is found that Δm depends more strongly on M
∘ 2

K

than M2
π . Furthermore, the different trends of Δm as the

quark masses increase validate the fact that Δm ∝ ms − m̂.
At physical quark masses our prediction is
Δm ¼ 65.9� 51.3 MeV, in agreement with the determi-
nation extrapolated by the Lattice QCD group of Ref [19].

IV. SUMMARY

We have calculated the masses and sigma terms of the
doubly charmed baryons up to Oðp4Þ in a covariant
baryon chiral perturbation theory with Goldstone bosons
and the baryons as degrees of freedom. The masses at
complete one-loop order is renormalized by making use
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of the EOMS scheme, which restores the correct power
counting while respecting the proper analytic structure.
As a consequence, we also obtained the pion-baryon and
strangeness-baryon sigma terms by applying Hellmann-
Feynman theorem to the obtained masses. In order to
make comparison with LQCD results in a more rigorous
manner, the finite-volume corrections to the chiral results
of the masses are derived systematically by discretizing
the loop contributions. FVCs corresponding to the
relevant loop integrals are studied numerically and
typical behavior when varying the lattice size L is
observed, namely, FVCs decrease rapidly as L increases
up to ∼2 fm.
Using the mass formulas with FVCs, we investigated

the pion-mass and mc dependences for the masses of
doubly charmed baryons by performing fits to lattice
QCD data of Ref. [20]. It is found that more data, with
respect to more values of unphysical pion masses, are
required to pin down the LECs appearing in the N3LO
formulas. Nevertheless, the LECs in the N2LO mass
expressions can be well determined. Based on the fitted
values, we have extrapolated the baryon masses to the
physical limit. We find that our result for mΞcc

is in
agreement with the latest experiment determination by
LHCb Collaboration within uncertainty. However, it is
larger than the value by SELEX Collaboration. Finally,
we predict the sigma terms σπB and σsB with
B ∈ fΞcc;Ωccg, as well as the mass splitting between
Ξcc and Ωcc states. Their quark mass dependences are
studied as well.
The masses calculated in the present work will be

useful in the future investigation of observables like axial
charge and scattering lengths, related to the doubly
charmed baryons, within the framework of covariant
BChPT, since they are basic quantities involved in
expressions of almost all the others. The sigma terms
are related to the potentials of the GBs scattering off the
doubly charmed baryons, and hence can be implemented
as an additional constraint when making prediction of
exotic doubly charmed baryons based on unitatized
potentials.
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APPENDIX A: LOOP INTEGRALS

The loop functions involved in the self-energies in
Sec. II B are defined as follows:

GDð=p;Ma;mÞ≡ 1

i

Z
ddk
ð2πÞd

=k½ð=kþ =pÞ −m�=k
½k2 −M2

a�½ðkþ pÞ2 −m2� ;

GE1ð=p;Ma;mÞ≡ 1

i

Z
ddk
ð2πÞd

1

k2 −M2
a
;

GE2ð=p;Ma;mÞ≡ 1

i

Z
ddk
ð2πÞd

ðk · pÞ2
k2 −M2

a
;

GE3ð=p;Ma;mÞ≡ 1

i

Z
ddk
ð2πÞd

k2

k2 −M2
a
;

GFð=p;Ma;mÞ≡ 1

i

Z
ddk
ð2πÞd

=k½ð=kþ =pÞ −m�2=k
½k2 −M2

a�½ðkþ pÞ2 −m2�2 :

The loop integral in the Oðp3Þ mass formula (24) is

HDðMϕÞ ¼
2M2

ϕ

m
fĪB þm2½1 − ĪBϕðm2Þ�g; ðA1Þ

while the ones in the Oðp4Þ mass formula (25) read

HE1ðMϕÞ ¼ Īϕ;

HE2ðMϕÞ ¼
1

8
M2

ϕm
2½M2

ϕ þ 2Īϕ�;
HE3ðMϕÞ ¼ M2

ϕĪϕ;

HFðMϕÞ ¼
1

4m2 −M2
ϕ

f4M2
ϕĪB þ ðM2

ϕ − 12m2ÞĪϕ

− 2M2
ϕ½2m2 þ ðM2

ϕ − 6m2ÞĪBϕðm2Þ�g;

HwfðMϕÞ ¼
1

4m2 −M2
ϕ

fð5M2
ϕ − 12m2ÞĪϕ − 4M2

ϕĪB

þ 4M2
ϕ½m2 þ ð3m2 −M2

ϕÞĪBϕðm2Þ�g: ðA2Þ

Above, the one-loop scalar integrals are defined by

Īϕ¼−M2
ϕ ln

M2
ϕ

μ2
; ĪB¼−m2 ln

m2

μ2
;

ĪBϕðp2Þ¼ 1− ln
m2

μ2
þM2

ϕ−m2þp2

2p2
ln
m2

M2
ϕ

þp2− ðMϕ−mÞ2
p2

ρϕðp2Þ lnρϕðp
2Þ−1

ρϕðp2Þþ1
; ðA3Þ

with μ the renormalization scale and

ρϕðp2Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − ðMϕ þmÞ2
p2 − ðMϕ −mÞ2

s
: ðA4Þ

In our numerical calculation, μ is set to 1 GeV.
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APPENDIX B: β FUNCTIONS

In Eq. (21), the β functions involved in the cancellation of UV divergences are

βm ¼ 8

3
g2Am

2;

βĉ1 ¼ −
11

36
g2A þ ð8ĉ1 þ 3c7Þg2Am;

βc7 ¼ −
5

12
g2A − c7g2Am;

βê1 ¼
4ðc3 − 33c4 þ 2c5Þ þ 264ĉ1ð1þ g2AÞ − 33c2

864
;

βê2 ¼
−13c3 − 26c5 þ 44c7 þ ð15ĉ1 þ 11c7Þ4g2A

144
;

βe3 ¼
1

288
½120ĉ1 − 15c2 − 13c3 − 60c4 − 26c5þ 36c7ð1þ g2AÞ�;

βe4 ¼
3c3 þ 6c5 þ 4c7ð1þ g2AÞ

96
; ðB1Þ

and the ones for the finite renormalization read

β̄m ¼ −
8g2A
3

ĪB;

β̄ĉ1 ¼
g2A
36

�
1þ ĪB

m2

�
þ g2A
3m

ð8ĉ1 þ 3c7Þð2m2 − 3ĪBÞ;

β̄c7 ¼
5g2A
12

�
1þ ĪB

m2

�
−
2g2A
3

c7mþ c7g2A
ĪB

m
: ðB2Þ
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