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I present higher-order radiative corrections from collinear and soft-gluon emission for the associated
production of a charged Higgs boson with aW boson. The calculation uses expressions from resummation
at next-to-leading-logarithm accuracy. From the resummed cross section I derive analytical formulas at
approximate next-to-next-to-leading order and next-to-next-to-next-to-leading order. Total cross sections
are presented for the process bb̄ → H−Wþ at various LHC energies. The transverse momentum and
rapidity distributions of the charged Higgs boson are also calculated.
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I. INTRODUCTION

Higgs bosons play a central role in both the Standard
Model and in searches for new physics. Two-Higgs-doublet
models in new physics scenarios, such as the minimal
supersymmetric Standard Model, involve charged Higgs
bosons in addition to neutral ones. One of the Higgs
doublets gives mass to up-type fermions while the other to
down-type fermions, with the ratio of the vacuum expect-
ation values for the two doublets denoted by tan β. Two
charged Higgs bosons,Hþ and H−, appear in such models.
An important charged Higgs production process at LHC

energies is the associated production of a charged Higgs
boson with aW boson, which may proceed via the partonic
process bb̄ → H−Wþ or bb̄ → HþW−. This process was
studied in Refs. [1–18], and various kinds of radiative
corrections were calculated in those works. There is good
potential for the LHC to discover charged Higgs bosons via
this process, so it is useful to calculate higher-order
corrections that may enhance the cross section.
An important set of higher-order corrections is due to soft-

gluon emission, dominant near partonic threshold; another is
due to collinear gluon emission. These corrections can in
principle be resummed, and the resummation formalism can
be used to construct approximate higher-order results.
In this paper I present a first study of collinear and soft-

gluon resummation for the associated production of a
charged Higgs boson with a W boson via b-quark anni-
hilation. Since the charged Higgs boson is presumably very
massive, its possible production at the LHC would be a
near-threshold process.

I employ the resummation formalism that has been
used for several related processes, including charged
Higgs production in association with a top quark
[19,20], neutral Higgs production via bb̄ annihilation
[21], W or Z production at large transverse momentum
[22], top-quark production in association with a W boson
[20,23,24], and top-antitop pair production [23,25].
In the next section I discuss collinear and soft-gluon

corrections and present their resummation. Using the
expansion of the resummed cross section at next-to-leading
order (NLO), next-to-next-to-leading order (NNLO),
and next-to-next-to-next-to-leading order (N3LO), I derive
approximate NLO (aNLO), approximate NNLO (aNNLO),
and approximate N3LO (aN3LO) cross sections. In Sec. III
I present results for H−Wþ total cross sections at LHC
energies. In Sec. IV I present results for the charged Higgs
transverse momentum and rapidity distributions in this
process. I conclude in Sec. V.

II. COLLINEAR AND SOFT-GLUON
RESUMMATION FOR bb̄ → H −W +

For the process bb̄ → H−Wþ, involving bottom quarks in
the initial state, I assign the momenta

bðp1Þ þ b̄ðp2Þ → H−ðp3Þ þWþðp4Þ ð2:1Þ
and define the kinematical variables s ¼ ðp1 þ p2Þ2, t ¼
ðp1 − p3Þ2, t1 ¼ t −m2

H, t2 ¼ t −m2
W , u ¼ ðp2 − p3Þ2,

u1 ¼ u −m2
H, and u2 ¼ u −m2

W , where mH is the charged
Higgs mass andmW is theW-boson mass while the b-quark
mass is taken to be 0. I note that I work in the five-flavor
schemewhere the b-quark is treated as a parton in the proton.
I also define the variable s4 ¼ sþ t1 þ u2, which mea-

sures distance from partonic threshold where there is no
energy for additional emission; however, even when s4 ¼ 0
the charged Higgs boson and the W boson are not
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constrained to be produced at rest. I note that identical
considerations apply to HþW− production.
Radiative corrections, including collinear and soft-gluon

corrections, appear at each order in the perturbative
expansion of the cross section. The resummation of these
corrections in our formalism is performed for the double-
differential cross section in single-particle-inclusive (1PI)
kinematics, in terms of the variable s4. I note that while
resummation for colorless final states is well established,
previous studies have not been done in 1PI kinematics but
have instead used the more inclusive variable z ¼ M2=s,
where M is the invariant mass of the final state. Therefore,
the present work is distinct from other work on Higgs or
other electroweak final states. Using the s4 resummation
introduces several additional new terms in the expressions
for the higher-order corrections, as I will discuss later.
Furthermore, my 1PI resummation formalism allows the
calculation of higher-order soft-gluon contributions to the
Higgs transverse momentum and rapidity distributions,
something which is not possible with the resummation
in invariant mass.
The soft-gluon terms are plus distributions of logarithms

of s4, ½lnkðs4=m2
HÞ=s4�þ, with k an integer ranging from 0

to 2n − 1 for the nth order corrections in the strong
coupling, αs. The plus distributions are defined by their
integrals with functions f, which in our case involve
perturbative coefficients and parton distribution functions
(pdf) as discussed later, via the expressionZ

smax
4

0

ds4

�
lnkðs4=m2

HÞ
s4

�
þ
fðs4Þ

¼
Z

smax
4

0

ds4
lnkðs4=m2

HÞ
s4

½fðs4Þ − fð0Þ�

þ 1

kþ 1
lnkþ1

�
smax
4

m2
H

�
fð0Þ: ð2:2Þ

In addition, further logarithmic terms of the form
ð1=m2

HÞ lnkðs4=m2
HÞ, of collinear origin, also appear in

the perturbative expansion. These collinear terms are fully
known only at leading logarithmic accuracy. In this paper I
provide the first analytical and numerical study of such
terms in 1PI kinematics with the s4 variable.
Resummation of collinear and soft-gluon contributions

follows from the factorization of the cross section into
various functions that describe collinear and soft emission
in the partonic process. Taking moments of the partonic
scattering cross section, σ̂ðNÞ ¼ R ðds4=sÞe−Ns4=sσ̂ðs4Þ,
with N the moment variable, I write a factorized expression
in 4 − ϵ dimensions:

σ̂H
−WþðN; ϵÞ ¼

�Y
i¼b;b̄

JiðN; μ; ϵÞ
�
HH−WþðαsðμÞÞ

× SH
−Wþ

�
mH

Nμ
; αsðμÞ

�
; ð2:3Þ

where μ is the scale, Ji are jet functions that describe soft
and collinear emission from the incoming b and b̄ quarks,
HH−Wþ

is the hard-scattering function, and SH
−Wþ

is the
soft-gluon function for noncollinear soft-gluon emission.
The lowest-order cross section is given by the product of
the lowest-order hard and soft functions.
The soft function SH

−Wþ
requires renormalization, and its

N dependence can be resummed via renormalization group
evolution. Thus, SH

−Wþ
satisfies the renormalization group

equation

�
μ
∂
∂μþ βðgs; ϵÞ

∂
∂gs

�
SH

−Wþ ¼ −2SH−WþΓH−Wþ
S ; ð2:4Þ

where g2s ¼ 4παs; βðgs; ϵÞ ¼ −gsϵ=2þ βðgsÞ with βðgsÞ
the QCD beta function; and ΓH−Wþ

S is the soft anomalous
dimension that controls the evolution of the soft-gluon
function SH

−Wþ
.

The evolution of the soft and jet functions provides
resummed expressions for the cross section [19–25]. For
H−Wþ production the resummed partonic cross section in
moment space is given by

σ̂H
−Wþ

res ðNÞ¼ exp

�X
i¼b;b̄

EiðNiÞ
�
HH−Wþðαsð

ffiffiffi
s

p ÞÞ

×SH
−Wþðαsð

ffiffiffi
s

p
= ~N0ÞÞ

×exp

�
2

Z ffiffi
s

p
= ~N0

ffiffi
s

p
dμ
μ
ΓH−Wþ
S ðαsðμÞÞ

�
: ð2:5Þ

The first exponent [26,27] in Eq. (2.5) resums soft and
collinear corrections from the incoming b and b̄ quarks and
is well known (see [20,21,23] for details). Since the
resummation is performed in 1PI kinematics, I have Nb ¼
Nð−u2=m2

HÞ and Nb̄ ¼ Nð−t2=m2
HÞ, and this generates

logarithms involving t2 and u2 in the fixed-order expan-
sions. This is an important point, as no such terms appear in
invariant-mass resummations, for which Nb ¼ Nb̄ ¼ N.
The specific forms of the expressions for the individual

terms in Eq. (2.5) depend on the gauge, although the overall
result for the resummed cross section of course does not. In
Feynman gauge the one-loop soft anomalous dimension for
bb̄ → H−Wþ vanishes; in axial gauge it is ðαs=πÞCF,
where CF ¼ ðN2

c − 1Þ=ð2NcÞ with Nc ¼ 3 the number of
colors. I calculate the soft-gluon corrections at next-to-
leading-logarithm accuracy. However, as mentioned pre-
viously, only the leading collinear corrections are fully
known.
I expand the resummed cross section, Eq. (2.5), in αs,

and then I invert to momentum space. I provide explicit
analytical results through third order for the collinear and
soft-gluon corrections.
The NLO collinear and soft-gluon corrections from the

resummation are
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d2σ̂ð1Þ

dtdu
¼ πα2m4

t cot2β
48sin4θWm4

Ws
2t21

ðm2
Wsþ t2u2Þ

αsðμRÞ
π
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�
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�
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HÞ
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�
þ
− 2
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�
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�
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���
1

s4
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þ
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�
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�
t2u2
m4

H

�
−
3

2

�
ln

�
μ2F
m2

H

�
δðs4Þ

�
; ð2:6Þ

where α ¼ e2=ð4πÞ, θW is the weak mixing angle, μR is the renormalization scale, and μF is the factorization scale. I note
that the logarithmic terms involving the variables t2 and u2 in the above expression arise from the 1PI nature of our
resummation and would not appear in an invariant-mass resummation.
The NNLO collinear and soft-gluon corrections from the resummation are

d2σ̂ð2Þ

dtdu
¼ πα2m4

t cot2β
48sin4θWm4

Ws
2t21

ðm2
Wsþ t2u2Þ

α2sðμRÞ
π2

CF

�
−8CF

1

m2
H
ln3

�
s4
m2

H

�
þ 8CF

�
ln3ðs4=m2

HÞ
s4

�
þ

þ
�
−12CF

�
ln

�
t2u2
m4

H

�
þ ln

�
μ2F
s

��
−
11

3
CA þ 2

3
nf

��
ln2ðs4=m2

HÞ
s4

�
þ

þ
�
4CFln2
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nf
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���
1
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�
þ

�
; ð2:7Þ

where CA ¼ Nc, and nf ¼ 5 is the number of light-quark flavors. Again, the logarithmic terms involving the variables t2
and u2 in the above expression arise from the 1PI nature of the resummation.
Equation (2.7) can be written more compactly as

d2σ̂ð2Þ

dtdu
¼ FLO

α2s
π2

�
−Cð2Þ

3

1

m2
H
ln3

�
s4
m2

H

�
þ
X3
k¼0

Cð2Þ
k

�
lnkðs4=m2

HÞ
s4

�
þ

�
; ð2:8Þ

where FLO denotes the overall leading-order factor and the Cð2Þ
k are coefficients of the logarithms, and they can be read off

by comparing Eq. (2.8) with Eq. (2.7), e.g. Cð2Þ
3 ¼ 8C2

F. This compact form for the aNNLO corrections will be useful in the
next section.
Finally, one can consider the contribution of even higher-order corrections, although not all logarithms can be

determined. The N3LO collinear and soft-gluon corrections from the resummation are

d2σ̂ð3Þ

dtdu
¼ FLO

α3s
π3

�
−Cð3Þ

5

1

m2
H
ln5

�
s4
m2

H

�
þ
X5
k¼0

Cð3Þ
k

�
lnkðs4=m2

HÞ
s4

�
þ

�
; ð2:9Þ

where the Cð3Þ
k are coefficients of the logarithms. I have Cð3Þ

5 ¼ 8C3
F,

Cð3Þ
4 ¼ −20C3

F

�
ln

�
t2u2
m4

H

�
þ ln

�
μ2F
s

��
−
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β0C2

F; ð2:10Þ
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; ð2:11Þ

Cð3Þ
2 ¼ 160C3

Fζ3−4C3
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Cð3Þ
1 ¼−160C3

Fζ3 ln
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Fln
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: ð2:13Þ
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In the above expressions, β0 ¼ ð11CA − 2nfÞ=3. Once
again, the logarithmic terms involving the variables t2
and u2 in the above expression arise from the details of the
1PI resummation.

III. TOTAL CROSS SECTIONS FOR H −W +

PRODUCTION

I consider proton-proton collisions with momenta
pðpAÞ þ pðpBÞ → H−ðp3Þ þWþðp4Þ. In analogy to the
partonic variables defined in Sec. II, I define the hadronic
kinematical variables S ¼ ðpA þ pBÞ2, T ¼ ðpA − p3Þ2,
T1 ¼ T −m2

H, T2 ¼ T −m2
W , U ¼ ðpB − p3Þ2, and

U1 ¼ U −m2
H. The hadronic variables are related to the

partonic variables via p1 ¼ x1pA and p2 ¼ x2pB, where x1
and x2 are the fractions of the momentum carried by the
partons in protons A and B, respectively.
The hadronic total cross section can be written as

σH
−Wþ ¼

Z
Tmax

Tmin
dT

Z
Umax

Umin
dU

Z
1

xmin
2

dx2

×
Z

smax
4

0

ds4
x1x2

x2Sþ T1

ϕðx1Þϕðx2Þ
d2σ̂
dtdu

; ð3:1Þ

where the ϕ denotes the pdf; x1¼ðs4−m2
Hþm2

W−
x2U1Þ=ðx2SþT1Þ; Tmax

min¼−ð1=2ÞðS−m2
H−m2

WÞ�ð1=2Þ½ðS−
m2

H−m2
WÞ2−4m2

Hm
2
W �1=2; Umax¼m2

HþSm2
H=T1 and

Umin ¼ −S − T1 þm2
W ; xmin

2 ¼−T2=ðSþU1Þ; and smax
4 ¼

x2ðSþU1ÞþT2.
Specifically, using the properties of plus distributions,

Eq. (2.2), and the compact form of Eq. (2.8), the aNNLO
corrections to the total cross section, Eq. (3.1), can be
written as

σð2ÞH−Wþ ¼ α2s
π2

Z
Tmax

Tmin
dT

Z
Umax

Umin
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Z
1

xmin
2

dx2ϕðx2Þ
x2

x2Sþ T1

×

�
−
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smax
4

0

ds4
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ln3

�
s4
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3 x1ϕðx1Þ
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X3
k¼0

�Z
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ds4
1

s4
lnk

�
s4
m2

H

�
ðFLOC

ð2Þ
k x1ϕðx1Þ

− Fel
LOC

ð2Þel
k xel1 ϕðxel1 ÞÞ

þ 1

kþ 1
lnkþ1

�
smax
4

m2
H

�
Fel
LOC

ð2Þel
k xel1 ϕðxel1 Þ

��
;

ð3:2Þ
where xel1 , F

el
LO, and Cð2Þel

k denote the elastic variables, i.e.
these quantities with s4 ¼ 0. Analogous results can be
written for the aNLO and aN3LO corrections.
I now present results for the total H−Wþ cross section at

LHC energies using MMHT2014 NNLO pdf [28]. For
convenience I set tan β ¼ 1, but it is easy to rescale the
results for any value of tan β.

In Fig. 1 I plot the aNLO cross sections for bb̄ → H−Wþ
in proton-proton collisions at the LHC versus charged
Higgs mass for energies of 7, 8, 13, and 14 TeV. The cross
sections vary greatly with charged Higgs mass, falling by 3
orders of magnitude over the mass range at each energy.
I also observe an order of magnitude or so increase in the
cross section at 13 and 14 TeV relative to 7 and 8 TeV.
The inset plot of Fig. 1 shows the K factors, i.e. the ratios

of cross sections at various orders. The four lines at the top
of the inset plot show the aNLO/LO ratios for the four LHC
energies. The corrections are clearly very significant for all
LHC energies. I also note that the K factors at different
energies are rather similar and are slightly higher for
smaller energies.
It is also important to determine how much of the full

NLO corrections [6] are accounted for by the soft and
collinear contributions. The lower line in the inset plot of
Fig. 1 shows the aNLO/NLO ratio at 14 TeV energy. I see
that the ratio is close to 1 for smaller charged Higgs masses
and that it remains above 0.9 up to a mass of 500 GeV,
indicating that the soft and collinear gluon corrections are
dominant and provide numerically the majority of the NLO
corrections. The ratio remains well above 0.8 through
1000 GeV, showing that the collinear and soft-gluon
corrections are still large and significant.
In Fig. 2 I plot the aNNLO cross sections for bb̄ →

H−Wþ versus charged Higgs mass for LHC energies of 7,
8, 13, and 14 TeV. Again, I observe a large increase in the
cross section at 13 and 14 TeV relative to 7 and 8 TeV, and a
large dependence of the cross section on the mass of the
charged Higgs boson between 200 and 1000 GeV at each
energy. The inset plot shows the aNNLO/LO K factors.
I note that the leading collinear terms by themselves

make a significant contribution to the total collinear plus
soft corrections. For example, for 200 GeV charged Higgs

200 400 600 800 1000
m

H
- (GeV)
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13 TeV
  8 Tev
  7 TeV
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-
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+
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          aNLO / LO

FIG. 1. The aNLO cross sections for bb̄ → H−Wþ at the LHC
with

ffiffiffi
S

p ¼ 7, 8, 13, and 14 TeV.

NIKOLAOS KIDONAKIS PHYS. REV. D 97, 034002 (2018)

034002-4



mass at 13 TeVenergy, they amount to 20% of the aNNLO
corrections.
Theoretical uncertainties arise from scale variation as

well as from pdf uncertainties. Scale variation by a factor of
2 around the central scale μ ¼ mH produces a moderate
uncertainty, �15% at 13 TeV LHC energy for a 500 GeV
charged Higgs, with similar numbers at other energies. The
uncertainties from the pdf are smaller,�5% at 13 TeV for a
500 GeV charged Higgs.
I find that results using other pdf sets are very similar. If

one uses the CT14 NNLO pdf [29], the results are
essentially the same.
I note that the aN3LO corrections are incomplete and that

their numerical contributions are typically small relative to
the aNLO and aNNLO corrections. For example, for
300 GeV charged Higgs mass at 13 TeV energy, the
aNLO corrections contribute a 23% enhancement, the
aNNLO corrections an additional 14% enhancement, and
the aN3LO corrections a further 2% enhancement. The fact
that the aN3LO corrections are much smaller than the
corrections at previous orders is an indication of perturba-
tive convergence and is also in line with related results for
Higgs production and top-quark production (see e.g. [25]).
Since the uncertainty due to unknown terms at aN3LO can
be of the order of the size of these corrections, I do not
study them further. I also note that there are no pdf available
at N3LO for such calculations, and the effect of such pdf
may also be non-negligible.

IV. CHARGED HIGGS pT AND RAPIDITY
DISTRIBUTIONS

I continue with the charged Higgs pT and rapidity
distributions. The charged Higgs pT distribution is
given by

dσ
dpT

¼ 2pT

Z
Ymax

Ymin
dY

Z
1

xmin
2

dx2

×
Z

smax
4

0

ds4
x1x2S

x2Sþ T1

ϕðx1Þϕðx2Þ
d2σ̂
dtdu

; ð4:1Þ

where T1¼−
ffiffiffi
S

p ðm2
Hþp2

TÞ1=2e−Y , U1¼−
ffiffiffi
S

p ðm2
Hþp2

TÞ1=2eY ,
Y

max
min ¼ �ð1=2Þ ln½ð1þ βTÞ=ð1 − βTÞ� with βT ¼ ½1−

4ðm2
H þ p2

TÞS=ðSþm2
H −m2

WÞ2�1=2, and the other quantities
are defined in Sec. III. I note that the total cross section
can also be calculated by integrating the pT distribution,
dσ=dpT , over pT from 0 to pmax

T ¼ ½ðS −m2
H −m2

WÞ2−
4m2

Hm
2
W �1=2=ð2

ffiffiffi
S

p Þ, and I have checked for consistency that
I get the same numerical results as in Sec. III.
In Fig. 3 I plot the aNNLO pT distributions, dσ=dpT , of

the charged Higgs boson with mass 200 GeV for LHC
energies of 7, 8, 13, and 14 TeV. The inset plot shows the
aNNLO/LO K factors. The corrections are large, around
50%, for much of the pT range shown. The distributions
peak at a pT value of around 65 GeV for this mass choice.
In Fig. 4 I plot the corresponding aNNLO pT distribu-

tions of the charged Higgs boson with mass 500 GeV. The
inset plot shows the aNNLO/LO K factors, and, again, the
corrections are large. The distributions now peak at a higher
pT value of around 110 GeV.
It is useful to also study normalized distributions since

normalization removes the dependence on tan β, and
it minimizes the dependence on the choice of pdf.
Such normalized distributions are also often favored in
experimental studies and comparisons with theory.
In Fig. 5 I plot the aNNLO normalized pT distributions,

ð1=σÞdσ=dpT , of the charged Higgs boson with mass
200 GeV (left plot) and 500 GeV (right plot) for LHC
energies of 7, 8, 13, and 14 TeV. The shape of the
normalized pT distributions depends on the energy, as
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expected, with higher peaks at lower energies. I also
observe that the peaks are lower for a 500 GeV mass than
for 200 GeV.
The charged Higgs rapidity, Y, distribution is given by

dσ
dY

¼
Z

pmax
T

0

2pTdpT

Z
1

xmin
2

dx2

×
Z

smax
4

0

ds4
x1x2S

x2Sþ T1

ϕðx1Þϕðx2Þ
d2σ̂
dtdu

; ð4:2Þ

where pmax
T ¼ ððSþm2

H −m2
WÞ2=ð4S cosh2 YÞ −m2

HÞ1=2,
and the rest of the quantities are defined as before. I again
note that the total cross section can also be obtained by
integrating the rapidity distribution, dσ=dY, over rapidity

with limits Y
max
min ¼ �ð1=2Þ ln½ð1þ βÞ=ð1 − βÞ� where

β ¼ ð1 − 4m2
H=SÞ1=2, and again I have checked for con-

sistency that I get the same numerical results as in Sec. III.
In Fig. 6 I plot the aNNLO rapidity distributions,

dσ=djYj, of the charged Higgs boson with mass
200 GeV for LHC energies of 7, 8, 13, and 14 TeV. The
inset plot shows the aNNLO/LO K factors. The corrections
are quite large, especially at lower LHC energies, and they
grow at larger values of charged Higgs rapidity.
In Fig. 7 I plot the corresponding aNNLO rapidity

distributions of the charged Higgs boson with mass
500 GeV. The aNNLO/LO K factors are again shown in
the inset plot. I observe that the 7 and 8 TeV K factors
increase rapidly at larger values of rapidity.
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Finally, in Fig. 8 I plot the aNNLO normalized rapidity
distributions, ð1=σÞdσ=djYj, of the charged Higgs boson
with mass 200 GeV (left plot) and 500 GeV (right plot) for
LHC energies of 7, 8, 13, and 14 TeV. For a given charged
Higgs mass the normalized rapidity distributions at lower

energies have higher peaks at central rapidity with corre-
sponding smaller values at large jYj, as expected. The fall
of the distributions with increasing jYj is sharper for m ¼
500 GeV than for 200 GeV at all LHC energies.

V. CONCLUSIONS

The cross sections for the associated production of a
charged Higgs boson with a W boson, via bb̄ → H−Wþ,
receive sizable contributions from collinear and soft-gluon
corrections. These radiative contributions have been
resummed, and approximate double-differential cross sec-
tions have been derived at NLO, NNLO, and N3LO.
Numerical predictions have been provided for the total
cross section for H−Wþ production at LHC energies as
well as for the pT and rapidity distributions of the charged
Higgs boson. The higher-order corrections are significant,
and they enhance the total cross section and differential
distributions for H−Wþ production at the LHC.
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