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Recently, we have shown that the Xð3872Þ state can be naturally generated as a bound state by
incorporating the hadron interactions into the Godfrey-Isgur quark model using a Friedrichs-like model
combined with the quark pair creation model, in which the wave function for the Xð3872Þ as a combination
of the bare cc̄ state and the continuum states can also be obtained. Under this scheme, we now investigate
the isospin-breaking effect of Xð3872Þ in its decays to J=ψπþπ− and J=ψπþπ−π0. By coupling its
dominant continuum parts to J=ψρ and J=ψω through the quark rearrangement process, one could obtain
the reasonable ratio of BðXð3872Þ → J=ψπþπ−π0Þ=BðXð3872Þ → J=ψπþπ−Þ≃ð0.58–0.92Þ. It is also
shown that the D̄D� invariant mass distributions in the B → D̄D�K decays could be understood
qualitatively at the same time. This scheme may provide more insight into the enigmatic nature of the
Xð3872Þ state.
DOI: 10.1103/PhysRevD.97.034011

I. INTRODUCTION

The enigmatic Xð3872Þ state has been studied for more
than a decade, after it was first discovered by the Belle
Collaboration [1] and confirmed by the CDF, D0, and
BABAR collaborations [2–4]. The mass of the Xð3872Þ is
3871.69� 0.17 MeV [5], almost degenerate with the
D�0D̄0 threshold, which is the most intriguing feature.
Its width is also very narrow, with an upper limit of
1.2 MeV. Its quantum number was determined to be JPC ¼
1þþ by the LHCb Collaboration [6], which is consistent
with its radiative decay [7,8] and multipion transitions
[9,10]. The negative result in searching for its charged
partner in B decays [11] implies that it should be an
isoscalar state. Nevertheless, the dominant ρ contribution of
the dipion mass spectrum in Xð3872Þ → J=ψπþπ− [2]
suggests a large isospin-breaking effect. Compared with its
decay to J=ψπþπ−π0 through the I ¼ 0 ω resonance, the
ratio was measured to be

ΓðXð3872Þ → J=ψπþπ−π0Þ
ΓðXð3872Þ → J=ψπþπ−Þ ¼ 1.0� 0.4� 0.3 ð1Þ

by the Belle Collaboration [12] and

ΓðXð3872Þ → J=ψπþπ−π0Þ
ΓðXð3872Þ → J=ψπþπ−Þ ¼ 0.8� 0.3 ð2Þ

by the BABAR Collaboration [10]. These characteristics
and other properties as discussed in the literature (see
Refs. [13–17] for example) suggest an exotic nature of
the Xð3872Þ.
The proximity of the Xð3872Þ to the D�0D̄0 threshold

leads to a direct interpretation of it as a hadronic molecular
state. In fact, Törnqvist predicted a similarDD̄� bound state
around 3870MeVabout ten years before the discovery of the
Xð3872Þ [18], using a pion exchange model similar to the
discussion of the deuteron in the pn system, and named
the state a “deuson.” However, this picture may not explain
the production cross section of Xð3872Þ in pp̄ annihilation
[19] and also cannot explain its large decay rate to γψ 0
[20,21]. This meson-exchange model was also extended to
include other intermediate hadronic states like σ, ρ and ω in
Refs. [22–24]. The tetraquark model was also introduced to
explain its existence and the other exotic states [25].
However, this explanation also meets the large γψ 0 decay
rate problem. This bound state can also be reproduced by
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other models, such as the effective Lagrangian approach
[26–29], chiral unitary calculation [30], screened potential
model [24] and coupled-channel model [31]. It was also
pointed out in Refs. [32,33] that Xð3872Þ could be a mixture
of a cc̄ and the molecule-like DD̄� components which may
provide a solution to both the production and the radiative
decay problem. In our recentwork [34], we discussed the first
excited P-wave charmonium states using a Friedrichs-like
model combined with the quark pair creation (QPC) model
[35,36] to incorporate the hadron interaction effect into the
Godfrey-Isgur (GI) quark model [37]. We found that in the
23P1 channel the Xð3872Þ could be naturally generated as a
bound state just below the D0D̄0� threshold in this frame-
work, while another resonance pole at around 3.934�
0.040i GeV on the Riemann sheet attached to the physical
region above the D̄D� threshold is found to begenerated from
the bare χc1ð2PÞ, which might be related to the observed
Xð3940Þ state in experiments. Compared to the above
“deuson” picture, in this scheme, similar to Refs. [32,33],
the Xð3872Þ is dynamically generated by the coupling of the
bare 23P1 cc̄ state with the continuum, not from the pion
exchange. The wave function of Xð3872Þ can also be
explicitly written down as a linear combination of cc̄ and
the continuum states. With this information, more properties
of the Xð3872Þ can be studied. In this paper, we will mainly
focus on the isospin-breaking effect based on this result.
The ratio ΓðXð3872Þ → J=ψπþπ−π0Þ=ΓðXð3872Þ →

J=ψπþπ−Þ seems to imply a significant isospin-breaking
effect, but it was first pointed out by Suzuki that it might be
misleading [38]. Because the central mass value of J=ψω is
about 7 MeV higher than the Xð3872Þ mass, while the
central value of J=ψρ energy is lower than the Xð3872Þ
mass, the πþπ−π0 in the J=ψπþπ−π0 final state comes from
the far tail of the ω resonance and the kinematical phase
space of the isospin-conserved process is highly sup-
pressed. Considering this kinematical constraint, the pro-

duction amplitude ratio AðXð3872Þ→J=ψρÞ
AðXð3872→J=ψωÞÞ is estimated to be

0.27� 0.02 to produce a result comparable with exper-
imental values. Meng and Chao addressed this problem by
considering the rescattering effect in an effective
Lagrangian method [39]. They treated the Xð3872Þ as an
elementary field and introduced the effective interactions
among the X state, the pseudoscalar, and the vector mesons.
By calculating the imaginary and real parts of the rescatter-
ing amplitudes, they found a consistent value of the ratio in
their parameter space. Li and Zhu [40] investigated the
probability in the framework of one-meson exchange by
considering the S-D wave mixing and they determined the
ratio of these two modes to be 0.42. Gammermann and Oset
[41] used the on-mass-shell Lippmann-Schwinger equation
method and found a branch ratio of 1.4.
In the present paper, as stated above, we will discuss the

isospin-breaking effect from the starting point of our
previous paper [34]. The Friedrichs-like model is exactly

solvable and the interactions between the bare cc̄ and the
Okubo-Zweig-Iizuka (OZI)-allowed continuum states are
approximated by the QPC model using the wave functions
for bare states from the GI model. This just provides a
general scheme to make corrections to the well-accepted GI
model by including the hadron interactions. The exper-
imentally observed first excited P-wave charmonium states
can be reasonably produced simultaneously. The wave
functions for these states in terms of the bare cc̄ and
continuum states can also be explicitly written down. Once
the wave function of the Xð3872Þ is explicitly given in this
scheme, we are able to insert an interaction Hamiltonian
between the Xð3872Þ wave function and the final states
J=ψω or J=ψρ and calculate the related transition ampli-
tudes and the branching fraction. If the OZI-suppressed
couplings are omitted, the cc̄ contribution would be
neglected and only the continuum components will con-
tribute to the amplitude. The couplings between the final
states and the continuum parts could then be described by
the quark rearrangement model developed by Barnes and
Swanson (BS model) [42]. The merit of this choice is that
the BS model considers the spin-spin hyperfine, color
Coulomb, and linear confinement interactions among the
quarks between different mesons, which respects the same
spirit as the GI model and no new parameter needs to be
introduced. By a standard derivation of the representation
of the transition amplitude and numerical calculations, our

final result of ΓðXð3872Þ→J=ψπþπ−π0Þ
ΓðXð3872Þ→J=ψπþπ−Þ turns out to be in good

agreement with the experimental value. Our method may
have some similarity with the widely used coupled-channel
formalism such as in Refs. [43–48]. However, we are using
the well-accepted GI wave function in the QPC model and
the quark rearrangement model in our calculation, which
provides a more solid theoretical basis and makes our result
more convincing.
This paper is organized as follows. The theoretical

foundations are introduced in Sec. II, which include the
Friedrichs model, its extended scheme, and the quark
rearrangement model by Barnes and Swanson. The numeri-
cal calculations of the isospin-breaking effect are given in
Sec. III. Section IV contains our final conclusion and
discussions.

II. THEORETICAL MODEL

In this section, we will briefly introduce the theoretical
basis of our discussion which includes the main results of
the Friedrichs model and its extended version, the quark
rearrangement model by Barnes and Swanson, and the
derivations of the transition amplitudes of Xð3872Þ to
J=ψω or J=ψρ.

A. The Friedrichs model

In 1948, Friedrichs proposed an exactly solvable model
to understand an unstable state [49]. The simplest form of
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the Friedrichs model includes a free HamiltonianH0 and an
interaction part V. The free Hamiltonian H0 has a bare
continuous spectrum ½Eth;∞Þ, and a discrete eigenvalue E0

imbedded in this continuous spectrum (E0 > Eth). The
interaction part describes the coupling between the bare
continuous state and discrete states of H0 so that the
discrete state is dissolved in the continuous state and a
resonance is produced.
In the energy representation, the free Hamiltonian can be

expressed as

H0 ¼ E0j0ih0j þ
Z

∞

Eth

EjEihEjdE; ð3Þ

where j0i denotes the bare discrete state and jEi denotes the
bare continuum state. The normalization conditions for the
bare states are

h0j0i¼1; hEjE0i¼δðE−E0Þ; h0jEi¼hEj0i¼0: ð4Þ

The interaction part serves to couple the bare discrete state
and the bare continuous state as

V ¼ λ

Z
∞

Eth

½fðEÞjEih0j þ f�ðEÞj0ihEj�dE; ð5Þ

where the fðEÞ function denotes the coupling function and
λ denotes the coupling strength. This eigenvalue problem
HΨðxÞ ¼ xΨðxÞ, with the full Hamiltonian H ¼ H0 þ V,
can be exactly solved and the final continuum state is

jΨ�ðxÞi ¼ jxi þ λ
f�ðxÞ
η�ðxÞ

�
j0i þ λ

Z
∞

Eth

fðEÞ
x − E� iϵ

jEidE
�
;

ð6Þ

in which the resolvent η�ðxÞ is defined as

η�ðxÞ ¼ x − E0 − λ2
Z

∞

Eth

jfðEÞj2
x − E� iϵ

dE: ð7Þ

The normalization is hΨ�ðEÞjΨ�ðE0Þi ¼ δðE − E0Þ and the
subscript � denotes the in states (þ) and out states (−),
respectively. The scattering S-matrix can also be obtained
as

SðE;E0Þ ¼ δðE − E0Þ
�
1 − 2πi

λfðEÞf�ðEÞ
ηþðEÞ

�
: ð8Þ

The η� functions can be analytically continued to the
complex z plane to be one complex function ηðzÞ for z ∈ C
with its boundary values ηðx� iϵÞ ¼ η�ðxÞ on the real
axis. Since there is only one threshold for the continuum,
there is only one cut for this function, and the ηðzÞ function
is defined on a two-sheeted Riemann surface. The zero
points for ηðzÞ ¼ 0 will be the poles for the S-matrix.

The zero points of ηðzÞ or the poles of the S-matrix will
represent the generalized complex-valued eigenstates
(called the Gamow state) for the full Hamiltonian, which
satisfy Hjzi ¼ zjzi with z ∈ C as described in the rigged-
Hilbert-space formulation of quantum mechanics devel-
oped by Bohm and Gadella [50,51]. By summing all the
perturbation series, Prigogine and his collaborators also
obtained a similar mathematical description [52]. In gen-
eral, the different kinds of generalized eigenstates are
summarized as follows:

1. Bound state:
The solution of ηðzÞ ¼ 0 on the first-sheet real

axis below Eth represents a bound state. Its wave
function is written down as

jzBi ¼ NB

�
j0i þ λ

Z
∞

Eth

fðEÞ
zB − E

jEidE
�
: ð9Þ

This solution has a finite norm and can be normal-
ized as hzBjzBi ¼ 1 where

NB ¼ ðη0ðzBÞÞ−1=2 ¼
�
1þ λ2

Z
dE

jfðEÞj2
ðzB − EÞ2

�
−1=2

:

ð10Þ

Then, it is straightforward to define the so-called
“elementariness” Z and “compositeness” X as

Z ¼ N2
B; X ¼ λ2N2

B

Z
dE

jfðEÞj2
ðzB − EÞ2 ð11Þ

similar to the ones in Weinberg’s pioneering work in
studying the compositeness of the deuteron [53].
The physical meanings of “elementariness” and
“compositeness” are the probabilities of finding
the bare discrete and the bare continuum states in
the bound state respectively.

2. Virtual state:
The solution lying on the real axis of the second

Riemann sheet below the threshold represents a
virtual state. Its wave function is expressed as

jz�V i ¼ NV

�
j0i þ λ

Z
∞

Eth

fðEÞ
z�V − E

jEidE
�
; ð12Þ

where the superscripts � denote the two kinds of
integration contours which are continued from the
first sheet to the second sheet to enclose the virtual
state pole from the upper side (þ) or the lower side
(−) of the first sheet cut [54]. Unlike the bound state,
a virtual state does not have a well-defined norm
as the usual state in the Hilbert space. Thus the
compositeness and the elementariness for a virtual
state cannot be mathematically rigorously defined.
However, we can define a normalization such that
hz−V jzþV i ¼ 1, by choosing
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NV ¼ ðη0ðzVÞÞ−1=2 ¼
�
1þ λ2

Z
dE

jfðEÞj2
ðzV − EÞ2

�
−1=2

:

ð13Þ

One typical example is the virtual state in the singlet
neutron-proton scattering, which serves to contribute
to the unusually large scattering length.

3. Resonant state:
The real analyticity of the ηðzÞ function requires

the solutions of ηðzÞ ¼ 0 on the second complex
energy plane to appear as a conjugate pair. This pair
of poles of the S-matrix represents a resonance since
it will be unstable for its finite imaginary part of the
energy eigenvalue. The pole position on the lower-
half energy plane of the second Riemann sheet is
related to the mass M and width Γ as zR ¼ M − i Γ

2
.

The wave functions for them are written as

jzRi ¼ NR

�
j0i þ λ

Z
∞

Eth

dE
fðEÞ

½zR − E�þ
jEi

�
;

jz�Ri ¼ N�
R

�
j0i þ λ

Z
∞

Eth

dE
f�ðEÞ

½z�R − E�−
jEi

�
; ð14Þ

where zR is on the lower half plane and z�R is its
complex conjugate. The ½� � ��� means the analytical
continuations of the integrations from the upper or
lower edge of the first sheet cut [54]. Similar to the
virtual state, the wave function of a resonant state
cannot be normalized as usual, and thus is not the
normal state vector in the Hilbert space. However we
can choose

NR ¼ ðη0þðzRÞÞ−1=2

¼
�
1þ λ2

Z
dE

jfðEÞj2
½ðzR − EÞþ�2

�
−1=2

ð15Þ

to normalize the state as hz�RjzRi ¼ 1 and similarly
for jz�Ri. The normalization factor NR will be
complex in general and one might define “elemen-
tariness” and “compositeness” parameters as in
Ref. [55], but their physical meanings are not clear
because they are complex numbers too. However,
some other physical approximate definitions pro-
posed in Refs. [56,57] might be used to describe
these quantities.

It is worth emphasizing that these discrete spectrum
solutions may or may not be generated from the bare
discrete state of the free Hamiltonian. If the state is
generated from the bare discrete state, it will move back
to the bare state as one decreases the coupling strength to
zero. Besides, the discrete state could also be dynamically
generated from the singularities of the form factor. In this
case, if the coupling strength is tuned to be zero, the

positions of this kind of state may move towards the
singularity of the form factor on the unphysical sheets
[54,58]. It is also worth mentioning that the Friedrichs
model has several variants such as the Fano model [59], the
Lee model [60], and the Anderson model [61] in other
physics areas.

B. The extended Friedrichs model and the QPC model

In the original Friedrichs model, the states are labeled
only by the energy quantum number which seems to be
unrelated to the states in the three-dimensional space. In fact,
after partial-wave decomposition of the three-dimensional
states, a similar model in terms of the angular momentum
eigenstate is reduced to a Friedrichs-like model [55].
Consider the coupling of a bare discrete state j0; JMi with
a spin quantum number J and the magnetic quantum number
M and the bare continuum momentum eigenstate jp⃗; S; Szi
with a total spin S, z component Sz, and �p⃗ is the c.m.
momentum for the two particles composing the continuum
state for example. The discrete state denoted by the total
Hamiltonian for fixed JM can be recast into

H ¼ M0j0ih0j þ
X
L

Z
dEEjE;LihE;Lj

þ
X
L

Z
dEfLðEÞj0ihE;Lj þ H:c: ð16Þ

in which j0i ¼ j0; JMi, jE; Li ¼ ffiffiffiffiffiffi
μp

p jp; JM;LSi where
μ is the reduced mass of the two-particle state in its c.m.
frame and fðEÞ is the coupling form factor, as derived in
Ref. [55]. This is just similar to the original Friedrichs model
but with more continua and a similar exact solution can be
obtained.
We can make a generalization by adding more discrete

states and more continuum states, and the interactions
between continuum states can also be introduced. The
most general Hamiltonian with D discrete states, jii
(i ¼ 1;…; D), and C continuum states, jEj; ji
(j ¼ 1;…; C), can be expressed as

H ¼
XD
i¼1

Mij0; iih0; ij þ
XC
i¼1

Z
∞

Mi;th

dEiEijEi; iihEi; ij

þ
X
i2;i1

Z
Mi1 ;th

dE0
Z
Mi2 ;th

dEgi2;i1ðE0; EÞjE0; i2ihE; i1j

þ H:c:

þ
XD
i¼1

XC
j¼1

Z
Mj;th

dEfi;jðEÞj0; iihE; jj þ H:c: ð17Þ

where fi;jðEÞ is the form factor describing the interaction
between the ith discrete state and the jth continuum state,
and gij describes the interaction between the ith continuum
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and the jth continuum. For general interactions gij, the
model is not solvable, but if gijðE0; EÞ ¼ vijfiðE0ÞfjðEÞ
and fij ¼ uijfjðEÞ, where uij and vij are constant, the
model can also be exactly solved. See Ref. [55] for details.
In the present study, we only consider the case where

only one discrete state is coupled with several continuum
states without the interactions between the continuum
states. The solutions differ from the ones previously
described by simply adding more similar continuum
integrals in Eqs. (7), (9), (12), and (14).
We will restrict our study to the properties of mesons.

The next problem is to determine the interaction between
the one-meson state and the two-meson continuum states,
i.e. the coupling form factor in the Friedrichs model. A
simple method is to use the QPC model [35,36] to describe
the interaction of one-meson and two-meson continuum
states.
In this model, the meson coupling A → BC can be

defined as the transition matrix element

hBCjTjAi ¼ δ3ðP⃗f − P⃗iÞMABC ð18Þ

where the transition operator T in the QPC model is
defined as

T ¼ −3γ
X
m

h1m1 −mj00i
Z

d3p⃗3d3p⃗4δ
3ðp⃗3 þ p⃗4Þ

× Ym
1

�
p⃗3 − p⃗4

2

�
χ341−mϕ

34
0 ω34

0 b†3ðp⃗3Þd†4ðp⃗4Þ; ð19Þ

describing a quark-antiquark pair generated by the b†3 and
d†4 creation operators from the vacuum. ϕ34

0 ¼ ðuūþ dd̄þ
ss̄Þ= ffiffiffi

3
p

is the SUð3Þ flavor wave function for the quark-
antiquark pair. χ341−m and ω34

0 are the spin wave function and
the color wave function, respectively. Ym

1 is the solid
harmonic function. γ parametrizes the production strength
of the quark-antiquark pair from the vacuum. The definition
of the meson state here is different from the one in Ref. [62]
as we omit the factor

ffiffiffiffiffiffi
2E

p
to ensure the correct normal-

izations in the Friedrichs-like model,

jAðn; 2Sþ1LJ;MÞðP⃗Þi

¼
X

ML;MS

hLMLSMSjJMi
Z

d3pψnLML
ðp⃗Þχ12SMS

ϕ12ω12

×

����q1
�

m1

m1 þm2

P⃗þ p⃗

�
q̄2

�
m2

m1 þm2

P⃗ − p⃗

��
:

χ12, ϕ12 and ω12 are the spin wave function, flavor wave
function and the color wave function, respectively. p1 (p2)
and m1 (m2) are the momentum and mass of the quark
(antiquark). P⃗ ¼ p⃗1 þ p⃗2 is the momentum of the c.m., and

p⃗ ¼ m2p⃗1−m1p⃗2

m1þm2
is the relative momentum. ψnLML

is the wave
function for the meson, with n being the radial quantum
number.
By the standard derivation one can obtain the amplitude

MABC defined by Eq. (18) and the partial-wave amplitude
MSLðPðEÞÞ as in Ref. [36]. Then the form factor fSL
which describes the interaction between jAi and jBCi in the
Friedrichs model can be obtained as

fSLðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μPðEÞ

p
MSLðPðEÞÞ; ð20Þ

where PðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MBMCðE−MB−MCÞ

MBþMC

q
is the c.m. momentum,

and MB and MC are the masses of mesons B and C
respectively.
Now, the full Hamiltonian H can be expressed as

H ¼ E0j0ih0j þ
X
n;S;L

Z
∞

Eth;n

dEEjE; n; SLihE;n; SLj

þ
X
n;S;L

Z
∞

Eth;n

dEfnSLðEÞj0ihE; n; SLj þ H:c: ð21Þ

where E0 denotes the bare mass of the discrete state, n
denotes the nth continuum state, Eth;n denotes the energy
threshold of the nth continuum state, S and L are the total
spin and the angular momentum of the continuum states,
and fnSL denote the coupling functions between the bare
state and the nth continuum state with particular S, L
quantum numbers. The eigenvalue problem of the full
Hamiltonian in Eq. (21) is exactly solvable as mentioned
above. The final eigenvalues of bound states, virtual states
or resonant states could be obtained by solving the
resolvent function ηðzÞ ¼ 0 on the complex energy plane
where

ηðzÞ ¼ z − E0 −
X
n

Z
∞

Eth;n

P
S;LjfnSLðEÞj2
z − E

dE: ð22Þ

In Ref. [34], the Xð3872Þ and other first excited
charmonium-like states could be generated based on the
parameters and the wave functions of the GI model. γ ∼ 4.0
is chosen such that the Xð3872Þ state emerges as a bound-
state pole at around 3871.4 MeV, just below the D0D̄0�
threshold, which is not generated from the bare discrete
state. This value is reasonable because the χc2ð2PÞ and the
Xð3872Þ in both channels match the experimental values
simultaneously and a state around 3934 MeV which is
generated from χc1ð2PÞ can also be assigned to the
experimental observed Xð3940Þ. This information provides
the starting point for discussing the isospin-breaking
property in the decays of the Xð3872Þ state. In this setup,
the wave function of the Xð3872Þ is expressed explicitly as
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jXð3872Þi ¼ NB

�
jcc̄i þ

Z
∞

M00V

dE
X
S;L

f00VSL ðEÞ
zX − E

ðjE;D0D̄0�; SLi þ jE;D0�D̄0; SLiÞ

þ
Z

∞

Mþ−V

dE
X
S;L

fþ−V
SL ðEÞ
zX − E

ðjE;DþD−�; SLi þ jE;Dþ�D−; SLiÞ

þ
Z

∞

M0V0V

dE
X
S;L

f0V0VSL ðEÞ
zX − E

jE;D0�D̄0�; SLi þ
Z

∞

MþV−V

dE
X
S;L

fþV−V
SL ðEÞ
zX − E

jE;Dþ�D−�; SLi
�
; ð23Þ

where NB ¼ η0ðzXÞ−1=2 is the normalization factor. The
continuum states include D0D̄0�, D0�D̄0, D�D∓�, D0�D̄0�,
Dþ�D−�, and the corresponding thresholds and form
factors are denoted using the subscripts and superscripts
00V, þ − V, 0V0V, and þV − V respectively, with the
charge-conjugate states sharing the same quantities. The
D�

s D
�∓
s and D��

s D�∓
s continuum states are not considered

because it is much more difficult to produce the ss̄ from the
vacuum. The coupling form factor represents the interac-
tion between the bare cc̄ð23P1Þ state from the GI model and
the continuum states.
Since the process from cc̄ to J=ψρ and J=ψω are OZI

suppressed, we do not include J=ψρ and J=ψω in Eq. (17).
However, the processes from DD̄� and D�D̄� to J=ψρ and
J=ψω are not OZI suppressed. Furthermore, the relative
ratio of finding DD̄� in the X(3872) state is dominant over
that of finding cc̄ according to our previous study [34].
Thus, the contribution to the transition amplitude from
Xð3872Þ to J=ψρ and J=ψω is expected to come mainly
from the continuum components, and the contribution from
the cc̄ component can be ignored.
Thus, the next task is to compute the transition amplitude

from the continuum components to final states jρJ=ψi and
jωJ=ψi. This will be the main topic of the next section.

C. The quark rearrangement model

To evaluate the transition amplitude of the continuum
component to the J=ψω and J=ψρ states, a simple approach
is to use the quark rearrangement method developed by
Barnes and Swanson [42]. One of the merits of applying the
BS model in our scheme is that the interaction in this model
contains the one-gluon-exchange color Coulomb and spin-
spin interactions and linear scalar confinement terms,
which are the nonrelativistic approximation of the GI
model used here in determining the wave functions of
the bare states. The interaction Hamiltonian of the BS
model in the coordinate space is

HI ¼
X
ij

	
αs
rij

−
8παs
3mimj

S⃗i · S⃗jδðr⃗ijÞ−
3b
4
rij



Fi ·Fj ð24Þ

where the sum runs over all pairs ði; jÞ of quarks and
antiquarks in the hadrons. Fi denotes the color generator, αs

is the running coupling constant, and b is the coupling
strength of the linear potential. However, it is more
convenient to make calculations in the momentum repre-
sentation in accord with the extended Friedrichs model.
The main spirit of this model in calculating the meson-

meson scattering amplitude is to evaluate the lowest-order
Born diagrams of the interchange processes of two con-
stituent quarks, with the others being considered as specta-
tors. The main formulas are summarized in the following
and the details can be found in Refs. [42,63]. The momenta
for the initial and final constituent quarks are denoted as a⃗, b⃗,
a⃗0, and b⃗0 as shown in Fig. 1 and one can define the linear
combinations q⃗, p⃗1, and p⃗2 as q⃗ ¼ a⃗0 − a⃗ ¼ b⃗ − b⃗0,
p⃗1 ¼ ða⃗þ a⃗0Þ=2, and p⃗2 ¼ ðb⃗þ b⃗0Þ=2. In the meson-
meson transition amplitude of AB → CD, conservation of
three-momentum implies that the matrix element is of the
form

hCDjHIjABi ¼ ð2πÞ−3TfiδðA⃗þ B⃗ − C⃗ − D⃗Þ: ð25Þ

The spin indices ofA,B,C, andDmesons are not written out
explicitly. Four kinds of scattering diagrams, “capture1”(C1),
“capture2”(C2), “transfer1”(T1), “transfer2”(T1) are consid-
ered as shown in Fig. 2, according to which pair of the
constituents are involved in the interaction [42]. TheT-matrix
element of every diagram could be represented as the product
of signature, flavor, color, spin, and space factors. The
signature factor is ð−1Þ for all diagrams. The color factor
is ð−4=9Þ for the two capture diagrams (C1 andC2) and ð4=9Þ
for the two transfer diagrams (T1 and T2). The flavor factor is
obtained by the overlap of the flavor wave functions of the
initial and final states. The spin factors forC1,C2, T1, and T2

diagrams in different interaction terms are listed in Table I.

b

a a’

b’

q

FIG. 1. Momentum definitions in the quark-quark transition
amplitude.
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The space overlap factor is obtained by

Ispacefi ðAB → CDÞ

¼
ZZ

d3qd3pΦ�
Cðk⃗CÞΦ�

Dðk⃗DÞTpot
fi ðq⃗ÞΦAðk⃗AÞΦBðk⃗BÞ

ð26Þ

where k⃗i ¼ m1k⃗2−m2k⃗1
m1þm2

denotes the relative momentum of the
quark-antiquark pair in the meson. q⃗ and p⃗ ¼ p⃗1 are the
only two independent variables, and the Tpot

fi ðq⃗Þ refer to
the interaction potential due to color Coulomb, spin-spin
hyperfine and scalar confinement interactions in the
momentum representation as

Tpot
fi ðq⃗Þ¼

8<
:
4παsðqÞ=q2; color Coulomb

−8παsðqÞ=3mimj; spin-spin hyperfine

6πb=q4; linear confinement

ð27Þ

where mi and mj are the constituent quark masses of the
two interacting constituents. If the wave functions of the
mesons are described as simple harmonic oscillator (SHO)

wave functions, the integrations could be simplified and the
analytical transition amplitudes of all four diagrams could
be expressed explicitly in terms of confluent hypergeo-
metric functions [42,63]. However, the meson wave func-
tions of the GI model are represented in a basis of a large
number of SHO wave functions, so the analytical expres-
sions can hardly be obtained and we can only calculate the
integrations numerically in a practical manner. In calculat-
ing the terms of the linear confinement interaction in the
momentum space, the Hadamard regularization is used to
regularize the divergent integrals to obtain the finite parts.

D. Transition amplitude of Xð3872Þ to J=ψρ and J=ψω

The BS model gives the transition amplitudes repre-
sented by the individual spins and the momenta of the
initial and final mesons, and partial wave decomposition
must be performed to obtain the matrix elements in term of
the angular momentum eigenstates hJ=ψρ; S0L0jHIjE;
D0D̄0�; SLi. The J=ψρ and J=ψω two-particle states are
also decomposed in partial waves with total spin S0 and
angular momentum L0. So, the transition amplitude of the
Xð3872Þ to J=ψρ with particular S0 and L0 is expressed as

MS0L0 ðXð3872Þ → J=ψρÞ ¼ hJ=ψρ; S0L0jHIjXð3872Þi

¼ NB

�
hJ=ψρ; S0L0jHIjcc̄i

þ
Z

dE
X
S;L

f00VSL ðEÞ
zX − E

ðhJ=ψρ; S0L0jHIjE;D0D̄0�; SLi þ hJ=ψρ; S0L0jHIjE;D0�D̄0; SLiÞ

þ
Z

dE
X
S;L

fþ−V
SL ðEÞ
zX − E

ðhJ=ψρ; S0L0jHIjE;DþD−�; SLi þ hJ=ψρ; S0L0jHIjE;Dþ�D−; SLiÞ

þ
Z

dE
X
S;L

f0V0VSL ðEÞ
zX − E

hJ=ψρ; S0L0jHIjE;D0�D̄0�; SLi

þ
Z

dE
X
S;L

fþV−V
SL ðEÞ
zX − E

hJ=ψρ; S0L0jHIjE;Dþ�D−�; SLi
�

ð28Þ

where the transition of hJ=ψρjHIjcc̄i will be omitted due to the OZI suppression, as mentioned above. A similar expression
could be obtained for the J=ψω case.
Attention must be paid to the isospin difference of ρ and ω whose flavor wave functions are ρ ¼ 1ffiffi

2
p ðuū − dd̄Þ and

ω ¼ 1ffiffi
2

p ðuūþ dd̄Þ in ideal mixing, respectively, which lead to opposite signs in the flavor factors in the terms involving d

quark interchanges in the quark rearrangement model by Barnes and Swanson.

C1

B

A C

D

C2

B

A C

D

T1

B

A C

D

T2

B

A C

D

FIG. 2. The four-quark rearrangement diagrams of AB → CD meson-meson scatterings. The arrows represent the quark line
directions.
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The observed final states of the Xð3872Þ decays are
J=ψπþπ− through ρ resonance and J=ψπþπ−π0 through ω
resonance. For simplicity, we describe the ρ and ω
resonances by their Breit-Wigner distribution functions
[64], and then obtain

ΓðX → J=ψρðπþπ−ÞÞ

¼
Z

mX−mJ=ψ

2mπ

X
S;L

jMS;LðX → J=ψρÞj2Γρ

ðE −mρÞ2 þ Γ2
ρ=4

dE;

ΓðX → J=ψωðπþπ−π0ÞÞ

¼
Z

mX−mJ=ψ

3mπ

X
S;L

jMS;LðX → J=ψωÞj2Γω

ðE −mωÞ2 þ Γ2
ω=4

dE; ð29Þ

in which the lower limits of the integration are chosen at the
experimental cutoffs as in Refs. [10,12].

III. NUMERICAL RESULTS AND DISCUSSIONS

In the numerical calculation, as in Ref. [34], we first
reproduced the meson wave functions in the GI model [37]
in a basis of a large number of SHOs, and applied them in
the QPC model to obtain the coupling functions in the
Friedrichs-like model. Then, the generalized energy eigen-
values of Gamow states and their wave functions were
obtained by solving the Friedrichs-like model. The
Xð3872Þ appears as a bound-state pole below the D̄0D0�
threshold and its wave function was obtained. Using the
BS model and Eq. (28) we then calculated the transition
amplitudes of the Xð3872Þ to the final states, and the
branch ratio was thus obtained.
The parameters used in our calculation include all the

parameters in theGImodel, BSmodel and the γ parameter in
the QPCmodel. All the parameters in the GI model are fixed
using the original GI values in order to obtain the meson
wave functions including the bare cc̄ state, the charmed
mesons and ρ, ω. The same parameters are used in the BS
model without introducing any new parameters since these
twomodels share similar interaction terms. Thevalues of the
two-particle thresholds in the Friedrichs-like model are
chosen as their physical masses. Thus, all the parameters
except for γ, symbolizing the quark pair production rate
from thevacuum, are fixed at thevalues in theGImodel [37].

The γ parameter is chosen around 4.0 to produce a Xð3872Þ
mass in the range 3.8710–3.8717 MeV in order to be
consistent with experimental values. There is also no cutoff
parameter since the higher energy effects are suppressed in
the integration by the form factor and the denominator, and
thus the energies in the integration are integrated up to
infinity. In this calculation, an explicit isospin-breaking
effect is caused by considering themass difference ofu andd
quarks with ðmu þmdÞ=2 ¼ 220 MeV and md −mu ¼
5 MeV [37]. The isospin-breaking effects can also be
introduced into the production rate parameter through this
mass difference by γ ¼ muþmd

2mq
γ0, wheremq is the constituent

quark mass of the produced pair [65].
GI wave functions of the bare meson states are approx-

imately solved by expanding them in a basis of 30 SHO
wave functions. The wave function of the Xð3872Þ state as
a bound state is also expressed as in Eq. (23). Then we can
evaluate the partial-wave transition amplitudes of neutral or
charged DD̄� to J=ψρ or J=ψω. In the BS quark rear-
rangement model, the spin and angular momentum are
conserved separately, so the partial L wave of the J=ψρ, ω
states can only couple to the same partial L-wave part in the
DD̄� continuum term. Since the vector-vector D�D̄� could
only have the D-wave continuum in the QPC coupling,
they will only contribute to theD-wave J=ψρ or J=ψω. The
magnitudes of the D-wave scattering amplitudes of D�D̄�
to J=ψρ or J=ψω are highly suppressed and they are several
orders of magnitude lower than that of S-wave D̄D�

amplitudes. So, the main contributions are from the DD̄�

continuum parts. Furthermore, the D�D� continuum com-
ponent in Xð3872Þ is very small. The ratio of “elementa-
riness” and “compositeness” of the different components in
the Xð3872Þ is about Zcc̄∶XD̄0D0�∶XDþD−�∶XD̄�D� ¼
1∶ð2.67–8.85Þ∶ð0.45–0.46Þ∶0.04 according to Eq. (11)
as γ is tuned to obtain the Xð3872Þ mass in the range
3.8710–3.8717 MeV. It is natural that the compositeness is
sensitive to the closeness of the pole to the D̄0D0� threshold
due to the denominator in the integrand in Eq. (11). This
denominator will amplify the form factor near the thresh-
old, and thus the integral is sensitive to the near-threshold
behaviors of the coupling form factor fSLðEÞ. Since the
form factor is calculated using the wave function, different
choices of the wave functions may also affect the behavior
of the form factor near the threshold. Here, we choose the
well-accepted GI wave functions as the input, which is
more accurate than just using a phenomenological monop-
ole form factor like in Refs. [39,46].
The isospin-breaking effect is caused by the mass

difference of the constituent u and d quarks. This leads
to two consequences in the calculation. First, it causes the
mass difference of the D̄0D�0 and D̄þD�−. If the isospin
symmetry is respected, the D̄0D�0 and D̄þD�− will be
degenerate and their contributions to the scattering ampli-
tude to J=ψρ from corresponding terms in Eq. (28) will be

TABLE I. Compilation of the spin factors for the C1, C2, T1,
and T2 diagrams in the spin-spin hyperfine, color Coulomb,
and linear potential terms with the total spin of two mesons
being 1 [42].

ð0; 1Þ → ð1; 1Þ ð1; 1Þ → ð1; 1Þ
ðSA; SBÞ → ðSC; SDÞ C1 C2 T1 T2 C1 C2 T1 T2

spin-spin 1

4
ffiffi
2

p 1

4
ffiffi
2

p − 1

4
ffiffi
2

p − 1

4
ffiffi
2

p 0 0 − 1
2

1
2

Coulomb 1ffiffi
2

p 0

linear 1ffiffi
2

p 0
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totally canceled but not in the scattering amplitude to
J=ψω. Now that the threshold for D̄0D�0 is lower than
D̄þD�− by about 8 MeV, D̄0D�0 will give a nonzero
contribution to the amplitude to J=ψρ below the D̄þD�−

threshold. Above the D̄þD�− threshold, in general, the
nearer it is to the threshold, the larger the difference
between the two amplitudes due to the mass difference.
In addition, the γ symbolizing the quark pair creation
strength from the vacuum also depends on the quark
masses, which also leads to a smaller coupling to the
D̄þD−� continuum than to the D̄0D0� continuum. It is
natural that the heavier components are more difficult to
produce. These two effects caused by the explicit isospin-
breaking of u and d quark masses are still quite tiny since
md −mu is about 5 MeV in the GI model. However, it is
greatly amplified by the denominators of 1

zX−E
in Eq. (28)

because the mass of Xð3872Þ is very close to the D̄0D�0
threshold. To demonstrate this mechanism clearly, we plot
the numerator part in the integrand and the whole integrand
of neutral and charged D̄D� terms in Eq. (28), respectively,
for the amplitude to J=ψρ in Fig. 3 for comparison. The left
panel shows the absolute values of the numerators of
neutral (solid) and charged (dashed) D̄D� contributions
in Eq. (28), which are slightly different. However,
the whole integrand with the 1

zX−E
denominator shown in

the right panel is totally different. We see that near the
threshold the differences between the two integrands are
greatly enhanced by the denominator and hence give a
sizable contribution to the amplitude.
After the amplitudes are calculated by integrating up to

infinity in Eq. (28), one could obtain the relative ratio of the

transition amplitudes,
MðX→J=ψωÞ= ffiffiffiffiffiffiffiffiffi

PJ=ψω

p
MðX→J=ψρÞ=

ffiffiffiffiffiffiffiffi
PJ=ψρ

p ¼3.24∼2.43, with

the Xð3872Þ mass ranging from 3871.0–3871.7 MeV,
which is consistent with the expectation of Suzuki [38]
to produce a reasonable isospin breaking. In principle, to
obtain the decay widths using Eq. (29), the ρ, ω masses in
the scattering amplitudes of D̄D� → J=ψρ, ω should be

regarded as variables. However, since the numerical cal-
culation of the scattering amplitudes involve six-
dimensional integration, the integration would be difficult
and costs too much computer time. We have checked that
the numerical values of the scattering amplitudes change
very slowly when the masses of ρ, ω change. Thus, in a
practical manner, we did not calculate the integration
directly but approximately calculated the scattering ampli-
tudes with the ρ, ω masses fixed at their Particle Data
Group (PDG) central values and product the phase space
kinematic factors. If we cut off the πþπ− invariant mass at
0.45 GeV and the πþπ−π0 invariant mass at 0.75 GeV as
chosen by the Belle and BABAR collaborations [10,12], the
kinematic space ratio will be

RmX−mJ=ψ

3mπ

jPJ=ψωjΓω

ðE−mωÞ2þΓ2
ω=4

dERmX−mJ=ψ

2mπ

jPJ=ψρjΓρ

ðE−mρÞ2þΓ2
ρ=4

dE
¼ 0.088 ∼ 0.098 ð30Þ

as the mass of Xð3872Þ ranges from 3871.0–3871.7 MeV
and the branch fraction will be

ΓJ=ψπþπ−π0

ΓJ=ψπþπ−
¼ ð3.24 ∼ 2.43Þ2 × ð0.088 ∼ 0.098Þ

¼ 0.92 ∼ 0.58: ð31Þ
This numerical results are consistent with the measured
ratio 1.0� 0.4� 0.3 by Belle [12] and 0.8� 0.3 by
BABAR [10]. If the lower limits are chosen at the 2mπ

and 3mπ physical masses respectively, the ratio of kin-
ematic factors will be 0.161–0.169 and

ΓJ=ψπþπ−π0

ΓJ=ψπþπ−
¼ ð3.24 ∼ 2.43Þ2 × ð0.161 ∼ 0.169Þ

¼ 1.69 ∼ 0.99: ð32Þ
For completeness, we also list here the estimated decay

widths: ΓJ=ψðρ→πþπ−Þ is 1 ∼ 3 keV and ΓJ=ψðω→πþπ−π0Þ
1–5 keV. The present experiments have not provided much

FIG. 3. Comparison of the integrand of Eq. (28) for charged and neutral channels without or with the denominators (N or N=D)
respectively. The solid line represents the neutral D̄D� channel and the dashed one the charged channel. The left panel shows the
contributions of the numerator only and the right panel shows the whole integrand with the denominators.
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information on these two decay widths. According to the
PDG [5], the only useful information is the upper limit of
the Xð3872Þ total decay width ΓXð3872Þ < 1.2 MeV, and the

branching fraction
ΓJ=ψðρ→πþπ−Þ

ΓXð3872Þ
> 0.026. In fact, the absolute

value for the decay width in our calculation depends much
on the parametrization of the strong coupling constant. In the
GI model it is parametrized as αsðq2Þ ¼ 0.25 expð−q2Þ þ
0.15 expð−q2=10Þ þ 0.20 expð−q2=1000Þ to avoid the
divergence near ΛQCD, which is what we used in our
calculation in the BS model. This parametrization respects
the large-momentum perturbative behavior and smoothes
the low-momentum region by assuming αsðq2 ¼ 0Þ ¼ 0.6
in the confinement region. However, in BS’s original model,
they used just a constant within 0.5–0.6 [63,66]. If we also
use this constant in our calculation, the obtained decaywidth
will be enhanced by about an order of magnitude with the
relative ratio almost unchanged.
As a byproduct, this scheme can also provide a quali-

tative interpretation of the D̄0D0� mass distribution in B →
D̄0D0�K processes by the Belle and BABAR collaborations
[67,68]. Since the multichannel scattering amplitudes could
be obtained similar to Eq. (8) as in Ref. [55], the T-matrix
of D̄0D0� scatterings could be obtained as

TSLðD̄0D0� → D̄0D0�Þ ¼ jfD̄0D0�
SL ðEÞj2
ηþðEÞ : ð33Þ

If the weak interaction vertex in B → XðD̄0D0�ÞK decays is
supposed to be a smooth mildly changing factor and could
be simulated by a constant, the mass distribution of the
D̄0D0� final states is proportional to jTðD̄0D0� → D̄0D0�Þj2
and the phase space factors. A qualitative agreement could
be found between the calculations and the experimental
data up to a rescaling factor, as shown in Fig. 4, which is
similar to the result in the near-threshold parametrization
method [69]. The dotted, solid, and dashed lines in Fig. 4
represent the Xð3872Þ mass at 3.8710, 3.8714, and
3.8717 GeV, respectively, up to a rescaling factor.

IV. SUMMARY

In this paper, we performed a calculation on the branching
ratio of theXð3872Þ transition to J=ψπþπ−π0 and J=ψπþπ−
based on a Friedrichs-like scheme combined with the quark
rearrangement model and QPCmodel. In our previous work
[34], the first excited P-wave charmonium state spectrum
was reproduced using the sameFriedrichs scheme combined
with theQPCmodel using theGI bare spectrumas input, and
the results were consistent with experimental values, which
demonstrated the reasonability of this scheme. In fact, this
scheme provides a general way to incorporate the hadron
interactions into the GI quark model. The Xð3872Þ is
dynamically generated as a bound state just below the
D�0D̄0, composed of a dominant D̄0D0� continuum com-
ponent of about 64–85%, a cc̄ component of about 10–24%,
and other continua. The Xð3872Þ wave function can be
explicitly expressed as the linear combination of the cc̄
states and the continuum states. Based on this information,
in the present paper we studied the isospin-breaking effect
within this framework. Since the Xð3872Þ is mostly com-
posed of continuum and the cc̄ contribution is also sup-
pressed by the OZI rule, we could only consider
the continuum contributions to the decay amplitude. In
the spirit of the quark rearrangement model, by considering
the spin-spin, color Coulomb, and linear potential inter-
actions among the quarks in differentmesons, one can obtain
the transition amplitudes for Xð3872Þ to J=ψω and J=ψρ,
using the wave function obtained from the Friedrichs
scheme. By taking into account the mass difference of the

final states, we obtained the numerical result
ΓJ=ψπþπ−π0

ΓJ=ψπþπ−
¼

0.92 − 0.58 as the Xð3872Þ mass changes from 3871.0 to
3871.7MeV,which is comparable to the experimental value.
We noticed that to provide a reasonable magnitude for the
isospin-breaking amplitude, the proximity of the Xð3872Þ
position to the D0D0� plays an important role. It greatly
amplifies the amplitude to D0D̄0� near the threshold which
causes a large isospin-breaking effect in the amplitude as
shown in Fig. 3. This amplification effect is also present
in the integration in the compositeness calculation. Thus,
the precise near-threshold behavior of the form factor is

FIG. 4. The experimental D̄0D0� mass distributions in B → XðD̄0D0�ÞK decays measured by BABAR (left) [68] and Belle (middle and
right) [67] compared with rjTðD̄0D0� → D̄0D0�Þj2 · phase space, where r is a rescaling factor chosen by hand. The dotted, solid, and
dashed lines represent the curves with the Xð3872Þ mass at 3.8710, 3.8714, and 3.8717 GeV, respectively.
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important for this result to be solid. Since our calculations
are based onGIwave functions, which supposedly are the de
facto standard in the literature, they presumably provide a
more precise form factor whichmakes our results more solid
and convincing.
In this calculation, because the interaction Hamiltonian

between the quarks of different mesons in the quark
rearrangement model is similar to GI’s quark potential
model, there are no new parameters introduced in the
calculation. All the model parameters except the quark
production rate from the vacuum, γ, are fixed at the well-
accepted GI model. The γ parameter is also chosen such
that the Xð3872Þ is around the experimental mass and all
the other observed first excited P-wave states are repro-
duced well as in Ref. [34]. One of the merits of using
our scheme is that the high-energy contribution in the

integration in calculating the decay amplitudes is naturally
suppressed by the form factor obtained from the QPC
model based on the wave function from GI’s relativized
quark model. Thus, unlike in Refs. [38,39] where the result
was cutoff dependent, here no cutoff was introduced and
thus the result is more robust.
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