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We propose a new topological vertex formalism for a type IIB ðp; qÞ 5-brane web with an O5-plane. We
apply our proposal to five-dimensionalN ¼ 1 Sp(1) gauge theory withNf ¼ 0, 1, 8 flavors to compute the
topological string partition functions and check the agreement with the known results. Especially for the
Nf ¼ 8 case, which corresponds to E-string theory on a circle, we obtain a new, yet simple, expression of
the partition function with a two Young diagram sum.
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I. INTRODUCTION

The topological string partition function has played an
important role in finding the Bogomol'nyi–Prasad–
Sommerfield (BPS) spectrum (e.g., Nekrasov partition
function) of the supersymmetric gauge theories with eight
supercharges. Given a generic toric Calabi-Yau geometry,
the partition function can be systematically computed
based on topological vertex formalism [1–3]. The corre-
spondence [4] between the toric diagram and the ðp; qÞ
5-brane web diagram allows one to implement the formal-
ism on a ðp; qÞ 5-brane web. Recently, a generalized
version of the 5-brane web diagram, corresponding to
nontoric Calabi-Yau geometry, was introduced in [5], and it
has been proposed [6–8] that topological vertex formalism
is applicable even for such nontoric cases simply by tuning
Kähler parameters in a proper way [9–12].
It is then natural to ask whether topological vertex

formalism can be also applicable to the ðp; qÞ 5-brane
web diagram whose corresponding Calabi-Yau geometry is
not necessarily clear [13]. In this paper, we discuss that it is
possible at least for some cases. In particular, we consider a
type IIB ðp; qÞ 5-brane web with an O5-plane describing
five-dimensionalN ¼ 1 Sp(N) gauge theory, as depicted in
Fig. 1(a) [18,19]. The five-dimensional pure SpðNÞ theory
has a Z2 valued discrete theta angle, either θ ¼ 0 or π
[20,21]. In Fig. 1(a), however, the difference in the theta
angles does not look manifest [18]. It becomes much more

distinct when one uses a generalized flop transition
developed in [19,22]. For instance, Fig. 1(b) is the web
diagram for the discrete theta angle θ ¼ 0 (for odd N) after
the flop transition is performed on Fig. 1(a), where (1,1)
and ð1;−1Þ 5-branes are attached to an O5-plane in a
specific way [23]. In this paper, we propose new rules for
such configuration in addition to the conventional topo-
logical vertex formalism, and present a new method that
enables one to compute the Nekrasov partition function for
such gauge theory constructed with ðp; qÞ 5-branes with an
O5-plane [24].
It is worth noting that the web diagram in Fig. 1(b)

corresponds to the parameter region where the gauge
coupling square is negative, which is denoted in [30] as
“past infinite coupling.” In this region, the description as five-
dimensional SpðNÞ gauge theory breaks down. Instead,
better description is given by five-dimensional SUðN þ 1Þ
gauge theory with Chern-Simons level κ ¼ N þ 3. This
duality is first proposed in [31] with Nf flavors and
κ ¼ N þ 3 − Nf=2, and further elaborated in [22,32,33].
The map between the parameters of two gauge theories are
proposed in [31,33] and it is checked that the Nekrasov
partition functions for the dual theories are identical under
this map up to analytic continuation. Due to the nontrivial

(b)(a)

FIG. 1. (a) 5-brane web diagram for five-dimensional N ¼ 1
SpðNÞ gauge theory. (b) 5-branewebdiagram forSpðNÞwith θ ¼ 0
(for oddN) or with θ ¼ π (for evenN) after general flop transition,
where Sp(N) theory description is not valid. Instead it describes
five-dimensional N ¼1 SUðN þ 1Þ gauge theory with κ¼Nþ3.
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Chern-Simons level, the Nekrasov partition function for this
five-dimensional SUðN þ 1Þ gauge theory has been less
understood, although there are several partial results includ-
ing [31,33]. Throughout the paper, we demonstrate our
topological vertex formalism with an O5-plane would
provide an effective way for computing Nekrasov partition
function of this class. To this end, we focus on the simplest
case,N ¼ 1, as an instructive example of our proposal. Since
Spð1Þ ¼ SUð2Þ, the map gives symmetry of the partition
function, which in fact corresponds to aWeyl transformation
of the enhanced ENfþ1 global symmetry [33].
The organization of the paper is as follows: In Sec. II, we

propose a new rule of topological vertex formalism for the
intersection between 5-branes and an O5-plane appearing
in Fig. 1(b) as well as still another type of intersection
which also naturally appears through generalized flop
transition. In Sec. III, we compute (unrefined) Nekrasov
partition function for SU(2) Nf ¼ 0, 1 and Nf ¼ 8 flavors
based on the new formalism introduced in Sec. II, and
compare the obtained result with the known one. In
particular, the case with Nf ¼ 8 flavors corresponds to
the E-string partition function. We then conclude with
summary and future directions.

II. FORMALISM

In this section, we propose new rules for computing
topological string partition function that involves a brane
configuration with an O5-plane, in addition to the conven-
tional (unrefined) topological vertex formalism. For nota-
tions, we follow [34] mostly.
According to the topological vertex formalism [1], the

topological string partition function can be computed
systematically based on the ðp; qÞ 5-brane web diagram
as follows: First, we assign different Young diagrams
λ; μ; ν; � � � to different edges in the web diagram. Then,
we introduce the edge factor ð−QÞjλjfλn to each edge,
where λ is the Young diagram assigned to the considered
edge, and the vertex factor Cλμν is assigned to each vertex,
where λ, μ, ν are the Young diagrams assigned to the three
edges sharing the vertex we consider. The Young diagrams
in the edge factor are ordered in a clockwise way [35].
Here, Q is the exponentiated length of the 5-branes, which
corresponds to the Kähler parameter of the corresponding
toric Calabi-Yau geometry. The framing factor fλ [37] is a
specific function of g ¼ e−βϵ, with ϵ being the self-dual
Ω-deformation parameter ϵ≡ ϵ1 ¼ −ϵ2. The power n is
fixed by the ðp; qÞ charge of the adjacent 5-branes.
See, e.g., [34] for detailed explicit expressions. Finally,
Cλμν is the (unrefined) topological vertex defined in [1],
which is a specific function of g written in terms of the
skew Schur functions [38]. Then the topological string
partition function can be computed by multiplying
these factors and summing over all possible Young
diagrams as

Z ¼
X
λ;μ;ν���

Y
ðEdge factorÞ ·

Y
ðVertex factorÞ: ð1Þ

When we have an O5-plane, we need new rules for the
part where 5-branes are intersected with an O5-plane. Let
us consider a configuration where the ðp;−1Þ 5-brane and
ð−p;−1Þ 5-brane intersect on the O5−-plane as depicted in
Fig. 2, where p is either p ¼ 0 or p ¼ 1. The configura-
tions for both p ¼ 0 and p ¼ 1 naturally appear as a
consequence of the generalized flop transition discussed in
[19]. Note that the case p ¼ 0 corresponds to the two
coincident NS5-branes attached to an O5-plane. The Kähler
parameters associated with the ðp;−1Þ and ð−p;−1Þ 5-
branes are Q1 and Q2, respectively.
For a ðp; qÞ 5-brane web with an O5-plane like Fig. 2,

we now introduce the following new rule for the topologi-
cal vertex computations:

(i) Assign identical Young diagram Y to both the
ðp;−1Þ 5-brane and the ð−p;−1Þ 5-brane as in
Fig. 2(a).

(ii) Introduce the new type of edge factor,

ðþQ1Q2ÞjYjfnYðgÞ; ð2Þ

for the configuration including the edges corre-
sponding to ðp;−1Þ and ð−p;−1Þ 5-branes, where

n ¼ ðp2;−q2Þ ∧ ðp1; q1Þ þ 1 ¼ p1q2 þ p2q1 þ 1:

ð3Þ

Equipped with these two new rules, we claim that the
topological string partition function can be computed in the
same way as in (1) even if the 5-brane web diagram
includes O5-planes.
These new rules would be more intuitive when we see

the brane configuration from the point of view of the
covering space which includes the reflected images due to
an O5-plane. Namely, the configuration in Fig. 2(a) can be
naturally connect to the reflected 5-branes as shown in
Fig. 2(b). The resulting configuration then look a single
edge, and it is therefore natural to assign the identical

(b)(a)

FIG. 2. (a) New rule for topological vertex formalism including
an O5-plane. (b) Interpretation of the rule in terms of the reflected
image by an O5-plane.
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Young diagram Y. The new edge factor in (2) is also
analogous to the conventional edge factor.
We note, however, that the direction of arrows on the

edges are all inverted compared with naive expectation.
Also the þ sign appearing in (2) is different from the one
appearing in the conventional edge factor. Furthermore,þ1
is added to the power of the framing factor compared with
the naive expectation from Fig. 2(b).
All these subtle differences appear in the following

reason: If we compare the contribution coming from the
sub-diagram reflected due to anO5-plane to the original one,
we find that the order of Young diagrams in the topological
vertices should be reverse since the clockwise ordering is
converted to a counter-clockwise ordering when we reflect
the diagram along the O5-plane. From the identity,

Cλμν ¼ ð−1Þjλjþjμjþjνjf−1λ ðgÞf−1μ ðgÞf−1ν ðgÞCμtλtνt ; ð4Þ

we find that the reversal of the order of the Young diagram is
translated into the transposition of the Young diagram,
which is equivalent to changing the direction of the arrow.
Also, the prefactors in (4) account for the þ sign in (2) as
well as þ1 in (3). This reflection technique is useful for
practical computations.

III. COMPUTATION

In this section, we apply our proposal for the topological
vertex method for a brane configuration with an O5-plane
to a few specific well known examples: five-dimensional
Sp(1) theory with Nf ¼ 0, 1 and Nf ¼ 8 flavors. More
specifically, we compute the BPS partition function of the
five-dimensional Sp(1) theory and test our method by
comparing our obtained result with the well-known
SU(2) theory result.

A. Nf = 0 case

Consider five-dimensional pure Sp(1) theory with the
discrete theta angle θ ¼ 0 (mod 2π) whose brane configu-
ration is given in Fig. 3 [19]. Following the computation
procedure in Sec. II based on Fig. 3(a), we obtain the
partition function as

ZO5
0 ¼

X
μ1;μ2

ð−QB1
Þjμ1jf−5μ1 ð−QB2

Þjμ1jf3μ2

×
X
λ

ðQB2
ÞjλjfλZred

μ1μ2λ
Zgreen
μ1μ2λ

; ð5Þ

where we glued the red strip and the green strip in Fig. 3,
defined as

Zred
μ1μ2λ

¼
X
λ1

ð−QFÞjλ1jfλ1Cλt
1
∅μt

1
Cλλ1μ2 ; ð6Þ

Zgreen
μ1μ2λ

¼
X
λ3

ð−QFÞjλ3jfλ3C∅λ3μ
t
1
Cλt

3
λμt

2
: ð7Þ

Instead of computing (5) directly, we implement the
reflection technique introduced in the previous section,
which is more convenient and systematic. First we use the
identity (4) to re-express the red and green strips as a single
strip as in Fig. 3(b), which involves the summation over λ in
(5). We denote the resultant strip by Zstrip

μ1μ2. The full partition
function is then written as

ZO5
0 ¼

X
μ1;μ2

ðQB1
Þjμ1jf−6μ1 ðQB2

Þjμ2jf4μ2Zstrip
μ1μ2 : ð8Þ

Notice that Zstrip
μ1μ2 is nothing but a conventional strip

diagram contribution which is already discussed in [39],
and it is straightforward to compute

Zstrip
μ1μ2 ¼ ~Z2

μ1
~Z2
μ2g

jjμt
1
jj2þjjμ2jj2

×
Rμ2μ2ðQB2

ÞRμt
1
μ2ðQFQB2

Þ2Rμt
1
μt
1
ðQ2

FQB2
Þ

Rμt
2
μt
1
ðQFÞ2

; ð9Þ

where we defined [40]

~ZνðgÞ ¼
Y

ði;jÞ∈ν

1

1 − gνiþνtj−i−jþ1
; ð10Þ

RλμðQÞ ¼
Y∞
i;j¼1

ð1 −Qgiþj−μi−λj−1Þ: ð11Þ

Here, the Kähler parameters in Fig. 3 are related to the
Coulomb modulus A ¼ e−βa and the instanton factor q as
follows:

QF ¼ A2; QB1
¼ qA6; QB2

¼ qA−2: ð12Þ

We then expand the partition function (8) in terms of q to
compare it with the known results [34,41]. We checked
their agreement up to 10 instanton orders.

(b)(a)

FIG. 3. (a) Nf ¼ 0 case where physical parameters are ex-
pressed in accordance with the SU(2) parametrization: QF ¼ A2

accounts the Coulomb branch modulus, while QB2
QF ¼ q

accounts for the instanton factor, and they satisfy QB1
¼

QB2
Q4

F. (b) A partial brane configuration connected to the
reflected image by an O5-plane.
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B. Nf = 1 case

Adding a flavor D5-brane to the brane configuration is
straightforward. As a representing example, we discuss the
Nf ¼ 1 case based on Fig. 4, which includes the configu-
ration in Fig. 2 with p ¼ 0. We note that depending on the
region of the mass parameter, one can also use a diagram
with the configuration in Fig. 2 with p ¼ 1. Although the
cases of p ¼ 0 and p ¼ 1 may look different at first sight,
one can easily check that either case gives the same strip
when we separate and glue the half of the diagram to obtain
Fig. 4(b) [19]. The only difference is either the flavor brane
is placed above or below the position of the O5-plane,
which does not change the computation at all.
Repeating the procedure explained in the previous

subsection, one readily obtains the partition function for
the Nf ¼ 1 case,

ZO5
1 ¼

X
μ;ν

ð−QBÞjμjð−Q2Þjνj

×g
5
2
jjμjj2−3

2
jjμtjj2−1

2
jjνjj2þ3

2
jjνtjj2 ~Z2

μ
~Z2
ν

×R∅νðQ3ÞRννðQ23ÞR∅μtðQ13ÞRμtνðQ123Þ2RμtμtðQ1123Þ
×RμtνtðQ1Þ−2Rν∅ðQ2Þ−1Rμt∅ðQ12Þ−1; ð13Þ

where we used a shorthand nation for Kähler parameters,
Qijk��� ¼ QiQjQkQ���. The relation between the Kähler
parameters and the gauge theory parameters is given as
follows,

Q1 ¼ A2; Q2 ¼
q

AM
1
2

;

Q3 ¼
M
A
; QB ¼ qA5

M
1
2

; ð14Þ

where A is the Coulomb modulus, M ¼ e−βm is the mass
parameter, and q is the instanton factor. Again, by expand-
ing (13) in terms of q, we checked our method. Our
partition function (13) agrees with the known result [34,41]
up to 10 instantons, where we used the flop transitions in
the perturbative part. In a similar fashion, the partition
functions for the Nf ¼ 2;…; 7 cases can be straightfor-
wardly computed.

C. Nf = 8 case: E-string theory

We now consider the Nf ¼ 8 case which would serve
as a nontrivial test for our method. The five-dimensional
SU(2) theory with Nf ¼ 8 flavors is special in the sense
that its UV fixed point exists in six dimensions. It is in
fact six-dimensional E-string theory compactified on a
circle whose partition function or elliptic genus was
recently computed in [42–45]. It is known that the Nf ¼
8 case can be realized by two fractional NS5-branes on an
O6−-plane in Type IIA setup, whose T-dual picture is
Type IIB ðp; qÞ 5-brane web with two O5-planes as
depicted in Fig. 5.
As two O5-planes are required in Fig. 5, the covering

space for ðp; qÞ 5-brane with O5-planes is periodic as
shown in Fig. 5, where the periodicity is given by the
instanton factor squared q2. The periodic strip diagram
appearing in Fig. 5 is exactly the one computed in the
context of M-string [46–49] but with specific tuning of the
Kähler parameters due to the O5-planes. For the periodic
strip, we replace RμνðQÞ by its infinite product,

ΘμνðQÞ≡Y∞
n¼0

RμνðQq2nÞRμtνtðQ−1q2nþ2Þ; ð15Þ

which yields the topological string partition function for
five-dimensional SU(2) gauge thoery with Nf ¼ 8 flavors,

(b)(a)

FIG. 4. (a) A Nf ¼ 1 configuration with an O5−-plane. (b) A
brane configuration connected by a reflected image by an
O5-plane.

FIG. 5. A periodic ðp; qÞ brane configuration with two O5-
planes for Sp(1) theory with Nf ¼ 8 flavors, where the perio-
dicity is given as the instanton factor squared q2. The Kähler
parameters can be easily read off from the positions xI , yi, for
instance, QB1

¼ q2x−21 and QB2
¼ x22. Each D5-brane in the

middle associated with Young diagrams μ1 and μ2 is glued,
respectively.
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ZO5
8 ¼

X
μ1;μ2

�
q2x2
x31

�jμ1j�Q8
i¼1 yi
x1x52

�jμ2j
f−4μ1 f

−4
μ2

×
Y2
I¼1

�Y8
i¼1

ΘμI∅ðxIy−1i Þ
ΘμI∅ðxIyiÞ

Y2
J¼1

ΘμIμJðxIxJÞ
ΘμIμ

t
J
ðxIx−1J Þ

�
; ð16Þ

where xI, yi are the labels of the location on the ðp; qÞ web
diagram with two O5-planes in Fig. 5. Here, we used the
analytic continuation corresponding to the flop transition:

ΘμνðQÞ → QjμjþjνjfμfνΘμtνtðQ−1Þ: ð17Þ
The parametrization is given by

x1 ¼ ΛA; x2 ¼ ΛA−1; yi ¼ ΛMi; ð18Þ

where Mi ¼ e−βmi are eight mass parameters and Λ≡
q
1
2

Q
8
i¼1M

−1
4

i [50]. We have dropped the factors like
Θ∅∅ðy�1

i y�1
j Þ, which do not depend on the Coulomb

modulus A, as they are part of the “extra factor”
[6,34,42,51]. Taking into account the extra factors as well
as allowing the flop transitions in the perturbative part [52],
we found that our result (16) is in agreement with the
known partition function [45]. Our proposal hence provides
a new, yet simple, expression forR4 × T2 partition function
of six-dimensional E-string theory.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed a way to implement the
topological vertex formulation for (p, q) 5-brane configu-
rations with an O5-plane. The key idea is that, based on a
special phase of the brane configuration where 5-branes
stuck on an O5-plane meet at a point on the O5-plane, we
assign an identical Young diagram to two such 5-branes
and introduce the new edge factor (2) corresponding to
such 5-brane configuration.
To test our proposal, we considered 5-brane webs for the

five-dimensional Sp(1) theory with Nf ¼ 0, 1 flavors,
compared the partition functions computed based on our
proposal with the known SU(2) partition functions. For each
case, we checked these two partition functions by expanding
them in terms of the instanton factor, and found that they do
agree up to 10-instanton order. Another nontrivial check we
did is the five-dimensional Sp(1) theory with Nf ¼ 8

flavors. As it is six-dimensional E-string theory on a circle,
the brane configuration consists of twoO5-planes and hence
naturally shows periodic structure. We found that our
partition function for the Nf ¼ 8 case also agrees with
the known E-string elliptic genus partition function.
It is feasible to apply our method to higher rank SpðNÞ

gauge theory which then gives rise to the dual SUðN þ 1Þ
theory and, hence, confirm the duality [31] between two
theories in a more manifest way.
Our formalism is also valid even for the S-dual descrip-

tions of ðp; qÞ 5-brane configuration with an O5-plane,
which lead to the 5-brane web with an ON-plane
[18,22,53]. In particular, the web diagram proposed in
[22] as the “microscopic” description of an ON0-plane,
which is used to construct D-type quiver gauge theories, is
exactly the S-dual of the case p ¼ 0 in Fig. 2. Therefore, it
should be straightforward to reproduce the (unrefined)
Nekrasov partition function for D-type quiver gauge
theories using our proposal [54].
Our proposal may enable one to compute various

topological string partition computations where the conven-
tional topological vertex method is not applicable, such as
five-dimensional SOðMÞ gauge theories with hypermultip-
lets in vector as well as spinor representations [56] based on
the web diagram proposed in [18].
Finally, it would be useful to extend our method to the

refined topological vertex, as the computations in this paper
are done based on an unrefined version of topological
vertex formulation.
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