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We compute the contribution of three-loop mixed QCD-electroweak corrections (α2Sα
2) to the gg → H

scattering amplitude. We employ the method of differential equations to compute the relevant integrals
and express them in terms of Goncharov polylogarithms.
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I. INTRODUCTION

It is an open question if the scalar boson discovered by
ATLAS and CMS Collaborations in 2012 is indeed the
Higgs boson of the Standard Model. To answer this
question, Higgs boson production cross sections and decay
rates are measured experimentally and compared to theo-
retical predictions. Thanks to the renormalizability of the
Standard Model, properties of the Higgs boson, including
its quantum numbers and its couplings to gauge bosons and
matter particles, are completely fixed. As a result, it is
possible, at least in principle, to describe production and
decay of the Higgs boson in the Standard Model with
unlimited precision.
On the other hand, if the Standard Model is not a

complete theory, new physics at scale Λ that couples to the
Higgs boson is expected to modify its couplings to matter
and gauge particles by an amount δg=g ∼Oðv2=Λ2Þ where
v ¼ 246 GeV is the scale of electroweak symmetry break-
ing. Taking Λ ¼ 1 TeV, we find a typical modification in
Higgs couplings of about 5%, which sets a precision goal
for both experimental measurements and theoretical
computations.
The major Higgs-boson production channel at the

LHC is gluon fusion gg → H; it contributes more than
90% to the total Higgs production cross section at 13 TeV.
As discussed in Refs. [1,2], almost 5% of the gluon fusion
cross section comes from mixed QCD-electroweak
(QCD-EW) contributions where the Higgs boson couples
to electroweak gauge bosons that, later, convert to gluons

through a quark loop. The remaining 95% of the gg → H
cross section is generated by pure QCD interactions.
The importance of the gg → H channel for the inves-

tigation of the Higgs boson properties motivated its
extensive studies in the past. Since the Higgs boson is
light and the top quarks are relatively heavy, it is possible to
integrate them out and work with an effective Lagrangian
where the ggH coupling is pointlike. The gg → H pro-
duction cross section in the mt → ∞ approximation is
known through N3LO in QCD while other, smaller con-
tributions, are known less precisely.
At present, the theoretical uncertainty in the gg → H

cross section originates from (see [1,2]) the Oð2%Þ
residual scale uncertainty in pure QCD contributions,
the Oð1%Þ uncertainty caused by unknown mass effects
of b and c quarks in higher orders of QCD perturbation
theory, and the Oð1%Þ uncertainty in QCD-EW contri-
butions. The latter uncertainty is particularly peculiar
since computation of QCD corrections to mixed QCD-
EW contributions exists [3]. However, although the
leading-order QCD-EW OðαSα2Þ contribution is known
for arbitrary values of the Higgs and electroweak gauge
boson masses [4–7], the next-to-leading-order (NLO)
QCD corrections to it have only been computed in the
unphysical limit mH ≪ mW;Z [3]. It turns out [3] that in
this approximation the QCD corrections to mixed
QCD-EW contributions are large and, in fact, similar
to NLO corrections to leading QCD contributions.
Nevertheless, the magnitude of QCD corrections and
the approximate nature of the calculation of Ref. [3] are
major reasons for assigning a large uncertainty to the
QCD-EW contribution to gg → H in Ref. [1]. To remove
this theoretical uncertainty, the NLO QCD corrections to
QCD-EW contribution to gg → H should be re-computed
for physical values of mH, mW and mZ.
The goal of this paper is to present one of the ingredients

of such a computation—the virtual QCD corrections to
mixed QCD-EW contribution to gg → H amplitude. The
NLO QCD-EW corrections are given by three-loop
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Oðα2Sα2Þ diagrams where gluons couple to electroweak
gauge bosons through quark loops, and electroweak gauge
bosons fuse into Higgs boson. In principle, all quark flavors
contribute to mixed QCD-EW corrections but, since the
Higgs boson is light, the contribution of top quark loops is
small [3]. For this reason we focus on the contribution of
massless quarks in what follows.
To compute the three-loop mixed QCD-EW contribution

to the gg → H amplitude, we use the method of differential
equations [8–10] to calculate the relevant master integrals
(MIs). We employ the concept of canonical basis intro-
duced in Ref. [11], and express the MIs in terms of
Goncharov’s multiple polylogarithms (GPLs) [12–14],
up to weight 6. We use the mathematical limit of small
Higgs mass mH ≪ mW;Z to determine the boundary values
for the solutions of the differential equations. Our final
three-loop result for QCD-EW contributions to gg → H
amplitude is expressed in terms of GPLs up to weight five.
The paper is organized as follows. We introduce the

gluon fusion amplitude gg → H and discuss the QCD-EW
contributions in Sec. II. In Sec. III, we describe the classes
of integrals that contribute to the QCD-EW amplitude. In
Sec. IV, we discuss differential equations for MIs and their
simplification to a canonical form. We introduce the large-
mass expansion in Sec. V and explain how we use it to
provide boundary conditions for the solutions of the
differential equations. The final result for the gg → H
amplitude is given in Sec. VI. We conclude in Sec. VII.
Additional information about integral topologies and MIs
can be found, respectively, in Appendixes A and B. We
provide the analytic results for leading- and next-to-leading-
order QCD-EW contributions to gg → H amplitude in the
ancillary file.
Supplemental Material [15] includes the expressions

for MIs, the basis of canonical functions, the matrix of
coefficients of the differential equations and the integration
constants.

II. QCD-EW CONTRIBUTION TO
gg → H AMPLITUDE

We show the mixed QCD-electroweak corrections to the
gg → H amplitude in Fig. 1. They appear for the first time
at two loops. The two gluons annihilate to electroweak
vector bosons through a quark loop. The vector bosons fuse
into a Higgs boson in a second step. These leading-order
QCD-electroweak contributions are well known [4–7]. Our
goal in this paper is to compute the QCD corrections to the
leading-order QCD-EW contribution to gg → H amplitude.
BothW and Z bosons appear in diagrams that contribute

to the QCD-EW amplitude. In the case of W bosons, we
account for quarks of the first two generations; when
considering Z bosons, we include, in addition, bottom
quarks. We treat all quarks as massless. To write an
expression for the gg → H amplitude we assume that the
two incoming gluons g1 and g2 carry on-shell momenta

p1;2, color indices c1;2 and polarization labels λ1;2. The
momentum of the outgoing Higgs boson is taken to be
p3 ¼ −p1 − p2, with p2

3 ¼ m2
H ¼ s.

QCD gauge invariance ensures that the gg → H ampli-
tude depends on a single form factor

Mc1c2
λ1λ2

¼ F ðs;m2
W;m

2
ZÞδc1c2ελ1ðp1Þ · ελ2ðp2Þ; ð2:1Þ

where ελ1;2 are gluon polarization vectors that satisfy the
transversality conditions ελi ·p1¼ελi ·p2¼0, for i ¼ 1, 2. It
is convenient to construct a projection operator that can be
applied to individual Feynman diagrams to extract their
contributions to the form factor F. The projection operator
reads

Pλ1λ2
c1c2 ¼

ε�λ1ðp1Þ · ε�λ2ðp2Þ
d − 2

δc1c2
N2

c − 1
; ð2:2Þ

where d ¼ 4 − 2ε is the space-time dimensionality. Using
the standard expression for the sum over polarizations for
each of the two gluons, consistent with the transversality
conditions

X
λi¼�

εμλiðpiÞε�λi;νðpiÞ ¼ −gμν þ pμ
1p

ν
2 þ pν

1p
μ
2

p1 · p2

; ð2:3Þ

it is easy to show that the following equation holds

F ðs;m2
W;m

2
ZÞ ¼

X
λ1;λ2;c1;c2

Pλ1λ2
c1;c2M

c1;c2
λ1λ2

: ð2:4Þ

We can further simplify this equation if we write the
amplitude as

Mc1c2
λ1λ2

¼ Ac1c2
μν εμλ1ðp1Þενλ2ðp2Þ; ð2:5Þ

apply the projection operator and sum over helicity labels
of the two gluons, to obtain

FIG. 1. Mixed QCD-EW corrections to Higgs boson produc-
tion in gluon fusion. The powers of the couplings refer to NLO
contributions.
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F ðs;m2
W;m

2
ZÞ ¼

Ac1c2
μν δc1c2

ðN2
c − 1Þðd− 2Þ

�
−gμν þpμ

1p
ν
2 þpν

1p
μ
2

p1 ·p2

�
:

ð2:6Þ
This formula can be used to extract the contribution
of individual diagrams to the gauge-invariant form
factor F.
Examples of three loop diagrams that contribute to

the NLO QCD corrections to the mixed QCD-
electroweak gg → H amplitude are shown in Fig. 2.
The majority of the diagrams contributes both to Z
and W channels with a few exceptions that contribute
only in the Z channel; some examples are shown in
Fig. 3. However, all diagrams that distinguish Z and W
contributions vanish either because of color algebra
[Fig. 3(a)], or Furry’s theorem [vector current contri-
bution in case of Fig. 3(b)] or the fact that we consider
complete generations of massless quarks [Fig. 3(b),
axial current]. We note that in the latter case, because
of the axial anomaly, the contribution of the b quark is
not well defined without the top quark; in this paper we
ignore this issue and completely discard all contribu-
tions that lead to diagrams of the type [Fig. 3(b)] but
we include the b quark in all other three-loop QCD-EW
diagrams that we consider in this paper. After these
simplifications, there remain 47 three-loop nonvanish-
ing diagrams for both W bosons and Z bosons. All the
relevant contributions can be obtained by considering
diagrams where a massive vector boson interacts with
the quark loop through a vector current.

III. TOPOLOGIES AND MASTER INTEGRALS

It is straightforward to compute contributions of
individual diagrams to the invariant form factor F using

Eq. (2.6). Upon doing so, we find that the form factor F
is given by a linear combination of Feynman integrals that
we write as follows:

Z
ddk1ddk2ddk3
½iπd=2Γð1þ εÞ�3

YJ
j¼1

1

½j�aj : ð3:1Þ

The [j]s denote inverse Feynman propagators that we
specify in Appendix A. Since W and Z bosons never
appear in the same Feynman diagram, we use a generic
notation M for the mass of the vector bosons when we
discuss Feynman diagrams and integrals. All Feynman
integrals are analytic functions in thevariables s¼ðp1þp2Þ2
and M2. Discontinuities common to all parent topologies
occur at s ≥ 0 (on-shell massless intermediate states),
s ≥ M2 (production of an on-shell vector boson plus two
massless quarks), and s ≥ 4M2 (production of an on-shell
pair of vector bosons).
To compute the different Feynman integrals contrib-

uting to the form factor, we identify eleven different
topologies; these topologies can be written using three
different sets of the inverse Feynman propagators. The
topologies are described in Appendix A. We use the
program Reduze2 [16] to express all Feynman integrals
that contribute to the invariant form factor F through 95
master integrals (MIs). The full list of MIs can be found in
Appendix B.

IV. DIFFERENTIAL EQUATIONS

A. General considerations

To calculate the MIs, we employ the differential equa-
tions method. The MIs depend on two dimensionful
variables s and M2 and it is convenient to trade them
for one dimensionful and one dimensionless variable. We
take s to be the dimensionful variable, extract the mass
dimensions of the MIs and write

Inðε; s; yÞ ¼ ð−sÞ−an−3εJnðε; yÞ: ð4:1Þ

The dimensionless variable y reads

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2=s

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4M2=s
p

þ 1
: ð4:2Þ

FIG. 2. Examples of QCD corrections to the LO QCD-EW Higgs gluon fusion.

FIG. 3. Typical diagrams that may provide Z- but not W-boson
contributions to mixed QCD-EW corrections.
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Values of the variable y for different relations between M2

an s are shown in Table I, together with prescriptions for
analytic continuation.
To study the nontrivial dependence of the MIs on y, we

differentiate the vector of rescaled MIs Jðε; yÞ with respect
to y, express the resulting integrals again through MIs and
obtain a closed system of differential equations

dJðε; yÞ
dy

¼ Aðε; yÞJðε; yÞ: ð4:3Þ

To compute the MIs we need to solve this system of
differential equations. To do so, we first determine a
canonical basis of MIs. With the integrals in the canonical
basis, the system of differential equations assumes the
ε-homogeneous form [11]

dFðε; yÞ
dy

¼ εAðyÞFðε; yÞ: ð4:4Þ

The necessary and sufficient conditions for the exist-
ence of a canonical basis are not known, but it is
expected that for all cases where solutions can be written
in terms of Chen iterated integrals, a canonical basis
exists. Procedures to determine canonical bases were
discussed in Ref. [11,17–22].
Once the canonical basis is found and integrals are

normalized in such a way that the finite ε-limit exists
limε→0Fðε; yÞ ¼ F0, it becomes straightforward to obtain
the solution to the system of differential equations as
series expansion in the dimensional regularization param-
eter ε. An important property of the canonical form of
differential equations in Eq. (4.4) is that the matrix AðyÞ
contains only a finite number of simple poles in the
variable y [17]

dFðε; yÞ
dy

¼ ε
XK
k¼1

Bk

y − yk
Fðε; yÞ; ð4:5Þ

where Bk are y-independent matrices. Equations of the
type shown in Eq. (4.5) are called Fuchsian equations.
The solution of Eq. (4.5) is obtained upon iterative

integration,

Fðε; yÞ ¼ Fð0Þ
0

þ ε

�Z
y

0

Aðτ1ÞFð0Þ
0 dτ1 þ Fð1Þ

0

�

þ ε2
�Z

y

0

Aðτ1Þ
Z

τ1

0

Aðτ2ÞFð0Þ
0 dτ2dτ1

þ
Z

y

0

Aðτ1ÞFð1Þ
0 dτ1 þ Fð2Þ

0

�
þOðε3Þ: ð4:6Þ

Thanks to the Fuchsian form of the matrix A, the nested
integrations in Eq. (4.6) can be performed in terms of
multiple polylogarithms [23,24], best known in the
physics literature as Goncharov’s polylogarithms (GPLs)
[12–14,25]. GPLs are defined recursively using the follow-
ing equations

Gðmw; yÞ ≔
(

1
w! log

wy if mw ¼ ð0;…; 0ÞR y
0

dτ
τ−mw

Gðmw−1; τÞ if mw ≠ ð0;…; 0Þ ;

ð4:7Þ

where mw ¼ ðmw;mw−1Þ. The weight w of a GPL is the
length of the vector mw. GPLs evaluated at rational points
are expressed by constants of the same weight. In Sec. V,
we use this property to efficiently fix the integration

constants FðnÞ
0 , cf. Eq. (4.6).

B. The system of differential equations

We are now in position to discuss the system of differ-
ential equations and the steps that are required to transform
it into a canonical form. To achieve that, we used a
combination of different methods that we now explain.
The matrix Aðε; yÞ that appears on the right-hand side of

the differential equation has a block-diagonal form. This
form implies that differential equations for simpler MIs
close and that simpler integrals appear as inhomogeneous
terms in differential equations for more complex ones. This
form of the differential equations suggests that one should
start with bringing simplest topologies to a canonical form
and then moving on to more complex topologies, step by
step.
For MIs with four, five or six propagators coupled

together in at most 3 × 3 blocks, we first adjusted powers

TABLE I. Prescriptions for analytic continuation and different kinematic regions for s and y.

Minkowski region

Variable Prescription Euclidean region Below threshold Above threshold

s sþ i0 −∞ < s < 0 0 < s < 4M2 4M2 < s < þ∞

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4M2=s

p
−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−4M2=s
p

þ1

yþ i0 0 < y < 1 eiϑ, 0 < ϑ < π −1 < y < 0
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of propagators and introduced ε-dependent prefactors, as
described in Ref. [18,19]. It is well understood how to do
this to reach canonical form for simple integrals, such as
bubbles and triangles where the guiding principle is to
ensure that integrals are free from ultraviolet divergences.
After that, the candidate integrals are multiplied by a
polynomial in ε of the form εa1ðc1 þ c2εÞa2 , to bring the
system into a linear-ε form

d ~Fðε; yÞ
dy

¼ ½A0ðyÞ þ εA1ðyÞ� ~Fðε; yÞ: ð4:8Þ

We then integrate out the ε-independent part of the differ-
ential equation and obtain the canonical form

dFðε; yÞ
dy

¼ εŜ−1A0
ðyÞA1ðyÞŜA0

ðyÞFðε; yÞ; ð4:9Þ

ŜA0
ðyÞ ¼ Pye

R
A0ðτÞdτ

¼
Xþ∞

k¼0

Z
y

y0

A0ðτ1Þ
Z

τ1

y0

A0ðτ2Þ…

×
Z

τk−1

y0

A0ðτkÞdτk…dτ2dτ1; ð4:10Þ

Fðε; yÞ ¼ Ŝ−1A0
ðyÞ ~Fðε; yÞ: ð4:11Þ

We stress that it is not always possible to integrate out
A0ðyÞ in the presence of off-diagonal terms and that, even if
successful, this procedure is not guaranteed to keep the
Fuchsian form of the system of differential equations.
Nevertheless, it provides a practical way to achieve
canonical form for some differential equations relevant
for our problem.
For larger sets of coupled MIs or for MIs with a larger

number of denominators, the differential equations become
too complex to reach the linear-ε form by a clever choice of
propagator powers and prefactors. For these differential
equations, we employ the algebraic algorithm presented in
[20] and, in particular, its computer-algebraic implementa-
tion Fuchsia [26]. We also use techniques described in
Ref. [21] and their implementation in the Mathematica
package CANONICA [27]. Despite the power and versatility
of these algorithms, their blind application to our system of
differential equations results either in a failure of the
procedure to reach a canonical Fuchsian form, or in an
incorrect redefinition of the MIs that have already been
fixed. In the second case, the new system shows the correct

differential structure, but the constants FðnÞ
0 are, in general,

not of an uniform weight n. Again, by carefully selecting
the MIs and choosing their prefactors, it is possible to
overcome these problems.
A useful procedure to select candidate integrals for the

canonical basis is to inspect their generalized unitarity

cuts, as explained in [17]. The idea is that if one replaces a
propagator in an integral by a delta function 1=ðp2−m2Þ→
δðp2−m2Þ, the differential equation that this integral
satisfies does not change except that all integrals on the
right-hand side of the differential equation where this
propagator is not present have to be set to zero. Thanks
to this observation, by cutting a MI in different ways we can
inspect different subsets of the differential equation that it
satisfies. By replacing all propagators of a given integral
with the δ functions (the maximal cut), we obtain the
differential equation which involves onlyMIs of the highest
topology since all other integrals drop out [28]. The
analysis of the cuts can be simplified by use of the
so-called Baikov representation [29,30]. The upshot of
these discussions is that if all the cut integrals are of the d
log-iterated form

I ¼ CðxÞ
Z

…

Z Z
d logRnðx; a1;…; anÞ

× d logRn−1ðx; a1;…; an−1Þ…d logR1ðx; a1Þ;
ð4:12Þ

where CðxÞ is a function of the kinematic invariants x and
Rðx; a1;…; akÞ are rational functions of x and of the
integration variables ai, the integral I is a valid candidate
for the canonical basis.
For our purposes, we require integrals with large number

of propagators; they satisfy complex differential equations
with up to four MIs coupled. For this reasons, the study of
all the different cuts is prohibitive and in most of the cases
we limit ourselves to the maximal cut. As explained above,
the latter only allows us to inspect the part of the differential
equation that corresponds to the highest topology. Once
the d log-form is achieved for the maximal cut of all
the coupled highest-level MIs, the homogeneous part of the
equations is ensured to be canonical. Of course, integrals of
lower topologies that appear in the differential equations
still do not have a a canonical form, but the study of the
maximal cut has proven to be sufficient to provide a starting
points for a successful application of either Fuchsia or
CANONICA.
Performing manipulations that we just described, we

were able to transform the system of differential equations
into a canonical Fuchsian form. We write it as

dFðε; yÞ ¼ ε½B0d log yþ B1d logð1 − yÞ
þ B−1d logð1þ yÞ
þ Brd logð1 − yþ y2Þ�Fðε; yÞ: ð4:13Þ

We have chosen arguments of the logarithms to ensure
that the logarithms are real-valued for 0 < y < 1 (s < 0).
It follows from this form that integration kernels are
identical to what was found in the calculation of MIs for
leading-order QCD-electroweak amplitude [7]. They read
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fð0; yÞ ¼ 1

y
; fð1; yÞ ¼ 1

y − 1
;

fð−1; yÞ ¼ 1

yþ 1
; fðr; yÞ ¼ 2y − 1

y2 − yþ 1
; ð4:14Þ

where the function fðr; yÞ is a short-hand notation for a
particular linear combination of two integration kernels,

fðr; yÞ ¼ 2y − 1

y2 − yþ 1
¼ 1

y − rþ
þ 1

y − r−
¼ fðrþ; yÞ þ fðr−; yÞ; r� ¼ e�iπ=3; ð4:15Þ

that make the alphabet complex-valued. Note that this
expansion is only needed for numerical evaluations, while
the integration of the differential equation can be per-
formed using the quadratic form that we associate with
the alphabet symbol r [31,32]. Indeed, thanks to the
linearity of both the differential equations and the defi-
nition of the GPLs, it is immediately possible to express
the obtained generalized GPL in terms of the canonical
ones

Gð…; r;…; xÞ ¼ Gð…; r−;…; xÞ þ Gð…; rþ;…; xÞ:
ð4:16Þ

V. BOUNDARY CONDITIONS AND THE
LARGE-MASS EXPANSION

To fully solve the system of linear differential equations
Eq. (4.13), we need to determine the integration constants

FðnÞ
0 . The easiest way to fix them is to compute the MIs at

some kinematic point y0 using alternative methods and then
compare the result of the computationwith the solution of the
differential equations. As we already explained in Ref. [7], it
is convenient to compute the required integrals at y ¼ 1,
corresponding to s=M2 ¼ 0. This kinematic condition can be
studied using the large-mass expansion procedure [33] to
independently compute the MIs in this limit. In this section,
we explain how to apply the large-mass expansion procedure
to obtain boundary values for the MIs.

A typical MI that we need to compute depends on two
different scales: the energy of the external gluons
p1 ∼ p2 ∼

ffiffiffi
s

p
, and the mass of the electroweak vector

bosons M. We consider the hypothetical limit M2 ≫ s. To
provide a nonvanishing contribution in dimensional regu-
larization, the loop momentum k that flows through any
subset of internal lines has to scale either as k ∼

ffiffiffi
s

p
or as

k ∼M. All possible combinations of scalings for the three
loop momenta are allowed and have to be considered,
provided that momentum conservation is satisfied at each
vertex.1 Once a valid momentum scaling is identified for a
particular Feynman integral, the integrand is Taylor-
expanded in all small momenta (both external and loop
ones) and then integrated. This procedure is performed for
all possible momenta assignments and the results are
summed over to obtain the large-mass expansion of the
original integral.
As an example of the large-mass expansion procedure,

we consider MI I7

ð5:1Þ

where a dot on a line implies that the corresponding
propagator is raised to second power. Among all allowed
choices of large and small momenta only two give
nonzero contributions. Indeed, it is possible to have large
momenta flowing in the two-loop self-energy subgraph
and small momentum flowing in the “outer” loop, or to
have all the three loop momenta to be large. It is clear that
lines with large momenta “decouple” from adjacent
propagators: they become tadpoles that multiply a dia-
gram obtained by shrinking the corresponding “large
momentum” lines to a point. For the two possible
kinematic regions described above, the large mass expan-
sion reads (bold internal lines in the original integral
indicate the flow of large momenta)

ð5:2Þ

ð5:3Þ

1Indeed, since large momentum cannot be created, destroyed or provided by external legs, it must form at least one closed flow along
the internal lines of an integral.
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We note that in the first case the result is exact since, upon expansion, the tadpole produces a term that cancels one of the
propagators of the massless bubble. We obtain the large-mass expansion of the integral (5.1) by summing over the two
possible momenta flows described above,

ð5:4Þ

All integrals that appear on the right-hand side of this
equation can easily be evaluated.
Clearly, the number of different momenta flows

that need to be considered increases as one moves from
relatively simple to more complex integrals. Nevertheless,
the complexity remains manageable. Indeed, once the large
mass expansion is performed, the most complex integrals
are three-loop tadpoles and two-loop massless triangles that
are well-known, see e.g. Refs. [34,35].
The large-mass expansions of the MIs computed to

relevant order in s=M2 expansion, is compared with the
y → 1 limit of the solutions of the differential equations;
requiring that the two agree, we obtain all the integration

constants FðnÞ
0 , n ≤ 6, cf. Eq. (4.6). Since analytic expres-

sions for GPLs with letters e�iπ=3, evaluated at y ¼ 1, are
unknown at present, we follow a numerical approach to
determine the constants. The fact that the integrals of the
canonical basis are of uniform weight is crucial, since in
this case only a small variety of constants can appear at

each order of their ε-expansion. In particular, Fð1Þ
0 ¼ 0,

Fð2;3;4Þ
0 must be proportional to π2, ζð3Þ and π4, respec-

tively, Fð5Þ
0 should be given by a linear combination of

π2ζð3Þ and ζð5Þ, and Fð6Þ
0 by a linear combination of π6 and

ζ2ð3Þ. We evaluate with high precision the canonical
integrals written in terms of GPLs at y ¼ 1 and match
their numerical values to rational linear combinations of
analytic constant using PSLQ algorithm, to at least 750
digits. As a final check, all MIs have been compared for at
least two different values of s and M2 to the numerical
results obtained using the programs SecDec [36] and
pySecDec [37]. In all cases agreement was found.

VI. THE FINAL RESULT FOR THE
gg → H AMPLITUDE

As explained in Sec. II, the mixed QCD-electroweak
contributions to gg → H amplitude are parametrized in
terms of a single form factor. The form factor receives
contributions from diagrams with W and Z bosons; such
diagrams appear for the first time at two loops. We account
for quarks of the first two generations and include b-quark
contributions in diagrams with Z bosons.2 All quarks are

taken to be massless. The CKM matrix is approximated by
the identity matrix.
Computation of three-loop contribution to the form

factor yields divergent results. The divergences are of both
ultraviolet and infrared origin. The ultraviolet divergences
are removed by ultraviolet renormalization; the infrared
divergences remain but will, eventually, get canceled by the
real emission contributions when infrared safe observables
are computed.
To remove the ultraviolet divergences, we only need to

renormalize the strong coupling constant; this is so because
for massless quarks both vector and axial currents are
conserved and, for this reason, weak couplings do not need
an ultraviolet renormalization. To renormalize the strong
coupling constant, we use the relation between bare and
M̄S coupling constants that reads

αð0ÞS μ2ε0 ¼ eεγE

ð4πÞε αSðμÞμ
2ε

�
1 −

β0
ε

αS
2π

�
þOðα3SÞ; ð6:1Þ

where γE is the Euler-Mascheroni constant and β0 is the
first coefficient of the QCD β function. It reads

β0 ¼
11

6
CA −

2

3
TFNf; ð6:2Þ

where CA ¼ Nc ¼ 3, TF ¼ 1=2 and Nf ¼ 5 is the number
of massless fermions that contribute to the renormalization
of the QCD coupling constant.
We write the UV-renormalized form factor as

F ¼ −i
α2αSðμÞv
64πsin4ϑW

X
i¼W;Z

CiAðm2
i =s; μ

2=sÞ; ð6:3Þ

where α is the QED fine structure constant, ϑW is the
Weinberg angle and v ¼ mW sin ϑW=

ffiffiffiffiffiffi
πα

p
is the Higgs field

vacuum expectation value. In addition,

CW ¼ 4; CZ ¼ 2

cos4ϑW

�
5

4
−
7

3
sin2ϑW þ 22

9
sin4ϑW

�
;

ð6:4Þ
The two terms in Eq. (6.3) denote contributions of

diagrams with W and Z bosons. The function A can be
written as an expansion in the strong coupling constant

Aðm2=s; μ2=sÞ ¼ ALO þ αSðμÞ
2π

ANLO þOðα2SÞ: ð6:5Þ2As we already mentioned, we discard certain anomalous-type
diagrams also for the third generation; see Sec. II.
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It is interesting to remark that individual integrals that
contribute to gg → H amplitude are strongly divergent; the
strongest divergence is Oðε−6Þ. When the integrals are
combined to produce a form factor, all divergences stronger
than Oðε−2Þ cancel out. The ultraviolet renormalization
described above removes some of the 1=ε poles but infra-
red singularities that start at 1=ε2 still remain. The general
structure of these singularities in QCD is described by
Catani’s formula [38]. This formula, applied to the form
factor that describes mixed QCD-electroweak corrections
to gg → H amplitude reads

ANLO ¼ Ið1ÞALO þ Afin
NLO; ð6:6Þ

where

Ið1Þ ¼
�
−s − i0

μ2

�
−ε eεγE

Γð1 − εÞ
�
−
CA

ε2
−
β0
ε

�
: ð6:7Þ

Note that the leading-order amplitude in Eq. (6.6) is needed
through order Oðε2Þ; it was computed in Ref. [7]. An
analytic expression for the finite part of the NLO amplitude
Afin
NLO is given in the ancillary file.
For future reference, we give numerical values of the

two functionsALO andAfin
NLO, for physical values of theHiggs

boson and vector bosonmasses. TakingmH ¼ 125.09 GeV,
mW ¼ 80.385 GeV,mZ ¼ 91.1876 GeV (see [2]), Nc ¼ 3,
Nf ¼ 5 and μ ¼ mH, we find

ALOðm2
Z=m

2
H; 1Þ ¼ −6.880846 − i0.5784119;

ALOðm2
W=m

2
H; 1Þ ¼ −10.71693 − i2.302953;

Afin
NLOðm2

Z=m
2
H; 1Þ ¼ −2.975801 − i41.19509;

Afin
NLOðm2

W=m
2
H; 1Þ ¼ −11.31557 − i54.02989: ð6:8Þ

Before concluding, it is interesting to point out a feature
of the gg → H scattering amplitude, seen as a function of
s ¼ m2

H. Naively, one would expect that both the LO
and the NLO scattering amplitudes have discontinuities
at s ¼ 0, s ¼ m2

V and s ¼ 4m2
V , where V ¼ W, Z respec-

tively. Physically, s ¼ m2
H > m2

Z > m2
W , so that the first

two cuts s ¼ 0 and s ¼ m2
V should both contribute to the

imaginary parts in Eq. (6.8). However, comparing absolute
values of real and imaginary parts in Eq. (6.8), the differ-
ence in the relative importance of imaginary parts at NLO
compared to LO is striking. The reason for this can be
traced back to the fact that, contrary to expectations, the LO
amplitude is actually real in the region 0 < s < m2

V , and
that the discontinuity at s ¼ 0 contributes only to the
imaginary part of NLO amplitude. This is easy to under-
stand. Indeed, the imaginary part of the LO amplitude in
this region is obtained by cutting through the fermion
loop and schematically corresponds to the process
gg → qq̄jqq̄ → H; see Fig. 4(a). Clearly, since the Higgs
boson cannot couple to massless fermions, this contribution

must vanish. We emphasize that this is a feature of the
amplitude that does not hold at the level of individual MIs.
The same is not true at NLO, where more cuts contribute to
the discontinuity that starts at s ¼ 0. In particular, a cut
through a gluon loop provides a nonvanishing contribution
to the imaginary part of the amplitude for 0 < s < m2

V from
the rescattering process gg → ggjgg → H; see Fig. 4(b).

VII. CONCLUSIONS

We computed the three-loop virtual contributions to next-
to-leading-order mixed QCD-electroweak corrections to
Higgs boson production amplitude in the annihilation of
two gluons gg → H. The analytic result for the amplitude is
obtained for arbitrary relation between the Higgs boson and
the electroweak gauge boson masses. We computed the
required integrals using the method of differential equations
and obtained the boundary constants using the large-mass
expansion valid in the limit mH ≪ mW;Z. The finite part of
the three-loop amplitude is written in terms of Goncharov
polylogarithms and is easy to evaluate numerically.
To understand the impact of the mixed QCD-electroweak

corrections on the Higgs boson production cross section,
the virtual corrections computed in this paper will have to
be combined with the real emission contributions of the
type gg → Hg, qg → Hq where, again, the Higgs boson
couples to electroweak vector bosons. The computation of
the relevant real emission amplitude is nontrivial as it
involves two-loop box diagrams with both internal and
external masses. Nevertheless, it is conceivable that, with
the current computational technology, analytic results for
these contributions can be obtained.
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FIG. 4. Examples of cut-diagrams contributing to the disconti-
nuity for 0 < s < m2

W;Z.
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APPENDIX A: TOPOLOGIES

All the Feynman integrals appearing in the amplitude can be regrouped into three families, according to what propagators
they feature. Table II shows the sets of inverse propagators for each family.
The parent topologies of each family are depicted in Figs. 5, 6 and 7. Solid lines are massive, wavy lines are massless.

TABLE II. The three families of denominators appearing in the amplitude.

Families of denominators

Label
Planar

(PP, Fig. 5)
Nonplanar,

A (NA, Fig. 6)
Nonplanar,

B (NB, Fig. 7)

[1] ðk1Þ2 ðk2Þ2 ðk1Þ2
[2] ðk2Þ2 ðk3Þ2 −M2 ðk2Þ2
[3] ðk3Þ2 −M2 ðk1 þ p3Þ2 ðk3Þ2 −M2

[4] ðk1 þ p3Þ2 ðk3 þ p3Þ2 −M2 ðk1 þ p3Þ2
[5] ðk2 þ p3Þ2 ðk3 − k2Þ2 ðk2 þ p3Þ2
[6] ðk3 þ p3Þ2 −M2 ðk2 − k1Þ2 ðk3 þ p3Þ2 −M2

[7] ðk3 − k2Þ2 ðk3 − k1Þ2 ðk3 − k2Þ2
[8] ðk2 − k1Þ2 ðk1 − p1Þ2 ðk2 − k1Þ2
[9] ðk3 − k1Þ2 ðk2 − p1Þ2 ðk1 − p1Þ2
[10] ðk1 − p1Þ2 ðk1 − k2 − p1Þ2 ðk3 − p1Þ2
[11] ðk2 − p1Þ2 ðk1 − k2 þ k3 þ p3Þ2 ðk1 − k2 þ k3 þ p3Þ2
[12] ðk3 − p1Þ2 ðk3 − k2 − p2Þ2 ðk2 − k1 − p2Þ2

FIG. 6. Nonplanar A-type parent topologies (NA).

FIG. 5. Planar parent topologies (PP).
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APPENDIX B: MASTER INTEGRALS

The form factor F can be expressed in terms of 95 MIs, depicted in Figs. 8, 9 and 10.
A circled number besides the graph indicates that the corresponding denominator features in the numerator.
The MIs with an asterisk ( �) do not contribute to the NLO form factor, but appear in the differential equations.

FIG. 7. Nonplanar B-type parent topologies (NB).

FIG. 8. Master Integrals (1=3).
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FIG. 9. Master Integrals (2=3).
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