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The Ξ baryons are expected to be naturally narrower as compared to their nonstrange and strange
counterparts since they have only one light quark and, thus, their decay involves producing either a light
meson and doubly strange baryon or both meson and baryon with strangeness which involves, relatively,
more energy. In fact, some Ξ’s have full widths of the order of even 10–20 MeV when, in principle, they
have a large phase space to decay to some open channels. Such is the case of Ξð1690Þ, for which the width
has been found to be of the order of 10 MeV in the latest BABAR and BELLE data. In this manuscript we
study why some Ξ’s are so narrow. Based on a coupled channel calculation of the pseudoscalar meson-
baryon and vector meson-baryon systems with chiral and hidden local symmetry Lagrangians, we find that
the answer lies in the intricate hadron dynamics. We find that the known mass, width, spin-parity, and
branching ratios of Ξð1690Þ can be naturally explained in terms of coupled channel meson-baryon
dynamics. We find another narrow resonance which can be related to Ξð2120Þ. We also look for exotic
states Ξþ and Ξ−− but find none. In addition we provide the cross sections for K̄Λ; K̄Σ → πΞ which can be
useful for understanding the enhanced yield of Ξ reported in recent studies of heavy ion collisions.
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I. INTRODUCTION

Little is known about Ξ resonances [1] since it is difficult
to produce them in the laboratory directly. There are limited
facilities around the world which have anti-kaon beams and
a beam of nonstrange nature on a nucleon leads to low
yields of Ξ baryons as two pairs of strange quarks are
required to be produced in this case. However, efforts are
being made to improve this situation. For example, the
photoproduction of Ξ’s on nucleons is being explored
currently at the Jefferson laboratory [2] considering the
possibility of the production of a hyperon resonance in the
intermediate state, thus producing the strange quark pairs in
two steps. Also, more information is expected to come in
the future from the J-PARC [3] and P̄ANDA [4] facilities.
In addition, studies made by BELLE [5] and BABAR [6]

collaborations show that it is possible to extract useful
information on this subject from rare processes too.
Specifically, some intriguing findings related to the proper-
ties of Ξð1690Þ have been reported in such studies. We find
it useful to list these findings, and other relevant informa-
tion on Ξð1690Þ, in a separate subsection dedicated to
Ξð1690Þ below.

A. Ξð1690Þ
The first observation of Ξð1690Þ in the K̄Σ invariant

mass spectrum was reported in Ref. [7], where the mass and
width were determined to be M ¼ ð1694� 6Þ MeV, Γ ¼
ð26� 6Þ MeV in the negatively charged channel and
M ¼ ð1684� 5Þ MeV, Γ ¼ ð20� 4Þ MeV in the neutral
channel. The spin-parity of this state was not determined in
Ref. [7]. Although the mass values obtained by the latest
investigations [5,6] are not very different, the width of
Ξð1690Þ has been determined to be even narrower, of the
order of 10 MeV [5,6]. To mention explicit results,
the BABAR collaboration deduced the mass and width
of Ξð1690Þ to be: M ¼ ð1684.7� 1.3þ2.2

−1.6Þ MeV, Γ ¼
ð8.1þ3.9þ1.0

−3.5−0.9 Þ MeV [6], and the BELLE Collaboration
reported: M ¼ ð1688� 2Þ MeV, Γ ¼ ð11� 4Þ MeV [5].
Both studies obtained spin-parity of this state as 1=2−. It
was also found in Ref. [6] that a clear evidence for
Ξ0ð1690Þ is found in the K̄0Λ invariant mass spectrum
but not in the πþΞ− spectrum. The information on the ratio
of Ξ0ð1690Þ to K̄Λ and K̄Σ has been updated in Ref. [5] to,

BðΞ0ð1690Þ → K−ΣþÞ
BðΞ0ð1690Þ → K̄0ΛÞ ¼ 0.50� 0.26: ð1Þ
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as compared to the value (1.8� 0.6) obtained from the
older analysis of Ref. [7].
These properties are difficult to understand, for example,

the narrow width of Ξð1690Þ in spite of having a large
phase space to decay to open channels, like, πΞ and K̄Λ.
Similar is the case of the finding related to the suppressed
decay to πΞ, as compared to the decay to the K̄Λ channel
(as is evident from the difficulty in the identification of the
signal of Ξ0ð1690Þ in the πþΞ− spectrum of Refs. [5,6]).
A light quark pair production, within a naïve quark model,
is equivalently required in both cases (as can be seen in
Fig. 1). The branching fraction to the K̄Σ and K̄Λ channels
[shown in Eq. (1)] is also counterintuitive: there is little
phase space for decay to the former one and one would
anticipate this ratio to be much smaller.
In fact, these experimental findings have motivated

theoretical investigations within quark models, and the
mass has been obtained: M ∼ 1725 MeV [8]. Also, the
decay properties of Ξð1690Þ have been studied within a
chiral quark model [9], which includes hadron dynamics
through a quark-meson effective coupling, and its total
width was found to be 25 MeV. This value, although not
widely different, is larger than the one observed in
Refs. [5,6]. Recently, the findings of the BES and the
BELLE Collaborations motivated a study of Ξð1690Þ in
terms of hadron degrees of freedom also [10]. The
formalism used in Ref. [10], based on a t-channel inter-
action of pseudoscalar meson-baryon channels, reproduces
well the mass of Ξð1690Þ but the width is found to be
around 1 MeV. The author of Ref. [10] suggested that
inclusion of more diagrams might be useful in obtaining a
width of the order of 10 MeV.
In view of the growing interest in the Ξ-baryons at the

experimental facilities, we find it timely to study cascade
resonances in meson-baryon coupled systems. Our formal-
ism includes interaction of both pseudoscalar as well as
vector mesons, and in the latter case we include s-, t-,
u-channel diagrams and a contact term, whose origin will be
explained in a subsequent section. As we shall show in this
article, in agreement with Ref. [10], Ξð1690Þ can be

understood as a state generated due to meson-baryon
coupled channel dynamics and it is possible to straightfor-
wardly understand all the experimental results reported in
Refs. [5,6]. A hadronic dynamical origin of resonances was
predicted long time ago byTörnqvist [11] and the possibility
of understanding some Ξ baryons [including Ξð1690Þ] in
terms of hadron dynamics has been discussed earlier in the
literature [12–20]. We will compare our results with those
obtained in such previous studies in this manuscript.
As we shall discuss, we find an evidence for another Ξ

resonance, which is also narrower than expected (due to the
existence of several open channels for decay) and can be
related to Ξð2120Þ. We find that the nature of this state is
such that it can be difficult to identify its presence in the
experimental data related to the K̄Λ mass spectrum. We
suggest better channels to investigate the properties
of Ξð2120Þ.

B. Ξð2120Þ
Before proceeding further, for the sake of completeness,

we find it useful to present the known information on
Ξð2120Þ as well. Not much information is available on this
resonance. Its spin-parity is not known. This state was first
found in K̄Λmass spectrum in Ref. [21], which reported its
mass and width values to be M ¼ 2123� 7 MeV and
Γ ¼ 25� 12 MeV. One of the later investigation con-
firmed an accumulation of events around 2120 MeV in
K̄Λ and determined the mass and width to beM ¼ 2137�
4 MeV and Γ ∼ 20 MeV [22]. This state was, however, not
found in Ref. [23]. All these experimental data suffer from
poor statistics. A better quality data is required to determine
the properties of Ξ’s with mass above 2 GeV. Indications of
the existence of Ξ resonances around 2120 MeV, whose
origin lies in the meson-baryon coupled channel dynamics,
has been discussed in some previous works. For example,
in Ref. [16], a pole around 2100 MeV is found with a full
width of ∼100 MeV for a Ξ, with Jπ ¼ 1=2− and 3=2−, as a
result of pseudoscalar and vector meson-baryon interaction
treated within a SUð6Þ symmetry. In Ref. [15] also a Ξwith
Jπ ¼ 1=2− and 3=2−, with mass ∼2100 MeV and width
∼60 MeV is found to get generated from meson-baryon
dynamics. As we will show, we find the width of Ξð2120Þ
to be narrower.
We discuss the details of our formalism and results in the

next sections. In the discussions on the results, we will
show that the presence of resonances affects the cross
sections of processes like K̄Λ → πΞ and K̄Σ → πΞ, which
can be important in understanding the enhanced Ξ pro-
duction found in the Ar þ KCl collisions by the HADES
collaboration [24].

II. FORMALISM

The formalism of the present study is based on solving
the Bethe-Salpeter equation in a coupled channel approach.

(a)

(b)

FIG. 1. Decay of a Ξ resonance to a meson (qq̄=sq̄)-baryon
(qss=qqs) channel.
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To do this we consider all systems with strangeness −2
formed by a pseudoscalar/vector meson with an octet
baryon: πΞ, ηΞ, K̄Σ, K̄Λ, ρΞ, ωΞ, ϕΞ, K̄�Σ, and K̄�Λ.
We obtain the amplitudes for different transitions among

these channels using Lagrangians based on effective field
theories. To determine the vector-meson–baryon interac-
tion we use the formalism developed in our previous work
[25]. A detailed analysis of the low energy vector meson
interaction with octet baryons was carried out in Ref [25]
by calculating s-, t-, and u-channel diagrams and a contact
interaction, using a Lagrangian invariant under the gauge
transformations of the hidden-local symmetry. It was found
that the contribution of all the diagrams is of comparable
size and that the full (summed) amplitude depended on the
total spin as well as the isospin of the system. Following
Ref. [25], thus, we write vector-baryon (VB) amplitudes for
each spin-isospin configuration as

VI;S
VB ¼ VI;S

t;VB þ VI;S
s;VB þ VI;S

u;VB þ VI;S
CT;VB: ð2Þ

These amplitudes can be obtained from the general
Lagrangian

LVB ¼ −g
�
hB̄γμ½Vμ

8; B�i þ hB̄γμBihVμ
8i

þ 1

4M
ðFhB̄σμν½Vμν

8 ; B�i þDhB̄σμνfVμν
8 ; BgiÞ

þ hB̄γμBihVμ
0i þ

C0

4M
hB̄σμνVμν

0 Bi
�
; ð3Þ

where h…i refers to an SUð3Þ trace, the subscript 8 (0) on
the meson fields denotes the octet (singlet) part of their
wave function (relevant in case of ω and ϕ, for which we
assume an ideal mixing). Vμν represents the tensor field of
the vector mesons,

Vμν ¼ ∂μVν − ∂νVμ þ ig½Vμ; Vν�; ð4Þ

and Vμ and B denote the SU(3) matrices for the (physical)
vector mesons and octet baryons

Vμ ¼ 1

2

0
BB@

ρ0 þ ω
ffiffiffi
2

p
ρþ

ffiffiffi
2

p
K�þffiffiffi

2
p

ρ− −ρ0 þ ω
ffiffiffi
2

p
K�0ffiffiffi

2
p

K�− ffiffiffi
2

p
K̄�0 ffiffiffi

2
p

ϕ

1
CCA

μ

; ð5Þ

B ¼

0
BBB@

1ffiffi
6

p Λþ 1ffiffi
2

p Σ0 Σþ p

Σ− 1ffiffi
6

p Λ − 1ffiffi
2

p Σ0 n

Ξ− Ξ0 −
ffiffi
2
3

q
Λ

1
CCCA: ð6Þ

In Eq. (3), the coupling g is related to meson decay
constants as

g ¼ mffiffiffi
2

p
f
; ð7Þ

and the constantsD ¼ 2.4, F ¼ 0.82 and C0 ¼ 3F −D are
such that the anomalous magnetic couplings of ρNN, ωNN
and ϕNN vertices are correctly reproduced. These values
have also been found useful in calculations of the magnetic
moments of the baryons in Ref. [26].
Keeping in mind that the thresholds of different VB

channels differ by ∼200 MeV, which implies that the
center of mass energies of the lighter VB channels can
vary up to 200 MeV above the respective thresholds, we
calculate all the amplitudes relativistically, following
Refs. [27,28].
We start the discussion on different amplitudes with the

contact interaction which arises from the commutator part
of the tensor field [Eq. (4)]. The resulting amplitude has a
form,

VI
CT;VB ¼−CI

CT;VB
g1g2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�
−iσ⃗ · ϵ⃗2× ϵ⃗1

þ 1

E2þM2

ð−ϵ01σ⃗ · P⃗2σ⃗ · ϵ⃗2þ ϵ02σ⃗ · P⃗2σ⃗ · ϵ⃗1Þ

þ 1

E1þM1

ð−ϵ02σ⃗ · ϵ⃗1σ⃗ · P⃗1þ ϵ01σ⃗ · ϵ⃗2σ⃗ · P⃗1Þ

−
1

2ðE1þM1ÞðE2þM2Þ
ðσ⃗ · P⃗2σ⃗ · ϵ⃗1σ⃗ · ϵ⃗2σ⃗ · P⃗1

− σ⃗ · P⃗2σ⃗ · ϵ⃗2σ⃗ · ϵ⃗1σ⃗ · P⃗1Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M1þE1

2M1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þE2

2M2

s
;

ð8Þ

where M1, (M2), E1 (E2), P⃗1 (P⃗2) represent the mass,
energy and the three-momentum of the baryon in the initial
(final) state, respectively, and g1 (g2) is related to the decay
constant of the vector meson in the initial (final) state
through Eq. (7). The values of the decay constants used in
our work are: fπ ¼ 93 MeV, fη ¼ 120.9 MeV, fk ¼
113.46 MeV, fρ, fω ¼ 153.45, fϕ ¼ 168.33 MeV, fK� ¼
159.96 MeV [29,30]. In Eq. (8), ϵ01 (ϵ02) and ⃗ϵ1 (⃗ϵ2)
represent the temporal and the spatial part of the polari-
zation four-vectors of the mesons in the initial (final) state,
respectively, and CI

CT;VB are isospin dependent coefficients
whose values are given in the Appendix A, in Tables IV, V
for the different relevant channels. We recall that the main
purpose of the present article is to study the formation of
resonances in a coupled meson-baryon system. We are,
thus, interested in low energy dynamics of such a system
and, consider the s-wave contribution of different ampli-
tudes. The s-wave part (l ¼ 0) of Eq. (8) gives
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VI;S
CT;VB ¼ −CI

CT;VB
g1g2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þ E1

2M1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ E2

2M2

s

×

�
−iσ⃗ · ⃗ϵ2 × ⃗ϵ1 þ

1

E1 þM1

ð−ϵ02σ⃗ · ⃗ϵ1σ⃗

· P⃗1 þ ϵ01σ⃗ · ⃗ϵ2σ⃗ · P⃗1Þ
�
; ð9Þ

which is indicated by the superscript S representing the spin
of the VB system (which coincides with the total angular
momentum J of the sysem).

The amplitude of Eq. (9) is projected on the total spin
half base, to get,

VI;1=2
CT;VB ¼ CI

CT;VB
g1g2ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þ E1

2M1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ E2

2M2

s

×

�
1þ

�
1

E1 þM1

��jK⃗1j2
2m1

−
jK⃗1jjK⃗2j
6m2

��
;

ð10Þ

and in case of spin 3=2, we obtain

VI;3=2
CT;VB ¼ −CI

CT;VB
g1g2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þ E1

2M1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ E2

2M2

s
×

�
1þ

�
1

E1 þM1

��
−
4jK⃗1jjK⃗2j

3m2

��
: ð11Þ

In Eqs. (10) and (11), (and throughout this manuscript) m1, m2 and K⃗1, K⃗2 represent the masses and the three-momenta of
the vector mesons in the initial and final state, respectively.
Using the Yukawa-type vertices obtained from Eq. (3), we deduce the s- and u-channel amplitudes by treating the vector

mesons relativistically, and obtain,

VI
s;VB ¼ g1g2

s −M2
x

�
ð ffiffiffi

s
p þMxÞ

�
ϵ02

�
Is1f þ

Is2fK
0
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�
−
Is2fðσ⃗ · ⃗ϵ2σ⃗ · K⃗2Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
��

ϵ01

�
Is1i þ

Is2iK
0
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�
−
Is2iðσ⃗ · K⃗1σ⃗ · ⃗ϵ1Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

þ ð ffiffiffi
s

p
−MxÞ

�
σ⃗ · ⃗ϵ2

�
Is1f −

Is2fK
0
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�
þ Is2fϵ

0
2ðσ⃗ · K⃗2Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
���

Is1i −
Is2iK

0
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�
σ⃗ · ⃗ϵ1 þ

Is2iϵ
0
1ðσ⃗ · K⃗1Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
��

; ð12Þ

VI
u;VB ¼ g1g2

u −M2
x

�
ϵ01ϵ

0
2

�
1

2
½E2 − K0

1 þ E1 − K0
2� þMx

�
Vu1 þ σ⃗ · ⃗ϵ1σ⃗ · ⃗ϵ2

�
1

2
½E2 − K0

1 þ E1 − K0
2� −Mx

�
Vu2

þ ϵ02σ⃗ · ⃗ϵ1σ⃗ · K⃗2Vu3 þ ϵ02σ⃗ · ⃗ϵ1σ⃗ · K⃗1Vu4 þ ϵ01σ⃗ · K⃗2σ⃗ · ⃗ϵ2Vu5 þ ϵ01σ⃗ · K⃗1σ⃗ · ⃗ϵ2Vu6 þ ϵ01ϵ
0
2

σ⃗ · K⃗2σ⃗ · K⃗2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p Vu7

þ ϵ01ϵ
0
2

σ⃗ · K⃗1σ⃗ · K⃗1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p Vu8 þ ϵ01ϵ
0
2

σ⃗ · K⃗1σ⃗ · K⃗2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p Vu9 þ
σ⃗ · ⃗ϵ1σ⃗ · K⃗2σ⃗ · K⃗2σ⃗ · ⃗ϵ2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p Vu10 þ
σ⃗ · ⃗ϵ1σ⃗ · K⃗1σ⃗ · K⃗1σ⃗ · ⃗ϵ2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p Vu11

þ σ⃗ · ⃗ϵ1σ⃗ · K⃗1σ⃗ · K⃗2σ⃗ · ⃗ϵ2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p Vu12 −
Is2fI

s
2i

8M1M2

½ϵ01σ⃗ · K⃗1σ⃗ · K⃗1σ⃗ · K⃗2σ⃗ · ⃗ϵ2 þ ϵ01σ⃗ · K⃗1σ⃗ · K⃗2σ⃗ · K⃗2σ⃗ ⃗ϵ2

þ ϵ02σ⃗ · ⃗ϵ1σ⃗ · K⃗1σ⃗ · K⃗1σ⃗ · K⃗2 þ ϵ02σ⃗ · ⃗ϵ1σ⃗ · K⃗1σ⃗ · K⃗2σ⃗ · K⃗2�
�
; ð13Þ

where Mx is the mass of the exchanged (octet) baryon, s and u are the Mandelstam variables, K0
1 (K

0
2) is the energy of the

incoming (outgoing) vector meson, Is1i, I
s
1f, I

s
2i, I

s
2f are the isospin coefficients for different channels whose products are

given in the Appendix A, in Tables VI, VII, VIII, IX. The definitions of Vu1; Vu2...Vu12 appearing in Eq. (13) are also given
in Eqs. (A1)–(A12), in Appendix B. Due to the kinematic dependence of the Mandelstam variable u on the incoming and
outgoing momentum, the s-wave projection of the u-channel amplitude is done numerically. In case of the s-channel
amplitude we can project Eq. (15) analytically on s-wave, which gives

VI;S
s;VB¼

g1g2
s−M2

x

�
ð ffiffiffi

s
p þMxÞ

�
ϵ02ϵ

0
1

�
Is1fþ

Is2fK
0
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
��

Is1iþ
Is2iK

0
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�
−
ϵ02I

s
2iðσ⃗ · K⃗1σ⃗ · ϵ⃗1Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�
Is1f−

Is2fK
0
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
��

þð ffiffiffi
s

p
−MxÞ

�
σ⃗ · ϵ⃗2σ⃗ · ϵ⃗1

�
Is1f−

Is2fK
0
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
��

Is1iþ
Is2iK

0
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�
þIs2iϵ

0
1ðσ⃗ · ϵ⃗2σ⃗ · K⃗1Þ
2M1M2

�
Is1f−

Is2fK
0
2

2M1M2

���
; ð14Þ
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which, in turn, on spin-half projection reduces to

VI;1=2
s;VB ¼ g1g2

s −M2
x

�
ð ffiffiffi

s
p þMxÞ

�jK⃗1jjK⃗2j
3m1m2

�
Is1f þ

Is2fK
0
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
��

Is1i þ
Is2iK

0
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

−
jK⃗2jjK⃗1j

m2

�
K0

2

3m2

þ 2

3

�
Is2i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�
Is1f −

Is2fK
0
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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�
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þ 2

3

�
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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�
Is1f −

Is2fK
0
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p
���

: ð15Þ

For more details on the conventions/normalizations related to the polarization vectors used in our work, we refer the reader
to Appendix B.
Finally, the contribution of the t-channel amplitude is obtained as,

VI
t;VB ¼ −m2

Vx

4fVifVj

1

t −m2
Vx

�
ϵ1 · ϵ2

��
2

ffiffiffi
s

p
−M1 −M2 þ ðM1 −M2Þ

ðm2
2 −m2

1Þ
m2

Vx

�
CI
t1;VB

þ
�
M1 þM2

2M
ð2 ffiffiffi

s
p

−M1 −M2Þ −
s − u
2M

�
CI
t2;VB þ σ⃗ · P⃗2σ⃗ · P⃗1

ðE1 þM1ÞðE2 þM2Þ
��

2
ffiffiffi
s

p þM1 þM2

− ðM1 −M2Þ
ðm2

2 −m2
1Þ

m2
Vx

�
CI
t1;VB þ

�
M1 þM2

2M
ð2 ffiffiffi

s
p þM1 þM2Þ þ

s − u
2M

�
CI
t2;VB

��

þ
�
CI
t1;VB þM1 þM2

2M
CI
t2;VB

��
−2K1 · ϵ2

�
ϵ01 −

σ⃗ · ⃗ϵ1σ⃗ · P⃗1

E1 þM1

−
σ⃗ · P⃗2σ⃗ · ⃗ϵ1
E2 þM2

þ ϵ01σ⃗ · P⃗2σ⃗ · P⃗1

ðE1 þM1ÞðE2 þM2Þ
�

− 2K2 · ϵ1

�
ϵ02 −

σ⃗ · ⃗ϵ2σ⃗ · P⃗1

E1 þM1

−
σ⃗ · P⃗2σ⃗ · ⃗ϵ2
E2 þM2

þ ϵ02σ⃗ · P⃗2σ⃗ · P⃗1

ðE1 þM1ÞðE2 þM2Þ
��

þ 2

M
ðK1 · ϵ2P1 · ϵ1 þ K2 · ϵ1P1 · ϵ2Þ

×

�
1 −

σ⃗ · P⃗2σ⃗ · P⃗1

ðE1 þM1ÞðE2 þM2Þ
�
CI
t2;VB

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þ E1

2M1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ E2

2M2

s
; ð16Þ

where, mVx represents the mass of the exchanged meson,
m1ðm2Þ, K1ðK2Þ represent the mass and four-momentum of
the meson in the initial (final) state, M denotes the SU(3)
average mass which is taken as the nucleon mass, M1ðM2Þ
and E1ðE2Þ, P⃗1ðP⃗2Þ represent the mass, energy and three-
momentumof the baryon in the initial (final) state. The values
of CI

t1;VB and CI
t2;VB are given in Table X, XI, XII, XIII in

Appendix A. The s-wave projection of the t-channel ampli-
tude is also done numerically, as in the case of the u-channel
amplitude. We have followed the arguments of Ref. [31] for
the numerical integration of the t-channel amplitude.
It can be seen that the amplitude of Eq. (16) is spin

degenerate at low energies (where only the ⃗ϵ1 · ⃗ϵ2 spin
structure contributes). This finding is in agreement with the
results found in Refs. [13–17]. However, such near degen-
eracy is removed by summing Eqs. (9), (13), (15) to the
t-channel amplitude, giving rise to spin, isospin-dependent
results. For a numerical comparison, we show the lowest
order amplitudes obtained in the present work for the ρΞ and
K̄�Σ channels, as examples, in Fig. 2. In fact, the general

spin-dependence of thevectormeson-baryon kernelsmay be
expected since both the interacting hadrons have nonzero
spin and similar masses. An alternative mechanism of
breaking the spin-degeneracy has been suggested in
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FIG. 2. A comparison of the lowest order ρΞ and K̄�Σ
amplitudes [Eq. (2)] for different spin-isospin configurations.
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Ref. [19]. Further, we go a step forward by including
pseudoscalar-baryon as coupled channels in our formalism.
The consideration of various contributions to the vector-
baryon amplitudes, togetherwith the treatment of the vector-
and pseudoscalar-mesons at par in the coupled channel
dynamics, is the distinct feature of our formalism.
A formalism to obtain the transition amplitudes between

the pseudoscalar-baryon and the vector-baryon channels
was developed in our previous work [32], where the Kroll-
Ruderman term for the photoproduction of a pion was
modified, in consistency with the vector meson dominance
phenomenon, by replacing the photon by a vector meson.
The deductionwas extended to the SU(3) case in Ref. [32] to
obtain a general Lagrangian for the transitions among
pseudoscalar-baryon (PB) and vector-baryon (VB) channels

LPBVB ¼ −igKR
2fπ

ðF0hB̄γμγ5½½P; Vμ�; B�i

þD0hB̄γμγ5f½P; Vμ�; BgiÞ; ð17Þ

where F0 ¼ 0.46, D0 ¼ 0.8 reproduce the axial coupling
constant of the nucleon: F0 þD0 ≃ gA ¼ 1.26 [32].
In the present work we need the transition amplitudes

between pseudoscalar-baryon and vector-baryon channels
with strangeness −2. We obtain them using Eq. (17)

VI
PBVB ¼ −iCI

PBVB
gKR

2
ffiffiffiffiffiffiffiffiffiffiffi
fPfV

p
�
ϵ0
�

σ⃗ · P⃗1

E1 þM1

þ σ⃗ · P⃗2

E2 þM2

�

− σ⃗ · ⃗ϵ −
σ⃗ · P⃗2σ⃗ · ⃗ϵ σ⃗ ·P⃗1

ðE1 þM1ÞðE2 þM2Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M1 þ E1

2M1

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ E2

2M2

s
; ð18Þ

which, on s-wave projection, gives

VI;S
PBVB ¼ −iCI

PBVB
gKR

2
ffiffiffiffiffiffiffiffiffiffiffi
fPfV

p
�
−σ⃗ · ⃗ϵþ ϵ0

�
σ⃗ · P⃗1

E1 þM1

��

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þ E1

2M1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ E2

2M2

s
ð19Þ

In Eqs. (17)–(19) gKR is the Kroll-Ruderman coupling
[32–34]

gKR ¼ mVffiffiffiffiffiffiffiffiffiffiffiffiffi
2fPfV

p ; ð20Þ

with mV denoting the mass of the vector meson and fP and
fV being the decay constants of the pseudoscalar and vector
meson. The values of the isospin coefficients CI

PBVB for
isospin 1=2 and 3=2 are listed in Table XV and XIV in
the Appendix A, respectively. The PB ↔ VB transition
amplitudes for spin 1=2 and 3=2 are obtained as

VI;1=2
PBVB ¼ iCI

PBVB
gKR

2
ffiffiffiffiffiffiffiffiffiffiffi
fPfV

p
� ffiffiffi

3
p

þ
ffiffiffi
1

3

r
jK⃗vj
mv

jP⃗1j
ðE1 þM1Þ

�
;

ð21Þ

VI;3=2
PBVB ¼ −iCI

PBVB
gKR

2
ffiffiffiffiffiffiffiffiffiffiffi
fPfV

p
ffiffiffi
2

3

r
jK⃗vj
mv

jP⃗1j
ðE1 þM1Þ

: ð22Þ

We find that the PB ↔ VB amplitudes give negligible
contribution in the spin 3=2 case, as can be seen from the
kinematic dependence in Eq (22). This is consistent with
the results obtained within a different formalism [19],
where the VB amplitudes in spin 3=2 have been found
to change weakly when coupled to pseudoscalar baryon
systems.
Finally, the pseudoscalar meson-baryon amplitudes are

obtained from the lowest order chiral Lagrangian [35,36]

LPB ¼ hB̄iγμ∂μBþ B̄iγμ½Γμ; B�i −MBhB̄Bi

þ 1

2
D0hB̄γμγ5fuμ; Bgi þ

1

2
F0hB̄γμγ5½uμ; B�i; ð23Þ

where

Γμ ¼
1

2
ðu†∂μuþ u∂μu†Þ; uμ ¼ iu†∂μUu†;

U ¼ u2 ¼ exp

�
i
P
fP

�
: ð24Þ

As defined earlier, fP in Eq. (24) is the pseudoscalar decay
constant, and P is

P ¼

0
BBB@

π0 þ 1ffiffi
3

p η
ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþ

ffiffiffi
2

p
π− −π0 þ 1ffiffi

3
p η

ffiffiffi
2

p
K0

ffiffiffi
2

p
K−

ffiffiffi
2

p
K̄0 −2ffiffi

3
p η

1
CCCA

The resulting s-wave amplitudes are consistent with those
obtained earlier in Ref. [12],

VI;1=2
PB ¼−

CI
PB

4f1f2
ð2 ffiffiffi

s
p

−M1−M2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM1þE1ÞðM2þE2Þ

4M1M2

s
;

ð25Þ

where M1 (M2), E1 (E2) represent the mass and energy of
the baryon in the initial (final) state, respectively, and f1
(f2) is the decay constant of the meson in the initial (final)
state. We do not give the values of CI

PB here since they are
same as those given in Ref. [12].
With the kernels prepared we solve the Bethe-Salpeter

equation in its on-shell factorization form [37,38]

T ¼ ð1 − VGÞ−1V; ð26Þ
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where G is a loop of two hadrons which is divergent
in nature. It is possible to evaluate the loop function by
using the dimensional regularization or with a three-
momentum cutoff. In the former case, the subtraction
constants can be fixed to have natural values following
Refs. [16,39,40], to ensure the interpretation of the reso-
nances found in the calculations as those arising from the
dynamics of the system. In the latter case, a cutoff
parameter Λ is used to regularize the loop function using
a Gaussian form factor as

Gið
ffiffiffi
s

p Þ¼
Z

∞

0

d3q
ð2πÞ3

1

2E1iðq⃗Þ
2Mi

2E2iðq⃗Þ
e½−ðq

2−q2i;onÞ=Λ2�ffiffiffi
s

p
−E1iðq⃗Þ−E2iðq⃗Þ

;

ð27Þ

where the subscript i is the label for the ith-channel, E1i and
E2i represent the energies of the two particles in the
channel, Mi is the mass of the propagating baryon and,
qi;on is the three momentum of the relative motion of the
particles in the intermediate state when they are on mass
shell. We have calculated the amplitudes using both
methods and find that the results obtained and conclusions
are very similar. In the following we show the results
obtained by calculating the loop function using Eq. (27)
with Λ ¼ 800 MeV, although, later on, we will present the
values of the poles found within the dimensional regulari-
zation scheme too.
It is important to add here that we take into account the

fact that the width of some vector mesons, like K� and ρ, is
considerably large. To do this we convolute the loops over
the varied mass of these mesons following Ref. [15],

~Gið
ffiffiffi
s

p Þ ¼ 1

N

Z ðmþ2ΓÞ2

ðm−2ΓÞ2
d ~m2

�
−1
π

�
Gið

ffiffiffi
s

p Þ

× Im

�
1

~m2 −m2 þ imΓð ~mÞ
�
; ð28Þ

where Gið
ffiffiffi
s

p Þ is calculated using Eq. (27) and where

N ¼
Z ðmþ2ΓÞ2

ðm−2ΓÞ2
d ~m2

�
−
1

π

�
Im

�
1

~m2 −m2 þ imΓð ~mÞ
�
;

with

Γð ~mÞ ¼ Γmeson

�
m2

~m2

��
λ1=2ð ~m2; m2

d; m
02
d Þ=2 ~m

λ1=2ðm2; m2
d; m

02
d Þ=2m

�
3

× θð ~m −md −m0
dÞ:

In the above equation, md, m0
d denote the masses of

the decay products of the vector mesons, i.e., pion masses
in case of ρ, and kaon and pion mass in case of K�. We
use Γρ and ΓK� as 149.4 MeV and 50.5 MeV, respectively.
Thus, for the channels involving the ρ and the K� mesons,

we use Eq. (28) to solve the Bethe-Salpeter equation
[Eq. (26)].
To search for resonances/bound states we need to obtain

the T-matrix of Eq. (26) in the complex energy plane, for
which we calculate the loop function in the first (I) and
second (II) Riemann sheet as [38,41]:

Gið
ffiffiffi
s

p Þ ¼
�

GðIÞ
i ð ffiffiffi

s
p Þ; for Ref ffiffiffi

s
p g < ðmi þMiÞ

GðIIÞ
i ð ffiffiffi

s
p Þ; for Ref ffiffiffi

s
p g ≥ ðmi þMiÞ

;

where

GðIÞ
i ð ffiffiffi

s
p Þ ¼ Gið

ffiffiffi
s

p Þ ð29Þ

GðIIÞ
i ð ffiffiffi

s
p Þ ¼ GðIÞ

i ð ffiffiffi
s

p Þ − 2iImfGI
ig

¼ GðIÞ
i ð ffiffiffi

s
p Þ þ i

Miq
2π

ffiffiffi
s

p ; ð30Þ

with ðmi þMiÞ being the threshold of the ith-channel. If a
pole appears in the complex plane, it can be seen in the
complex amplitude for all the channels. Depending on the
threshold of a given channel, the pole can appear below or
above the threshold (i.e., on the corresponding first or
second Riemann sheet of that channel).

FIG. 3. Squared amplitudes for the total isospin and spin 1=2.
The vertical dashed lines indicate the thresholds as summarized in
Table II.
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III. RESULTS AND DISCUSSIONS

A. Isospin= 1=2, Spin= 1=2 and Parity = − 1
We begin the discussion of the results by showing the

squared amplitudes for different coupled channels in the
isospin 1=2, spin 1=2 configuration in Fig. 3. It can be seen
from Fig. 3 that a clear narrow peak is present around
1690 MeV in all the channels except in πΞ. This peak
corresponds to a pole in the complexplane (shown inFig. 4) at

M − iΓ=2 ¼ 1687 − i2 MeV: ð31Þ

This pole position is in good agreement with the
recently determined mass and width of Ξð1690Þ by the
BABAR Collaboration: M ¼ ð1684.7� 1.3þ2.2

−1.6Þ MeV, Γ ¼
ð8.1þ3.9þ1.0

−3.5−0.9 Þ MeV [6] and those determined by the BELLE
Collaboration: M ¼ ð1688� 2Þ MeV, Γ ¼ ð11� 4Þ MeV
[5]. The spin-parity 1=2− also coincides with the experimen-
tal data analysis of Ref. [6]. The full width of 4 MeV in
Eq. (31) is a bit larger than the value ∼1 MeV obtained in
Ref. [10]. This is because the coupling of the vector-baryon
channels pushes the pole to slightly lower energies, hence,
bringing it slightly closer to the K̄Λ channel. This latter fact
allows for a bigger decay width since the coupling of the pole
to the K̄Λ channel increases. Another finding is that in our
work, where we insist on using the cutoff variable related to
the natural subtraction constants such that the resulting poles
can be related to dynamically generated states [16,39,40], we
do not find the pole forΞð1690Þ if we switch off the coupling
between PB and VB channels.
We have also calculated the branching ratios (in per-

centage) of our state to the different open channels for
decay

ΓR→iP
iΓR→i

;

where ΓR→i represents the partial decay width of the
resonance, R, to the ith channel, and the sum in the
denominator, in case of Ξð1690Þ is

X
i

ΓR→i ¼ ΓΞð1690Þ→K̄Λ þ ΓΞð1690Þ→K̄Σ þ ΓΞð1690Þ→πΞ

The partial decay width is obtained as [38],

ΓR→1þ2 ¼
Z

Wmax

Wmin

dW
W2

q
4π2

MRM2jgR12j2

×

�
ΓR

ðMR −WÞ2 þ ðΓR=2Þ2
�
; ð32Þ

where MR, ΓR, M2 denote the mass and width of the
decaying resonance and the mass of the baryon in the final
state, q represents the magnitude of the relative momentum
for the final meson-baryon in the center of mass frame, and
gR12 represents the coupling of the resonance to the decay
channel. The coupling of the different channels to the state
we associate with Ξð1690Þ are given in Table I. The
variable mass of the resonance, W, in Eq. (32) runs from
the minimum value, Wmin, which can be as low as the
threshold of the decay channel, to a maximum value,Wmax,
above the resonance mass, which can be as large as ∞.
However, the precise value of these limits of integration are
taken such that

ΓR;tot ¼
X
i

ΓR→i; ð33Þ

where ΓR;tot is the total width of the resonance obtained
from the pole position. In the present case of Ξð1690Þ, it
turns out that using Wmin ¼ MR − 1.6ΓR;tot (if Wmin >
threshold of the decay channel) and Wmax ¼ MR þ
1.6ΓR;tot in Eq. (32) satisfies the condition in Eq. (33).
Note that these values of Wmin and Wmax, coincidentally,
happen to be same as those used in Ref. [38]
for f0ð980Þ → ππ; KK̄.
The branching ratios of our state to πΞ, K̄Λ, and K̄Σ are

obtained as 17%, 28.5%, and 54.5%, respectively. Using
these values, we can see that the branching fraction defined
by Eq. (1) is 0.52, which is remarkably similar to the
experimental value [5].
The coupling of a resonance to the different channels can

be calculated by recalling that the scattering matrix for

FIG. 4. Squared amplitudes for the K̄Σ channel, in the complex
plane, with total isospin and spin 1=2.

TABLE I. Couplings of different channels to Ξð1690Þ.
Channels Couplings

πΞ −0.1 − i0.1
ηΞ 0.9þ i0.2
K̄Σ 1.5þ i0.2
K̄Λ −0.3þ i0.1
ρΞ 0.2 − i0.3
ωΞ −0.4þ i0.2
ϕΞ 1.2þ i0.5
K̄�Σ −1.4 − i0.4
K̄�Λ 0.6þ i0.0
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the transition i → j, Tij, in the vicinity of a pole can be
written as

Tij ¼
gigj
z − zR

; ð34Þ

where zR corresponds to the pole position associated to the
resonance in the complex plane. Then, the product of the
couplings gigj can be identified with the residue, Rij, of Tij,
which can be calculated via an integration of Tij along a
closed contour around pole. In this way, g2i ¼ Rii, and we
can write

gj ¼
Rijffiffiffiffiffiffi
Rii

p : ð35Þ

It can be seen from the values of these couplings that
the pole given by Eq. (31) couples very weakly to πΞ,
thus, explaining the difficulty of identifying the state in the
data on πΞ mass spectrum [6]. The small coupling of
the state to K̄Λ and the stronger one to K̄Σ, in spite of the
presence of a larger phase space for decay to the former (the
masses and the thresholds of different channels are listed in
Table. II) explains why the branching ratio given in Eq. (1)
is larger than expected. Thus, all the findings related to
Ξð1690Þ can be well explained within the coupled channel
dynamics of meson-baryon systems which indicate that this
state should be interpreted as a dynamically generated state.
It should be mentioned that suggestions on the hadronic
dynamical origin of Ξð1690Þ have also been made in
Refs. [10,13,16,20].
Further, we find it useful to obtain the K̄Λ and K̄Σ

invariant mass spectra and compare with the corresponding
data available from the processesΛc → KþK̄0Λ0 andΛc →
KþK−Σþ in Ref. [5]. The mass spectra are calculated using

dΓ
dMK̄B

∝ P�
KþP�̄

KBjTj2; ð36Þ

where the K̄B subscript represents the K̄0Λ0 or K−Σþ

system, P�
Kþ is the momentum of Kþ in the Λc rest frame

and P�̄
KB is the center of mass momentum in the K̄B rest

frame. Further, to compare with the data outside the
peak region, we add to the K̄B T-matrix a small back-
ground proportional to the phase space. To be explicit, T in
Eq. (36) is

T ¼ TK̄B þ ~B; ð37Þ

where ~B ¼ 2 × 10−3 MeV−1 for the K̄0Λ mass spectrum
and ~B ¼ 5 × 10−2 MeV−1 for the K̄þΣ− case. A compari-
son of our results (which is multiplied by an arbitrary
constant factor), as well as the background contribution,
with the data are shown in Figs 5 and 6.
A technical remark is here in order. To compare our

results with the data, we calculate the momenta in Eq. (36)
using the physical masses of the mesons and baryons
involved in the process, although the jTj2 has been
calculated using average masses (as mentioned earlier).
We would like to add here that if we would have used
isospin average masses in the phase space to obtain the
invariant mass distribution, a peak structure, though closer
to the average K̄Σ threshold, would appear in Fig. 6 in spite
of having the pole [given by Eq. (31)] below the average

TABLE II. The isospin averaged masses of different particles
and the thresholds of different channels. These thresholds are
indicated in Figs. 3 and 8 as vertical dashed lines.

Channels (Masses are given
in brackets, in MeV)

Thresholds
(MeV)

πð137ÞΞð1318Þ 1455
ηð547ÞΞð1318Þ 1865
K̄ð496ÞΣð1193Þ 1689
K̄ð496ÞΛð1116Þ 1612
ρð770ÞΞð1318Þ 2088
ωð782ÞΞð1318Þ 2100
ϕð1020ÞΞð1318Þ 2338
K̄�ð892ÞΣð1193Þ 2085
K̄�ð892ÞΛð1116Þ 2008
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FIG. 5. K̄0Λ invariant mass spectra for the process
Λc → KþK̄0Λ0. The data is taken from Ref. [5].
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Λc → KþK−Σþ. The data is taken from Ref. [5].
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K̄Σ threshold. The latter would be a consequence of the
finite width of the pole (¼ 4 MeV). A manifestation of the
resonance with the mass below the threshold of a particular
channel but with a finite width, allowing the tail of the
resonance fall in the physical energy region, has been
discussed in Ref. [42].
We have also solved the Bethe-Salpeter equation by

calculating the loop function within the dimensional
regularization scheme by using natural values of the
subtraction constants:

aπΞ ¼ −1.05 aηΞ ¼ −2.30 aK̄Σ ¼ −1.90

aK̄Λ ¼ −1.65 aρΞ ¼ −2.63 aωΞ ¼ −2.64

aϕΞ ¼ −2.93 aK̄�Σ ¼ −2.60 aK̄�Λ ¼ −2.50: ð38Þ
These constants have been obtained by using the condition

G½μ ¼ 630 MeV;
ffiffiffi
s

p ¼ ffiffiffi
s

p
thr;min� ¼ 0; ð39Þ

for all the channels, where
ffiffiffi
s

p
thr;min is the lowest threshold.

Such a calculation leads to a pole at 1688 − i1 MeV, which
is similar to Eq. (31). All other results obtained in our work
are comparable in a similar way when obtained by using a
cutoff or dimensional regularization to calculate the loop
integrals. We, thus, would show only the results obtained
with a cutoff in the following discussions.
Before proceeding further, it should be mentioned that

another pole appears in the spin, isospin 1=2 configuration
but deep in the complex plane, around 1530 MeV, with full
width around 200 MeV. A broad structure around this
energy region is seen in the πΞ t-matrix (in Fig. 3).
However, identifying such broad states in experimental
data should be difficult, especially because a narrow 3=2þ
resonance, Ξð1530Þ, exists in this energy region. As an
example, we show the πΞ mass spectrum in Fig. 7, for the

process studied by the BABAR Collaboration, Λþ
c →

Ξ−πþKþ, näively obtained as

dΓ
dMπΞ

∝ pKpπΞjT πΞj2: ð40Þ

Here, pK and pπΞ represent the momentum of the kaon in
the Ξ−πþKþ system and the center of mass momentum in
the πΞ subsystem, respectively. The matrix element, T πΞ,
in Eq. (40) is

jT πΞj2 ¼ jTs-wavej2 þ jTp-wavej2: ð41Þ

We calculate Eq. (41) by using our amplitude for the s-wave
part and by writing a Breit-Wigner function for the p-wave
[Ξð1530Þ]

Tp-wave ¼
g2ffiffiffi

s
p

−MR þ iΓ=2
: ð42Þ

We use MR ¼ 1530 MeV and Γ=2 ¼ 5 MeV for Ξð1530Þ,
following Ref. [1], and estimate the coupling g2 ∼ 0.47 by
assuming the decay rate Ξð1530Þ → πΞ to be nearly
100% [1].

B. Isospin= 1=2, spin= 3=2, and parity = − 1
Next, we show the squared amplitudes for the isospin

1=2 and spin 3=2 configurations in Fig. 8. In this case the
presence of a resonance can be clearly seen around
2050 MeV, which couples strongly to the K̄�Σ channel.
It is important to mention here that a difficulty arises when
investigating the pole corresponding to this state in the
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FIG. 7. The πΞ mass spectrum in the process Λþ
c → Ξ−πþKþ

obtained by summing a Breit-Wigner distribution for the Ξð1530Þ
resonance to the s-wave t-matrix obtained in the present work. It
is possible to notice the presence of a structure around 1690 MeV
and a KΛ cusp around 1612 MeV.

FIG. 8. Squared amplitudes for total isospin 1=2 and spin 3=2.
The vertical dashed lines indicate the thresholds as summarized in
Table II.
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complex plane, since the widths of unstable mesons like ρ,
K� transform a fixed threshold into a band of energies
related to a variable threshold. An appropriate way to tackle
this problem would be to calculate the loop functions by
including the self-energy of the unstable mesons in the
system (for more discussions see, for example, Refs. [43]).
Alternatively, an estimation of the effect of the widths of
the unstable mesons in the system can be made following
the procedure suggested in Ref. [15], which consists of
calculating the mass, width and couplings of the state from
the squared amplitudes obtained on the real axis. We follow
this latter procedure and determine the mass and half width
of the spin 3=2 state found in our work as

M − iΓ=2 ¼ 2046.0 − i8.2 MeV: ð43Þ

The presence of the pole in the complex plane is confirmed
by neglecting the widths of ρ and K� in the calculations. In
such a limit, we do find a pole (as shown in Fig. 9) at

M − iΓ=2 ¼ 2055 − i2 MeV; ð44Þ

where the mass value is similar to the one in Eq. (43)
obtained from the amplitudes shown in Fig. 8. However, the
width in Eq. (44) is not well determined since ρ and K�
have been considered as stable particles for the sake of
calculations in the complex plane. In any case, Fig. 9 shows
that there exists a pole in the complex plane associated to
the peaks seen in squared amplitude in Fig. 8. We can, thus,
conclude that a Ξ baryon with spin-parity 3=2− arises at
2046.0 − i8.2 MeV due to the vector meson-baryon
coupled channel dynamics. Once again we come across
a Ξwith a narrow width in spite of the availability of a large
phase space to decay. In fact the decay width of this Ξ is
mostly through the decay of ρ and K̄�, and the correspond-
ing peaks in the squared amplitudes tend to get narrower

(corresponding to a nearly bound state seen in Fig. 9) if the
widths of ρ and K̄� is considered to be zero.
The question that arises is if we can relate this peak

structure with any known state. Two poorly known states
around 2 GeV are listed in Ref [1]: Ξð2030Þ and Ξð2120Þ.
The former one seems to have a spin J ≥ 5=2 [1]. The
existence of the latter one is based on a signal found in the
K̄Λ mass spectrum [1]. Although the mass of the state in
Eq. (43) is far from that of Ξð2120Þ, it may be possible to
relate the two of them. One reason being the narrow width
of Ξð2120Þ, which is listed as< 20 MeV in Ref. [1], which
is in good agreement with Eq. (43). Another reason may be
that the K̄Λ channel may not be the most suited channel to
investigate the properties of Ξð2120Þ, if the latter is related
to the state found in our work. As we shall argue now, in
such a case, πΞ, K̄Σ channels should be more suitable to
study Ξð2120Þ. The couplings of the state in Eq. (43) to
different channels are given in Table III. These couplings
have been obtained from the amplitudes calculated on the
real axis (following Ref. [15]). It can be seen from Table III
that the largest coupling of the state are found to K̄�Σ and
ϕΞ channels. Under the assumption that our state is related
to Ξð2120Þ, we can say that Ξð2120Þ should mainly decay
through K̄�Σ and ϕΞ to final states: πΞ, K̄Σ, K̄Λ, as shown
in Fig. 10. It can be anticipated that the amplitudes with
final states K̄Σ and ϕΞ are larger than that for K̄Λ decay by
comparing the couplings of the vertices: πΣΛ, πΣΣ, K̄ΣΞ,
KΞΛ, and KΞΣ given in Ref. [44]. We list them here for the
reader’s convenience: the meson-baryon-baryon couplings
needed for the K̄Λ final state are gπΣΛ ¼ 2D and
gKΞΛ ¼ −Dþ 3F, in case of K̄Σ channel gπΣΣ ¼ 2

ffiffiffi
3

p
F

and gKΞΣ ¼ ffiffiffi
3

p ðDþ FÞ contribute and gK̄ΣΞ ¼ ffiffiffi
6

p ðDþ
FÞ contributes to the πΞ final state, where D ¼ 0.8, F ¼
0.46 [44]. A more detailed analysis should be made in
future but this preliminary comparison suggests that a Ξ
resonance with mass around 2050 MeV and spin-parity
3=2− should be more ideally looked for in the πΞ and K̄Σ
mass spectrum.
We also calculate isospin 3=2 amplitudes for spin 1=2

and 3=2 but find no resonance in such configurations, thus,
implying absence of any exotic states in our study. A claim
of the existence of a narrow, exotic Ξ−− state, with mass
∼1862 MeV, in the π−Ξ− mass spectrum was reported in
Ref. [45]. However, later investigations have failed to
confirm the existence of this state (see Ref. [46] for some
recent results on this topic).

FIG. 9. Squared amplitude of the K̄�Σ channel, in the complex
plane, calculated by neglecting the widths of the vector mesons.

(a) (b)

FIG. 10. Possible decay mechanism of a Ξ with mass around
2050 MeV to the K̄Λ channel.
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Finally, we have checked the stability of our results
against the variation of the unique parameter of the
calculation, which is the cutoff (Λ ¼ 800 MeV) used to
calculate the loop function [Eq. (27)]. We change the cutoff
Λ by �4% and show, as an example, the variation of the
squared amplitudes of the K̄Σ and K̄�Σ channels in Figs 11
and 12, respectively. The variation in the pole position and
half widths of the resonance associated to Ξð1690Þ as well
as the 3=2− state related to Ξð2120Þ can be summarized
as ð1689� 1Þ þ ið2� 1Þ MeV and ð2046� 6Þ þ ið8.2�
2.2Þ MeV, respectively. It can be seen from these summa-
rized results that the states found in our work are reasonably
stable.
The possibility of formation of resonances, like Ξð1690Þ,

due to meson-baryon coupled channel dynamics, can affect
relevant cross sections. Such a modification of cross
sections, in turn, can be useful in understanding the
subthreshold Ξð1314Þ production observed in Ar þ Kcl
collisions at 1.76 A GeV (the threshold in nucleon-nucleon
collisions is 3.74 GeV) by the HADES Collaboration [24].
The measured Ξ− abundance is more than one order of
magnitude larger than predicted by the statistical model
[47] and by the relativistic transport model [48]. An attempt
to explain the observed excess of Ξ− has been presented in
Ref. [49], where, with the help of an SU(3) effective
Lagrangian model, the authors computed the cross section

for the YY → NΞ, K̄Y → πΞ, and K̄N → KΞ reactions.
Including these processes in the RVUU transport model the
authors obtained the abundance ratio Rs ¼ Ξ=ðΛþ Σ0Þ ¼
3.38 × 10−3, to be compared with the experimental value of
ð5.6� 1.2Þ × 10−3. However, the cross sections used for
the process K̄Λ → πΞ in Ref. [49] does not account for the
Ξð1690Þ resonance formation. The inclusion of such an
information drastically enhances the K̄Λ → πΞ cross sec-
tions in the lower energy region and changes the line shape
of the energy dependence, which should be important. This
is shown in Fig. 13, which should be compared with Fig. 2
of Ref. [49]. We also show the cross sections for πΞ ↔ K̄Σ
in Fig. 13. Using the cross sections obtained here could
increase the abundance ratio Rs obtained in Ref. [49],
bringing it closer to the experimental value.

TABLE III. Couplings of different channels to Ξð2120Þ.
Channels Couplings

ρΞ −0.7þ i0.0
ωΞ 1.4þ i0.0
ϕΞ −1.9þ i0.0
K̄�Σ 3.2þ i0.0
K̄�Λ −0.5þ i0.0

1660 1680 1700 1720

Total energy (MeV)

100

200

| T
   

I  
 x

 1
00

 (
 M

eV
   

)

 = 830 MeV

 = 800 MeV

 = 770 MeV

2
-2

FIG. 11. Variations in the isospin-spin 1=2 squared amplitude
of K̄Σ channel as a function of the cutoff Λ used in Eq. (27). The
peak is associated to Ξð1690Þ.
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FIG. 12. Same as Fig. 11 but for K̄�Σ in the isospin 1=2, spin
3=2 configuration. The peak seen in this plot is related to
Ξð2120Þ.
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FIG. 13. Cross sections for the πΞ ↔ K̄Λ, πΞ ↔ K̄Σ proc-
esses. The horizontal axis corresponds to the total energy above
the respective threshold of each process. We have used isospin
1=2, spin 1=2 amplitudes to obtain these cross sections.
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IV. A COMPARISON OF THE RELATIVISTIC
AND NONRELATIVISTIC TREATMENT

OF THE AMPLITUDES

It is a standard approach to obtain the lowest order
amplitudes within a nonrelativistic approximation when
studying meson-baryon interactions with the idea of
searching for dynamical generation of resonances. In the
present case, though, we disregard such an approximation,
keeping in mind that the thresholds of the different coupled
channels differ up to ∼200 MeV. We find it useful to end
this article with a comparison of the different amplitudes
obtained within a nonrelativisitic approximation with those
depicted in Figs. 3 and 8. To be explicit, we wish to
compare the squared t-matrices shown in Figs. 3 and 8 with
those obtained by solving the Bethe-Salpeter equation with
the kernels, VVB, deduced in the nonrelativistic limit, while
the loop function G in Eq. (26) continues to be relativistic.
Under the nonrelativisitic approximation (considering
energy of the baryon E ∼M, and neglecting the time
component of the polarization vector of the vector meson),
the contact term, for example, becomes

VI;S
CT;VB ¼ iCI

CT;VB
g1g2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p σ⃗ · ϵ⃗2 × ϵ⃗1; ð45Þ

where the meaning of CI
CT;VB, g andM1,M2 is the same as

in Eq. (9). Consistently, neglecting the terms of order
Oðjp⃗j=massÞ (modulus of momentum divided by mass), or
bigger, the t-channel amplitude given by Eq. (16) reduces
to

VI
t;VB¼

−m2
Vx

4fVifVj

1

t−m2
Vx

�
ϵ1 ·ϵ2

��
2

ffiffiffi
s

p
−M1−M2

þðM1−M2Þ
ðm2

2−m2
1Þ

m2
Vx

�
CI
t1;VB

þ
�
M1þM2

2M
ð2 ffiffiffi

s
p

−M1−M2Þ−
s−u
2M

�
CI
t2;VB

��
;

ð46Þ

which can be further simplified by considering that: (1) the
term multiplied by CI

t2;VB is much smaller than the one
multiplied by CI

t1;VB (approximating M1 ≃M2 ≃M, m1≃
m2 ≃m, implying s − u ∼ 4Mm) and can be neglected;
(2) the term with ðm2

2 −m2
1Þ=m2

Vx is negligible as compared
to the remaining terms; (3) t −m2

Vx → −m2
Vx. These

approximations simplify the t-channel amplitude to

VI
t;VB ¼ −⃗ϵ1 · ⃗ϵ2

4fVifVj
½ð2 ffiffiffi

s
p

−M1 −M2ÞCI
t1;VB�: ð47Þ

The amplitude in Eq. (47) corresponds to the one used in
Refs. [13–17,25,32,33]

VI
t;VB ¼ −

CI
t1;VB

4fVifVj
ðωþ ω0Þ⃗ϵ1 · ⃗ϵ2; ð48Þ

where ωþ ω0 represents the sum of the energies of the
incoming and outgoing meson, which, in the center of mass,
is ωþ ω0 ¼ 2

ffiffiffi
s

p
− E1 − E2 ≃ 2

ffiffiffi
s

p
−M1 −M2 in the non-

relativistic approximation.Analogously, one can easily reduce
the lowest order amplitudes for the s- and u-channel to

VI;S
s;VB ¼ CI

s;VB

�
g2

2M̄ þ m̄

�
⃗ϵ2 · σ⃗ ⃗ϵ1 · σ⃗; ð49Þ

VI;S
u;VB ¼ CI

u;VB

�
g2

2M̄ − m̄

�
⃗ϵ1 · σ⃗ ⃗ϵ2 · σ⃗; ð50Þ

where M̄ and m̄ are SU(3) average masses of the baryon and
vector meson and

CI
s;VB ¼ Is1fI

s
1i −

m̄
2M̄

ðIs1fIs2i þ Is2fI
s
1iÞ þ

�
m̄
2M̄

�
2

Is2fI
s
2i;

CI
u;VB ¼ Iu1fI

u
1i þ

m̄
2M̄

ðIu1fIu2i þ Iu2fI
u
1iÞ þ

�
m̄
2M̄

�
2

Iu2fI
u
2i:

It can be seen from the comparison of the isospin and
spin 1=2 amplitudes in Fig. 14 that the presence of the pole
and its position corresponding to Ξð1690Þ does not get
affected by the nonrelativistic approximation, although the

FIG. 14. Squared amplitudes for the total isospin and spin 1=2.
The solid (dashed) curves show the results of the calculations
done with relativistic (nonrelativistic) lowest order amplitudes
obtained with cutoff Λ ¼ 800 MeV. The vertical dashed lines
indicate the thresholds summarized in Table II.
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magnitude of the squared amplitudes is different within
such an approximation. Yet another difference is the
presence of another bump like structure near 2050 MeV
in the ρΞ amplitude which does not correspond to a pole in
the complex plane but a small variation in the cutoff value
can produce a pole corresponding to this peak. We can,
thus, summarize that a state with isospin, spin 1=2, and
mass near 2050 MeV is not stable and depends on a
relativistic or nonrelativistic treatment of the lowest order
amplitudes.
We show the comparison of the results obtained within a

nonrelativistic approximation considered for the lowest
order amplitudes for the meson-baryon system in isospin
1=2 and spin 3=2 configuration in Fig. 15. In this case, we
can say that the presence of the pole is not affected by the
nonrelativistic approximation but the pole positions differs
by about 30 MeVand its coupling to the K̄�Λ channel gets
too weak to show any signal of the resonance. Like the
isospin, spin 1=2 case, the strength of the squared ampli-
tude gets weaker within a nonrelativisitic approximation.
We can summarize this last discussion by mentioning that
the nonrelativistic approximation is reliable as far as the
nature of a dynamically generated state is concerned.
However, the strength of the amplitudes and pole positions
can get affected by this latter approximation.

V. SUMMARY

We can summarize this manuscript bymentioning that we
have shown that pseudoscalar-baryon and vector-baryon

coupled channel dynamics generate a resonance which can
be well associated to Ξð1690Þ. The present formalism can
explain all the recent experimental findings related to
Ξð1690Þwith a single parameter of the calculations; a cutoff
required to regularize the loop functions. We also find a
narrow 3=2− state with mass ∼2050 MeV, and relate it to
Ξð2120Þ. We show that the narrow widths of Ξð1690Þ and
Ξð2120Þ can be understood in terms of their weak couplings
to the open channels, which is a result of intricate coupled
channel meson-baryon dynamics. It is important to mention
here that the vector-baryon dynamics play an essential role
in the generation of these poles and in explaining the relevant
experimental data.We find that the t-channel interaction and
the contact term give dominant contributions to the VB
amplitudes. Finally, the existence of such cascades in nature
might be an interesting information in statistical models
trying to understand the ratio of Ξ−=Λ production found in
heavy ion collisions [24].We show the cross sections for the
processes πΞ ↔ K̄Λ, πΞ ↔ K̄Σ which can be useful in
studying corresponding in-medium processes.
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APPENDIX A: ISOSPIN COEFFICIENTS
FOR DIFFERENT AMPLITUDES

Next, we list the definitions of the coefficients
Vu1;…Vu12 of Eq. (13):

FIG. 15. Squared amplitudes for the total isospin 1=2 and spin
3=2. The solid (dashed) curves show the results of the calcu-
lations done with relativistic (nonrelativistic) lowest order am-
plitudes obtained with cut-off Λ ¼ 800 MeV. Notice that the
dashed curves have been multiplied by an extra factor 2 for the
sake of comparison.

TABLE IV. C1=2
CT;VB coefficients of the contact term.

ρΞ ωΞ ϕΞ K̄�Σ K̄�Λ

ρΞ (F −D) 0 0 − 1
4
ðDþ FÞ − 1

4
ðD − 3FÞ

ωΞ 0 0 −
ffiffi
3

p
4
ðDþ 3FÞ 1

4
ffiffi
3

p ðD − 3FÞ
ϕΞ 0 −

ffiffi
3
2

q
ðDþFÞ

2
− 1

2
ffiffi
6

p ðD − 3FÞ
K̄�Σ 1

2
ðDþ 2FÞ − D

2

K̄�Λ − D
2

TABLE V. C3=2
CT;VB coefficients of the contact term.

ρΞ K̄�Σ

ρΞ ðD−FÞ
2

− ðDþFÞ
2

K̄�Σ ðD−FÞ
2
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TABLE VI. The product Is1fI
s
1i of the isospin coefficients of the

s-channel amplitude given by Eq. (15).

ρΞ ωΞ ϕΞ K̄�Σ K̄�Λ

ρΞ 3
4 −

ffiffi
3

p
4 −

ffiffi
3
2

q
3
4

− 3
4

ωΞ 1
4

1ffiffi
2

p −
ffiffi
3

p
4

ffiffi
3

p
4

ϕΞ 2 −
ffiffi
3
2

q ffiffi
3
2

q
K̄�Σ 3

4
− 3

4

K̄�Λ 3
4

TABLE VII. The product Is1fI
s
2i of the isospin coefficients

of Eq. (15).

ρΞ ωΞ ϕΞ K̄�Σ K̄�Λ

ρΞ 3ðF−DÞ
4

ffiffi
3

p ðD−FÞ
4

ffiffi
3
2

q
ðD − FÞ 3ðF−DÞ

4

3ðD−FÞ
4

ωΞ ðF−DÞ
4

ðF−DÞffiffi
2

p
ffiffi
3

p ðD−FÞ
4

ffiffi
3

p ðF−DÞ
4

ϕΞ 2F −
ffiffi
3
2

q
F

ffiffi
3
2

q
F

K̄�Σ 3ðDþFÞ
4

− 3ðDþFÞ
4

K̄�Λ ð3F−DÞ
4

TABLE VIII. The product Is2fI
s
1i of the isospin coefficients

of Eq. (15).

ρΞ ωΞ ϕΞ K̄�Σ K̄�Λ

ρΞ 3ðF−DÞ
4

ffiffi
3

p ðD−FÞ
4 −

ffiffi
3
2

q
F

3ðDþFÞ
4

ðD−3FÞ
4

ωΞ ðF−DÞ
4

Fffiffi
2

p −
ffiffi
3

p ðDþFÞ
4

− ðD−3FÞ
4
ffiffi
3

p

ϕΞ 2F −
ffiffi
3
2

q
ðDþ FÞ − D−3Fffiffi

6
p

K̄�Σ 3ðDþFÞ
4

ðD−3FÞ
4

K̄�Λ ð3F−DÞ
4

TABLE IX. The product Is2fI
s
2i of the isospin coefficients

of Eq. (15).

ρΞ ωΞ ϕΞ K̄�Σ K̄�Λ

ρΞ 3ðD−FÞ2
4

−
ffiffi
3

p ðD−FÞ2
4

ffiffi
3
2

q
FðD − FÞ − 3ðD2−F2Þ

4

ð−D2þDF−3F2Þ
4

ωΞ ðD−FÞ2
4

FðF−DÞffiffi
2

p
ffiffi
3

p ðD2−F2Þ
4

ðD−3FÞðD−FÞ
4
ffiffi
3

p

ϕΞ 2F2
−

ffiffi
3
2

q
FðDþ FÞ − FðD−3FÞffiffi

6
p

K̄�Σ 3ðDþFÞ2
4

ðD2−2DF−3F2Þ
4

K̄�Λ ðD−3FÞ2
12

TABLE X. CI
t1;VB coefficients appearing in the VB t-channel

amplitude of Eq. (16) for the isospin 1=2.

ρΞ ωΞ ϕΞ K̄�Σ K̄�Λ

ρΞ 2 0 0 − 1
2

− 3
2

ωΞ 0 0
ffiffi
3

p
2

−
ffiffi
3

p
2

ϕΞ 0 −
ffiffi
3
2

q ffiffi
3
2

q
K̄�Σ 2 0
K̄�Λ 0

TABLE XI. CI
t2;VB coefficients appearing in the VB t-channel

amplitude of Eq. (16) for the isospin 1=2.

ρΞ ωΞ ϕΞ K̄�Σ K̄�Λ

ρΞ 2ðF −DÞ 0 0 − ðDþFÞ
2

ðD−3FÞ
2

ωΞ 0 0
ffiffi
3

p ðDþFÞ
2

ðD−3FÞ
2
ffiffi
3

p

ϕΞ 0 −
ffiffi
3
2

q
ðDþ FÞ − ðD−3FÞffiffi

6
p

K̄�Σ ðDþ 2FÞ −D
K̄�Λ −D

TABLE XII. CI
t1;VB coefficients of the VB → VB t-channel

amplitude [Eq. (16)] in isospin 3=2.

ρΞ K̄�Σ

ρΞ −1 −1
K̄�Σ −1

TABLE XIII. CI
t2;VB coefficients of the VB → VB t-channel

amplitude [Eq. (16)] in isospin 3=2.

ρΞ K̄�Σ

ρΞ (D − F) −ðDþ FÞ
K̄�Σ (D − F)

TABLE XIV. C3=2
PBVB coefficients of the PB → VB amplitude

[Eq. (19)].

ρΞ K̄�Σ

πΞ ðF0 −D0Þ ðD0 þ F0Þ
K̄Σ ðD0 þ F0Þ ðF0 −D0Þ
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Vu1 ¼
�
Iu1f −

Iu2fK
0
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
��

Iu1i −
Iu2iK

0
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

−
jK⃗1j2Iu2f
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�
Iu1i −

Iu2iK
0
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

−
jK⃗2j2Iu2i
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�
Iu1f −

Iu2fK
0
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

ðA1Þ

Vu2 ¼
�
Iu1f þ

Iu2fK
0
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
��

Iu1i þ
Iu2iK

0
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

þ jK⃗1j2Iu2f
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�
Iu1i þ

Iu2iK
0
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

þ jK⃗2j2Iu2i
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�
Iu1f þ

Iu2fK
0
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

ðA2Þ

Vu3 ¼
�
Iu1f þ

Iu2fK
0
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
��

Iu1i −
Iu2iðE1 −MxÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

−
jK⃗1j2

8M1M2

Iu2fI
u
2i ðA3Þ

Vu4 ¼
�
Iu1f þ

Iu2fðE2 þMxÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
��

Iu1i −
Iu2iK

0
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

−
jK⃗2j2

8M1M2

Iu2fI
u
2i ðA4Þ

Vu5 ¼
�
Iu1f −

Iu2fK
0
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
��

Iu1i þ
Iu2iðE1 þMxÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

−
jK⃗1j2

8M1M2

Iu2fI
u
2i ðA5Þ

TABLE XV. C1=2
PBVB coefficients of the PB → VB amplitude [Eq. (19)].

ρΞ ωΞ ϕΞ K̄�Σ K̄�Λ

πΞ 2ðD0 − F0Þ 0 0 1
2
ðD0 þ F0Þ − 1

2
ðD0 − 3F0Þ

ηΞ 0 0 0 − 3
2
ðD0 þ 3F0Þ − 1

2
ðD0 − 3F0Þ

K̄Σ 1
2
ðD0 þ F0Þ −

ffiffi
3

p
2

ðD0 þ F0Þ
ffiffi
3
2

q
ðD0 þ F0Þ −ðD0 þ 2F0Þ D0

K̄Λ − 1
2
ðD0 − 3F0Þ − 1

2
ffiffi
3

p ðD0 − 3F0Þ 1ffiffi
6

p ðD0 − 3F0Þ D0 D0

TABLE XVI. The product Iu1fI
u
1i appearing in Eqs. (A1)–(A12).

ρΞ ωΞ ϕΞ K̄�Σ K̄�Λ

ρΞ − 1
4 −

ffiffi
3

p
4 −

ffiffi
3
2

q
1 0

ωΞ 1
4

1ffiffi
2

p −
ffiffi
3

p
2

ffiffi
3

p
2

ϕΞ 2 −
ffiffi
3

p
2
ffiffi
2

p
ffiffi
3

p
2
ffiffi
2

p

K̄�Σ − 1
4

− 3
4

K̄�Λ 3
4

TABLE XVII. The product Iu1fI
u
2i appearing in Eqs. (A1)–(A12).

ρΞ ωΞ ϕΞ K̄�Σ K̄�Λ

ρΞ ðD−FÞ
4

ffiffi
3

p ðD−FÞ
4

ffiffi
3
2

q
ðD − FÞ F − D

2
D
2

ωΞ ðF−DÞ
4

ðF−DÞffiffi
2

p −
ffiffi
3

p
F

2

ffiffiffi
3

p ðF−2D
3 Þ

2

ϕΞ 2F 1
2

ffiffi
3
2

q
ðD − FÞ ðDþ3FÞ

2
ffiffi
6

p

K̄�Σ ðD−FÞ
4

− ðDþ3FÞ
4

K̄�Λ ðDþ3FÞ
4

TABLE XVIII. Theproduct Iu2fI
u
1i appearing inEqs. (A1)–(A12).

ρΞ ωΞ ϕΞ K̄�Σ K̄�Λ

ρΞ ðD−FÞ
4

ffiffi
3

p ðD−FÞ
4 −

ffiffi
3
2

q
F (Dþ F) 0

ωΞ ðF−DÞ
4

Fffiffi
2

p −
ffiffi
3

p ðDþFÞ
2

− ðD−3FÞ
2
ffiffi
3

p

ϕΞ 2F − 1
2

ffiffi
3
2

q
ðDþ FÞ − D−3F

2
ffiffi
6

p

K̄�Σ ðD−FÞ
4

3ðD−FÞ
4

K̄�Λ ðDþ3FÞ
4

TABLE XIX. The product Iu2fI
u
2i appearing in Eqs. (A1)–(A12).

ρΞ ωΞ ϕΞ K̄�Σ K̄�Λ

ρΞ − ðD−FÞ2
4 −

ffiffi
3

p ðD−FÞ2
4

ffiffi
3
2

q
FðD − FÞ ðD2þ3DFþ6F2Þ

6

DðDþFÞ
2

ωΞ ðD−FÞ2
4

FðF−DÞffiffi
2

p −
ffiffi
3

p
FðDþFÞ
2

ðD−3FÞð2D−3FÞ
6
ffiffi
3

p

ϕΞ 2F2
1
2

ffiffi
3
2

q
ðD2 − F2Þ − ðD2−9F2Þ

6
ffiffi
6

p

K̄�Σ − ðD−FÞ2
4

ðD2þ2DF−3F2Þ
4

K̄�Λ ðDþ3FÞ2
12
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Vu6 ¼
�
Iu1f −

Iu2fðE2 −MxÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
��

Iu1i þ
Iu2iK

0
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

−
jK⃗2j2

8M1M2

Iu2fI
u
2i ðA6Þ

Vu7 ¼ Iu2i

�
−Iu1f þ

Iu2fK
0
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

ðA7Þ

Vu8 ¼ Iu2f

�
−Iu1i þ

Iu2iK
0
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

ðA8Þ

Vu9 ¼ −Iu1fIu2i − Iu2f

�
Iu1i −

Iu2ið
ffiffiffi
s

p
−MxÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

ðA9Þ

Vu10 ¼ Iu2i

�
Iu1f þ

Iu2fK
0
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

ðA10Þ

Vu11 ¼ Iu2f

�
Iu1i þ

Iu2iK
0
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

ðA11Þ

Vu12 ¼ Iu1fI
u
2i þ Iu2f

�
Iu1i þ

Iu2ið
ffiffiffi
s

p þMxÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2

p
�

ðA12Þ

Here, as in the main part of this manuscript, Mx is the
mass of the baryon exchanged,M1 (M2), E1 (E2) represent
the mass and energy of the incoming (outgoing) baryon in
the process, and K0

1 (K
0
2), K⃗1 (K⃗2) represent the energy and

three-momentum of the incoming (outgoing) meson. The
products of different isospin coefficients; Iu1i, I

u
1f, I

u
2i, I

u
2f

are given in Tables XVI–XIX.

APPENDIX B: CONVENTIONS FOLLOWED

We choose the three-momentum of the incoming meson
to be along the positive z-axis, such that three-momenta of
the incoming and the outgoing mesons can be written as

K⃗1 ¼ ð0; 0; jK⃗1jÞ;
K⃗2 ¼ ðjK⃗2j sin θ; 0; jK⃗2j cos θÞ:

In the center of mass system then, we can write the three-
momenta of the incoming and the outgoing baryons as:

P⃗1 ¼ ð0; 0;−jK⃗1jÞ;
P⃗2 ¼ ð−jK⃗2j sin θ; 0;−jK⃗2j cos θÞ:

The corresponding four vectors arewritten as:K1¼ðK0
1;K⃗1Þ,

K2 ¼ ðK0
2; K⃗1Þ, P1 ¼ ðE1;−K⃗1Þ, P2 ¼ ðE2;−K⃗2Þ.

The three-polarization vector of the incoming meson is
taken as

⃗ϵ1;� ¼∓ 1ffiffiffi
2

p ðe⃗x � e⃗yÞ;

⃗ϵ1;0 ¼ e⃗z; ðB1Þ

and the corresponding four vectors are

ϵ1;� ¼ ð0; ⃗ϵ1;�Þ;

ϵ1;0 ¼
�jK⃗1j
m1

; ⃗ϵ1;0
K0

1

m1

�
: ðB2Þ

In this way, we have the Lorenz gauge condition
K1 · ϵ1ðλÞ ¼ 0, as well as the following conditions, sat-
isfied:

⃗ϵ1;λ · ⃗ϵ1;λ0 ¼ δλ;λ0 ðB3Þ

X3
λ¼1

ϵ�1μ;λϵ1ν;λ ¼ −gμν þ
K1μK1ν

m2
1

ðB4Þ

X3
λ¼0

gλλϵ�1μ;λϵ1ν;λ ¼ gμν ðB5Þ

The three-polarization vector of the outgoing meson is
obtained by rotating the ⃗ϵ1;λ, such that ⃗ϵ2;0 is parallel to K⃗2,
which gives [50]

⃗ϵ2;þ ¼ 1ffiffiffi
2

p

0
B@

− cos θ

−i
sin θ

1
CA; ⃗ϵ2;0 ¼

0
B@

sin θ

0

cos θ

1
CA;

⃗ϵ2;− ¼ 1ffiffiffi
2

p

0
B@

cos θ

−i
− sin θ

1
CA

and the corresponding four vectors are

ϵ2;� ¼ ð0; ⃗ϵ2;�Þ;

ϵ2;0 ¼
�jK⃗2j
m2

; ⃗ϵ2;0
K0

2

m2

;

�
: ðB6Þ

These four vectors satisfy the Lorenz gauge condition as
well as the normalization conditions listed by
Eqs. (B3)–(B5).
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