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Probing the P-wave charmonium decays of B, meson
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Motivated by the large number of B, meson decay modes observed recently by several detectors at the
LHC, we present a detailed analysis of the B, meson decaying to the P-wave charmonium states and a light
pseudoscalar (P) or vector (V) meson within the framework of perturbative QCD factorization. The P-wave
charmonium distribution amplitudes are extracted from the n = 2, [ = 1 Schrodinger states for a Coulomb
potential, which can be taken as the universal nonperturbative objects to analyze the hard exclusive
processes with P-wave charmonium production. It is found that these decays have large branching ratios of
the order of 10~ ~ 1072, which seem to be in the reach of future experiments. We also provide predictions
for the polarization fractions and relative phases of B, = (.1, .2, h.)V decays. It is expected that the
longitudinal polarization amplitudes dominate the branching ratios according to the quark helicity analysis,
and the magnitudes and phases of parallel polarization amplitude are approximately equal to the
perpendicular ones. The obtained results are compared with available experimental data, our previous

studies, and numbers from other approaches.
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I. INTRODUCTION

In the quark model, P-wave charmonium states are
expected as the orbital excitation of the c¢ assignments
with the orbital angular momentum L = 1. Since the charm-
anticharm quarks pair can be in the spin singlet or spin triplet
states, in terms of the spectroscopic notation > 'L, there are
four types of P-wave charmonium states, namely, y.o(*Py),
2c1CPD), x2(3P5), and h.('P,). The current experimental
knowledge of these P-wave charmonium states is summa-
rized in Table I [1]. Experimentally the productions of these
P-wave charmonium states have been seen in the hadronic B
decays: B — y. 7 [2,3], B — y.oK* [4,5], B —’ch,czK(*>
[6-101, B = h K™ [11,12], By = 1 p [13], B = ye1 K7
[14,15],B = y.1. 7K [15],and in A) baryon decay: A) —
Xc1.c2PK™ [16]. As for hadronic B, decays, the first evidence
of Bf = y.o(— KTK™)x" [17] is reported with a signifi-
cance of 4.0 standard deviations by the LHCb experiment.
The measured product of the ratio of cross sections and
branching fraction is

Op+
L B(Bf = yeom™) = (9.833(stat) £ 0.8(syst)) x 1076,

(1)

where opi(0p+) is the production cross sections for
B.(B) meson.

As is well known, the pseudoscalar B, is composed of
two heavy-flavored quarks and thus represents a unique
laboratory to study heavy-quark dynamics and CP viola-
tion. Since each of the two heavy quarks can decay with the
other as a spectator, the B, meson has rich decay channels,
and offers a promising opportunity to study nonleptonic
weak decays of heavy mesons, to test the standard model
(SM), and even to reveal any new physics beyond SM.
Decays of B, mesons to the final states including a
charmonium meson are of special interest. First, these
decay modes provide a sensitive laboratory for studying
strong interaction effects in a heavy meson system. Second,
those decays involve two energy scales, the bottom quark
mass m,;, and charm quark mass m,.. The higher order
corrections within the framework of quantum chromody-
namics (QCD), described by the expansion of m./m,, rather
than Agcp/m;, with Agep is the QCD scale, may be
relatively large, and therefore are more subtle in theoretical
studies. Third, one can search for charmonium and char-
moniumlike exotic states in one of the intermediate final

TABLE I. The properties of P-wave charmonium states [1].
Jinduil 127@126.com Mesons  n*IL,  JPC  Mass (MeV)  Width (MeV)
Published by the American Physical Society under the terms of  y, 1°P, 0t" 341475 £0.31 10.5+0.6
the Creative Commons Attribution 4.0 International license. el 1°P, 1+ 3510.66 + 0.07 0.84 + 0.04
the athon(s) and the published aricie’s sile journal citation, 1 S ST Ch o
’ ’ h 1'P 1T 352538 £0.11 0.7£04
and DOI. Funded by SCOAP’. < '
2470-0010/2018/97(3)/033001(13) 033001-1 Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.033001&domain=pdf&date_stamp=2018-02-12
https://doi.org/10.1103/PhysRevD.97.033001
https://doi.org/10.1103/PhysRevD.97.033001
https://doi.org/10.1103/PhysRevD.97.033001
https://doi.org/10.1103/PhysRevD.97.033001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ZHOU RUI

PHYS. REV. D 97, 033001 (2018)

states such as y.;7 and y . 7z (J = 0, 1, 2), which may be
important to understand the detailed dynamics of the
multibody B, decay modes. Besides, such B, decays
provide a direct probe of charmonium properties by
reconstructing the charmonium state from its decay to
some known final state.

Phenomenologically the B, meson decays into various
charmonium states have been widely studied in the
literature. Earlier, a lot of work has been done in the
semileptonic and nonleptonic [18-29] decays of the meson
B. to S-wave charmonium mesons. Also, the P-wave
charmonium decays of B, meson have been considered
previously by other authors [30-39]. Furthermore, some
semileptonic and nonleptonic decays of B, into the D-wave
charmonium states have been analyzed in the framework of
the instantaneous Bethe-Salpeter method [40]. More
recently, the exclusive decays of the B, meson into
P-wave orbitally excited charmonium and a light meson
have been investigated using the nonrelativistic QCD effec-
tive theory [41], where the next-to-leading order relativistic
corrections to the corresponding form factors are considered.

As a successive work of [42,43], in the present work we
will focus on the B, decays involving a P-wave charmo-
nium state and a light pseudoscalar or vector meson in the
final states employing the Perturbative QCD (PQCD)
approach based on the k; factorization theorem. Similar
to the case of S-wave charmonium states [44], the P-wave
charmonium distribution amplitudes (DAs) can also be
expressed as an associated factor, extracted from the
P-wave Schrodinger states for a Coulomb potential, multi-
ply by the asymptotic models of the corresponding twists
for light mesons. With the help of P-wave DAs, we can
make quantitative predictions here, and provide a ready
reference to existing and forthcoming experiments.

The rest of this article is organised in the following way.
In Sec. II, the Hamiltonian and kinematics, and the P-wave
charmonium DAs are shown in cases of scalar, axial-vector,
and tensor states. Then the calculations of these decay
amplitudes in the PQCD framework are briefly reviewed. In
Sec. III, the adopted parameters, numerical results and
discussion are given in detail. Finally, the conclusions are
given in Sec. IV. The evaluation of the P-wave charmonium
distribution amplitudes is relegated to the Appendix.

II. FORMALISM

A. Hamiltonian and kinematics

The effective Hamiltonian describing the B, nonleptonic
decays into charmonium and a light pseudoscalar or vector
meson is given by [45]

G
Hetr = —= ViV [CLw) 01 (1) + () 02(w)]. (2)
V2
where g = s, d stands for a down type light quark. G is the
Fermi constant. V7, and V,, are the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements. C;,(u) are the

perturbatively calculable Wilson coefficients, which
encode the short-distance effects above the renormalization
scale y, while O;,(u) are the corresponding local four-
quark operators, whose expressions read as

s)cp ® itgy, (1 —¥5)qq

Ol(lu) = Bayy(l
o (1 =7s5)ce ® gy, (1 —7s)qp, (3)

(1-
where @ and f are color indices and the summation
convention over repeated indices is understood. Since
the Hamiltonian involves four different flavor quarks, it
means that these decays are uncontaminated by the con-
tributions from the penguin operators, and thus the direct
CP asymmetries are absent naturally.

The calculation is carried out in the rest frame of B,
meson, the B, meson momentum P, the recoiled charmo-
nium meson momentum P,, and the ejected light meson
momentum P; are defined in the light cone coordinates as

M M
PIZ—(I,I,OT), P2:%<1_F%”%70T)7

Py = (rg’l_”%’oT)’ (4)

SIS

with the mass ratio 5 = my3/M and M (m,) is the B,
(charmonium) meson mass, while m5 is the (chiral) mass of
the (pseudoscalar) vector meson. The momentum of the
valence quarks k , 3, whose notation is displayed in Fig. 1,
is parametrized as
ky =x1 P+ ki,

ky =x,Py +Kkor, k3 =x3P;+Kjr,

(5)

where k;7, x; represent the transverse momentum and
longitudinal momentum fraction of the quark/anti-quark
inside the meson. When the final states contain a axial-
vector charmonium and a vector meson, the longitudinal
polarization vectors ¢; and transverse polarization vectors
er can be defined as

€y = 1=7r%—=r2,07), e = (0,0,17),

2L =) (I=r3,—r3.07) ar = ( T)
1

€3 = 2,1 —=1r2,07), ey = (0,0,17),

3L = (=13 2. 07) sr = ( T)

(6)

which satisfy the normalization €? = €7 = —1 and the

orthogonality €,; - P, = €31 - P3 = 0.

For a tensor charmonium, the polarization tensor €, (4)
with helicity 1 can be constructed via the polarization
vector €, [46,47]:
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FIG. 1.
nonfactorizable diagrams.

e/w(:tz) = 6#(:|:)€y(:|:),

1
€ﬂl/(j:1) = 7§ [eu(:t)eu(o) + €U(:I:>€ﬂ<0)]’
1
€u(0) = 7e [eu(+)eu(=) + €u(=)e (+)]
2
+1/36(0)6,(0), )
with e€(+) = €7 and €(0) = ¢,;. It is convenient to define
another polarization vector e.,(1) = m, % which
satisfy
ley - v
6‘#(:':2) = 0, €.ﬂ(2|:1) = mz\/;mé‘z]"ﬂ,
2€2L v
G.M(O) = my \/;1)2.1)62L”. (8)
The contraction is evaluated as jg;—j = i by neglecting the

light meson mass, then we get the relations e.; = e.(+1) =

\@eﬂ and e, = €.(0) = \/%(':ZL- Note that €. has the same

energy scaling as the usual polarization vector of a vector
meson. It makes the calculations of B, decays into a tensor
meson are similar to those of vector analogues by replacing
the polarization vector with the corresponding e..

B. Mesons wave function and the
distribution amplitudes

In the considered decays, there are three typical scales:
M, m,, and the heavy-meson and heavy-quark mass
difference A. They allow for a consistent power expansion
in m,/M and in A/m, under the hierarchy of A < m, < M.
In the heavy-quark and large-recoil limits, based on the ky
factorization theorem, the decay amplitudes are expressed
as the convolution of the hard kernels with the relevant
meson wave functions. The hard kernels can be treated by
perturbative QCD at the leading order in an «; expansion
(single gluon exchange as depicted in Fig. 1). The higher-
order radiative corrections generate the logarithm diver-
gences, which can be absorbed into the meson wave

c(k»)
@
‘ (b)

The typical leading-order Feynman diagrams for the decay B. — y.#. (a,b) The factorizable diagrams, and (c,d) the

© (d)

functions. One also encounters double logarithm divergen-
ces when collinear and soft divergences overlap, which can
be summed to all orders to give a Sudakov factor. After
absorbing all the soft dynamics, the initial and final state
meson wave functions can be treated as nonperturbative
inputs, which are not calculable but universal.

Analogous to the B meson [48], up to first order in 1/M
under above hierarchy, the B, meson wave functions are
decomposed into the following Lorentz structures [49,50]:

[ et 0,00y 15(P1)

_ \/217 { (P + M)ys {453‘ (ki) = %5’3‘“1 )} }ﬂa
9)

with the two lightlike vectors n = (1,0,0;) and
v=(0,1,0p). N. =3 is the color factor. Here, we only
consider the dominant Lorentz structure from the first term,
while the second Lorentz structure starting from the next-
to-leading-power A/M is numerically neglected [51,52]. In
coordinate space the distribution amplitude ¢5_is adopted
in the form [53]

mp+me m% m )
—x

¢BC (x> — NBx(l — x)e_Smbm(m(T“r , (10)

SHS)

with the shape parameter @ = 0.5 £ 0.1 GeV related to the
factor Ny by the normalization

/lqﬁBl_(x)dx:l. (11)
0

For the P-wave charmonium states, we use the abbre-
viations A, S, and T correspond to axial-vector, scalar, and
tensor charmonium meson, respectively. In terms of the
notation in Ref. [54], the nonlocal matrix element for the
longitudinally and transversely polarized axial-vector and
scalar charmonium meson can be decomposed as
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(A(P2.€21)[Cq(2)cp(0)]0)
:\/%TCAIdxeiXPz‘Z[mz}’s?’zLWIA(x)+}’5¢2LP2W2(XHﬁm
(A(Pa.€37)[C4(2)cp(0)[0)

:\/ZITC/)Idxeixpz'z[mzysfl(zrl//,‘;/(x)+75¢2TP2W£(X)]ﬁm
(S(P2)|24(2)cp(0)]0)
= ! /ldxeix’)?‘z[}” wi(x) + moy(x)] (12)
\/Wc 0 2¥s 2¥'s pa>

where the DAs y&T-?(x) are of twist-2, and w""**(x) of
twist-3. As mentioned in the Introduction, the charmonium
DAs are parametrized using a combination of an universal
factor 7 (x) for the P-wave states and the asymptotic
models @, (x), given by

y' o Dy ()7 (x). (13)

The expression of 7 (x) can be extracted from P-wave
Schrodinger states for a Coulomb potential, which are
derived in the Appendix. The asymptotic forms of @ (x)
in Eq. (13) for the axial-vector mesons can be related to the
ones calculated in QCD sum rules by [55]

1
() = ) ) = 5 ),
@(x) = 52k (). OY) = AP )
(14)

where f, (fi) is the vector (tensor) decay constants. The
leading twist ¢, can be expanded in a series of
Gegenbauer polynomials [55,56]

¢y = 6x(1 = x)[ay + 3a} 2x = 1) + -],
¢, =6x(1=x)[ag +3a;(2x—1) +---. (15)

Owing to the G-parity, ¢ (¢ ) for 3P, state is symmetric
(antisymmetric) under the exchange of quark and antiquark
momentum fractions in the SU(3) limit. On the contrary, ¢
is antisymmetric for 'P, states, while ¢, is symmetric in
this case. Thus the asymptotic forms for twist-2 can be
written as

¢)(x) = 6apx(1 - x),

¢ (x) =18atx(1 —x)(2x—1) for 3P,;

¢ (x) = 18a)x(1 — x)(2x — 1),

$1(x) = 6a5x(1 - x) for 'P (16)

Neglecting the three-parton distribution amplitudes con-
taining gluons and terms proportional to light quark

masses, the twist-3 DAs can be related to the twist-2 ones
by Wandzura-Wilczek-type relations [55]:

g(f)(x) :%[Axdu?”_(ui—f—lldv%(uq,
h(’)(x):(2x—1)deu¢l—(”)—fdu¢lT(”)], (17)

l—u
which further give

h (x) = 3af (2x = 1)(1 - 6x + 62%),
. 3
g(L)(x) Zag(l + (2x=1)%) for3P;
h (x) = 3ag (2x = 1)?,
@) = 2alax =1 for P 18
gr (¥) =za(2x = 1) for 1Py (18)

Combining Eqgs. (14), (16), and (18), we derive

wh(x) = 5= Nox(1 = x)T (x),

2\/—2N
fx

22N,
fx Nr
2\2N, 6
fa No
2,/2N, 8

for 3P, states, and

W7 (x) = = PA Npx(1 - x) (26 = 1)T (x).

w'(x) =

(2x = 1)[1 = 6x + 6x%)7 (x),

¥ (x) = [+ (1= 2x)*]7 (), (19)

yh(x) = Nrx(1—x)(2x = )T (x),

2\/2N
i
24/2N.
fi Ne 2
= — (1 =2x)"T (x),
s 3 (=20 T ()
__fa Nr,
= —(2x
242N 12
for 'P, states. Note that the Gegenbauer moments a”

are absorbed into the coefficients N, r to satisfy the
normalization conditions [57]

W () = =2 N x(1 = )T (),

- 1’7 (%), (20)

/1 Npx(1 =x)7T (x)dx =1,

0

/1 Nyx(1 = x)(2x — 1T (x)dx = 1. (21)
0

Because of the charge conjugation invariance, twist-2
and twist-3 DAs of the scalar meson should satisfy y{(x) =
-y (1 —x) and yi(x) = wi(1 — x), respectively [58,59].
In general, the asymptotic twist-2 DA can also be expanded
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in the Gegenbauer polynomials with only odd component
contribute [60,61]. Based on the description of the char-
monium states DAs given above, y§(x) can be recast to the
form

s
2y2N.

— = Npx(l —=x)2x—1)T (x). (22)

w(x) =

As for the twist-3 DA, we adopt the same asymptotic form
as the pseudoscalar mesons [62]:

; fs
with the normalization condition
! fs
S(x)dx = . 24
A VA =5 o Y

The nonlocal matrix element associating with the tensor
charmonium can be decomposed as [63]

5(0)0)
\/W dx‘—"xpz [madepyr(x) + ¢'LP2W’IT(X)]ﬁa7
(T (P, e.1)|E4(2)cs(0)]0)

- \/Q%TAI dxeixP2~z [m2¢-Tl//¥ (x) + ¢.TP21//%:()C)]/):“,

(T(Py.€ L)IE’ ( )

(25)

for the longitudinal and transverse polarizations, respec-
tively. wr(x), wh(x) are leading twist DAs, and w7 (x),
wh(x) are twist-3 ones, which are related to the ones given
in Ref. [46]

fr
2y/2N,

I
2\/—2N

O (x) = ¢ (x),

D (x) = $1(x),

h(l) (x),

@7 (x) I

o T
- 2V/2N,

@f(x) = 527

L )

(26)

In SU(3) limit, due to the G-parity of the tensor meson, all
of the DAs are antisymmetric under the replacement
x — 1 — x. Here we take the following approximate forms
of twist-2 as [46,63]

$(x) = ¢ (x) = Npx(1 - x)(2x = 1), (27)

and the corresponding expressions for the twist-3 DAs
can be derived through the Wandzura-Wilczek relations
as [46]

7O (x) = %(n —1)(1 = 6x + 622),

%(2); Z 1), (28)

Now we can collect the DAs of tensor charmonium states
below:

) = 5 e Nrall = 2) (2 = DT (),
L
WH(s) = 3 N (1 =) (2 = )T (3,
t fl NT 2
wh(x) = NI — (2x = 1)[1 = 6x + 6x%]7 (x),
WH) = 5 (2= 1T (), (29)
with the normalization conditions [46]
1 (1)
Jler-nw =L o

For the wave functions of light pseudoscalar and vector
mesons, the same forms and parameters are adopted as [52]
and one is referred to the original literature [64].

C. The decay amplitudes

In the PQCD approach, the decay amplitudes are
expressed as the convolution of the hard kernels H with
the relevant meson wave functions ®;

A(B. — M,M3)
:/d4k1d4k2d4k3Tr[C(t)CD1(k1)®2(k2)

X @3 (ks)H (ki ky, k3, 1)]. (31)
“Tr” denotes the trace over all Dirac structures and color
indices. The hadron wave functions ®; absorbed all
the nonperturbative components have been described in
Sec. II B. The hard kernel H (k, k,, k3, t) describes the four
quark operator and the spectator quark connected by a hard
gluon, which can be perturbatively calculated including all
possible Feynman diagrams without end-point singularity.
In the following, we start to compute the decay amplitudes
of the concerned decays.
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1. Amplitudes for B, — (S.A,T)P decays

We mark subscript S, A, and 7 to denote the decay amplitudes contain a scalar, axial-vector, and tensor charmonium in the
final states, respectively. The amplitudes from factorizable diagrams (a) and (b) in Fig. 1 for B, — SP, AP decays read as

2 1 1 00 o0
‘FS = 2\/;CFfoPﬂM4(I’% - 1)/ / dxldxz/ / blbzdbldb2¢gc (Xl)
0 0 0 0

X [y (X2, b2) (1 — 22) + Wi (X0, by) (X = 27)|E g (24 ) (@, Bas b1y 02) S, (x2)—

X [w§(xp, by)(re + 13(x) = 1)) =
2
Fu= \/7CFfoP”M

X [y (x2, b2)(

i (62, bo)[re + 13 (x1 = D] Egp (1) h(a. By bo.

2rws(x0.by) (re + x1 = 1)]E(t,) (. By b2, b

/ / dxldxz/ / bybydb dbypp (x;)

rp = 2x2) + wk (x2.b2) (%0 = 21| E oy (12) 1 (@ B 1. b2) S, (x2)

1S (x1). (32)

by)Si(x1), (33)

respectively. The corresponding formula for nonfactorizable diagrams (c) and (d) are

:—chBﬂM r2—1) / / / dxldxzdx3/ / bibsdb,dbsgg (x1)¢p(x3)

X [W§(x0, by)(r3(x1 +2x3 + x3 —2) +x1 — x3) — raw§(x,
—X3) +2x; + x5 + X3 = 2) — (X

2
2
= (2. b)) (r3(x2

A:

with r, . = m, /M. Cr = 4/3 is a color factor. fp is the
decay constant of the light pseudoscalar meson, emitted
from the weak vertex. The functions s, E and the
factorization scales t,, j, . 4 can be found in [42]. The leading
twist DAs of the pseudoscalar meson ¢4 and the jet
function S,(x) come from [52]. @, and f,, ., are the
virtuality of the internal gluon and quarks, respectively.
Their expressions are

a, = —[x; = (1 = xp)r3)(x; +x, — 1) M2,

Ba = [r, = x2(1 + 13(xy = 1))]M?

By = e+ (x1 = 1)(r3 — x,)]M2,

Be=—(x1 +x2 = D)[xy = x5+ 13(x3 + x5 — 1)]M?,
Ba=—(x1 +x2 = Dy +x3 = 1+ r5(x; —x3)|]M>. (36)

It should be stressed that the nonlocal matrix element for
the axial-vector and scalar charmonium meson in Eq. (12)
can be related to the vector and pseudoscalar ones [42,43],
respectively, by multiplying by the structure —(i)ys from
the left hand. The factorization formulas (F/M) here and
below are similar to the corresponding ones in [42,43]
with some terms flipping signs. As mentioned before, the

b )(xl +x; — 1)]Ecd(tc)h(ﬁc’aevb3’bl)
b)) (xy +x0 = D]Ecq(ta)h(Ba, ac, b3, by), (34)

/ / iy dxsd; / / bybsdbydbsdy, (1) ()

= 1)(x1 = x3) = rawy (x2, b1) (x1 + x2 — 1)]E,
[V/ﬁ( bl)(rz(xz = X3) +2x; + X5 + X3 = 2) = oy (x0, by ) (%) + 2, = 1)]

( ) (ﬂc’ae’b3’b)
cd(td)h(ﬁd’ae’b3’bl)’ (35)

I

nonlocal matrix element associating with the tensor char-
monium in Eq. (25) is also analogous to the vector case,
except that the polarization vector is replaced by e..
Therefore the correspondence between a tensor meson
and a axial-vector meson allows us to get the factorization
formulas of B, — TP as

2
Fr= \/;}—A|Wﬁ—>w,w;—>w9wrc—>—rc’

2
T — \/;MA|V/II4'—>1,/T,1//A—>V/’T‘ (37)

With the functions obtained in the above, the total decay
amplitudes for the B, — (S,A, T)P are given by

A(B. — (S,A,T)P)

1
=V KCZ + §C1>}—S,A,T +CiMgar|.  (38)
2. Amplitudes for B, — (S,A,T)V decays

For B. — SV decays, the decay amplitudes of factori-
zation emission diagrams and nonfactorization emission
diagrams are given as
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2 1 1 o0 0
F zz\ﬂc M* 1—r2//dxdx/ / bbrdb,db X
s 3 rfefvaM™y 2 ) ), dxdx o bibadby 25, (x1)

X [rpr§ (X2, b)) (rp = 2%2) +wi(x2, by) (X3 = 21| E gy (1) h( e, Bas D15 b2) S, (x)
- [llfg(xzy by)(re + r%(xl -1)) - 2r21//§(x2,b2)(rc +x1 = D]Eqp (1) h(ae, By, by, b1)S,(x1), (39)

8 1 1 1 ) &)
Mg =—=CpfgaM* 1—r2/ / / dx dx,dx / / bbsdb,db X X
s =3 rfB \/ 2 Jo s 1dXdX3 . /o 1b3dbdbsg (x1)y(x3)

X b (x2, by) (3 (xy + 2x0 + X3 = 2) + X1 — x3) — oy (xa, by ) (xy 4 x2 = D)]E4(1.)h(Be, @, b3, by)
— [ (x2, 1) (3 (%0 — x3) + 2x) + X5 + x5 = 2) — oy (xa, by ) (x1 4+ x2 — D)]E4(12)h(Ba. a,. b3, by), (40)

where fy and ¢y are the decay constants and the twist-2 distribution amplitudes of the light vector mesons, respectively.
The total decay amplitudes for B. — SV decays are similar to that of B. — SP in Eq. (38) with the replacement

fp = fv. ¢p = bv.

Like vector mesons, axial-vector mesons also carry spin degrees of freedom. Therefore, B, — AV decays contain more
amplitudes associated with three different polarizations. We mark superscript L, N and T to denote the contributions from
longitudinal polarization, normal polarization, and transverse polarization, respectively.

2 / 1 1 © [
fllx = 2\/;Cpf3fvﬂ'M4 1- r%/) /) dxldXZA A blbzdbldb2¢3(: (xl)

X [rayry (X2, b)) (1), = 2X3) 4 W (0, by) (2 = 21)|E gy (2,) B(at,., B by, D2) S, (x5)
+ Wﬁ(xz’ by)[r. + r%(xl = D]E s (tp) (@, By bay by)S,(x1), (41)

2 1 1 © [
FIIX = 2\/;CFfoVr3HM4A /) dxldle /) b]bZdbldbngB(_(X])

X [y (x2. b)) (r3(ry +2 = 4x3) + 1, = 2) 4+ 1oy (X2, by) (3 (% — 1) + x5 + 1) — 4r,)]
X Eqp(t,)h(0tg, Bus b1, b2)S,(x2) =y (X0, by)ra[1 = 21, — 2x1 + r3]E (1) h(a,. By, by, by)Si(xy),  (42)

2 1 1 o [
P =2\ 2 fafroahti (- 1) [ s [ [ bbb )
X i (%2, 02) (2 = 1) + 1o (%2, by) (x2 — 1)]

X Eab(ta)h(ae’ﬂav by, bz)St(xz) + WX(?Cz’ b2)r2Eab(tb)h(aeaﬂb7 b, bl)St(xl)’ (43)

8 1 1 1 © [
M‘ﬁ = §CFfB7Z'M4\/ 1- F%A /O A dX]dX2dX3A A b]b3db]db3¢3[()€])¢v()€3)

X [=yh (6. by) (13 = 1) (x) = x3) + oy (x0. by ) (x1 + X5 = 1)|E () (B, . b3, by)—
X [yh (2, by) (13 (x2 = x3) + 201 + x5 + x3 = 2) = rowrly (X2, b1) (xy + X2 = 1)|Ey(t0)h(Bg. @ b3 by),  (44)

8 1 1 1 ©0 o
MN = gCFfBr37TM4/ / / dX1dXde3/ / blb3dbldb3¢35 ()C1>
0o Jo Jo 0 Jo

X ¢ (xa)wry (32, b1) (13 = 1) (32 + x3 = 1) + b (x3)yh (2, by ) (13(x1 + 205 + x5 = 2) + x1 — x3)]

X Ecq(te)h(Bes e b, by) + (¢ (x3)2(r3 = 1) (ra(xy = x3)w) (%2, by) + 2(x; + x5 — 1w (x2, by))

+ iy (x3) (2raw g (2, b1) (13 (x5 = x3) + 2% + 25 + x5 = 2)

i (x2, b1) (13 (1 = xy = 2% 4 x3) + 1 = x1 = x3))|Eca(14)h(Ba> @, b3, by), (45)
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8 1 1 1 ) S
ML =~ 8¢y pyrymmt / / / dydsds / / bybsdbydbsy (x))
3 o Jo Jo o Jo ¢

X (% (x3)w ) (x2. b1)2r (P (%0 4+ x5 = 1) 4+ 2x1 + X5 — x3 — 1) 4+ 4 (53w (x2, b1 ) (15 — 1) () — x3)]

X Ecq(te)h(Be. e, b3, by) + [2¢% (x3) (rawry (x2, by ) (

r3(xy = x3) 4 2x1 + x5 +x3 — 2)

+ 29k (%0, by ) (r3(1 = xy = 2x0 + x3) + 1 — x; — x3))
+ @y (x3)wh (x2. b)) (13 = 1) (x1 4 x3 = D)]E (1) h(B4. a,. b3, by), (46)

where ¢, and ¢ are the two twist-3 distribution
amplitudes for the transverse polarization of light vector
mesons. For B, — TV decays, the decay amplitudes can be
related to the axial-vector ones by making the following
replacement,

2
f(M)% - \/;F(M)If;|y/ﬁ—>y/1v.l/lg—>y/fr,rf—>—rf’
1
f(M)IYY’T = \/;f(M)fX’T|y/;’;—>y/¥.w/‘(—>y/¥,rc—>—rc7 (47)

where the factors \/% and \/% come from the equivalent

polarization vector e. in Eq. (8) of the tensor mesons for the
longitudinal and transverse polarizations, respectively. The
total decay amplitudes for B. — (A,T)V decays can be
decomposed as

A(B. = (A, T)V)
= Aﬁ,T + AZX,T€2T s €37 + I.quTGaﬂpal’laﬂﬁégTé‘gT, (48)

where the three polarization amplitudes have the same
structure as Eq. (38).

III. NUMERICAL RESULTS

To proceed the numerical analysis, it is useful to
summarize all of the input quantities we have used in this
work. The central values (in GeV) of the relevant meson
masses and heavy quark masses are adopted as [1]

M = 6275,
m, = 0.775,

my = 4.8, m, = 1.275,
mg+ = 0.892. (49)

While the masses of the P-wave charmonium have been
given in Table I. The CKM matrix-elements are set as
|Vep| = 0.0405, |V, | = 0.2248, and |V 4| = 0.97417 [1].
For the decay constants of P-wave charmonium, the
detailed discussions in the nonrelativistic QCD factoriza-
tion, the light-front approach and the QCD sum rules, could
be found in Refs. [57,65-67]. Here we employ the most
recent updated values (in GeV) evaluated from the QCD
sum rules at the scale u = m,. [67]:

[

fro =0.0916,  f, =0.185,
fr. =0177,  f; =0.127,
5, =00875,  f4,=0128,  fi =0133. (50)

For the decay constants of light mesons, we use [52]

fn=0.131,
fx =0217,

fx = 0.160,
L —0.165,

f, =10.209,

fx =0.185 GeV.
(51)

The B. meson decay constant and lifetime are adopted as

fp, = 0489 GeV  [4243] and 75 =0.507ps [1],

respectively.

The branching ratios for the considered decays in the B,
meson rest frame can be written as

_ GZFTBC
327M

where the decay amplitudes A for each channel have been
given explicitly in the previous section. When the final
states involve axial-vector/tensor charmonium states and a
vector meson, the decay amplitude can be decomposed into
three components,

LA = [Aol> + [ A > + [ ALP, (53)

(1-r3)|A

2, (52)

where Ay, A, A, refer to the longitudinal, parallel, and
perpendicular polarization amplitudes in the transversity
basis, respectively, which are related to A" of Eq. (48)
via

Ag = A~

Our numerical results of branching ratios for B, —
(S,A,T)P and B, — (S,A,T)V decays are listed in
Tables II and 111, respectively. The first kind of uncertainties
is from the shape parameter w in the wave function of the
B. meson and the charm-quark mass m,. In the evaluation,
we vary the value of @ within a 20% range and m, =
1.275 GeV by £0.025 GeV. The second error comes from
the decay constants of the P-wave charmonium meson in
Eq. (50), which varies 10% for error estimates. The last one
is caused by the hard scale 7 located between 0.75 ~ 1.25
times the invariant masses of the internal particles, which

Ay =V2AY, A =V2AT. (54)

033001-8



PROBING THE P-WAVE CHARMONIUM DECAYS OF ...

PHYS. REV. D 97, 033001 (2018)

TABLE II

The PQCD predictions on branching ratios of B, decays to final states containing a P-wave charmonium state and a light

pseudoscalar meson. The errors for these entries correspond to the uncertainties in hadronic shape parameters, from the decay constants,
and the scale dependence, respectively. For comparison, we also list other theoretical results. Note that some branching ratios are
evaluated with the Wilson coefficient @; = 1.14 in the referred models.

Modes This work [30] [31] [33] [35] [36] [37] [41]

BY = oo™ (1L610790300) x 1073 21x 107 26 x 107 55x10™* 28x10™* 98x 107 3.1x10™* 42x107
Bf = yart (51X x 107 20x 107 1.4x 107 68x 1075 7.0x107° 89x107° 2.1x107 50x107°
Bl = gt (4070700093) x 1073 38 x 107 22x 107 46x107* 25x10™ 79x 107 21x10* 74x107*
Bf — hewt  (SALNEIN0N %1074 46x 107 53x 107 L1x107 50x10™* 1.6x1072 98x 107 6.2x 107
BY = oK™ (12503705500) x 107% 1.6 x 10 2.0x 10 42x107° 2.1x107° 23x107° 32x107™*
Bl = gy KT (38703000400 %107 1.5x 107 1.1x107 51x10° 52x 1077 1.6x 107 4.0x 107
BY = yoKt  (BAI0I07) x 107 28 %107 1.7x 1075 34x107° 1.8x107° 1.6x107° 5.6x107
Bf — h K" (43103700009) x 1075 3.5x 107 41x107 83x107 38x107° 74x107° 47x107*

characterizes the size of higher-order corrections to the hard
amplitudes. It turns out that the errors are dominant by the
uncertainties from the decay constants of P-wave charmo-
nium meson distribution amplitudes, which can reach 20%
in magnitude. As discussed in Ref. [68], by using the light-
cone wave function for the B, meson, the theoretical
uncertainty from the charm-quark mass is largely reduced.
It is also found that the branching ratios are insensitive to
the hard scale, which means the higher-order contributions
can be safely neglected. In a recent paper [69], the authors
claimed that the relativistic corrections to light-cone dis-
tribution amplitudes of S-wave heavy quarkonia are com-
parable with the next-to-leading order radiative corrections.
In view of this point, we check the sensitivity of our results
to the squared velocity »> of the charm quark inside the
P-wave charmonium states in Eq. (A6). The variation of v?
in the range 0.25 ~ 0.35 will result in the branching ratios
changing only a few percents. This is similar to the
comment in [34] that the relativistic corrections to the

TABLE IIL

Coulomb wave functions would be less significant. In
addition, the uncertainties related to the light mesons, such
as the decay constants and the Gegenbauer moments shown
in [52], are less than 10%. Therefore, they have been
neglected in our calculations.

It can be seen that the former four processes (including
one 7 or p meson in the final states) have relatively large
branching ratios owing to the CKM factor enhancement,
while the branching ratios of the latter four processes
(including one K or K* meson in the final states) are
comparatively small due to the CKM factor suppression.
Since the two type decays have identical topology and
similar kinematic properties. In the limit of SU(3) flavor
symmetry, the relative ratios Ry, = B(B. — (S,A,T)K)/
B(B. - (S,A,T)x) and Rk, =B(B. = (S,A,T)K*)/
B(B. — (S,A,T)p) are dominated by the ratio of the
relevant CKM matrix elements |V ,|*/|V 4> ~ 4*> under
the naive factorization approximation. After including the
kaon (K*) and pion (p) decay constants, one expects

The PQCD predictions on branching ratios of B, decays to final states containing a P-wave charmonium state and a light

vector meson. The errors for these entries correspond to the uncertainties in hadronic shape parameters, from the decay constants, and
the scale dependence, respectively. For comparison, we also list other theoretical results. Note that some branching ratios are evaluated

with the Wilson coefficient a; = 1.14 in the referred models.

Modes This work [30] [31] [33] 35] [36] [37] [38]
B = yeopt (S80SO %1077 5.8 %107 67 x 107 1.3x 107 72x 107 33 %1072 7.6x 107

Bf = yapt (287020501 % 1073 15x 107 1.0x 107 29x107* 29x10™* 46x 107 23x10™* 147x107°
Bl = yopt (16101704400 102 1.1x 107 6.5x 107 12x 107 51x10™* 32x1072 5.6x 107

Bf = hept (2305 0792) % 1070 1.0x 107 1.3 x 1072 25x107° 12x107 53 %1072 22x1072 1.24x107?
Bf = yooK™ (335040007 x 107% 40x 107 3.7x107° 7.0x107° 3.9x107° 4.5x 107

B = ya K™t (1810793103) % 107 1.0x 107 73 x10° 1.8x 10~ 1.8x107° 1.7%x 10 7.07 x 107
BY = yoK™ (9.610030108) x 107* 74%x 1070 38x 107 65x 107 3.1x107° 33x107°

B = h K™ (1350{2103508) x 107 7.0x 107 7.1x 107 13x10™* 6.8x107° 13x10™* 6.18 x 107
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Rz ~0.081 and R, ~0.057. From Tables II and III,
our predictions for Rg,, corresponding to various P-wave
charmonium states lie in the range 0.075 to 0.080, while
Rk, 1s in the range 0.057 to 0.064, both are very close to
the above expected values. It means that the dominant
contributions to the branching ratios come from the
factorizable topology, while the nonfactorizable contribu-
tion is suppressed by the Wilson -coefficient C,;
[see Eq. (38)].

One can see some interesting hierarchical relations
among these branching ratios in our predictions. For
example, branching ratios for decays involving pseudosca-
lar mesons in the final state are smaller than their vector
partners for the same flavor content. This is partially due to
the pseudoscalar meson decay constant is usual smaller
than the vector ones. Furthermore, since the B, meson is a
spinless particle, according to the angular momentum
conservation, only one partial wave contribute to the B, —
SP,AP,TP, SV decays, while in the AV, TV modes, three
partial waves are simultaneously allowed, resulting in the
larger branching ratios. For those channels with the same
light meson and different P-wave charmonium mesons in
the final states, we have the following hierarchy pattern:

B(Bc _)XCZP) > B(Bc _)XCOP)

> B(B. = y.P)~B(B. = h.P). (55)
As discussed in Ref. [43], the branching ratio of B, —
1.(28)7 is enhanced by the twist-3 distribution amplitude
from Fig. 3(b). Nevertheless, this contribution vanishes for
B. — y(2S)x decay since the Lorentz structure of the
vector charmonium wave functions is different from the
pseudoscalar case. As mentioned in the previous section,
because of the corresponding relation between a pseudo-
scalar (vector) and a scalar (axial-vector) charmonium, the
similar situation also exists in this work. The twist-3
distribution amplitude from Fig 1(b) also give the dominant
contribution to the B. — y.P decays, while for other
channels, the dominant contribution still come from the
twist-2 ones. Because the strong interference between the
twist-2 and twist-3 contributions is constructive in
B. — y.oP, we have a large branching ratio for this mode.
One can see that the dominant twist-2 contributions for
B. = (y.1,h.)P are suppressed by a factor of r, — r3 given
in Eq. (33), whereas this suppression is absent in the case of
B. = y. P due to the r,. term flipping sign [see Eq. (37)].
This explains why B, — y., P has a rate greater than y . P
and h.P. Of course, this is only a rough estimate on the
magnitudes, the branching ratios also have been related to
the decay constants and the distribution amplitudes of the
various P-wave charmonium mesons. The relations
between the decay constants f, | > f, in Eq. (50) implies
that B(B, = y.oP) > B(B. = y.P). The similar pattern
also occurs B, — (A, S, T)V decays; see Table III.

As mentioned in the Introduction, many other work have
performed a systematic study on the P-wave charmonium
decays of B, mesons. Various approaches such as several
relativistic and nonrelativistic quark models [30,31,33,35],
the sum rules of QCD [36], the improved Bethe-Salpeter
approach [37], the Isgur-Scora-Grinstein-Wise II model
[38], and the nonrelativistic QCD effective theory [41] have
been used to calculate the branching ratios. For the sake of
comparison, we briefly list the obtained theoretical results in
Tables II and III. One finds that some of the results given by
different models are roughly comparable. For example, our
theoretical predictions on those decays involving the 4,
meson in the final state are of the same order of magnitude
as observed in [30,31,33,37]. The branching ratios of
B. — y.n and B. — h.z evaluated by N. Sharma et al
[70] are 7 x 10™* and 6 x 107, respectively, which also
match well with our results. In a very recent paper [71], the
author predicted the branching ratio B(Bf — yon') =
1.22 x 1073, which is comparable to our prediction. Of
course, some predicted values are quite a spread in various
models. The predictions in Ref. [36] are typically larger
excepted for Bf — y, n". Previously, Castro et al. [72]
studied the nonleptonic decays of the B, into tensor mesons
using the factorization hypothesis. They predict B(B, —
)(cZ”)’B(Bc _)XCZK)’B(BC _)ZL'ZID)’ and B(BL _))(CZK*)’
as 7.5 x 1073, 5.49 x 1079, 2.38 x 107, and 1.33 x 107,
respectively, which are considerably smaller than our
results as well as most of other model calculations. Our
results for a final K*) are also larger than those of other
approaches. The disagreement in the predictions may be
attributed to the different values of the form factors used in
these approaches. Experimental investigations on these
decays may be used to test theoretical methods according
to their predictions.

On the experimental side, so far only the evidence for the
decay B — y.on" is found at 4.0c significance by the
LHCb Collaboration [17]. The ratio of production cross
sections of the B and B™ mesons times branching
%p

i
o= XB(BI = yon') =

B

(9.873 (stat) & 0.8(syst)) x 1070 [17]. As a cross-check,

(2

fractions is measured to be

B+
< can be extracted from another

Op+
charmonium mode, 72 x SEZIE) — (0.683 + 0.018 +
0.009)% measured by the LHCb Collaboration [73]. The
branching ratio B(B™ — J/iwK™"), determined from the
world average value, is (1.026 +0.031) x 1073 [1]. If
we use our previous PQCD calculation B(B! — Jiyzt) =

(2.337081) x 1073 [42], where all errors are combined in

o

the cross section ratio

+
BL‘

quadrature, as an input, the ratio is in the region of
Op+

(22~4.1) x 1073, Combined with the prediction on

B(Bf = y.or') in Table II, we obtain the range
b % B(BY = goomt) = (2.6 ~8.2) x 10-°, which is con-

O'B+
sistent with the LHCb data with one sigma errors.

033001-10



PROBING THE P-WAVE CHARMONIUM DECAYS OF ...

PHYS. REV. D 97, 033001 (2018)

TABLEIV. The PQCD predictions for the polarization fractions, relative phases in the B. — (A, T)V decays. The
errors induced by the same sources as in Table II.

Modes fo £ fi ¢y (rad) ¢ (rad)

BE = xap™  0.66100 0000 0152001 00m000 01800 00n 000 1212000 000 001 167004 0ou 00n
B 1K' OGBS OISO 022G 122000 168 0000
BE = xep™ 09305500001 0055850 0012000 0-03200 00001 100500 o o 1122005 00 0or
B oK' 00N 006N OO 100NN 1 12:31a0
B it OSSN 00U OSSN 0RREOENY Li1sagy
B R OSSBAS 00SESUOEN 007MUUR ossonu LR

Turning to the polarizations for B, — AV, TV decays.
We usually define five observables corresponding to three
polarization fractions f,(A=0,|], L), and two relative
phases ¢, ¢, where

Aol + [A ] + AL I Ay

fa (56)

with normalization such that  _,f; = 1. The results for the
polarization fractions and their relative phases are displayed
in Table IV, where the sources of the errors in the numerical
estimates have the same origin as in the discussion of the
branching ratios in Table II. It can be observed that both the
polarization fractions and the phases are relatively stable
with respect to the variations of hadronic parameters, the
decay constants and the hard scale, and therefore they serve
as good quantities to test the standard model. Several
remarks are given in order. First, the contributions to the
branching ratios mainly arise from the longitudinal polar-
izations because of the relation fo > f| ~ f,, which is
expected from the power counting rules. For example, the
longitudinal parts of B. — TV decays occupy over 90%,
which are very similar to the case of B, — J/iyV [42].
However, the longitudinal polarizations of B, — y.V are
relative smaller (~60%) compared to that of B, — h.V. As
mentioned before, owing to the G-parity, the distribution
amplitudes for y.; and &, mesons exhibit the different
asymptotic behaviors (see Egs. (19) and (20)). If we use the
h, distribution amplitudes for calculation, the resultant
predictions fo(y.;V) can be increase to around 90%.
Besides, the longitudinal and transverse decay constants
in the two axial-vector mesons can also contribute to
different polarizations. Second, for B, — (A,T)p and
B. — (A,T)K* decays, both have similar magnitudes
and phases of the amplitudes, which suggests the SU(3)
breaking effect between them is small. Last, the predicted
relative phases deviations from 7z indicate the existence of
the still unknown final-state interaction. However, the
magnitudes and phases of the two transverse amplitudes
Ay and A, are roughly equal, which is expected from

analyses based on quark-helicity conservation [74,75].
These results and findings will be further tested by the
LHCb and Belle-II experiments in the near future.

IV. CONCLUSION

The two-body B, meson decays to a P-wave charmo-
nium state (y.. ¥c1, X2, he) and alight (z, K, p, K*) meson
are systematically analysed within the perturbative QCD
approach. Our predictions for the branching ratios are
summarized in Tables II and III and compared with other
theoretical results. Overall, the predicted branching ratios
from different theoretical models have a relative big spread.
The upcoming experimental measurements of the corre-
sponding decay rates can examine various theoretical
approaches. Based on our estimations, the dominating
decay mode of the concerned processes is B, — y.,p with
predicted branching ratios of 1.6%, which should be
accessible experimentally at high-luminosity hadron col-
liders. We also estimate the polarization contributions in
B. = (Yc1.00.he)V decays. As expected, based on the
factorization assumption, the longitudinal polarization
dominates and the transverse polarizations are of the same
size.

We also discussed theoretical uncertainties arising from
the hadronic parameters in B. meson wave function, the
decay constants of charmonium states and the hard scale ¢.
The branching ratios suffer a large error from the decay
constants, whereas the polarization observables are less
sensitive to these parameters. The obtained results can be
confronted to the experimental data in the future.
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APPENDIX: DETAILS FOR DERIVING
THE P-WAVE CHARMONIUM DAS

Starting with the momentum-space radial wave function
which can be written as the Fourier transform of the
position-space expression ,,;,, ()

w(k) = / Wi (Pe 7 dF,

(e8]

(A1)

where n, [, and m stand for main, orbital, and magnetic
quantum numbers, respectively. In above equation, the first
term y,,;,, (7) is known to be separated into R,,;(r)Y,,(6, @)
in the spherical coordinates (r, 6, @), while the second
exponential term in the plane wave expansion can be
written as

o RT = gmitreosd =N 4n (1 1) (=i)! o (kr)Y 10 (6.0),
I'=0
(A2)

with jy(kr) the spherical Bessel function. We then write
Eq. (Al) as

w(k) = /4x(2l + 1)(=i)’ /oojl(kr)Rn,(r)rzdr, (A3)

0

where the orthogonality property [ [37Y,,,Y yosin0d0dp=
01100 have been used.
For the P-wave states n = 2 and [ = 1, employing the

W and the

radial wave function for a Coulomb Potential R,;(r)

spherical Bessel function j,(kr) =

re*", the integral of Eq. (A3) evaluates to

k) Ky (Ad)

4+ q3)’”

where ¢gp is the Bohr momentum. Note that the above
expression is in contrast to Eq. (47) in [54]. We argue that
the spherical harmonics function for P-wave states is
dependent on the angle 6, which should contribute to
the integral in Eq. (A1). In particular, Eq. (A4) is almost the
same as M. Beneke’s calculation in Ref. [76] (see Eq. (45)),
except for a constant term which can be absorbed in the
redefinition of the wave function of the P-wave charmo-
nium. Following much the same procedure as described in
Refs. [44,54], we obtain the heavy quarkonium DA which
is dependent on the charm quark momentum fraction x after
integrating the transverse momentum kr,

D(x) ~ / dkpy (x, ky) o x(1 — x)

y {\/x(l —x)(1 —4x(1 =x))?
[1—4x(1—x)(1 — v%/4)]?

b

where v = gp/m, is the charm quark velocity. In the
numerical calculation, we take v = 0.3 and neglect the
v? term in the numerator [54]. As mentioned in Eq. (13), we
propose the P-wave charmonium states DAs as w(x) o
D,y (x)7 (x) with

_ V(1 =x)(1 = 4x(1 = x))3) 1=
7= { [1—4x(1-x)(1- y2/4)]2 } ) (A6)

where the power 1 —v? denotes the small relativistic
corrections to the Coulomb wave functions [44].
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