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We investigate the azimuthal correlations of the glasma in p-p collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 7 TeV by using the
color glass condensate (CGC) formalism. As expected, the azimuthal correlations show two peaks at
Δϕ ¼ 0 and π, which represent collimation production in the CGC. Beyond that, azimuthal correlations
show fine structures, i.e., bumps or shoulders between the two peaks, when at least one gluon has small x.
The structures are demonstrated to be associated with saturation momentum and likely appear at transverse
momentum around 2Qsp ¼ 1.8 GeV/c.
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I. INTRODUCTION

Two-particle correlations in high-energy collisions have
been measured previously for a broad range of collision
energies and colliding systems with the goal of under-
standing the underlying mechanism of particle production.
Especially, the study of two-particle azimuthal correlations
provides important information for characterizing QCD,
e.g., themechanism of hadronization, the possible collective
effect, and the gluon saturation effect in these collisions.
One measurement of azimuthal correlations is performed

using two-dimensional Δη-Δϕ correlation functions. Here,
Δη is the difference in pseudorapidity between the two
particles, and Δϕ is the difference in their azimuthal
angle (in radians). Another measurement of azimuthal
correlations is projection of two-dimensional (2D) corre-
lation functions onto Δϕ, i.e., Δϕ distributions, usually at
short-range rapidity (small Δη) and long-range rapidity
(large Δη).
Inminimum-bias p-p collisions, both in the data and in the

Monte Carlo event generator PYTHIA, the two-dimensional
Δη-Δϕ correlations in the intermediate p⊥ range are
dominated by two components [1–3]: a narrow peak at
ðΔη;ΔϕÞ ≈ ð0; 0Þ, which can be understood as the contri-
bution from jets, and a ridge at Δϕ ≈ π extending over a
broad range in Δη, interpreted as due to momentum
conservation or away-side jets. If this azimuthal correlations

are demonstrated as Δϕ distribution at long-range rapidity
(jΔηj > 2), there is a peak at the away side (Δϕ ≈ π) and no
peak at the near side (Δϕ ≈ 0) in minimum-bias p-p
collisions. However, in central heavy-ion collisions, e.g.,
Au-Au [1,2,4,5] and Pb-Pb [6] collisions, the azimuthal
correlations measured in the intermediate p⊥ range begin to
show an elongated structure in the Δη direction at the near
side, known as the near-side ridge. The corresponding Δϕ
distribution at largeΔη starts to show a peak at the near side
that is absent in minimum-bias p-p collisions.
Later, high-multiplicity events in small systems, like p-p

and p-Pb collisions at the LHC [3,6–10] and d-Au and
He-Au collisions at the Relativistic Heavy Ion Collider
[11,12] also show a near-side ridge phenomenon that is
similar to that of the heavy-ion collisions. Careful sub-
traction of the azimuthal correlations in low-multiplicity
events from those in high-multiplicity events shows that the
magnitude of the near-side peak is nearly identical to that of
the away-side peak, known as the double-ridge phenome-
non [8–10]. Collimated production in the azimuthal angle is
a prominent feature at long-range rapidity.
Azimuthal correlations at long-range rapidity in small

systems can be explained by initial-state effects such as
gluon saturations [13–17], final-state parton-parton induced
interactions [18], hydrodynamic flow [19–21], etc. Among
these explanations, the use of the hydrodynamic model for
small systems such as p-p and p-A collisions is still under
intense debate due to the doubt about fast thermalization.
On the other hand, without flow, the dihadron azimuthal
correlations at long-range rapidity calculated from a combi-
nation of glasma dynamics and Balitsky-Fadin-Kuraev-
Lipatov evolution (dominating the away-side peak) agree
well with data in p-p and p-Pb collisions over a very wide
range of ptrig

⊥ , pasc⊥ windows, centrality classes, and Δη
acceptance on a quantitative level [15–17]. The agreement
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suggests that gluon saturation in the initial state is the most
promising explanation and two-particle azimuthal correla-
tions are sensitive to detailed dynamical features of the color
glass condensate (CGC).
In the glasma picture, the boost invariance of color flux

tubes in high-energy collisions plays an important role in
understanding the long-range rapidity correlations [13].
Under that picture, the roles of the various x degrees of
freedom of gluons (i.e., Feynman x, the longitudinal
momentum fraction in the projectile or target) were studied
carefully in our previous paper [22]. Gluons are progres-
sively emitted from valence quarks by the ladder graph,
shown in Fig. 1. The smaller the x of a gluon, the later the
gluon evolves. Furthermore, the mechanism of gluon
production in the various regions of phase space are
different. For a right-moving parton, its rapidity y and
transverse momentum p⊥ are related to its Feynman x as
x ¼ m⊥ffiffi

s
p ey in the high-energy limit. At

ffiffiffi
s

p ¼ 7 TeV and

intermediate p⊥, e.g., 2 GeV/c, the rapidity at y ¼ 1

corresponds to x ∼ 10−3, while y ¼ 2 corresponds to
x ∼ 10−2. This means that the gluon at the central rapidity
region reflects the properties of the small-x (x < 10−3)
degrees of freedom, where the quantum evolutions are
essential. In contrast, the gluon at the middle rapidity region
presents the features of moderate-x (10−3 < x < 10−2)
degrees of freedom, where the quantum effects become
weak, and the contributions of color sources have to be
taken into account. The large-x (x > 10−2) degrees of
freedom act as sources of the small-x degrees of freedom.
The evolution toward small x induces correlations with the
color sources. The gluonic color sources are correlated over
long distances to ensure the color neutrality. So, the ridge
indicates the stronger correlation between the gluon of the
color source and radiated gluon.

The azimuthal angle together with transverse momentum
and rapidity constitute the 3-momentum of a particle. The
distributions and correlations of the azimuthal angle are
necessarily influenced by transverse momentum and rap-
idity due to, e.g., momentum conservation. Besides, for the
study of the rapidity and transverse momentum dependence
of azimuthal correlations, the CGC is unique for the
following reasons:
(1) In theCGC, themechanisms of gluon production in the

various regions of phase space are different. Gluons at
the central rapidity region reflect the properties of the
small-x (x < 10−3) degrees of freedom, and gluons
with larger rapidity have larger x in the right-moving
projectile. Since long-range ridgelike rapidity correla-
tion can be explained by the stronger correlation
between the gluon of the color source and radiated
gluon, it is interesting to see how the x degrees of
freedom affect the azimuthal correlations. Since gluons
at different rapidity locations have different x, it is
highlyworth studying the rapidity location dependence
of the azimuthal correlations.

(2) In the CGC, the transverse momentum distribution
of saturated gluons (called uGD) has a peak, the
position of which is called the characteristic trans-
verse momentum of gluons and equals the saturation
scale Qs. That means uGD only takes a large value
when p⊥ is around Qs. Since uGD determines the
correlation function (as to be illustrated in Sec. II),
the azimuthal correlations should be p⊥ dependent
and sensitive. Especially, p⊥ also relates to Feynman
x, and finer binning in p⊥ helps to explore the
contributions of different x degrees of freedom.

A systematic study of azimuthal anisotropy and its p⊥
and y dependence is important because the regions of phase
space are related to different x degrees of freedom. And,
hence, it may supply special signals originating from CGC
dynamics. It could provide crucial tests as to whether an
initial-state interaction or a final-state interaction dominates
the azimuthal correlation created in small systems. In this
paper, we analyze the azimuthal correlations of p-p colli-
sions at 7 TeV under the CGC framework. Most of the
existing results in the references are limited by the range of
the rapidity gap, such as long-range rapidity (jΔηj > 2) or
short-range rapidity (jΔηj < 1), no matter in which rapidity
location the gluons are situated. However, the analysis in this
paper is not limited by the range of the rapidity gap but by the
rapidity location, i.e., small rapidity region (defined as
jyj ≤ 1) and large rapidity region (jyj ≥ 2).
This paper is organized as follows. In Sec. II, the definition

of azimuthal correlation and some related formula of the
single- and double-gluon inclusive production in the CGC
framework are given. The formulas in this manuscript follow
those in Refs. [13–17] and are identical to those at the gluon
level, without fragmentation functions. The new aspects of
analysis method here lie in the exploration of the

FIG. 1. A schematic diagram of high-energy QCD evolution.
Two crosses mark two observed gluons with momentum p and q.
Yp and Yq denote their rapidities in the infinite momentum frame,
i.e., Y ¼ ln x0

x . The lower part of the figure, representing nucleus
2, is made up of identical evolution. The figure is reprinted from
Ref. [14], copyright 2010, with permission from Elsevier.
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contributions of different x degrees of freedom, which are
twofold: (i) the study on the effect of the longitudinal rapidity
location on the azimuthal correlations and (ii) finer binning in
p⊥. Results of two-gluon azimuthal correlations are shown
and discussed in Sec. III, in which the sensitivity to the
rapidity location and transverse momentum are carefully
compared and some interesting correlation patterns are
illustrated. Section IV gives the summary and discussion.

II. TWO-GLUON AZIMUTHAL CORRELATIONS
FROM HIGH-ENERGY QCD EVOLUTION

In a high-energy collision, both theprojectile and the target
are regarded as high parton density sources. When they pass
through each other, strong longitudinal color electric and
color magnetic fields are formed. The collection of the
primordial fields at the early stage is called the glasma.
The framework to describe the physics of high parton
densities and gluon saturation is the CGC effective
field theory [23–26]. The effective degrees of freedom in
this framework are color sources ρ at large x and classical
gauge fields Aμ at small x. The classical gauge field Aμ

is the solution of Yang-Mills equations with a fixed con-
figuration of color sources. For a given initial confi-
guration of the color source, the distribution of sources
and fields in the nuclear wave functions evolve with rapi-
dity Y or corresponding x, which is described by the Jalilian-
Marian-Iancu-McLerran-Weigert-Kovner (JIMWLK) reno-
rmalization group equations [27–29], as shown in Fig. 1.
Here, Y can be translated to the rapidity of a gluon
in the center-of-mass frame y, i.e., Y ¼ ln x0

x ¼ ln x0þ
ln

ffiffi
s

p
m⊥ � y. In Fig. 1, the dots at the upper part represent the

initial color sources for nucleus 1. The ladder graphs
following it illustrate the high-energy evolution of parton
distribution, from Ybeam to Yp and from Yp to Yq by the
JIMWLK equation, with both radiation and scattering proc-
esses included. Two crosses mark two observed gluons with
momentump andq. At first glance, the twogluons seem to be
uncorrelated since they come fromsuperficially disconnected
diagrams. However, the two-gluon production should be
calculated by averaging over the initial distribution of color
sources, which introduces correlations.
Supposing two gluons are produced with transverse

momentum p⊥ and q⊥, and rapidity yp and yq, two-particle
correlation is defined as

Cðp⊥; yp; q⊥; yqÞ ¼
D

dN2

d2p⊥dypd2q⊥dyq

E
D

dN1

d2p⊥dyp

ED
dN1

d2q⊥dyq

E − 1

¼
D

dNcorr
2

d2p⊥dypd2q⊥dyq

E
D

dN1

d2p⊥dyp

ED
dN1

d2q⊥dyq

E ; ð1Þ

where h dN2

d2p⊥dypd2q⊥dyq
i and h dN1

d2p⊥dyp
i are the double- and

single-gluon inclusive productions and h dNcorr
2

d2p⊥dypd2q⊥dyq
i is

the correlated double-gluon production that subtracts the
uncorrelated double-gluon production. The leading-log
factorization formula reads [13]

hOiLLog ¼
Z

½Dρ1�½Dρ2�W½ρ1�W½ρ2�O½ρ1; ρ2�LO; ð2Þ

where O½ρ1; ρ2�LO is the leading-order single- or double-
particle inclusive distribution for a fixed distribution of
color sources, and the integration denotes an average over
different distributions of the color sources with the weight
functional W½ρ1;2�. In general, W½ρ1;2� encodes all possible
color charge configurations of the projectile and target
and obeys the JIMWLK renormalization group equations
[27–29]. In a mean field approximation and the large-Nc
limit, the JIMWLK equation is reduced to the Balitsky-
Kovchegov (BK) equation [30–32].
The averaging over color sources can be done under the

McLerran-Venugopalan (MV) model with a Gaussian
weight functional. According to Ref. [14], the correlated
two-gluon production can be expressed by uGD as

�
dNcorr

2

d2p⊥dypd2q⊥dyq

�
¼ C2

p2⊥q2⊥

Z
∞

0

d2k⊥ðD1 þD2Þ; ð3Þ

where C2 ¼ α2sN2
cS⊥

4π10ðN2
c−1Þ3 and

D1 ¼ Φ2
Aðyp; k⊥ÞΦBðyp; p⊥ − k⊥ÞDB;

D2 ¼ Φ2
Bðyq; k⊥ÞΦAðyp; p⊥ − k⊥ÞDA; ð4Þ

with

DAðBÞ ¼ ΦAðBÞðyq; q⊥ þ k⊥Þ þΦAðBÞðyq; q⊥ − k⊥Þ: ð5Þ

Here, ΦAðBÞðy; k⊥Þ denotes the uGD of projectile A or
target B. The single-gluon inclusive production reads

�
dN1

d2p⊥dyp

�

¼ αsNcS⊥
π4ðN2

c−1Þ
1

p2⊥

Z
d2k⊥
ð2πÞ2ΦAðyp;k⊥ÞΦBðyp;p⊥−k⊥Þ:

ð6Þ

The framework is valid to leading-logarithmic accuracy in
x and momentum p⊥, q⊥ ≫ Qs, and we only calculate the
leading contributions in p⊥/Qs.
The important ingredient in the above expressions is

uGD (Φ), which can be obtained by solving the BK
equation with running coupling corrections with a given
initial condition. To avoid repetition, details can be found in
Ref. [14] and our previous paper [22]. For p-p collision at
7 TeV, Q2

s0 (with Qs0 the initial value of Qs at x0) is chosen
to be 0.168 GeV2 [15].
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Based on the correlation function Cðp⊥; yp; q⊥; yqÞ, the
azimuthal correlation function is defined as

CðΔϕÞ¼
Z

pmax⊥

pmin⊥

dp2⊥
2

Z
qmax⊥

qmin⊥

dq2⊥
2

×
Z

dϕp

Z
dϕqδðϕq−ϕp−ΔϕÞCðp⊥;yp;q⊥;yqÞ;

ð7Þ

which describes the correlation of two particles
with rapidity yp and yq and their azimuthal separation
Δϕ in given transverse momentum intervals ðpmin⊥ ; pmax⊥ Þ
and ðqmin⊥ ; qmax⊥ Þ. We do not integrate over rapidity y
because we focus on correlations between two gluons in
given rapidity locations. The rapidity gap is defined
as Δy ¼ yq − yp.

III. FINE STRUCTURE OF AZIMUTHAL
CORRELATION AND ITS TRANSVERSE

MOMENTUM AND RAPIDITY DEPENDENCE

Both experimental data [3,10] and the CGC [15–17]
show that the correlation at the near side gets strongest in an
intermediate p⊥ interval, approximately 1<p⊥< 3GeV/c.
A calculation from the CGC points out that the correlation
function gets a maximum at p⊥ ∼QsA þQsB ¼ 2Qsp ¼
1.8 GeV/c for minimum-bias p-p collisions, where QsAðBÞ
denotes the saturation momentum of the projectile or target
[22]. To obtain the strongest correlation, the correlation
function is first calculated within 1 < p⊥ < 2 GeV/c in
this paper.
To see how the azimuthal correlations change with

rapidity gap and rapidity location, the azimuthal correla-
tions are calculated at Δy ¼ 0, 1, 2, 3 with the rapidity
location of one gluon chosen to be yp ¼ 0, 1, 2 so that both
the small rapidity location and large rapidity location are
included. The results are shown in Fig. 2. As mentioned in
Ref. [17], the azimuthal correlation from the CGC shows a
symmetric structure about π/2; i.e., one peak is located at

the near side Δϕ ¼ 0, and the other peak is located at the
away side Δϕ ¼ π, which represents collimation produc-
tion in the CGC. Here, we reproduce that structure in
different rapidity locations, as all curves in Figs. 2(a), 2(b),
and 2(c) show. Especially for long-range rapidity, e.g.,
Δy ¼ 2.0 as red curves show, correlations show two peaks
at Δϕ ¼ 0 and π, which contributes to the double-ridge
phenomenon observed in the data.
When one gluon is located at small rapidity, e.g., yp ¼ 0.0

shown in Fig. 2(a), the correlation strength at Δϕ ¼ 0
decreases when the rapidity gap increases from 0 to 2 and
then rises significantly when the rapidity gap gets 3, which
reproduces the trend of rapidity correlation at Δϕ ¼ 0 in
Ref. [22] (Fig. 4 therein). The correlation strength atΔy ¼ 0
is rather high, compared to that ofΔy ¼ 1 and 2,which is due
to the contribution of short-range correlation atΔy ¼ 0 from
quantum evolution and is affected by the strength of the
running coupling [33]. The correlation strength at Δy ¼ 3 is
rather high, which is long-range correlation in rapidity
resulting from longitudinal boost invariance in the picture
of color flux tubes of glasma [13]. The dependence of the
correlation strength on the rapidity gap was discussed in
detail in our previous papers [22,33] and is not the focus in
this paper.
Besides the magnitude of correlations, the shape of the

correlations as a function of Δϕ shows interesting features.
The two peaks at Δϕ ¼ 0 and π exist in all cases in the
following, and the focus of this paper is the correlation
structure between the two peaks. In Fig. 2(a), the curve
aroundΔϕ ¼ π/2 shows amoderate bump atΔy ¼ 0, which
persists at Δy ¼ 1 and flattens at Δy ¼ 2 and finally turns
into a shallow valley in the case of Δy ¼ 3. In Fig. 2(b), the
curve around Δϕ ¼ π/2 shows a flat structure at Δy ¼ 0,
which reduces gradually to a valley at Δy ¼ 1, 2, and 3. In
Fig. 2(c), all curves show a valley around Δϕ ¼ π/2, no
matter if it is at short-range rapidity (Δy ¼ 0, 1) or long-
range rapidity (Δy ¼ 2). Comparing the three subfigures for
different rapidity locations, the bump around Δϕ ¼ π/2 is
limited to the small rapidity location.
Specifically, for azimuthal correlations at short-range

rapidity Δy ¼ 0, as can be seen from the purple curves in

FIG. 2. The azimuthal correlation integrated in 1 < p⊥ < 2 GeV/c and 1 < q⊥ < 2 GeV/c is plotted as a function of Δϕ for different
rapidity gaps Δy ¼ yq − yp when one gluon is located at (a) yp ¼ 0.0, (b) yp ¼ 1.0, (c) yp ¼ 2.0, respectively.
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Figs. 2(a), 2(b), and 2(c), a bump appears at Δϕ ¼ π/2
when yp ¼ 0, and it disappears at yp ¼ 1 and 2, which
indicates that azimuthal correlations at short-range rapidity
vary with the rapidity location of the chosen gluon. The
azimuthal correlations at long-range rapidity also vary
according to the rapidity location of the chosen gluon,
as can be seen from the red curves in Figs. 2(a), 2(b), and
2(c). It suggests that azimuthal correlations at the same
rapidity gap change with the rapidity location of the
chosen gluon.
To obtain the azimuthal correlations at different rapidity

locations in detail, we calculate the correlations between
two gluons both at small rapidity, e.g., yp ¼ 0, yq ¼ 0
shown in Fig. 3(a); two gluons both at large rapidity, e.g.,
yp ¼ 3, yq ¼ 3 shown in Fig. 3(c); and one gluon at small
rapidity and the other at large rapidity, e.g., yp ¼ 0, yq ¼ 3

shown in Fig. 3(b). Since azimuthal correlations are p⊥
sensitive, an integration over p⊥ may smear some corre-
lation structure. Five values of p⊥ are tried in the following
calculations, i.e., p⊥ ¼ 1.0, 1.5, 1.8, 2.0, 2.5 GeV/c. For
simplicity, q⊥ is chosen to be equal to p⊥ at first.
Correlation patterns are more diverse at single p⊥. In

Fig. 3(a), the correlation at p⊥ ¼ 1.0 GeV/c shows a valley
at Δϕ ¼ π/2. As p⊥ increases to 1.5 GeV/c, a moderate
bump at Δϕ ¼ π/2 begins to appear and strengthens at
p⊥ ¼ 1.8 GeV/c. As p⊥ increases further to 2.0 GeV/c, the
correlation at Δϕ ¼ π/2 drops to a flat structure and finally
returns to a valley at a larger p⊥ of 2.5 GeV/c. In Fig. 3(b),
the curves for p⊥ ¼ 1.0 and 2.5 GeV/c are similar to those
in (a) and are hence not shown in order to make the fine
structures of other curves visible. The correlation patterns at
p⊥ ¼ 1.5 GeV/c are similar to those in Fig. 3(a), while for
p⊥ ¼ 1.8 GeV/c, two bumps appear on the two sides of
Δϕ ¼ π/2, approximately at Δϕ ≈ 1.0 and Δϕ ≈ 2.0.
Compared with the flat structure of p⊥ ¼ 2.0 GeV/c in
Fig. 3(a), a valley appears in Fig. 3(b), with two shoulders on
the two sides of Δϕ ¼ π/2. It is worth noticing that the
positions of the two shoulders are almost the same as those of
the two bumps of p⊥ ¼ 1.8 GeV/c. However, all the bumps
and flat structure existing in Figs. 3(a) and 3(b), which we

call fine structures in the following, nearly disappear in
Fig. 3(c), with only slight shoulders on the two sides of
Δϕ ¼ π/2 at p⊥ ¼ 1.8 GeV/c and 2.0 GeV/c.
The above-mentioned phenomenon that azimuthal cor-

relations at the same rapidity gap change with the rapidity
location of the chosen gluon is more obvious in Figs. 3(a)
and 3(c), in which the rapidity gap is the same, i.e.,Δy ¼ 0.
By comparing the red curves in Figs. 3(a) and 3(c), we can
see that the bump at Δϕ ¼ π/2 only exists in the small
rapidity location. Furthermore, the bumps (one or two)
around Δϕ ¼ π/2 only exist in Figs. 3(a) and 3(b), which
further indicates that these fine structures require at least one
gluon located at small rapidity. Not only that, but correla-
tions calculated at singlep⊥ rather than integration in awide
p⊥ range help to obtain these patterns. Single p⊥ at 1.5, 1.8,
and 2.0 GeV/c, i.e., a value near p⊥ ∼ 2Qsp ¼ 1.8 GeV/c,
are most likely to show fine structures betweenΔϕ ¼ 0 and
π. This means that azimuthal correlations have a sensitive
range in transversemomentum, a rough interval between 1.5
and 2.0 GeV/c, which is associated with the saturation
momentum of colliding particles.
In fact, the single bump at Δϕ ¼ π/2 and the double

bumps or shoulders at Δϕ ≈ 1.0 and Δϕ ≈ 2.0 represent
two harmonic components in the azimuthal correlations.
The single bump at Δϕ ¼ π/2 represents a component of
cosð4ΔϕÞwith its local maximum atΔϕ ¼ π/2. The double
bumps or shoulders represent a component of cosð6ΔϕÞ
with its local maximum at Δϕ ¼ π/3 ≈ 1.0 and
Δϕ ¼ 2π/3 ≈ 2.0. The difference between double bumps
and double shoulders lies in the large and small values of
the coefficients of the sixth-order harmonic component. In
the same way, the main peaks at Δϕ ¼ 0 and Δϕ ¼ π
represent a dominant component of cosð2ΔϕÞ. If a Fourier
expansion is applied to the azimuthal correlation function
CðΔϕÞ, it is natural to get the second-order, fourth-order,
and sixth-order harmonic coefficients. High-order har-
monic components only get prominent when at least one
gluon is located at small rapidity and has transverse
momentum near two times the saturation momentum of
the colliding proton, i.e., 2Qsp ¼ 1.8 GeV/c.

FIG. 3. Azimuthal correlation at five values of p⊥ with p⊥ ¼ q⊥ at (a) yp ¼ 0, yq ¼ 0; (b) yp ¼ 0, yq ¼ 3; and (c) yp ¼ 3, yq ¼ 3.
In (b), the curves for p⊥ ¼ 1.0 and 2.5 GeV/c are similar to those in (a) and not shown in order to make the fine structure of other
curves visible.
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The explanation of the patterns in azimuthal correlations
depends on mechanism in this calculation. By the glasma
graph shown in Fig. 1, the correlation function is propor-
tional to the correlated two-gluon production and can be
expressed by a convolution of four uGDs as shown in
Eqs. (3), (4), and (5). The integrand of Eq. (3) is explicitly
written as

D1 ¼Φ2
Aðyp;k⊥ÞΦBðyp;p⊥−k⊥ÞΦBðyq;q⊥þk⊥Þ

þΦ2
Aðyp;k⊥ÞΦBðyp;p⊥−k⊥ÞΦBðyq;q⊥−k⊥Þ; ð8Þ

D2 ¼Φ2
Bðyq;k⊥ÞΦAðyp;p⊥−k⊥ÞΦAðyq;q⊥þk⊥Þ

þΦ2
Bðyq;k⊥ÞΦAðyp;p⊥−k⊥ÞΦAðyq;q⊥−k⊥Þ: ð9Þ

Since uGD (Φ) peaks atQs, transverse momentum far from
Qs contributes little to the correlation. To make a significant
contribution to the correlation function,

jk⊥j ∼Qs; jp⊥ − k⊥j ∼Qs and jq⊥ − k⊥j ∼Qs ð10Þ

are required simultaneously in the second terms of both
D1 and D2. If p⊥ and q⊥ are identical, and consequently
p⊥ − k⊥ ¼ q⊥ − k⊥, the above conditions can be satisfied
simultaneously, which leads to collimation production at
Δϕ ¼ 0. Similarly, significant contributions from the first
terms of D1 and D2 require p⊥ and q⊥ are antiparallel,
which leads to collimation production at Δϕ ¼ π. This
explains why two gluons that are collimated have the
strongest correlations.
On the other hand, uGD only depends on the magnitude

of transverse momentum, not on its direction. In that case,
we should only require an equal module of the two
arguments, i.e., jp⊥ − k⊥j ∼ jq⊥ − k⊥j ∼Qs. Two parallel
or antiparallel transverse momenta are sufficient but
unnecessary conditions for large correlations. According
to the triangle law of vector addition, k⊥, p⊥, and p⊥ − k⊥
constitute the three edges of a triangle. Since the maximum
of uGD needs jk⊥j ∼Qs and jp⊥ − k⊥j ∼Qs, the angle
between k⊥ and p⊥ [denoted as Δϕkp, which satisfies

cosðΔϕkpÞ ¼ jk⊥j2þjp⊥j2−jp⊥−k⊥j2
2jk⊥jjp⊥j ] is determined by jp⊥j. So

is Δϕkq. Thus, the relative azimuth Δϕ ¼ ϕq − ϕp at which
correlations become significant depends on the magnitude of
the two momenta. That explains why the peak position
between Δϕ ¼ 0 and π varies with transverse momenta, as
shown in Figs. 3(a) and 3(b). Since Qs is y dependent, two
edges in that triangle depend on y. For givenp⊥,Δϕkp varies
with y, which means the relative azimuth at which correla-
tions become significant depends on rapidity y. At some
momenta or rapidity, the correlations show a simple structure
of a valley between Δϕ ¼ 0 and π, without bumps and
shoulders. That is because the lengths of the three edges are
not appropriate to form a triangle and hence the uGDs cannot
get amaximumsimultaneously to develop a large correlation.

From this point of view, we can infer that if p⊥ is fixed
the azimuthal correlation pattern for different q⊥ should be
different. This is indeed the case, as shown in Fig. 4. To
observe the fine correlation patterns, p⊥ is chosen as
1.8 GeV/c, and yp ¼ 0, yq ¼ 0 with both gluons at small
rapidity. When q⊥ varies from 1.0 to 2.0 GeV/c, the peak at
Δϕ ¼ π/2 always exists, despite differences of its strength.
When q⊥ departs from the sensitive range, the peak reduces
to double shoulders. This indicates that these correlation
patterns require that at least one gluon has transverse
momentum within the sensitive range.

IV. SUMMARY AND DISCUSSION

In this paper, we study two-gluon azimuthal correlations
and their p⊥ and y dependence by using the CGC
formalism. We find that two-gluon azimuthal correlations
are sensitive to the detailed dynamical features of the CGC.
Here, two gluons are both chosen from small rapidity
location or both chosen from the large rapidity location, or
one is chosen from the small rapidity location and the other
is chosen from large rapidity location. Results show that
azimuthal correlations at the same rapidity gap change with
the rapidity location of the chosen gluon. Fine structures
aroundΔϕ ¼ π/2, i.e., bumps or shoulders, showupwhen at
least one gluon is located at small rapidity, which suggests
that fine structures of correlation patterns are specific to the
small-x region. A single value of p⊥ near QsA þQsB ¼
2Qsp ¼ 1.8 GeV/c, instead of integration over p⊥ in a wide
range like 1 < p⊥ < 2 GeV/c, is more likely to illustrate
fine structures between Δϕ ¼ 0 and π. The fine structures
around Δϕ ¼ π/2 correspond to high-order harmonic com-
ponents in a Fourier expansion. That means high-order
harmonic components only get prominent when at least one
gluon is located at small rapidity and at least one gluon has
transverse momentum near 2Qsp (the sum of the saturation
momentum of two colliding particles).

FIG. 4. Azimuthal correlations at five values of q⊥ with p⊥ ¼
1.8 GeV/c at yp ¼ 0, yq ¼ 0.
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As we addressed in the Introduction, the mechanisms of
gluon production at different rapidity locations are differ-
ent. So, the study on the effect of the rapidity location, other
than the rapidity range, on azimuthal correlations, helps to
reveal the fine structures in azimuthal correlations, which
are absent in the pioneer papers [13–17].
As pointed out in our previous paper [22], the correla-

tions between both radiated gluons are smaller than those
between both source gluons. The ridge correlations are
more relevant to source gluons at large rapidity. The
phenomenon at small rapidity in this manuscript is induced
by radiated gluons. Since correlations between radiated
gluons that are located at the small rapidity location are
relatively weak, the fine structures are easier to see at the
small rapidity location.
Furthermore, the shape of azimuthal correlations is also

sensitive to the transverse momentum. The sensitivity of
the azimuthal correlation structures to the transverse
momentum in our calculations stems from an intrinsic
scale (the saturation momentum) in which the initial-state
wave function peaks. Fine structures likely appear at the
transverse momentum close to the sum of saturation scales
of the projectile and target. As our calculations illustrate,
fine structures are more obvious in the case of a single value
of p⊥ and are nearly smeared by an integration over p⊥ in a
width of 1 GeV/c. So, a narrow bin of p⊥, much less than
1 GeV/c, will help to see the fine structure; otherwise, the
bumps will be less noticeable.
The fine structures in azimuthal correlations are asso-

ciated with small x and saturation momentum, and hence
they may provide the possibility of testing glasma dynam-
ics in experiment. However, since these correlations occur
at very early times, a proper understanding of the later-stage
interactions is required.
As we know, flow contributes to azimuthal correlations.

It would increase the height of the azimuthal correlations. It

would not change the fine structures significantly in p-p
collisions.
Moreover, another final-state factor that should be

considered is fragmentation functions. In Ref. [34], soft
and hard fragmentation functions are used, and results
show that fragmentation functions have a major impact on
transverse momentum dependence. Since including frag-
mentation functions brings integrations over z, the trans-
verse momentum fraction of the produced hadron with
respect to that of the fragmenting gluon, the azimuthal
correlations of two hadrons at a certain transverse momen-
tum, e.g., p0, take into account the contributions of all
gluons with transverse momenta larger than p0. The wide
integration interval over p⊥ of gluons will smear the fine
structures found at the gluon level. Another hadronization
mechanism frequently used in Mont Carlo simulations,
called the coalescence model, may also smear the fine
structures in azimuthal correlations due to a wide variety of
combinations of gluon transverse momentum into a hadron
with certain transverse momentum.
However, if parton-hadron duality holds [16], the signal

in the azimuthal patterns would remain in the final state.
Therefore, it is still interesting to check carefully in high-
energy p-p collisions if this fine structure exists in the
final state.
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