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In the holographic correspondence of quantum gravity, a global on-site symmetry at the boundary
generally translates to a local gauge symmetry in the bulk. We describe one way how the global boundary
on-site symmetries can be gauged within the formalism of the multiscale renormalization ansatz (MERA),
in light of the ongoing discussion between tensor networks and holography. We describe how to “lift” the
MERA representation of the ground state of a generic one dimensional (1D) local Hamiltonian, which has a
global on-site symmetry, to a dual quantum state of a 2D “bulk” lattice on which the symmetry appears
gauged. The 2D bulk state decomposes in terms of spin network states, which label a basis in the gauge-
invariant sector of the bulk lattice. This decomposition is instrumental to obtain expectation values of
gauge-invariant observables in the bulk, and also reveals that the bulk state is generally entangled between
the gauge and the remaining (“gravitational”) bulk degrees of freedom that are not fixed by the symmetry.
We present numerical results for ground states of several 1D critical spin chains to illustrate that the bulk
entanglement potentially depends on the central charge of the underlying conformal field theory. We also
discuss the possibility of emergent topological order in the bulk using a simple example, and also of
emergent symmetries in the nongauge (gravitational) sector in the bulk. More broadly, our holographic
model translates the MERA, a tensor network state, to a superposition of spin network states, as they appear
in lattice gauge theories in one higher dimension.
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I. INTRODUCTION

The holographic principle, an anticipated feature of
quantum gravity, asserts that at least certain theories of
gravity can be described as quantum field theories that live in
one less spacetime dimension. For example, in the AdS/CFT
correspondence—a concrete realization of the holographic
principle—the gravity system lives in a dþ 1 dimensional
anti-deSitter (AdS) spacetime and is equivalent to a con-
formal field theory (CFT) that lives on the d dimensional
boundary of the spacetime [1,2]. The extra dimension in the
bulk spacetime is identified with the length scale of the
boundary system, and the renormalization group equations
essentially generalize the equations that describe gravity.
Recently, it has been proposed that the multiscale entan-

glement renormalization ansatz (MERA) [3]—an efficient
representation of ground states of local Hamiltonians on a
lattice [4]—realizesat least somefeaturesof theAdS/CFTcor-
respondence [5–7]. For example, theMERArepresentationof

the ground state of a one dimensional (1D) quantum lattice
system is a two dimensional (2D) hyperbolic tensor network,
which also describes the RG flow of the ground state.
Specifically, the MERA is based on a real space RG trans-
formation, known as entanglement renormalization, that
removes local entanglement before coarse-graining the state
[8]. In particular, the extra dimension of the tensor network
corresponds to length scale of the 1D system.
In Ref. [9] one of us introduced a toy model for

holography based on the MERA representation of ground
states of 1D local Hamiltonians. The model, dubbed tensor
network state correspondence, illustrates a possible way in
which the MERA could encode a dual 2D bulk description
of a 1D ground state, however, without paying attention to
the presence of on-site symmetries in the boundary theory.
In this paper, we generalize the model in such a way that an
onsite symmetry at the boundary is gauged in the bulk. In
particular, this generalization allows us to establish a
connection between the MERA and spin networks as they
appear in lattice gauge theories in one higher dimension,
while also realizing another important feature of the AdS/
CFT correspondence using the MERA.
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A. Tensor network state correspondence

The basic idea behind tensor network state correspon-
dence is that a tensor network (with open indices) can be
viewed as a representation of two different quantum many-
body states (belonging to two different Hilbert spaces)
depending on how a many-body Hilbert space is associated
with the tensor network. We refer the reader for details to
Ref. [9]. Below, we only briefly summarize the main idea.
The open indices of the tensor network can be associated

to sites of a quantum many-body system, specifically, we
can use each open index to label an orthonormal basis on a
different site of the many-body system. Subsequently, the
tensor network defines a quantum many-body state of the
system such that the probability amplitude of a given
configuration of the sites is obtained by fixing the value of
the open indices to correspond to that configuration, and
contracting all the tensor networks together by summing
over the bond indices. The quantum many-body state
obtained following this prescription is referred to as a
tensor network state. Examples of tensor network states
include the MERA, matrix product states (MPS) [10], and
projected entangled pair states [11] (PEPS).
Alternatively, one can associate both the open and bond

indices of the tensor network with sites of a larger quantum
many-body system, namely, by using each index (open or
bond) in the tensor network to label an orthonormal basis
on a different site of the system. Subsequently, the tensor
network defines a different quantum many-body state
whose amplitudes are obtained by fixing the value of all
the indices of the tensor network and multiplying together
the resulting tensor coefficients, one selected from each
tensor. We refer to the many-body state obtained from the
tensor network in this way as a tensor network bond state.
Thus, a generic tensor network (with open indices) can

be viewed representing either as a tensor network state or as
a tensor network bond state. In Ref. [9] we illustrated that
the properties of these two states, which are obtained from
the same tensor network, are related together in a system-
atic way. Thus, a tensor network may be viewed as a
“correspondence” between these two quantum many-body
states.
Note that a tensor network bond state may be regarded as

a regular tensor network state (where degrees of freedom
are associated only with open indices and bond indices are
summed over) by modifying the tensor network in a
particular way. Namely, by inserting a three index copy
tensor on each bond of the tensor network, see Ref. [9].
In Ref. [9], by applying this tensor network state

correspondence to the MERA we obtained a toy model
for holography (without considering symmetries). The
tensor network state and the tensor network bond state
obtained from a MERA correspond to the boundary and
dual bulk state respectively. The bulk states obtained from
the MERA in this way exhibit some interesting features.
First, the bulk states satisfy an area law entanglement

scaling [12]. Second, the bulk entanglement and correla-
tions are organized according to holographic screens. And
third, given the MERA representation of a critical boundary
state, the boundary correlators of scaling operators (of the
underlying CFT) can be obtained from the expectation
value of extended bulk operators in certain dual bulk states.
Some of these results caricature certain features of the AdS/
CFT correspondence as described in Ref. [9].
In this paper, we further develop the toy model. We

present a generalized construction of bulk states that retains
the three features listed above, but also exhibits new
features that result from the presence of a global on-site
symmetry in the boundary description.

B. This paper: Generalized holographic
correspondence in the presence of on-site symmetries

In the AdS/CFT correspondence, a global on-site
symmetry of the boundary system generally translates to
a local gauge symmetry in the dual bulk description [2].
Consequently, the bulk description generally consists, in
addition to gravitational and matter degrees of freedom,
gauge fields that are described by the boundary global
symmetry group. In the quantum gravity regime, the bulk
state is expected to be entangled between all these degrees
of freedom. In this paper, we describe how these features of
the AdS/CFT correspondence can be realized within the
framework introduced in Ref. [9].
Symmetries must be properly accounted for in the RG

description of a quantum many-body system, in order to
reproduce the large-scale properties effectively. For exam-
ple, consider 1D local, gapped Hamiltonians that have a
global on-site Z2 × Z2 symmetry corresponding to π
rotations about two orthogonal axes. These Hamiltonians
can be partitioned into two different equivalence classes
or quantum phases, each with distinct large length scale
properties: the Haldane phase and the trivial phase [13,14].
More specifically, ground states belonging to the Haldane
phase cannot be disentangled to a product state along the
RG flow, as long as the RG (entanglement renormalization)
transformations protect the symmetry. (Since product states
are representative of the trivial phase.) One way to ensure
this is to impose that the tensors that implement entangle-
ment renormalization commute with the symmetry. The
resulting symmetry-protected entanglement renormaliza-
tion generates a MERA representation that captures both
the expected RG flow of the ground state, and also its
global symmetry exactly [15].
In this paper, we consider a local 1D Hamiltonian that

has a global on-site symmetry G (which is not broken in the
ground state). We represent its ground state by a symmetry-
protected MERA and obtain a “dual” 2D bulk state, by
extending the construction of Ref. [9]. The bulk state is
decribed by a 2D tensor network that is obtained by
inserting a 4-index, symmetric copy tensor on every bond
of the MERA. Each copy tensor has two open indices,
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which correspond to bulk degrees of freedom that carry
“left” and “right” gauge transformations. Thus, our con-
struction, which takes into account the boundary symmetry
G, leads to a bulk state in which the symmetry is gauged,
thus realizing the holographic translation of a boundary
global symmetry to a local gauge symmetry in the bulk.
One may, in retrospect, view the (bulk) gauging of
boundary symmetries as an underlying motivation for
associating the dual bulk degrees of freedom with the
bonds of the tensor network, as opposed to e.g. associating
them with the tensors as in previous bulk descriptions of the
MERA presented in Refs. [16–18].

C. Connection to lattice gauge theories
and spin networks

More broadly, in this paper, we establish a connection
between the MERA and lattice gauge theories (on a
hyperbolic lattice) in one higher dimension. In a lattice
gauge theory, the degrees of freedom are placed on the
edges of the lattice, and elementary gauge transformations
act on the sites located immediately around a vertex. In our
bulk construction, the bulk lattice overlays the MERA
tensor network, after it is embedded in a manifold, and the
dual bulk degrees of freedom live on the edges of the bulk
lattice (that is, the bonds of the tensor network). Elementary
gauge transformations act on the bulk sites located immedi-
ately around a tensor. In particular, the two open indices of
a copy tensor carry the left and right gauge transformations
respectively. Mimicking this basic setup of a lattice gauge
theory allows us to manifest a bulk gauge symmetry, which
is seen to be dual to the global symmetry at the boundary.
We show how the bulk states decompose as a super-

position of spin network states, as they appear in a 2D
lattice gauge theory with gauge group G, where they span
the gauge invariant subspace of the Hilbert space [19]. The
spin network decomposition allows us to explore further
parallels with holography. One, it reveals entanglement and
correlations between the gauge degrees of freedom and the
remaining bulk degrees of freedom that are not constrained
by the symmetry. And second, by exposing the gauge
degrees of freedom in the bulk, the spin network decom-
position also allows one to calculate expectation values of
gauge-invariant observables in the bulk. We also construct a
local, gauge-invariant parent Hamiltonian for the MERA
bulk states, see Appendix C.

D. Differences from previous work

A local symmetry also manifests simply in the bulk of a
symmetry-protected MERA tensor network representation
of a (1D) quantum many-body state with a global on-site
symmetry, without reference to a bulk state [15,20,21].
However, we emphasize that in this paper we implement
the holographic gauging of a global boundary symmetry
more manifestly by means of boundary and bulk quantum
states, while Ref. [15] describes the bulk gauging of the

boundary symmetry only at the level of the tensor network.
Having access to a bulk quantum state, in which the
boundary symmetry appears gauged, allows us to probe
interesting features in the bulk to explore further connec-
tions with holography. For example, we explore the
entanglement and correlations between the gauge and
the non-gauge degrees of freedom in the bulk, and
emergent symmetries in the non-gauge sector of the bulk.
On the other hand, no such notions can be defined when the
symmetry is gauged only at the level of the tensor network.
In our construction, the local gauge symmetry is hard-

wired into the bulk tensor network ansatz. Explicit tensor
network representations of quantum many-body states with
a local gauge symmetry have been presented by other
authors [22–28]. The 2D bulk states that we construct here
indeed belong to the gauge-invariant tensor network ansatz
e.g. presented in [23]. However, in this paper we focus on
the construction of a gauge-invariant bulk state from the
MERA representation of a 1D ground state, instead of,
say, variationally minimizing the energy of a 2D gauge-
invariant bulk Hamiltonian.
Ostensibly, our lifting procedure appears similar to

the prescription to gauge quantum states presented in
Ref [26]. There the authors describe how to gauge the
global symmetry of a tensor network state. Specifically,
they consider a 2D quantum many-body state represented
by a PEPS tensor network and translate it to another 2D
quantum many-body state with a gauged symmetry.
In contrast, our construction produces a quantum many-
body state in one higher dimension. Moreover, our
approach is aimed at building a higher dimensional bulk
description of symmetric ground states, whereas Ref. [26]
is not concerned with applications related to holography.
Some of the previous proposals for drawing a bulk

description from the MERA, those presented in Refs. [16–
18], associate the bulk degrees of freedom with the tensors
of the MERA. In contrast, here we present a bulk
description of the MERA by associating bulk degrees of
freedom to the bonds of the tensor network, which is closer
in spirit to the organization of the degrees of freedom in
lattice gauge theories and allows for a more natural
introduction of gauge transformations in the bulk and
gauging of boundary on-site symmetries, which appears
as a general rule of thumb in the AdS/CFT correspondence.

E. Organization of the paper

The paper is organized as follows. In Sec. II we briefly
review the symmetry-protected MERA representation of
a 1D ground state that has an on-site global symmetry.
In Sec. III we describe how to lift the MERA representation
to a 2D dual bulk state. In Sec. IV we describe how the bulk
states decompose as a superposition of spin network states.
In Sec. V, we present numerical results pertaining to the
entanglement and correlations in bulk states dual to the
ground states of several critical spin chains of interest.
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For example, we find evidence for a dependence of bulk
entanglement on the central charge of the boundary critical
system. We conclude with a brief summary and outlook in
Sec. VI. The appendices contain some technical discus-
sions and proofs. In Appendix A, we discuss the possibility
of emergent topological order in the bulk using a simple
example of a system with Z2 symmetry. In Appendix B, we
derive the Schmidt decomposition of the bulk state, which
can be used to deduce area law entanglement in the bulk
and also to construct a gauge-invariant parent Hamiltonian
for the bulk state. The latter is described in Appendix C.

II. BOUNDARY STATE WITH A
GLOBAL SYMMETRY

Consider an infinite 1D lattice L and a compact,
completely reducible symmetry group G. Each site of L
is described by a Hilbert space V on which the group G acts
by means of a unitary representation

V̂g∶ V → V ; V̂gV̂
†
g ¼ V̂†

gV̂g ¼ Î;

for all g ∈ G. Also consider a local Hamiltonian Ĥ that acts
on the lattice L and has a global symmetry G, namely,

½Ĥ;⊗
i
V̂ðiÞ
g � ¼ 0; for all g ∈ G; ð1Þ

where V̂ðiÞ
g ≅ V̂g is a unitary representation of the symmetry

group G on site i. We assume that the ground state jΨboundi
of Ĥ also has a global symmetry G, namely,

jΨboundi ¼ ð⊗
i
V̂ðiÞ
g ÞjΨboundi: ð2Þ

The superscript “bound” appears in anticipation that the
ground state plays the role of the boundary state in our
holographic correspondence.
In this paper, we represent jΨboundi by means of an

infinite symmetry-protected MERA tensor network. The
tensor network is depicted in Fig. 1. An open index oi of
the MERA labels an orthonormal basis fjoiig on site i of
the lattice L. State jΨboundi can be formally expanded as

jΨboundi ¼
X

o1;o2;…

Ψ̂o1;o2;…jo1i ⊗ jo2i ⊗ � � � ð3Þ

where the probability amplitudes Ψ̂o1;o2;… are obtained by
contracting the tensor network, which involves summing
over all the bond indices—indices that connect the tensors
in the network.
The MERA representation also describes the RG flow

of the ground state. Each layer of tensors of the MERA,
separated by dotted lines in Fig. 1, implements a real space
RG transformation—known as entanglement renormali-
zation—that maps a lattice Lk with Lð→ ∞Þ sites to a

coarse-grained lattice Lkþ1 with L=3 sites. The MERA
tensors are chosen so that the renormalization preserves
the ground subspace at each step. Subsequent renormal-
ization steps generate a sequence of increasingly coarse-
grained lattices: L0 → L1 → L2 � � �, where L0 ≅ L is the
ultraviolet lattice. Thus, the extra dimension of the tensor
network corresponds to length scale, in the sense that the
residual tensor network obtained by discarding one or
more bottom layers is a representation of the ground state
on a coarse-grained lattice.
For simplicity, and without loss of generality, in this

paper we assume that the ground state jΨboundi (and the
Hamiltonian Ĥ) is translation invariant and scale-invariant.
Specifically, jΨboundi is a RG fixed point in a gapped or
critical phase. Subsequently, a MERA representation of
jΨboundi can be composed from copies of the same two
tensors, û and ŵ, throughout the tensor network [29],
see Fig. 1.
We decorate the indices of the MERA tensors with

arrows, as depicted in Fig. 1(a), which indicate how the
symmetry acts on the tensors. Tensors û and ŵ are linear
transformations from input spaces (incoming indices) to
output spaces (outgoing indices) as û∶ V ⊗ V → V ⊗ V
and ŵ∶ V → V ⊗ V ⊗ V . The symmetry acts as V̂g on an
incoming index (input space) and as V̂†

g on an outgoing

= == =

(a)

(c)(b)

FIG. 1. (a) Graphical representation of a fragment of the infinite
MERA tensor network representation of a quantum many-body
state jΨboundi of an infinite lattice L. The thick arrows indicate
that the tensor network extends infinitely in the top vertical and
both horizontal directions. The vertical direction corresponds to
length scale; L0 → L1 → L2 → L3 → � � � is a sequence of
increasing coarse-grained lattices where L0 ≅ L is the ultraviolet
lattice. The MERA may be viewed a tiling of the hyperbolic
plane. In the graph metric, in which each edge has unit length,
tiles that have the same shape have the same area. For example,
the two blue tiles have the same shape but appear to have different
areas because we have stretched out a tiling of hyperbolic plane
on a flat plane. (b) Indices are decorated with arrows, as depicted
in the box, which indicate how the symmetry acts on the tensors.
Tensors û and ŵ commute with the action of the symmetry as
shown, see Eq. (4). (c) Graphical representation of equalities
Eq. (5) fulfilled by the isometric tensors û and ŵ.
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index (output space). Tensors û and ŵ remain invariant
under the action of the symmetry, namely,

û ¼ ðV̂g ⊗ V̂gÞûðV̂†
g ⊗ V̂†

gÞ;
ŵ ¼ ðV̂gÞŵðV̂†

g ⊗ V̂†
g ⊗ V̂†

gÞ; ð4Þ
for all group elements g ∈ G, as depicted in Fig. 1(b).
For brevity, we say that tensors û and ŵ are G-symmetric.
The choice of G-symmetric tensors captures the global
symmetry, Eq. (2), exactly and also generates a symmetry
protected RG flow [15,20]. The tensors û and ŵ are also
isometric, namely, they satisfyX

rs

ðûÞpqrs ðû†Þrsp0q0 ¼ δpp0δ
q
q0 ;

X
qrs

ðŵÞpqrsðŵ†Þqrsp0 ¼ δpp0 ; ð5Þ

depicted in Fig. 1(c).

III. DUAL BULK STATE

In this section, we introduce a holographic description of
the 1D state jΨboundi by extending the construction pre-
sented in Ref. [9] to the presence of symmetries. We refer
the reader to Ref. [9] for a discussion about how the
construction is inspired by and implements certain general
features of the AdS/CFT correspondence.
Let us embed the MERA in a 2D manifold with a

boundary, such that the open indices of the MERA are
located at the boundary of the manifold and all the bond
indices are located inside the bulk of the manifold.
Construct a 2D lattice M on the manifold by locating
two sites—each of which is described by the vector space
V—on every bond of the tensor network. Lattice M is
simply a collation of the degrees of freedom that appear in
the RG flow of the ground state jΨboundi, and inherits the
hyperbolic geometry of the tensor network.
Next, let us insert the 4-index copy tensor ðĉÞlrl0r0 on each

bond of the MERA, as depicted in Fig. 2, such that indices l
and r are left open. We will define the components of the
copy tensor in the next section [see Eqs. (13)–(14)], but
here it suffices to say that, colloquially, tensor ĉ copies the
basis states on a bond index of the MERA to each of the
two open indices l and r. These indices label an ortho-
normal basis on the two sites located on that bond
respectively, and in analogy to lattice gauge theory, we
require that these indices carry the left and right gauge
transformations on the bulk lattice M respectively (as
described in Sec. III A). To this end, we demand that the
copy tensor ĉ fulfill the following equations that involve the
action of symmetry on a single index of the tensor:X

x

ðV̂gÞlxðĉÞxrl0r0 ¼
X
x

ðV̂gÞxl0 ðĉÞlrxr0 ;X
x

ðV̂†
gÞrxðĉÞlxl0r0 ¼

X
x

ðV̂†
gÞxr0 ðĉÞlrl0x; ð6Þ

see Fig. 3.

The new tensor network—the MERAwith a copy tensor
inserted on every bond—can beviewed as a representation of
a quantum state jΨbulki of the bulk lattice M, where the
probability amplitudes of jΨbulki are (formally) obtained by
contracting all its bond indices, analogous to how theMERA
encodes the state jΨboundi. Thus, we have “lifted” theMERA
representation of a quantum state jΨboundi of the 1D latticeL
to a quantum state jΨbulki of the 2D latticeM.We refer to the
bulk tensor network, comprised of copies of the ground state
tensors û; ŵ and the copy tensor ĉ, as the lifted MERA.

A. Local gauge symmetry

An immediate consequence of the symmetry conditions
Eq. (6) is that the bulk state jΨbulki has a local gauge

BOUNDARY

FIG. 2. The lifted MERA tensor network obtained by inserting a
4-index tensor ðĉÞlrl0r0 on every bond of the MERA representation
of a 1D quantum many-body state. Each open index of the lifted
MERA labels an orthonormal basis on a different site of the bulk
lattice M. Each bond of the MERA is associated with two bulk
sites, corresponding to the open indices l and r. These two sites
carry the left and right gauge transformations, respectively. The
lifted MERA represents a quantum state ofM, whose probability
amplitudes are obtained by contracting all the tensors of the lifted
tensor network. The tensor ĉ is not fixed and parametrizes our
ansatz for the holographic dual of the 1D state.

(a) (b) (c)

(d)

FIG. 3. (a) Graphical representation of the copy tensor ðĉÞlrl0r0.
The symmetry acts as V̂g (blue solid circle) on an incoming index
and as V̂†

g (red solid circle) on an outgoing index for all g ∈ G.
(b,c) The action of a symmetry operator on index l (index r)
transfers to the index l0 (index r0). The left hand side of each
equality depicts the action of the symmetry on the copy tensor
according to index arrows, while the right hand side depicts an
equivalent action of the symmetry on the tensor (not necessarily
according to the arrows). (d) Tensor ĉ remains invariant under the
action of the symmetry according to the index arrows.
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symmetry G. Let us introduce gauge transformations on the
bulk latticeM as follows. The symmetry G acts on the two
sites located on a bond differently, namely, as V̂g and V̂†

g

respectively. (This choice corresponds to the action of left
and right gauge transformations in lattice gauge theory.)
Elementary gauge transformations act on the 4 bulk sites
(counting clockwise starting at the top left in the graphical
representation) immediately surrounding tensor û as
V̂g ⊗ V̂g ⊗ V̂†

g ⊗ V̂†
g, and on the 4 bulk sites immediately

surrounding tensor ŵ as V̂g ⊗ V̂†
g ⊗ V̂†

g ⊗ V̂†
g. General

gauge transformations act on larger regions of the lattice
M by composing these elementary gauge transformations.

Let us consider the result of applying an elementary
gauge transformation on a dual bulk state jΨbulki that is
represented by a lifted MERA. In the lifted tensor network
representation, the action of an elementary gauge trans-
formation corresponds to contracting the symmetry oper-
ators on the open indices l, r of the bond tensors located
immediately around an û or ŵ tensor. The symmetry acts
as V̂g and V̂†

g on the open indices l (left) and r (right)
respectively. Owing to Eq. (6) [Fig. 3], operator V̂g that is
applied on an open index of a copy tensor “slides” through
to a bond index of the lifted MERA. Consequently, the
action of a gauge transformation on the bulk state translates
to contracting the symmetry operators with the tensors
around which they are applied, see Fig. 4. However, the
tensors are G-symmetric [Eq. (4) and Fig. 1(b)], which
eliminates the symmetry operators. Thus, the lifted MERA,
and therefore state jΨbulki, remains invariant under the
action of local gauge transformations.
The gauge invariance of the bulk state is manifest in the

same way as appears in lattice gauge theory as originally
formulated by Kogut. There one introduces basis states on
edges with the local degrees of freedom split into three
subspaces as jj; nL; nRi where j labels an irrep of the group,
and the other two are labeled by matrix elements of these
representations (one on the left andone on the right side of the
edge). This is a Fourier basis conjugate to the group element
labeled basis the two bases being related by the Peter-Weyl
theorem. As in lattice gauge theory, the physical states in the
bulk are those that are invariant under gauge transformations
on a vertex that act with the same group element on all the
neighboring carrier spaces on the edges incident to that site.
For Abelian models, all irreps are one dimensional so only
one bulkdegree of freedomwouldbeneededper edge, but for
non-Abelian gauge groups, two labels are needed since the
irreps are matrices with components labeled by left and right
pairs. We also remark that Elitzur’s theorem applies to our
bulk state in the sense that the expectation value of nongauge
invariant quantities are trivial by construction.

IV. SPIN NETWORK DECOMPOSITION
OF BULK STATES

Let us now introduce a basis in the vector space V , which
describes each site of the boundary lattice L and also each
site of the bulk lattice M. Under the action of the
symmetry, V generally decomposes as

V ≅ ⨁
j
Dj ⊗ Sj; ð7Þ

where the symmetry acts on space Sj by means of the
irreducible representation (irrep) of G labeled by quantum
number (or charge) j, and Dj is the degeneracy space
of irrep j. Accordingly, the symmetry operators V̂g

decompose as

(b)

(a)

(c)

=

=

FIG. 4. Local gauge symmetry of the bulk state jΨbulki. Here
we illustrate that the lifted MERA, and thus jΨbulki, remains
invariant under the action of two elementary gauge transforma-
tions on the bulk latticeM, corresponding to two different group
elements g; g0 ∈ G respectively. One gauge transformation acts
on the 4 bulk sites (counting clockwise starting at the top left in
the graphical representation) immediately surrounding tensor ŵ
(highlighted green) as V̂g ⊗ V̂†

g ⊗ V̂†
g ⊗ V̂†

g, and the other acts
on the 4 bulk sites immediately surrounding tensor û (highlighted
yellow) as V̂g0 ⊗ V̂g0 ⊗ V̂†

g0 ⊗ V̂†
g0 . This is shown by means of

two equalities: ðaÞ ¼ ðbÞ, which results from the symmetry
properties of the copy tensor [Fig. 3(b)–(d)], and ðbÞ ¼ ðcÞ,
which results from the fact that the tensors û and ŵ are
G-symmetric [Fig. 1(b)].
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V̂g ¼ ⨁
j
ðÎdj ⊗ V̂g;jÞ; ∀ g ∈ G: ð8Þ

In particular, note that the symmetry operators act trivially
on the degeneracy spaces, namely, as the dj × dj identity
Îdj on the degeneracy space Dj, where dj is the dimension
of the space Dj.
We denote by fjj; mjig an orthonormal basis in the irrep

space Sj, by fjj; tjig an orthonormal basis in the degen-
eracy space Dj, and by fjj; tj; mji≡ jj; tji ⊗ jj; mjig the
basis on the total space V . For example, if G ¼ SUð2Þ, then
the symmetry charge j ∈ f0; 1

2
; 1; 3

2
; � � �g is the total spin,

m ∈ f−j;−jþ 1;…; jg is the spin projection along the
z-axis. (For simplicity, we assume that G is multiplicity-
free.) The description simplifies considerably for an
Abelian symmetry, for example G ¼ Zn;Uð1Þ, since all
the irreps of an Abelian group have dimension 1, that is,
dimðSjÞ ¼ 1 for all j.
According to the Wigner-Eckart theorem, the

G-symmetric tensors û and ŵ [Eq. (4)] decompose in terms
of the intertwiners of G. If the components of tensors û
and ŵ are denoted as ðûÞpqrs and ðŵÞpqrs respectively, then in
the irrep basis

jpi≡ ja; ta; mai; jqi≡ jb; tb;mbi;
jri≡ jc; tc; mci; jsi≡ jd; td; mdi; ð9Þ

where a, b, c, d denote symmetry charges, the tensors
decompose as

û≡ ⨁
abcd;e

ðûdege Þabcd ⊗ ðÎeÞabcd;

ŵ≡ ⨁
abcd;f

ðŵdeg
f Þabcd ⊗ ðĴ fÞabcd; ð10Þ

depicted in Fig. 5(a)–(b). Here

ðÎeÞabcd∶ ðSa ⊗ SbÞ → ðSc ⊗ SdÞ
ðĴ fÞabcd∶ Sa → ðSb ⊗ Sc ⊗ SdÞ

are 4-index intertwiners of the symmetry group G, whose
components are completely fixed by the properties of the
group representations. (The intermediate charges e and f
label a basis in a vector space of intertwiners.) The
components of ðÎeÞabcd are given by [see Fig. 5(c)]

½ðÎeÞabcd�mamb
mcmd ≡

X
me

he;meja;ma; b;mbi

× he;mejc;mc; d;mdi; ð11Þ
where, for example, he;meja;ma;b;mbi≡he;mej·ðja;mai⊗
jb;mbiÞ are the Clebsch-Gordan coefficients that describe
the change of basis from the tensor product basis ja;mai ⊗
jb;mbi to the total charge basis je;mei. Analogously, we
have [see Fig. 5(d)]

½ðĴ fÞabcd�ma
mbmcmd ≡

X
mf

hf;mfjb;mb; cmci

× ha;majf;mf; dmdi: ð12Þ

Finally, ðûdege Þabcd and ðŵdeg
f Þabcd in Eq. (10) are degeneracy

tensors, namely, multilinear maps between the degeneracy
spaces,

ðûdege Þabcd∶ ðDa ⊗ DbÞ → ðDc ⊗ DdÞ
ðŵdeg

f Þabcd∶ Da → ðDb ⊗ Dc ⊗ DdÞ;
and represent the part of the tensor that is not fixed by the
symmetry.We refer the reader toRef. [20] for amore detailed
exposition on such decompositions of G-symmetric tensors.
The copy tensor ĉ is G-symmetric [Fig. 3(d)] and

therefore also decomposes according to the Wigner-
Eckart theorem. The equalities Eq. (6) imply that only
the trivial interwiner appears in the decomposition, namely,
an intertwiner with trivial intermediate charge. E.g., for
G ¼ SUð2Þ the trivial charge corresponds to the spin 0
irrep. Specifically, tensor ĉ decomposes as [see Fig. 5(e)]

ĉ≡⨁
a;a0

ĉdega;a0 ⊗ ðÎ0Þaa�a0a0� ; ð13Þ

where ĉdega;a0 is a 4-index degeneracy tensor, a� denotes the
conjugate charge of a (namely, charges a and a� fuse to the
trivial charge), and Î0 is the intertwiner defined according
to Eq. (11) for the trivial intermediate charge e ¼ 0.
The intertwiner Î0 is, in fact, equal to the tensor product
of the identity Îa and the identity Îa0 on the irrep spaces Sa
and Sa0 respectively [Eq. (7)].

(a) (c)

(b) (d)

(e)

FIG. 5. (a,b) Wigner-Eckart decomposition of tensors û and ŵ
into degeneracy tensors and intertwiners of the symmetry group
G, Eq. (10). (c,d) Intertwiners Îe and Ĵ e expressed in terms of
two Clebsch-Gordan coefficients (solid black circles), Eqs. (11)
and (12). The red lines carry the intermediate intertwining
charges e. (e) Wigner-Eckart decomposition of the copy tensor
ĉ according to Eq. (13). The symmetry properties depicted in
Fig. 3(b)–(c) imply that the intermediate charge e is trivial, e ¼ 0
(depicted by the absence of any red line).
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Denote the components of a degeneracy tensor ĉdega;a0

by ðĉdega;a0 Þtat
0
a

~ta0 ~t
0
a0
where ta, t0a; ~ta0 ; ~t0a0 ∈ f1; 2;…; dag. The only

nonzero components are given by

ðĉdega;aÞtatatata ¼ 1: ð14Þ
Equations (13)–(14) define the copy tensor.
By decomposing tensors according to Eqs. (10) and (13),

the entire lifted MERA tensor network decomposes as
shown in Fig. 6. Here the sum is over the symmetry charges
carried by all the indices of the tensor network, and also the
internal intertwining charges that appear in the decom-
position of each tensor. The tensor networks appearing on
the left in the figure are composed only of the degeneracy
tensors, and represent the support of the bulk state jΨbulki
on the sector of the Hilbert space that is not constrained by
the symmetry. On the other hand, the tensor networks
appearing on the right in Fig. 6 are composed only of
intertwiners of G, and are thus completely fixed by the
symmetry. These tensor networks are nothing but spin
network states, which here label an orthonormal basis in the
support of the bulk state within the gauge-invariant sub-
space of the bulk latticeM, analogous to their role in lattice
gauge theories [19].
In order to make an analogy with the AdS/CFT corre-

spondence, we interpret the degeneracy degrees of freedom
as possibly including gravitational degrees of freedom. (Or
more generally, “emergent” gauge degrees of freedom, see
Sec. V D.) Thus, in the context of holography, the bulk state
jΨbulki may be interpreted as an entangled state of gauge
fields (described by the spin networks) living on a 2D
quantum geometry (described by the degeneracy tensors).
We remark that the bulk construction described here may be
readily generalized by also exposing and lifting the internal
intertwining charges (that is, the ei’s that appear in Fig. 6
also appear as open indices in the lifted MERA), which
allows to incorporate “gauge matter” in the model.
However, we do not pursue this here.

We remark that in a lattice gauge theory, based on a
continuous gauge group G, one often has to truncate the
irreps that appear on the bonds of the spin networks, in
order to make calculations tractable. In our bulk construc-
tion, the irreps that appear on the bonds of the holographic
spin networks are also truncated, since they are carried
over from the MERA representation of the ground state.
However, the truncation here results from practical con-
siderations in MERA simulations. One systematically
assigns only a finite number of irreps on the bonds of
the MERA in the variational energy minimization for a
given G-symmetric Hamiltonian. Bond irreps are selected
with the aim of obtaining the smallest energy possible,
within the constraints imposed by the available computa-
tional resources.
The spin network decomposition separates the gauge

degrees of freedom from the remaining (degeneracy)
degrees of freedom in the bulk. This leads to three
interesting applications. First, the decomposition allows
one to introduce meaningful gauge-invariant observables in
the bulk, since it exposes quantum numbers in the bulk
(within the gauge-invariant sector). Second, it reveals
correlations between the gauge and the remaining degrees
of freedom. And third, it allows one to trace out the gauge
degrees of freedom and thus probe the nature of the
degeneracy degrees of freedom. We make some remarks
pertaining to the first application in Sec. IVA below. The
second and third applications are explored in Sec. V.

A. Gauge-invariant bulk operators

As mentioned above, the spin network decomposition of
the lifted MERA allows one to introduce gauge-invariant
operators in the bulk. Simple examples are operators that
act nontrivially on the spin network states and as the
identity on the degeneracy degrees of freedom. Figure 7
illustrates a tensor network contraction that equates to the
expectation value of such a gauge-invariant (wilson) loop
operator in the bulk. See Appendix D for examples of

FIG. 6. The lifted MERA decomposes as a sum of tensor product of two parts: (left) a tensor network composed of degeneracy tensors,
and (right) a tensor network composed of intertwiners of the symmetry group, namely, a spin network. The sum is over tuples of
symmetry charges b and e. Here b≡ ðb1; b2; � � �Þ is the tuple of symmetry charges carried by all bond and open indices of the lifted
MERA, and e≡ ðe1; e2; � � �Þ is the tuple of intertwining symmetry charges associated with all the intertwiners in the spin network, see
Fig. 5. The decomposition separates out the gauge degrees of freedom, dual to the global symmetry at boundary, from the remaining bulk
degrees of freedom. The spin network states span the gauge-invariant support of the bulk state, while we view the remaining degrees of
freedom to possibly include “gravitational” degrees of freedom in a holographic interpretation of the MERA.
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interesting gauge-invariant loop operators. In the context of
holography, it may also be possible to infer some informa-
tion about the curvature of the ambient space in which the
gauge field lives [30]. For a pure gauge theory on a flat space
the vacuum state is described as having a flat connection
everywhere. However, for curved space, the expectation
value will differ in general. Thus, we could expect to infer
metric curvature by measuring local holonomies.
Gauge-invariant loop operators may also be used to

detect topological order in the bulk. In Appendix A, we
explore the topological order of the bulk state for the simple
case of Z2 symmetry. (The discussion readily generalizes to
Zn symmetry.)

B. Some properties of the bulk state

The boundary state jΨboundi is recovered from a bulk
state by projecting every pair of sites located on a bond to
the state jþi ∈ ðV ⊗ VÞ defined as

jþi≡ X
a;ta;ma

ja; ta;mai ⊗ ja�; ta� ; ma� i:

State jþi is isomorphic to the identity matrix after the
identification ja�; ta� ; ma� i ↔ ha; ta; maj. Thus, applying
the projector P̂k ≡ jþihþj on the two bulk sites located on
bond k is equivalent to contracting the identity jþi with the
copy tensor located on the bond. This contraction results
in the identity, as depicted in Fig. 8(a). Thus, the action of
the projector P̂k eliminates the copy tensor located on bond
k of the lifted MERA. By applying the projector on all
the bonds of the lifted MERA, all the copy tensors are

eliminated and we recover the MERA, and thus the
boundary state jΨboundi.
It is readily checked that the G-symmetric copy tensor is

an isometry satisfying the equality depicted in Fig. 8(b).
This, along with the fact that the MERA tensors û and ŵ are
isometries, ensures that a bulk state is normalized (see
Ref. [9], Appendix A), and also exhibits the bulk features of
the simpler lifted MERA described in Ref. [9], namely:
(i) the presence of holographic screens, (ii) a simple
dictionary that translates boundary correlators to expect-
ation values of extended bulk operators, and (iii) a causal
cone structure that can be exploited to compute bulk
expectation values efficiently. These properties essentially
rely on the fact that tensors û and ŵ are isometries.

V. BULK ENTANGLEMENT

Given a subsystem of the bulk lattice M, we define its
perimeter and area as the number of sites that are located at
the boundary and inside the subsystem respectively. For a
generic state belonging to the lattice M, subsystem
entanglement entropy is expected to scale as the subsys-
tem’s area. In contrast, the subsystem entanglement entropy
in a bulk state scales at most as the perimeter of the
subsystem, see Appendix B. Such an entanglement scaling
is commonly exhibited by ground states of local
Hamiltonians in condensed matter physics, where it is
often called “area law entanglement” [12]. In fact, given a
lifted MERA, which represents a bulk state jΨbulki, one can
construct a local, gauge-invariant bulk Hamiltonian whose
ground state is jΨbulki, as described in Appendix C.
In the remainder of this section we consider bulk states

dual to 1D critical ground states, and explore any potential
dependence of the bulk entanglement on the central
charge of the CFT that describes the critical system in
the continuum. We are motivated by the fact that in the
AdS/CFT correspondence, the leading order of quantum
fluctuations in the bulk is Oð1=cÞ where c ≫ 1 is the
central charge of the CFT [31].
However, in order to compare bulk properties corre-

sponding to different critical boundary states one has to

=

(b)

=

(a)

FIG. 8. Useful equalities satisfied by the G-symmetric copy
tensor ĉ. (a) Contraction of the identity on the open indices of ĉ
results in an identity. (b) Tensor ĉ is an isometry.

FIG. 7. An illustration of the tensor network contraction equating to the expectation value of a gauge-invariant loop operator in the
bulk that acts nontrivially on the gauge degrees of freedom (the spin networks) and as the identity on the remaining degrees of freedom.
For G ¼ Z2 and X̂ defined according to Eq. (A8), the loop operator can be understood as a Wilson loop in a Z2 lattice gauge theory (here
defined on a hyperbolic lattice).
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address an ambiguity that arises from the fact that the
MERA representation of a 1D ground state is not unique as
discuss in the next section.

A. Many bulk states dual to a ground state

Given a MERA representation of a ground state, one can
obtain another equivalent MERA representation of the state
by inserting a resolution of identity M̂kM̂

−1
k on bond k, and

multiplying the matrices M̂k and M̂−1
k with the two tensors

that are connected by the bond respectively. The two
MERAs are an equivalent representation of the ground
state, since the expectation value of any observable is the
same in both the representations. (Obtaining an expectation
value from the MERA involves contracting all the bond
indices, and M̂k is multiplied with M̂−1

k in the process.)
Clearly, inserting the copy tensor, defined according to

Eq. (14), selects out a particular MERA representation of
the ground state—the one expressed in a bond basis in
which the degeneracy tensors fĉdega g have these compo-
nents. On the other hand, the degeneracy copy tensors
fĉdega g “commute” only with diagonal matrices. Namely, a
contraction of ĉdega with a diagonal matrix on any index is
equal to a contraction of the tensor with the same diagonal
matrix on any other index. This implies that the bulk states
obtained by lifting different MERA representations of the
same ground state are not generally related to each other by
one-site unitary transformations on the bulk lattice, and
therefore they have different entanglement. Thus, our bulk
construction generally relates a given ground state to a set
of bulk states with different entanglement.
However, in this paper, we restrict attention to MERA

representations that are made of G-symmetric and isometric
tensors. While G-symmetric tensors ensure that the bulk
state—obtained by lifting the MERA by inserting copies of
the G-symmetric copy tensor—has a local gauge symmetry
G (as described in Sec. III A), the choice of isometric
tensors leads to the desirable bulk features listed (i)–(iii) in
Sec. IV B.
To this end, we restrict fM̂k∶V → Vgk to unitary

matrices that commute with the symmetry, namely,
½M̂k; V̂g� ¼ 0 for all g ∈ G. Since V decomposes as
Eq. (8), Schur’s lemma (a special case of the Wigner-
Eckart decomposition) implies that matrix M̂k decomposes
as M̂k ¼ ⨁

a
ðM̂k;a ⊗ ÎηaÞ. Thus, the bond transformations

are restricted to act as the identity Îηa on the bonds of the
spin networks, which also restricts the set of the dual bulk
states. In particular, one can exploit this restriction on the
bond transformations to partially fix a basis on the total
bond space V , in the different MERA representations of
jΨboundi. Specifically, we fix the irrep basis fja;maig on
the bonds of the spin networks, while a basis on the bonds
of the degeneracy tensor networks corresponds to a choice
of the bond transformations M̂k;a (with respect to a given
MERA representation).

Therefore, here we probe for any statistical dependence
of the bulk entanglement on the boundary central charge,
by randomly sampling from the set of all allowed dual bulk
states. Recall that we only consider bulk states that are
obtained by lifting MERA tensor networks composed of
G-symmetric and isometric tensors. (This corresponds to
restricting the intrinsic bond transformations fM̂kg to
unitary matrices that commute with the symmetry G.)

B. Critical spin chains

To this end, we considered the ground states of the
following 1D critical spin models:

ĤISING ¼
X
i

σ̂ixσ̂
iþ1
x þ σ̂iz;

ĤBC ¼
X
i

− ŜixŜ
iþ1
x þ αðŜixÞ2 þ βŜiz;

ĤPOTTS ¼ −
X
i

P̂iðP̂TÞiþ1 þ ðP̂TÞiP̂iþ1 þ M̂i;

ĤXXZ ¼
X
i

σ̂ixσ̂
iþ1
x þ σ̂iyσ̂

iþ1
y þ Δσ̂izσ̂iþ1

z ; ð15Þ

where i labels sites of a 1D infinite lattice on which the
Hamiltonian acts, σ̂x; σ̂y; σ̂z are Pauli matrices, the operator
Ŝα is the α component of the spin-1 representation of
suð2Þ, and P̂ and M̂ are 3 × 3 Potts matrices:

P̂ ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA; M̂ ¼

0
B@

2 0 0

0 −1 0

0 0 −1

1
CA

The Blume-Capel model is critical for α ¼ 0.910207,
β ¼ 0.415685, and the XXZ model is critical for
−1 < Δ ≤ 1. The central charges and total symmetry
groups of these models are listed in Table I.
We determined a symmetry-protected MERA represen-

tation of the ground state of each of these models using
the variational energy minimization algorithm for the
scale-invariant MERA de- scribed in Ref. [29], adapted
to the presence of symmetries [20,32]. We considered
only Abelian symmetries here, which appear either as the
total symmetry or as subgroup symmetry. Specifically, we

TABLE I. The central charge and the total symmetry group of
the critical lattice models listed in Eq. (15).

MODEL

CENTRAL

CHARGE

TOTAL

SYMMETRY

Ising 1=2 Z2

Blume-Capel 7=10 Z2

3-state Potts 8=10 Z3

XXZ, Δ ≠ 1 1 Uð1Þ
XXZ, Δ ¼ 1 1 SUð2Þ
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obtained a Z2-symmetric MERA representation for the
ground state of the Ising model and the Blume-Capel
model, and a Z3-symmetric MERA representation of the
ground state of the Potts model.
For the XXZ model, we obtained both a Z2-symmetric

MERA representation of the ground states for Δ ∈
f0; 0.71; 0.81; 0.87; 1g (corresponding to a Z2 subgroup
symmetry), and also an Uð1Þ-symmetric MERA represen-
tation for Δ ∈ f0; 1g. The Uð1Þ symmetry of the XXZ
models with Δ ∈ f0; 1g corresponds to the total symmetry
for Δ ¼ 0 and a subgroup symmetry for Δ ¼ 1.
The representation of the symmetry on each site of the

lattice for the various models is listed in Table II. Table III
lists the symmetry representation that we assigned to the
MERA bonds for the ground state simulations. We tried a
few different charge and degeneracy combinations and the
choices listed in the Table III resulted in the smallest error
in the ground state energy density as determined from the
resulting MERA.

The error in the estimated ground state energy density
for the Ising model was Oð10−8Þ and the relative error in
the estimated central charge was 0.6%. For the remaining
models, the error in the estimated ground state energy
density was at most Oð10−4Þ, and the relative error in the
estimated central charge was at most 3%. For all the
models, the relative error in the estimated smallest six
scaling dimensions was between 0.5% to 6%.
The models listed in Eq. (15) are not scale-invariant, but

flow to a scale-invariant fixed point after possibly several
RG (entanglement renormalization) steps. We discarded the
non-scale invariant part of the MERA before lifting it to a
bulk state. (That is, we considered the renormalized scale-
invariant ground state of each model.)

C. Bulk entanglement vs boundary central charge

Before proceeding to our results, we remark that defining
entanglement entropy in gauge-invariant states is subtle
since a gauge-invariant Hilbert space does not usually have
a tensor product structure. A possible approach, one that we
have followed here, is to embed the Hilbert space into a
larger tensor product space—the tensor product of the
Hilbert spaces on each of the links of a lattice gauge theory.
See, for example, a recent work presented in Ref. [33] and
references contained therein.
For the ground state of each of the models listed

in Eq. (15), we randomly selected 105 dual bulk states
(restricting the corresponding bond transformations fM̂kg
to unitary matrices that commute with the respective
symmetry), and computed the second Renyi entanglement
entropy Rtower per site,

Rtower ≡ − log2ðTrðρ̂towerÞ2Þ: ð16Þ

Here ρ̂tower is the reduced density matrix of all the bulk
sites located along the infinitely long tower of ŵ tensors
(highlighted yellow in Fig. 9). We partitioned the Renyi
entanglement entropy density values in to 100 equally
spaced bins.
Figure 10 shows the probability distribution of the Renyi

entanglement entropy Rtower per site for the critical Ising
model, which illustrates that the different bulk states indeed
have different entanglement.
In Fig. 11 we plot the maximum, minimum and the mode

of the probability distributions of Rtower per site for all the
critical models. The plot indicates a statistical trend that
the Renyi entropy density generally increases with increase
in the boundary central charge. Note also the clustering of
data for different XXZmodels, which have the same central
charge. From these results it appears that the bulk entan-
glement entropy Rtower depends predominantly on the
central charge, as compared to other microscopic details
of these models.
The plot in Fig. 11 also suggests that a MERA

representation based on a larger subgroup symmetry may

TABLE II. The representation of the symmetry on a each lattice
site for the various 1D quantum lattice models listed in Eq. (15).
We use a compact notation aðdaÞ to denote an irrep a and its
degeneracy da that appears in the irrep decomposition, Eq. (7), of
the Hilbert space of one site of the lattice. The two irreps of Z2 are
labeled by 0 and 1 respectively. The three irreps of Z3 are labeled
by 0,1 and 2 respectively. We label the two irreps of Uð1Þ that
appear on each site of the XXZ model by −1 and 1. For example,
for the Blume-Capel model 0ð2Þ ⊕ 1ð1Þ denotes that each site of
the lattice decomposes as the direct sum of two copies of Z2 irrep
0 and one copy of Z2 irrep 1.

MODEL SYMMETRY SITE REPRESENTATION

Ising Z2 0ð1Þ ⊕ 1ð1Þ
Blume-Capel Z2 0ð2Þ ⊕ 1ð1Þ
Potts Z3 0ð1Þ ⊕ 1ð1Þ ⊕ 2ð1Þ
XXZ Z2 0ð1Þ ⊕ 1ð1Þ
XXZ, Δ ¼ 0, 1 Uð1Þ −1ð1Þ ⊕ 1ð1Þ

TABLE III. The symmetry representation that we fixed on the
MERA bonds in the ground state simulation of the 1D quantum
lattice models listed in Eq. (15). Since the bonds of the MERA are
associated with coarse-grained sites, the bond representation is
obtained by fusing and truncating the symmetry representations
that appear on multiple sites of the 1D lattice. (The symmetry
representation on each site of the lattice is listed in Table II.) The
total bond dimension (namely, the dimension of the total bond
representation) is equal to 12 for all the simulations.

MODEL SYMMETRY BOND REPRESENTATION

Ising Z2 0ð6Þ ⊕ 1ð6Þ
Blume-Capel Z2 0ð6Þ ⊕ 1ð6Þ
Potts Z3 0ð4Þ ⊕ 1ð4Þ ⊕ 2ð4Þ
XXZ Z2 0ð6Þ ⊕ 1ð6Þ
XXZ, Δ ¼ 0, 1 Uð1Þ −3ð2Þ ⊕ −1ð4Þ ⊕ 1ð4Þ ⊕ 3ð2Þ

HOLOGRAPHIC SPIN NETWORKS FROM TENSOR NETWORK … PHYS. REV. D 97, 026013 (2018)

026013-11



correlate with a decrease in the Renyi entropy Rtower.
Specifically, for ground states of the two XXZ models
with Δ ¼ 0, 1 the maximum, mode and minimum Renyi
entropies obtained from the Uð1Þ-symmetric MERA rep-
resentation were found to be smaller than those obtained
from the Z2-symmetric MERA representation. On the other
hand, the two representations gave approximately equal
estimates for the ground state energies, central charges,
and few lowest scaling dimensions.
Note that a Z2-symmetric and a Uð1Þ-symmetric MERA

representation of a given ground state are expected to
correspond to two bulk states with different entanglement
respectively. This is because a Uð1Þ-symmetric MERA
representation can be converted to a Z2-symmetric MERA
representation by applying bond transformations to change
the bond basis from a Uð1Þ irrep basis to the subgroup
Z2 basis listed in Table III, which likely alter the bulk
entanglement. However, we do not know how to account
for the decrease in entropy when the larger symmetry was
considered here, and whether this behavior is more general
than illustrated by these results.

D. Entanglement between gauge and degeneracy
degrees of freedom

Finally, we probed the bulk entanglement between the
gauge and degeneracy degrees of freedom for the case of
Z2 and Z3 symmetry. We considered a small region of the
bulk lattice and obtained a reduced density matrix by
tracing out all degrees of freedom outside the region,
and also the gauge degrees of freedom inside the region.
This was achieved by using the spin network decomposi-
tion of the bulk state, which exposes separate open indices
in the lifted MERA corresponding to the gauge and
nongauge degrees of freedom respectively. In order to trace
out the gauge degrees of freedom in a region, one also
contracts the open indices of the spin networks that are
locatedwith the region but not the corresponding degeneracy
indices.
The smallest region for which we found nonzero

entanglement negativity, a measure of quantum entangle-
ment, is depicted as region D in Fig. 9. Let ρ̂½D� denote the
reduced density matrix of region D by tracing out all bulk
sites outside D, and also the gauge degrees of freedom
insideD. We computed the entanglement negativity nðρ̂½D�Þ
given by

nðρ̂½D�Þ ¼
X
i

ðjλij − λiÞ=2; ð17Þ

where λi are the eigenvalues of the matrix obtained by
taking the partial transpose of ρ̂½D� with respect to some of
the sites in D. (A non-zero value of the negativity indicates
that the state has quantum entanglement.) We selected two
different bulk states dual to the ground state of each critical

FIG. 10. A probability distribution of the Renyi entanglement
entropy Rtower per site [Eq. (16)], computed from randomly
sampled bulk states dual to the ground state of the critical Ising
model. We sampled 105 bulk states and sorted the corresponding
entropy densities into 100 equally spaced bins.

FIG. 11. The maximum (square, star), mode (triangle), and
minimum (circle) of the probability distribution of the Renyi
entanglement entropy Rtower per site [Eq. (16)] per site, obtained
from randomly sampled 105 bulk states, dual to the ground state
of each of the critical models listed along the x-axis. The various
Z2 data for XXZ models correspond to Δ ∈ f0; 0.71; 0.81;
0.87; 1g. Explanation in Sec. V C.

FIG. 9. The bulk sites (red squares) located in the region
highlighted yellow were considered to obtain the plots shown in
Fig. 10 and Fig. 11. These sites are located along an infinitely
long tower of the ŵ tensors. The bulk sites located in the region
highlighted blue were considered to obtain the entanglement
negativities listed in Table IV. These consist of sites located
around a loop of tensors and two sites located at the bottom
of the loop.
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model listed in Eq. (15), and computed the value of nðρ̂½D�Þ
for both these bulk states. These values are listed in
Table IV. The fact that this entanglement negativity is
positive for these models indicate that (at least) these dual
bulk states have quantum entanglement between the gauge
and degeneracy degrees of freedom.
The plot in Fig. 12 shows the spectrum of the reduced

density matrix ρ̂degk , obtained by tracing out all bulk sites
except the bulk site k and also tracing out the gauge degrees
of freedom on the site k. (That is, ρ̂degk has support only on
the non-gauge sector of site k.) Notice the appearance of
approximate degeneracies in the spectrum. (We sampled a
few different bulk states, this plot is illustrative of the
typical degeneracies that we observed.)
One possible way to account for these degeneracies is the

emergence of a non-Abelian symmetry in the nongauge
(gravitational) sector of the bulk. For instance, if the bulk
state has an (emergent) non-Abelian on-site symmetry,

say which acts only on the non-gauge sector of the Hilbert
space, then the reduced density matrix ρ̂degk must commute
with this symmetry. Consequently, by applying Schur’s
lemma, ρ̂degk must decompose as

ρ̂degk ¼ ⨁
j
ðρ̂degk;j ⊗ ÎηjÞ: ð18Þ

Here j is an irrep of the emergent symmetry, ρ̂degk;j is a
density matrix that acts on the degeneracy space of charge
j, and Îηj is the ηj × ηj identity matrix that acts on the irrep

j. The spectrum of ρ̂degk is clearly degenerate, in accordance
with this decomposition, specifically, the degeneracy of an
eigenvalue of ρ̂degk;j is at least ηj.
In the scenario of an emergent symmetry, the degener-

acies in the spectrum of ρ̂degk can be used to infer a possible
set of emergent symmetry charges, which can be used to
decorate the bonds of the degeneracy tensor networks that
appear in Fig. 6 (analogous to how the spin networks are
decorated with the symmetry charges). Broadly speaking,
in this case, it may be possible to further decompose the
degeneracy tensor networks in terms of spin networks
composed of intertwiners of the emergent symmetry, thus
refining the bulk construction presented in this paper. We
leave further exploration of any emergent bulk symmetries
for future work.

VI. SUMMARY AND OUTLOOK

In this paper, we described a toy model for constructing a
holographic description of a 1D quantum lattice system,
equipped with the action of a local Hamiltonian that has a
global on-site symmetry G. Specifically, we lifted a MERA
representation of the ground state, which also has the global
symmetry, to a tensor network representation of a quantum
state of a 2D lattice on which the symmetry appears
gauged. This was achieved by embedding the MERA in
a 2D manifold, and inserting 4-index tensors on the bonds
of the tensor network. The 1D ground state and the dual
2D quantum state are seen to live on the boundary and in
the bulk of the manifold respectively. In order to manifest
a gauge symmetry in the bulk, it was essential to use
G-symmetric tensors, which compose the MERA repre-
sentation and generate a symmetry protected RG flow,
and require that the copy tensors, which were used to lift
the MERA, fulfill particular symmetry properties, those
depicted in Fig. 3.
In this way, our toy model translates a 1D boundary state

with a global on-site symmetry to a 2D bulk state in which
the symmetry appears gauged. In the AdS/CFT correspon-
dence, a global on-site symmetry at the boundary is also
gauged in the bulk as a general rule of thumb. In light of the
ongoing discussion between the MERA and holography,
we take the view that any legitimate bulk description of the
MERA must implement the holographic gauging of global

TABLE IV. The entanglement negativity nðρ̂½D�Þ, Eq. (17),
obtained from two different bulk states, dual to the ground state
of each of the critical models listed in Eq. (15). Here we used a
Z3-symmetric MERA for the Potts model and a Z2-symmetric
MERA for the remaining models.

MODEL BULK STATE 1 BULK STATE 2

Ising 0.01953 0.08136
Blume-Capel 0.09975 0.92443
3-state Potts 0.08258 0.37165
XXZ, θ ¼ 1 0.04061 0.61028
XXZ, θ ¼ 0 0.05483 0.24789

FIG. 12. The spectrum of a reduced density matrix obtained
from a randomly selected bulk state, dual to the ground state of
each of the critical models listed in Eq. (15). The reduced density
matrix corresponds to one bulk site, obtained by tracing out all
remaining bulk sites and also tracing out the gauge degrees of
freedom of that site.

HOLOGRAPHIC SPIN NETWORKS FROM TENSOR NETWORK … PHYS. REV. D 97, 026013 (2018)

026013-13



boundary symmetries. In particular, making this demand
may narrow the choices for the possible bulk degrees of
freedom. As we have shown in this paper, the holographic
gauging of boundary symmetries is very conveniently
realized by associating bulk degrees of freedom with the
bonds of the MERA, as opposed to its tensors as has been
considered in some of the previous works [16–18], since it
allows us to introduce gauge transformations as in lattice
gauge theory.
We further showed how the bulk states decompose as a

superposition of spin network states, which label a basis in
the gauge-invariant sector of the bulk Hilbert space. Thus,
our bulk construction brings together tensor network states
and spin network states, as they appear in lattice gauge
theories with gauge group G. The spin network decom-
position of the bulk state allows one to introduce mean-
ingful gauge-invariant observables in the bulk, since it
exposes quantum numbers in the bulk (within the gauge-
invariant sector). It also allows us to explore further
parallels with holography. For example, the decomposition
reveals correlations between the gauge and the remaining
(gravitational) degrees of freedom, and is also instrumental
to probe any emergent symmetries in the nongauge
(gravitational) degrees of freedom (since the spin network
decomposition allows one to trace out the gauge degrees of
freedom in the bulk).
Spin networks also appear in various quantum gravity

models where they label a gauge-invariant basis in the
kinematic Hilbert space of the theory, for example, in loop
quantum gravity [34]. Toward the completion of this work,
we found recent papers which also explore connections
between tensor network states and spin network states,
specifically as they appear in loop quantum gravity [35],
and in the context of group field theory [36].
This work demonstrates a useful toy model for exploring

basic features of holography using tensor networks.
Beyond holography, our formalism may be viewed as a
general correspondence between a 1D ground state with a
global symmetry G and a 2D many-body state with a local
symmetry G, which may also be useful in characterizing
and relating together different types of quantum phases of
matter as illustrated in Appendix A.
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APPENDIX A: BULK TOPOLOGICAL ORDER
AND ISOMETRIC TENSORS

In this Appendix, we discuss the topological order of
the bulk states obtained from the MERA as described in
this paper, applied to the case of Z2 symmetry. (The
discussion can be readily generalized to Zn symmetry.)
In particular, we illustrate an interesting interplay between
bulk (Abelian) topological order and the choice of iso-
metric tensors. More specifically, the bulk state obtained by
lifting a MERA made of Zn-symmetric and isometric
tensors does not have a nontrivial Zn topological order.

1. Example using Z2 symmetry

For the purpose of this section, we specialize the notation
introduced in Sec. II to the case of a Z2 symmetry. Let L
here denote an infinite 1D lattice, each site of which is
described by vector space V ≅ C2 and is equipped with the
action of the group Z2 ¼ fÎ; Ẑg. The group acts on the
space V by means of the unitary representation Î ¼ ð1

0
0
1
Þ,

Ẑ ¼ ð1
0

0
−1Þ. Under the action of the symmetry, the space V

decomposes as

V ≅ Ve ⊕ Vo;

where Ve and Vo are the two irreps of Z2. We denote by
je≡ 0i and jo≡ 1i a basis in the one dimensional vector
spaces Ve and Vo respectively.
Let jΦboundi denote the (unnormalized) GHZ state

belonging to the lattice L,

jΦboundi≡ j þ þ � � �i þ j − − � � �i; ðA1Þ

where j�i ¼ ðjei � joiÞ and e.g. j þ þ � � �i ≡
ðjþi ⊗ jþi ⊗ � � �Þ. State jΦboundi has a global Z2 sym-
metry since jΦboundi ¼ ðẐ ⊗ Ẑ ⊗ …ÞjΦboundi.
Consider a Z2-symmetric MERA representation T of

jΦboundi comprised of copies of two simple tensors

ûGHZ∶ V ⊗ V → V ⊗ V ; ŵGHZ∶ V → V ⊗ V ⊗ V ;

ðA2Þ

which replace copies of the tensors û and ŵ in Fig. 1
respectively. Tensor ûGHZ is simply the identity,

ðûGHZÞijkl ¼ δikδ
j
l ; i; j; k; l ∈ fe; fg; ðA3Þ

and the components of ŵGHZ are

ðŵGHZÞijkl ¼
�

1; if ðiþ jþ kþ lÞ mod 2 ¼ 0

0; otherwise:
ðA4Þ

Note that tensor ŵGHZ is an isometry satisfying
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X
ijk

ðŵGHZÞijklðŵGHZ�Þjkli0 ¼ δii0 : ðA5Þ

It is readily checked that tensor ŵGHZ is also Z2-symmetric,
since ŵGHZ ¼ ðẐÞŵGHZðẐ† ⊗ Ẑ† ⊗ Ẑ†Þ.
In order to verify that the MERA tensor network T

indeed represents the state jΦboundi, Eq. (A1), we need to
contract all the tensors of T to obtain the probability
amplitudes Φ̂i1i2���, where i1i2 � � � ∈ fe; og denote the open
indices of T . The simple tensor network T can be
contracted algebraically to obtain

Φ̂i1i2��� ¼
(
1; if

P
k
ikis even;

0; otherwise:
ðA6Þ

That is, jΦboundi is an (unnormalized) equal superposition
of kets jo1o2 � � �i≡ jo1i ⊗ jo2i ⊗ � � � labeled by bit
strings o1o2 � � � with even number of 1’s. In the basis
j�i on each site, this state is simply the GHZ state jΦboundi.
Let us lift the tensor network T by inserting the

Z2-symmetric copy tensor ĉ½Z2� on each bond of the tensor
network. The copy tensor ĉ½Z2� is defined by specializing
Eqs. (13) and (14) to Z2, namely,

ðĉ½Z2�Þijkl ¼
�

1; if i ¼ j ¼ k ¼ l;

0; otherwise:
ðA7Þ

where i; j; k; l ¼ fe; og. By construction, the bulk state
jΦbulki represented by this lifted tensor network has a local
Z2 gauge symmetry, as described in Sec. III.
We now ask whether the bulk state jΦbulki has Z2

topological order? In order for the state jΦbulki to have a
Z2 topological order it must be invariant under the action of
two noncommuting, deformable loop operators [37,38].
One considers two types of loops, namely, (A) paths
comprised of a closed sequence of the tensor network
bonds, and (B) closed paths in the ambient manifold
(outside the tensor network) that intersects only the bonds
of the tensor network, such that the two bulk sites
associated with the intersected bonds are located inside
and outside of the loop respectively.
State jΦbulki is invariant under any type B loop of Ẑ’s,

which follows simply from the fact that jΦbulki has a local
Z2 gauge symmetry. See Lemma 1 in Appendix A 3. In
addition, jΦbulki must be invariant under the action of type
A loops of X̂ operators

X̂ ≡ V → V ; X̂ ≡ jeihoj þ joihej: ðA8Þ

However, it can be shown that the bulk expectation value of
any type A loop of X̂’s is identically zero, see Lemma 2 in
Appendix A 3. This implies that the state jΦbulki does not
have Z2 topological order.

However, since the MERA representation of a quantum
many-body state is generally not unique (see, for example,
the discussion in Sec. VA). Is there then a different MERA
representation, composed of isometric and Z2-symmetric
tensors, of the GHZ state that perhaps has Z2 topological
order? The answer is still no, since the proof presented in
Appendix A 3 applies to any lifted MERA that is obtained
by replacing ûGHZ and ŵGHZ with arbitrary isometric and
Z2-symmetric tensors.
Next, consider a different MERA tensor network T topo

comprised of copies of tensors ŵtopo ≡ ŵGHZ, and ûtopo

defined as:

ðûtopoÞijkl ¼
�
1; if ðiþ jþ kþ lÞ mod 2 ¼ 0

0; otherwise:
ðA9Þ

Analogous to T , the tensor network T topo also represents
the GHZ state jΦboundi. Namely, by contracting all the
tensors of T topo and changing the site basis to j�i one
obtains the probability amplitudes in Eq. (A1). On the other
hand, tensor network T topo cannot be obtained from T by
applying bond transformations.
Tensor ûtopo is Z2-symmetric since ûtopo ¼ ðẐ ⊗ ẐÞûtopo

ðẐ† ⊗ Ẑ†Þ. However, ûtopo is neither an isometry nor a
unitary tensor. Instead, ûtopo is a projector,X

mn

ðûtopoÞijmnðûtopoÞmn
kl ¼ ðûtopoÞijkl: ðA10Þ

[That is, ðûtopoÞ2 ¼ ðûtopoÞ.]
Let jΦbulk

topoi denote the bulk state obtained by lifting
T topo, by inserting copies of the Z2-symmetric copy tensor
ĉ½Z2� on the bonds of T topo. We show that jΦbulk

topoi is the
ground state of the Z2 surface code Hamiltonian, here
defined on a hyperbolic lattice [37]. The ground state of the
Z2 surface code is known to have Z2 topological order. Let
v and p denote the vertices and plaquettes of the bulk
hyperbolic lattice, and sðvÞ and sðpÞ denote the set of bulk
sites immediately surrounding vertex v and those located
around plaquette p respectively. The Z2 surface code
Hamiltonian is defined here as

Ĥtopo ≡ −
X
v

ð ⊗
i∈sðvÞ

ẐiÞ −
X
p

ð ⊗
i∈sðpÞ

X̂iÞ: ðA11Þ

The bulk state jΦbulk
topoi is the ground state of Ĥtopo because it

remains invariant under the action of the vertex terms in
Eq. (A11) (which are simply Z2 gauge transformations)—
by virtue of our bulk construction—and also under the
action of the plaquette terms in Eq. (A11), as illustrated
in Fig. 15.
Since each pair of bulk sites associated with a bond are

effectively supported only on a qubit subspace, by virtue of
the gauge symmetry, our bulk state is indeed stabilised by a
set of vertex and plaquette operators equivalent to the
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surface code state. As the state jΦbulki has no further
symmetries or additional degrees of freedom then this is the
same phase as the surface code: a phase with Z2 topological
order. We also refer the reader to Ref. [39] where the
topological properties of the lifted tensor network,
which represents state jΦbulk

topoi, are explicitly demonstrated.
(In Ref. [39] the authors consider a 3-index copy tensor,
which is isomorphic to the Z2-symmetric copy tensor ĉ½Z2�
after each pair of bond sites is projected to an effective
qubit space.)
The bulk state represented by the lifted T topo tensor

network turned out to have topological order because the
tensor network contains non-isometric tensors, and thus
avoids the argument for the absence of bulk topological
order presented in Appendix A 3. Thus, this example
reveals an interesting interplay between the presence of
an Abelian topological order in the bulk and the isometric
constraints that are usually imposed on the MERA tensors.
On the other hand, for non-Abelian symmetries, isometric
tensors may be compatible with the presence of a bulk
topological order.

2. A possible correspondence between 1D symmetry
breaking phases and 2D topological phases?

Viewed as ground states of local Hamiltonians, the
quantum many-body states jΦboundi and jΦbulk

topoi, described
above, belong to two different quantum phases of matter:
the boundary state jΦboundi (a GHZ state) belongs to a
quantum phase with spontaneously broken Z2 symmetry,
while the bulk state jΦbulk

topoi belongs to a quantum phase
with Z2 topological order. (In a Z2 symmetry broken
phase, the ground state is 2-fold degenerate. The only
Z2-symmetric ground states are GHZ type states dressed
with local entanglement, see e.g. Appendix C in Ref. [40].)
The Z2-symmetric ground states at the RG fixed point in

the phase are exactly GHZ states. Recall that the MERA
representation of a ground state describes the RG flow of
the ground state to a fixed point wave function, which is
characteristic of the quantum phase to which the ground
state belongs [15]. If the ground state belongs to a Z2

symmetry broken phase, and if we target the Z2-symmetric
ground subspace by protecting the symmetry along the RG
flow (employing Z2-symmetric tensors) then the ground
state flows to a GHZ state.
Subsequently, if the fixed point tensors in the MERA

representation of a Z2-symmetry broken ground state are, in
fact, ûtopo and ŵtopo (which represent a GHZ state) it is
tempting to conclude that our bulk construction leads to an
emergent Z2 topological order at the RG fixed point in a 1D
Z2 symmetry broken phase. Here by emergent we mean
that we can systematically obtain a quantum state with Z2

topological order from the MERA representationof a Z2

symmetry broken ground state (by lifting the MERA).
However, this argument does not quite work since the

MERA representation of the GHZ state is not unique. For
example, as mentioned previously, the GHZ state may also
be represented by the MERA T , which does not lift to a
topologically ordered bulk state.
On the other hand, we have isolated a condition under

which our holographic correspondence could lead to an
emergent Abelian topological order in the bulk. Namely, if
non-isometric tensors are permitted, and in fact preferred,
in the MERA representation of a ground state, while
protecting the symmetry along the RG flow. In this case,
the fixed point tensors in a Z2-broken phase are indeed
given by Eq. (A4), and therefore one can argue for an
emergent topological order as described above.

3. Proofs

In this section, we prove two lemmas that were used in
the discussion presented in this Appendix.
Consider a vector space V ≅ C2 that is equipped with the

action of the group Z2 ¼ fÎ; Ẑg. The group acts on the
space V by means of the unitary representation Î ¼ ð1

0
0
1
Þ,

Ẑ ¼ ð1
0

0
−1Þ. Under the action of the symmetry, the space V

decomposes as V ≅ Ve ⊕ Vo where Ve and Vo are the two
irreps of Z2. Denote by jei and joi a basis in the one
dimensional vector spaces Ve and Vo. Also, define the Z2

irrep flip operator X̂ ≡ jeihoj þ joihej. Consider a MERA
tensor network T composed from arbitrary isometric
and Z2-symmetric tensors û∶ V ⊗ V → V ⊗ V and
ŵ∶ V → V ⊗ V ⊗ V . Let T 0 denote the lifted MERA
obtained by inserting the Z2-symmetric copy tensor,
Eq. (14), on the bonds of T .
Lemma 1.—Consider a loop C in the ambient manifold,

in which the (lifted) MERA is embedded, (i) that intersects
only copy tensors, and (ii) the two bulk sites associated
with the open indices of an intersected copy tensor are
located inside and outside of the loop respectively. Also,
consider the loop operator ẐC ≡⊗

i
Ẑi that acts on all bulk

sites i located immediately inside loop C. The lifted MERA
T 0, and thus the bulk state it represents, is invariant under
the action of ẐC.
Proof.—As an illustration of the general proof, consider

the specific loop operator applied along the loop enclosing
the tensors v1, v2, v3, v4 and v5, depicted in Fig. 13. Let us
apply Z2 gauge transformations simultaneously around all
the 5 tensors. The gauge transformations leave the lifted
tensor network T 0 invariant, of course. However, the action
of this gauge transformation is equivalent to applying a
loop of Ẑ’s. This follows from using the equalities depicted
in Fig. 13(a); all Ẑ operators except those located along the
loop are eliminated. Thus, this loop operator leaves T 0
invariant. This proof is readily generalized for an arbitrary
loop C, homologous to the loop considered above. ▪
Lemma 2.—Consider a loop ~C comprised of a closed

sequence of the MERA bonds. Also, consider the loop
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operator X̂ ~C ≡⊗
i
X̂i that acts on all bulk sites i located along

the loop ~C. The expectation value of X̂ ~C obtained from T 0 is
identically zero.
Proof.—Once again we only give an illustration of the

general proof here. Consider the expectation value of a
loop of X̂’s, obtained from the lifted MERA T 0, around the tensors v1, v2, v3, v4 and v5 depicted in Fig. 16(a).

The tensor network contraction equating to the expectation
value is illustrated in the figure. The contraction can be
simplified by iteratively applying two sequences of can-
cellations, proceeding upwards from the boundary. First,
the tensors located at the very bottom are contracted with
their adjoints and thus cancel out. Consequently, pairs of
copy tensors are seen to be contracted together and also
cancel out, thanks to the equality depicted Fig. 8(b). By
applying these two simplifications iteratively most tensors
below the loop cancel out, and we are left with the
contraction depicted in Fig. 16(b).
[The contraction depicted in Fig. 16(a) is a simple

illustration where only one layer of tensors appears below
the loop. More generally, the loop may appear deep in the
bulk, located above many layers of tensors. But by
iteratively applying the simplifications described above
such a contraction reduces, once again, to the contraction
depicted in Fig. 16(b).]
Next, consider the tensor contractions around tensor v4,

which is separately depicted in Fig. 16(c). Since tensor û

(b)

(c)

(a)

FIG. 13. (a) The Z2-symmetric copy tensor ĉ½Z2�, Eq. (A7) is
invariant under the action of Ẑ on any two of its indices. (b,c) The
lifted MERA T 0, and thus the bulk state it represents, is invariant
under the action of the loop (dashed red contour) of Ẑ’s shown
here. Namely, the contraction depicted in (b) simply recovers the
lifted MERA (c).

(d)

(c)

(a)

FIG. 14. (a) X̂ operators applied on the two open indices of the
Z2 copy tensor ĉ½Z2� [Eq. (A7)] transfers to the two bond indices.

(b) A diagonal bond transformation M̂½Z2�
k applied on any of the

two bond indices of the copy tensor ĉ½Z2� transfers to the closer
open index. Here illustrated for one of the bond indices only. (c,d)
Equalities illustrating that tensors ûtopo and ŵtopo remain invariant
under the action of the X̂, Eq. (A8), applied on any two indices.

FIG. 15. The bulk state jΦbulk
topoi remains invariant under the

action of X̂ operators applied on bulk sites located around a
plaquette on the bulk lattice, here illustrated for the action of X̂’s
on the highlighted plaquette (red). This is shown by means of two
equalities. The first equality results from applying the equality
depicted in Fig. 14(a) to all the copy tensors located around the
plaquette. The second equality results from using the equalities
depicted in Fig. 14(c)–(d), which eliminates the X̂ operators.
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is isometric, it cancels out when contracted with its adjoint,
leading to the first equality depicted on the left in Fig. 16(c).
Each of the resulting two contractions [shown in the middle
in Fig. 16(c)] consists of two bond tensors and an X̂ operator,
and is identically zero since the trace of X̂ is 0. Thus,
the expectation value of the loop operator is identically
zero. ▪

APPENDIX B: SCHMIDT DECOMPOSITION
OF A BULK STATE

The Schmidt decomposition of a quantum state belong-
ing to a bipartite tensor product space V ðAÞ ⊗ V ðBÞ is

jΨi ¼
Xn
α¼1

μαjΩ½A�
α i ⊗ jΩ½B�

α i; ðB1Þ

where μα > 0 are the Schmidt coefficients, and fjΩ½A�iαg
and fjΩ½B�iαg is an orthonormal basis in spaces V ðAÞ and
V ðBÞ respectively. The decomposition (B1) is useful since

the reduced density matrix of the parts A and B is diagonal
in the Schmidt basis, namely,

ρ̂½A� ≡Xn
α¼1

μ2αjΩ½A�
α ihΩ½A�

α j;

ρ̂½B� ≡Xn
α¼1

μ2αjΩ½B�
α ihΩ½B�

α j: ðB2Þ

In particular, the rank of the reduced density matrices ρ̂½A�

and ρ̂½B� is equal to n.
In this appendix, we derive a Schmidt decomposition for

a bulk state jΨbulki. We will use this Schmidt decompo-
sition to derive two results: (i) the bulk state exhibits an area
law scaling of entanglement, and (ii) jΨbulki can be viewed
as the ground state of a local, gauge-invariant Hamiltonian.
For our purposes, we decompose the copy tensor ĉ,

Eq. (14), in terms of a 3-index, G-symmetric tensor x̂

ðĉÞefgh ¼
X
γ

ðx̂Þeγgðx̂†Þγfh ; ðB3Þ

depicted in Fig. 17. In the irrep basis,

jei≡ ja; ta; mai; jfi≡ jb; tb; mbi;
jgi≡ jc; tc; mci; jhi≡ jd; td; mdi; ðB4Þ

the index values that correspond to nonzero components of
ĉ satisfy

a ¼ b ¼ c ¼ d;

ma ¼ mb; mc ¼ md;

ta ¼ tb ¼ tc ¼ td: ðB5Þ

(a)

(b)

(c)

FIG. 16. (a) Tensor network contraction equating to the bulk
expectation value of a loop of X̂’s. (b) The tensor network
contraction resulting from simplifying the tensors located below
the loop. First, the tensors located at the bottom are contracted
with their adjoints and thus cancel out. Consequently, pairs of
copy tensors are seen to be contracted together and also cancel
out, thanks to the equality depicted Fig. 8(b). (c) Zoom in to the
contraction around tensor v4. Tensor û cancels with its adjoint,
resulting in two separate contractions. Each of these is identically
zero since the trace of X̂ is 0.

(a)

(b)

FIG. 17. (a) The graphical representation of the decomposition
the G-symmetric copy tensor in terms of a trivalent tensor x̂,
Eq. (B3), exposing an intermediate bond index γ (red) that carries
the trivial symmetry charge. (b) A bipartition of the lifted MERA
into parts P andR by a path (dashed contour) that only intersects
(the red bonds of) N copy tensors. fp1; p2;…; pNg and
fr1; r2;…; rNg denote the open indices of the N intersected
copy tensors.
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The intermediate index γ ≡ ð0; tγÞ carries only the trivial
charge and takes

P
ada number of values. We establish a

one-to-one correspondence between the index γ and the
degeneracy index ða; taÞ and denote it as γ ↔ γða; taÞ.
In the irrep basis, tensor x̂ decomposes as (Wigner-

Eckart theorem)

x̂ ≅ ⨁
a
ðx̂dega ⊗ ÎηaÞ; ðB6Þ

where the only nonzero components of the degeneracy
tensors x̂dega are

ðx̂dega Þtaγða;taÞ;ta ¼
1ffiffiffiffiffi
ηa4

p ; for all ta ∈ f1; 2;…; dag:

ðB7Þ

Next, consider a closed path on the ambient manifold—
into which the (lifted) MERA is embedded—that intersects
only the new bonds resulting from decomposing the copy
tensors, as illustrated by the dashed contour depicted in
Fig. 17. Such a path bipartitions the lifted MERA, and the
bulk latticeM, into parts P and R. The two bulk sites that
are associated with each intersected copy tensor are split
amongst parts P and R respectively.
Let P̂ and R̂ denote the tensors obtained by contracting

all the tensors located in parts P and R respectively.
Also, let p≡ ðp1; p2;…; pN; pNþ1;…Þ and r≡ ðr1; r2;
…; rN; rNþ1;…Þ denote the tuple of all open indices
located in P and R respectively.
The first N indices—fp1; p2;…; pNg and fr1; r2;

…; rNg—are the open indices of the N intersected copy
tensors, as illustrated in Fig. 17. Analogously, let α≡
ðγ1; γ2;…; γNÞ denote the tuple of all (red) indices that
connect part P with R, see Fig. 17.
The bulk state jΨbulki can be expressed as

jΨbulki ¼
X
α

j ~Ω½P�
α i ⊗ j ~Ω½R�

α i; ðB8Þ

where the vectors fj ~Ω½P�
α ig and fj ~Ω½R�

α ig are given by

j ~Ω½P�
α i≡X

p

P̂pαjpi; j ~Ω½R�
α i≡X

r

R̂αrjri; ðB9Þ

and jpi≡ jp1i ⊗ jp2i ⊗ … and jri≡ jr1i ⊗ jr2i ⊗ ….
These vectors form an orthogonal basis for the subsystems
P and R respectively, namely,

h ~Ω½P�
α j ~Ω½P�

α0 i ∝ δαα0 and h ~Ω½R�
α j ~Ω½R�

α0 i ∝ δαα0 : ðB10Þ

This can be understood as follows. The one-to-one map
γða; taÞ also corresponds to a one-to-one map between the
kets jγi ↔ ja; tai. Two different tuples α and α0 differ in
some entry γi, and therefore also correspond to different

elements of the tensor product basis jpi and jp0i (and also
jri and jr0i). However, hpjp0i ¼ δp;p0 , thus leading to
Eq. (B10).
Let ηðPÞα and ηðRÞ

α denote the norm of the vectors j ~Ω½P�
α i

and j ~Ω½R�
α i respectively. We write

j ~Ω½P�
α i ¼ ηðPÞα jΩ½P�

α i; j ~Ω½R�
α i ¼ ηðRÞ

α jΩ½R�
α i; ðB11Þ

where fjΩ½P�
α ig and fjΩ½R�

α ig denote the normalized
Schmidt basis in parts P and R respectively.
Reorganizing Eq. (B12) we obtain the Schmidt decom-
position of the bulk state for the bipartition P∶R,

jΨbulki ¼
X
α

ðη½P�α η½R�
α ÞjΩ½P�

α i ⊗ jΩ½R�
α i; ðB12Þ

where η½P�α η½R�
α > 0 are the Schmidt coefficients that appear

in Eq. (B1). It is notable that the Schmidt basis in a region,
say R, is obtained by simply contracting all the tensors in
the region, Eq. (B9).
Equation (B12) implies that the rank of the reduced

density matrix ρ̂½P� is at most equal to the number of
different values the tuple α assumes, which equals
ðPadaÞN . This implies that the entanglement entropy
Sðρ̂½P�Þ ¼ −Trðρ̂½P� log ρ̂½P�Þ of subsystem P is proportional
to N, the number of sites at the boundary of P. Thus, the
entanglement of a bulk subsystem P scales as the perimeter
of the subsystem, often called “area law entanglement
scaling” in condensed matter physics [12]. Here, we have
bipartitioned the tensor network in a particular way, which
may give the impression that the area law entanglement
proved above is exhibited only by such regions. However,
the above argument is only an illustration of the more
general result proved in Ref. [9], namely, area law
entanglement is exhibited by any bulk region.

APPENDIX C: A GAUGE-INVARIANT PARENT
HAMILTONIAN FOR A BULK STATE

Consider the Hamiltonian

Ĥbulk ¼ −
X
v

ĥ½v� −
X
p

ĥ½p�; ðC1Þ

where v and p labels the tensors and plaquettes of the
MERA tensor network. Here ĥ½v� is the projector on to the
support of the reduced density matrix of bulk sites located
immediately around vertex v (highlighted yellow in
Fig. 18). Analogously, ĥ½p� is the projector on to the support
of the reduced density matrix of bulk sites located along
and immediately surrounding plaquette p (highlighted
green in Fig. 18) respectively. We have
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ĥ½v� ≡X
α

jΩ½v�
α ihΩ½v�

α j; ĥ½p� ≡X
α

jΩ½p�
α ihΩ½p�

α j; ðC2Þ

where fjΩ½v�
α ig and fjΩ½p�

α ig are the Schmidt bases for the
vertex and plaquette sites respectively. These bases can be
obtained from the tensors of the lifted MERA in a simple
way, as described in Appendix B. State jΨbulki is a ground
state of the Hamiltonian Ĥbulk since

hΨbulkjĥ½v�jΨbulki ¼ trðρ̂½v�ĥ½v�Þ ¼ 1;

hΨbulkjĥ½p�jΨbulki ¼ trðρ̂½p�ĥ½p�Þ ¼ 1 ∀v; p: ðC3Þ

The Hamiltonian Ĥbulk is local since the vertex and
plaquette terms act on 4 bulk sites and 20 bulk sites
respectively. It is readily checked that the Hamiltonian
Ĥbulk is also gauge-invariant, since both ĥ½v� and ĥ½p�

commute with the gauge transformations.

APPENDIX D: EXAMPLES OF
GAUGE-INVARIANT OPERATORS
FOR SPIN NETWORK STATES

In this Appendix, we recall the definition of gauge field
holonomy operators, which are a natural choice for gauge-
invariant observables in the bulk. For a discrete group G, the
group-valued holonomy around the counterclockwise
oriented closed path ∂f bounding a contiguous region f
on the lattice is

hf ¼
Y
e∈∂f

goðe;fÞe ; ðD1Þ

where ge ∈ G is the group element on edge e, the ordered
product is taken along the boundary ∂f andoðe; fÞ ¼ 1 if the
edge e is oriented the same direction as f and oðe; fÞ ¼ −1
if the edge e is oriented the opposite direction as f. For
continuous lie groups and in curved spacetime, the group
element on an edge is obtained as is done in lattice gauge
theory. Take the path ordered integral of the gauge field ÂðxÞ
valued in g over the edge e:

he ¼ Pe−iΛ
H
e
gμνðxÞÂμðxÞdxν ; ðD2Þ

where gμνðxÞ is the metric, andΛ is the gauge field coupling
strength [30].
In our case, we have a description of bulk state in terms

of a spin network basis in the gauge-invariant sector of the
bulk Hilbert space. An edge of the bulk lattice with irrep
label j is equivalent to the reversed oriented edge labeled
by the conjugate irrep j�. In the spin network basis the
holonomy operator is given by

ŴðhpÞ ¼
X
j

tr½DðjÞðhpÞ�B̂j
p; ðD3Þ

whereDðjÞðhÞ is the irrep j of the group element h ∈ G, and
the sum is taken over all irrep labels. The operator B̂j

p

inserts a flux of type j into the plaquette and its matrix
elements in the spin network basis can be determined using
recoupling formulae, see e.g. Ref. [41].
Generically, consider a plaquette which is an n-gon with

boundary edges carrying irreps j1; j2;…jn, and incident
edges to the vertices labeled by k1; k2;…kn. The spin
network for this state can be labeled jΦ; k1;…kn; j1;…jni
where Φ indicates the configurations of all the other edges
not touching the plaquette. Assuming for simplicity that all
boundary edges have the same orientation as p and all
incident edges are directed toward the vertices of p, the
matrix elements for the plaquette flux operator are

hΦ; k01;…k0n; j01;…j0njB̂s
pjΦ; k1;…kn; j1;…jni

¼
" Yn
l¼1;r¼1

δkr;k0r

ffiffiffiffiffiffiffi
dj0l
dkl

s #
ðFj�n;j1;j0�1

j0n
Þ�
k�
1
;s�
ðFj�

1
;j2;j0�2

j0
1

Þ�
k�
2
;s�

…ðFj�n−2;jn−1;j
0�
n−1

j0n−2
Þ�
k�n−1;s

� ðF
j�n−1;jn;j

0�
n

j0n−1
Þ�
k�n;s�

ðD4Þ

where the F’s are recoupling coefficients (6-j symbols) that
describe coupling the three irreps (labeled by superscripts)
to a fourth total irrep (labeled by subscript). For other
orientations of the edges simply replace the labels of the
reverse oriented edges in the expressions above by their
conjugates.
Let us consider specific examples.

1. Abelian gauge groups

The cyclic groupZd.—For gauge groupG ¼ Zd the irreps
j ∈ f0; 1;…d − 1g are in one to one correspondence with
the group elements taking values in Zd, and the conjugate
irrep satisfies j� ¼ −j ¼ d − j. The gauge field configura-
tions are possibly overlapping closed loops of flux, configu-
rations termed string nets. The plaquette operator is

B̂j
p ¼

Y
e∈∂p

Xoðe;pÞj
e ðD5Þ

FIG. 18. The bulk sites (red squares) acted on by the vertex
operator ĥ½v� and the plaquette operator ĥ½p�, which appear in
Eq. (C1), are highlighted yellow and green respectively.
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where oðe; pÞ ¼ 1ð−1Þ if the edge e is oriented the same
direction (opposite direction) to the orientation of the
plaquette boundary ∂p. Plaquettes can be give a uniform
orientation which we choose to be counterclockwise. Here
X̂j ¼ P

d−1
k¼0 jk ⊕d jihkj, where ⊕d is addition modulo d.

The group Z2 is particularly simple having self conjugate
irreps meaning the only allowed gauge field configurations
are nonintersecting loops yielding B̂0

p ¼ 1 and B̂0
p ¼Q

e∈∂p X̂.
The group Uð1Þ.—For the gauge group G ¼ Uð1Þ, the

irreps are labeled by integers, j ∈ Z, and the conjugate
irrep satisfies j� ¼ −j. Consider a vertex of the spin
network with two incoming edges labeled by irreps j1
and j2 and an outgoing edge labeled j3. These must satisfy
the branching rule j1 þ j2 − j3 ¼ 0 implying only closed
strings of irreps or sums thereof appear on the network. The
plaquette operator is

B̂j
p ¼

Y
e∈∂p

L̂oðe;pÞj
e ðD6Þ

where L̂j ¼ P
k∈Zjkþ jihkj. These operators are infinite

dimensional but when the irreps appearing in the spin
network are truncated so that jmin ≤ j ≤ jmax, then one can
use finite dimensional truncations of L̂j.

2. Non-Abelian gauge groups

The group SUð2Þ.—The irreps j are labeled in the set
j ∈ f0; 1

2
; 1; 3

2
; 2; :…g and the irreps are self-dual, j� ¼ j.

The branching rule at vertex with two incoming edges of
irreps j1 and j2 and one outgoing edge of irrep j3 satisfies
jj1 − j2j ≤ j3 ≤ j1 þ j2, implying branching strings nets
can occur on the network. One must use the full expression
for the matrix elements of B̂j

p where the F matrices are
proportional to the Wigner 6 − j symbols:

ðFa;b;c
d Þe;f ¼ ð−1Þaþbþcþd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2eþ 1Þð2f þ 1Þ

p
×

�
a b e

c d f

�
: ðD7Þ
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