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We investigate, in the framework of the linearized quantum gravity and the leading-order perturbation
theory, the quantum correction to the classical Newtonian interaction between a pair of gravitationally
polarizable objects in the presence of both Neumann and Dirichlet boundaries. We obtain general results for
the interaction potential and find that the presence of a boundary always strengthens in the leading order the
interaction as compared with the case in absence of boundaries. But different boundaries yield a different
degree of strengthening. In the limit when one partner of the pair is placed very close to the Neumann
boundary, the interaction potential is larger when the pair is parallel with the boundary than when it is
perpendicular to it, which is just opposite to the case when the boundary is Dirichlet where the latter is
larger than the former. In addition, we find that the pair-boundary separation dependence of the higher-
order correction term is determined by the orientation of the pair with respect to boundary, with the parallel
case giving a quadratic behavior and the perpendicular case a linear one.
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I. INTRODUCTION

The classical Newtonian theory of gravity tells us that the
interaction potential of two massive objects behaves as r−1

with r being the separation between them. This interaction is
expected to be modified if gravity is quantized. However, a
complete study of quantum corrections to the classical
Newtonian interactions requires a full theory of quantum
gravity which is elusive at the present. Even though,
quantum gravity effects at the low energies can however
be analyzed by treating the general relativity as an effective
field theory or in the framework of linearized quantum
gravity. For example, by summing one-loop Feynman
diagrams with off-shell gravitons, it has been found that
the monopole-monopole interaction provides a quantum
correction, which behaves as r−3, to the Newtonian force [1].
A direct consequence of quantization of gravity is

the appearance of quantum vacuum fluctuations of gravita-
tional fields, i.e., fluctuations of spacetime itself. These
fluctuations are expected to induce instantaneous quadrupole
moments in gravitationally polarizable objects. As a result,
the induced quadrupole-quadrupole interaction produces a
quantum correction to the classical Newtonian interaction,
which has been studied in different contexts [2–4]. The
quantum potential between gravitational quadrupoles is
found to behave as r−11 and r−10 in the far and near regimes
respectively. Recently, the quadruple-quadruple interaction

was extended to include the contribution of fluctuations of
thermal gravitons at finite temperature [5]. In the high-
temperature limit, the potential behaves like T=r−10; thus,
the thermal fluctuations of gravitons produce a dominant
contribution, while in the low-temperature limit, the zero-
point fluctuations dominate the interaction and the thermal
fluctuations only generate a small correction.
It is well known that field modes will be changed when

boundaries are present [6–8], which leads to modifications
of vacuum fluctuations. Changes in vacuum fluctuations
can produce observable effects. The Casimir-Polder poten-
tial [9] between two neutral atoms near a perfectly
conducting plate is an example of such effects that arise
from the changes of vacuum modes of electromagnetic
fields [10–12]. In the case of gravitation, one also finds that
interesting effects appear when boundaries are present; for
example, light cone fluctuations are modified [13–16],
which leads to flight time fluctuations of a probe light
signal from its source to a detector [17].
In this paper, we shall examine the impact of plane

boundaries on the induced quadrupole-quadrupole inter-
action between a pair of gravitationally polarizable objects
in vacuum. Our approach is based upon the leading-order
perturbation theory in the framework of linearized quantum
gravity [13], which has been used to investigate quantum
gravitational corrections in [4,5]. Throughout this paper,
the latin indices run from 0 to 3, while the greek letter is
from 1 to 3. The Einstein convention is assumed for
repeated indices and ℏ ¼ c ¼ kB ¼ 1 is set. Here, c is*pxwu@hunnu.edu.cn
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the light speed, ℏ is the reduced Planck constant, and kB is
the Boltzmann constant.

II. BASIC EQUATIONS

The system, which is shown in Fig. 1, consists of
two gravitationally polarizable objects (A and B) in a
bath of fluctuating quantum vacuum gravitational fields
with a plane boundary at z ¼ 0. For simplicity, we
assume A and B to be described by two-level harmonic
oscillators with their Hamiltonians being HAðBÞ ¼
E0
AðBÞj0AðBÞih0AðBÞj þ E1

AðBÞj1AðBÞih1AðBÞj. For this system,
the total Hamiltonian can be written as

H ¼ HF þHA þHB þHAF þHBF; ð1Þ

where HF is the Hamiltonian of gravitational fields and

HAðBÞF ¼ −
1

2
Qij

AðBÞEij ð2Þ

represents the interactions between the objects and gravi-
tational fields. Here Qij is the object’s quadrupole moment
induced by the gravitational vacuum fluctuations and the
gravito-electric tensor Eij is defined as Eij ¼ R0i0j by
analogy of linearized Einstein field equation with the
Maxwell equations [18], where Rμναβ is the Riemann tensor
defined in terms of the metric tensor. A fluctuating metric
tensor can be expanded in a flat background spacetime as
gμν ¼ ημν þ hμν with hμν being the linearized perturbations
which can be quantized as [13]

hijðx; tÞ ¼
X
k;λ

½aλðω;xÞfλij;k þ H:c:�; ð3Þ

where H.c. denotes the Hermitian conjugate, k ¼ fk1;
k2; k3g, x ¼ fx; y; zg, aλðω;xÞ is the gravitational field
operator, which defines the vacuum aλðω;xÞjf0gi ¼ 0,
ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ k23

p
, λ labels the polarization states, and

fλij;kðx; tÞ is the field mode. Substituting the metric tensor
into the Riemann tensor gives

Eij ¼
1

2
ḧij; ð4Þ

where a dot denotes a derivative with respect to time t.
Using the leading-order perturbation theory, we find that

the interaction potential between two objects, which is just
the shift of the ground-state energy, arises from fourth-
order perturbations [9,11,19] and can be expressed as

UABðxA;xBÞ

¼ −
X0

I;II;III

h0jĤAF þ ĤBFjIjhIjĤAF þ ĤBFjIIi
ðEI − E0ÞðEII − E0Þ

×
hIIjĤAF þ ĤBFjIIIihIIIjĤAF þ ĤBFj0i

ðEIII − E0Þ
; ð5Þ

where j0i ¼ j0Aij0Bijf0gi is the ground state of the whole
system, which is omitted in the summation as indicated by a
prime, and the summation includes position and frequency
integrals. jIi, jIIi, and jIIIi are the intermediate states. In
Ref. [4] it has been shown that there are ten possible
combinations of intermediate states, which are listed in
Table I. Summingupall of them,weobtain that the interaction
potential for isotropically polarizable objects can be
expressed as

UABðxA;xBÞ ¼ −
1

4ðωA þ ωBÞ
Z

∞

0

dω
Z

∞

0

dω0 ~αA ~αBðωA þ ωB þ ωÞ
ðωA þ ωÞðωB þ ωÞ

�
1

ωþ ω0 −
1

ω − ω0

�
×Gijklðω;xA;xBÞGijklðω0;xA;xBÞ; ð6Þ

FIG. 1. The system consists of objects A and B in a flat
spacetime with a plane boundary at z ¼ 0.

TABLE I. Ten intermediate states contributing to the two-
objects potential.

Case jIi jIIi jIIIi
(1) j1A; 0Bij1ð1Þi j0A; 0Bij1ð2Þ; 1ð3Þi j0A; 1Bij1ð4Þi
(2) j1A; 0Bij1ð1Þi j1A; 1Bijf0gi j0A; 1Bij1ð2Þi
(3) j1A; 0Bij1ð1Þi j1A; 1Bijf0gi j1A; 0Bij1ð2Þi
(4) j1A; 0Bij1ð1Þi j1A; 1Bij1ð2Þ; 1ð3Þi j0A; 1Bij1ð4Þi
(5) j1A; 0Bij1ð1Þi j1A; 1Bij1ð2Þ; 1ð3Þi j1A; 0Bij1ð4Þi
(6) j0A; 1Bij1ð1Þi j0A; 0Bij1ð2Þ; 1ð3Þi j1A; 0Bij1ð4Þi
(7) j0A; 1Bij1ð1Þi j1A; 1Bijf0gi j1A; 0Bij1ð2Þi
(8) j0A; 1Bij1ð1Þi j1A; 1Bijf0gi j0A; 1Bij1ð2Þi
(9) j0A; 1Bij1ð1Þi j1A; 1Bij1ð2Þ; 1ð3Þi j1A; 0Bij1ð4Þi
(10) j0A; 1Bij1ð1Þi j1A; 1Bij1ð2Þ; 1ð3Þi j0A; 1Bij1ð4Þi
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where ωAðBÞ ¼ ðω1
AðBÞ − ω0

AðBÞÞ with ω1
AðBÞ ¼ E1

AðBÞ and
ω0
AðBÞ ¼ E0

AðBÞ represents the transition frequency of

the object, ~αAðBÞ ≡ ~Qij
AðBÞ ~Q

�ij
AðBÞ ¼ j ~Qij

AðBÞj2 with ~Qij
AðBÞ ¼

h0AðBÞjQij
AðBÞj1AðBÞi and ~Q�ij

AðBÞ ¼ h1AðBÞjQij
AðBÞj0AðBÞi, and

Gijklðω;xA;xBÞ is the two-point correlation function of
gravitoelectric fields

Gijklðω;xA;xBÞ ¼ h0jEijðω;xAÞEklðω;xBÞj0i: ð7Þ

III. NEUMANN BOUNDARY CONDITION

Now we consider what happens to the potential when
a Neumann boundary is present. For metric perturba-
tions which satisfy the Neumann boundary condition
∂zfλij;kjz¼0 ¼ 0, the field mode fλij;k can be expressed as

fλij;kðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πG

2ωð2πÞ3
s

× ½eijðk; λÞeiðk·x−ωtÞ þ eijðk−; λÞeiðk−·x−ωtÞ�
ð8Þ

in the transverse tracefree (TT) gauge with eijðk; λÞ being
polarization tensors. Here

k− ¼ fk1; k2;−k3g;

and G is the Newton’s gravitational constant.
From Eqs. (3), (4), (7), and (8), one finds that the two-

point correlation function of Eij has the form

Gijklðr; r̄;ΔtÞ ¼
1

4
h0jḧijðx; tÞḧklðx0; t0Þj0i

¼ G
8π2

Z
d3kω3eiωΔt

X
λ

½eijðk; λÞeklðk; λÞeik·r þ eijðk; λÞeklðk−; λÞeik·r̄

þ eijðk−; λÞeklðk; λÞeik−·r̄ þ eijðk−; λÞeklðk−; λÞeik−·r�: ð9Þ
Here r ¼ jrj, r̄ ¼ jr̄j, and

r ¼ fx − x0; y − y0; z − z0g; r̄ ¼ fx − x0; y − y0; zþ z0g: ð10Þ
In the TT gauge, the summation of polarization tensors gives [13]X

λ

eijðk; λÞeklðk0; λÞ ¼ δikδjl þ δilδjk − δijδkl þ k̂ik̂jk̂
0
kk̂

0
l þ k̂ik̂jδkl

þ k̂0kk̂
0
lδij − k̂ik̂

0
lδjk − k̂ik̂

0
kδjl − k̂jk̂

0
lδik − k̂jk̂

0
kδil; ð11Þ

where

k̂i ¼
ki
ω
: ð12Þ

From this summation of polarization tensors, we can obtain the two following relations:

X
λ

eijðk; λÞeklðk; λÞeik·r ¼
1

ω4
½ðδikδjl þ δilδjk − δijδklÞ∇4 þ ð∂i∂jδkl þ ∂k∂lδij

− ∂i∂lδjk − ∂i∂kδjl − ∂j∂lδik − ∂j∂kδilÞ∇2 þ ∂i∂j∂k∂l�eik·r

≡ 1

ω4
ĝrijkle

ik·r; ð13Þ

and

X
λ

eijðk; λÞeklðk−; λÞeik·r̄ ¼ 1

ω4
σkmσln½ðδimδjn þ δinδjm − δijδmnÞ∇4 þ ð∂i∂jδmn þ ∂m∂nδij

− ∂i∂nδjm − ∂i∂mδjn − ∂j∂nδim − ∂j∂mδinÞ∇2 þ ∂i∂j∂m∂n�eik·r̄

≡ 1

ω4
σkmσlnĝr̄ijmne

ik·r̄; ð14Þ
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where ĝrijkl is a differential operator whose definition straightforwardly follows from Eq. (13), σ ¼ ff1; 0; 0g;
f0; 1; 0g; f0; 0;−1gg, ∇2 ¼ ∂i∂i, and ∂i ¼ ∂xi . Substituting Eqs. (13) and (14) into Eq. (9) and performing the Fourier
transform, one has

Gijklðr; r̄;ωÞ ¼
G
4π2

Z
dΩω½ĝrijkleiωr cos θ þ σkmσlnĝr̄ijmne

iωr̄ cos θ�

¼ G
π

�
ĝrijkl

sinðωrÞ
r

þ σkmσlnĝr̄ijmn
sinðωr̄Þ

r̄

�
; ð15Þ

where Ω is the solid angle, and the relation

Z
dΩeik·r ¼

Z
π

0

sin θdθ
Z

2π

0

dϕeiωr cos θ ¼ 4π
sinðωrÞ
ωr

ð16Þ

has been used. Substituting Eq. (15) into Eq. (6) gives

UABðr; r̄Þ ¼ −
G2

4π2ðωA þ ωBÞ
Z

∞

0

dω
Z

∞

0

dω0 ~αA ~αBðωA þ ωB þ ωÞ
ðωA þ ωÞðωB þ ωÞ

�
1

ωþ ω0 −
1

ω − ω0

�

×

�
ĝrijkl

sinðωrÞ
r

þ σkmσlnĝr̄ijmn
sinðωr̄Þ

r̄

�

×
�
ĝ~rijkl

sinðω0 ~rÞ
~r

þ σkm0σln0 ĝ
~̄r
ijm0n0

sinðω0 ~̄rÞ
~̄r

�
j~r→r; ~̄r→r̄: ð17Þ

Defining yðr; r0Þ to be

yðr; r0Þ ¼ 1

ðωA þ ωBÞ
Z

∞

0

dω
Z

∞

0

dω0 ~αA ~αBðωA þ ωB þ ωÞ
ðωA þ ωÞðωB þ ωÞ

�
1

ωþ ω0 þ
1

−ωþ ω0

�

×
sinðωrÞ

r
sinðω0r0Þ

r0

¼ 1

ðωA þ ωBÞ
Z

∞

0

dω
sinðωrÞ

r

Z
∞

−∞
dω0 ~αA ~αBðωA þ ωB þ ωÞ

ðωA þ ωÞðωB þ ωÞ

×
�

1

ωþ ω0 þ
1

−ωþ ω0

�
eiω

0r0

2ir0

¼ π

ðωA þ ωBÞ
Z

∞

0

dω
~αA ~αBðωA þ ωB þ ωÞ
ðωA þ ωÞðωB þ ωÞ

sinðωrÞ cosðωr0Þ
rr0

; ð18Þ

and following an analogy with the electric polarizability of atoms [20] to define the object’s ground-state polariza-
bility as

αAðBÞðωÞ ¼ lim
ϵ→0þ

~αAðBÞωAðBÞ
ω2
AðBÞ − ω2 − iϵω

; ð19Þ

which satisfies QijðωÞ ¼ αðωÞEijðω;xÞ, one can obtain that

yðr; r0Þ ¼ π

2
αAð0ÞαBð0Þ

1

rr0ðrþ r0Þ ; ð20Þ

when r0 → r, and when r ≠ r0

yðr; r0Þ ¼ π

2
αAð0ÞαBð0Þ

�
1

rr0ðrþ r0Þ þ
1

rr0ðr − r0Þ
�
; ð21Þ
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where the approximate static polarizability has been assumed. Then, Eq. (17) can be re-expressed as

UABðr; r̄Þ ¼ −
G2

8π
αAð0ÞαBð0Þ

�
ĝrijklĝ

~r
ijkl

1

r~rðrþ ~rÞ þ σkmσlnĝrijklĝ
r̄
ijmn

1

rr̄ðrþ r̄Þ

þ σkmσlnĝr̄ijmnĝ
r
ijkl

1

rr̄ðr̄þ rÞ þ ĝr̄ijklĝ
~̄r
ijkl

1

r̄ ~̄rðr̄þ ~̄rÞ

�
j~r→r; ~̄r→r̄: ð22Þ

Here σkmσlm ¼ δkl has been used.
After lengthy calculations, one can arrive at the interaction potential

UABðr; r̄Þ ¼ −
G2

4π
αAð0ÞαBð0Þ

�
3987

r11
þ 3987

r̄11
þ 144

r5r̄5ðrþ r̄Þ9 ½Aþ Br4 cos 4θ

þ 4Cr2 cos 2θ þ 12Br2r̄2 cos 2θ cos 2θ̄ þ 4C̄r̄2 cos 2θ̄ þ Br̄4 cos 4θ̄�
�
; ð23Þ

where

A ¼ 9ðr8 þ 9r7r̄þ 37r6r̄2 þ 93r5r̄3 þ 198r4r̄4 þ 93r3r̄5 þ 37r2r̄6 þ 9rr̄7 þ r̄8Þ;
B ¼ 3r4 þ 27r3r̄þ 83r2r̄2 þ 27rr̄3 þ 3r̄4;

C ¼ −3r6 − 27r5r̄ − 100r4r̄2 − 180r3r̄3 þ 60r2r̄4 þ 27rr̄5 þ 3r̄6;

C̄ ¼ −3r̄6 − 27rr̄5 − 100r2r̄4 − 180r3r̄3 þ 60r4r̄2 þ 27r5r̄þ 3r6: ð24Þ

Here θ and θ̄ are the angles of r and r̄ with respect to the
normal direction of the plane boundary, respectively. The
potential includes three terms: the usual r−11 interaction
potential between two objects in the absence of the plane
boundary [2,4], the r̄−11 term which is the interaction
between the object A, and the image of object B reflected
by the plane boundary, and the remaining term depending
on both r and r̄.

A. Two special cases

Now we analyze the interaction potential in some special
circumstances. The first special case is that two objects are
placed in parallel with the plane boundary (z − z0 ¼ 0),
which means that θ ¼ π

2
, θ̄ ¼ cos−1 2z

r̄ , and r̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4z2

p
.

When the two-object system is close to the boundary, i.e.,
when z ≪ r (r ∼ r̄), we find that

UABðrÞ ¼ −
G2

4π
αAð0ÞαBð0Þ

�
10242

r11
− 119790

z2

r13

�
: ð25Þ

It is easy to see that the boundary increases the potential
about 2.6 times in the leading order since the coefficient in
the case of flat spacetime without boundary is 3987
although the boundary does not change the behavior of
r dependence. The boundary also gives a negative higher-
order correction term, which is dependent on z2.
Now we consider that two objects are placed perpen-

dicular to the boundary. Then, one has θ ¼ θ̄ ¼ 0 and
r̄ ¼ rþ 2z. In the limit of z ≪ r, the potential becomes

UABðrÞ ¼ −
G2

4π
αAð0ÞαBð0Þ

�
9252

r11
− 101772

z
r12

�
; ð26Þ

which is, in the leading order, about 2.3 times that in the
absence of the plane boundary, and is less than that in the
parallel case. In addition, we find that the higher-order z-
dependent correction term is different from that in the
parallel case which relies on z2.

IV. DIRICHLET BOUNDARY CONDITION

For the Dirichlet boundary condition, the field mode
satisfies fλij;kjz¼0 ¼ 0 and thus can be written as

fλij;kðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πG

2ωð2πÞ3
s

1

i

× ½eijðk; λÞeiðk·x−ωtÞ − eijðk−; λÞeiðk−·x−ωtÞ�
ð27Þ

in the TT gauge. From the above equation, one can show
that the two-point correlation function defined in (7)
becomes

Gijklðr; r̄;ωÞ

¼ −
G
4π2

Z
dΩω½ĝrijkleiωr cos θ − σkmσlnĝr̄ijmne

iωr̄ cos θ�

¼ −
G
π

�
ĝrijkl

sinðωrÞ
r

− σkmσlnĝr̄ijmn
sinðωr̄Þ

r̄

�
ð28Þ
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and then the interaction potential reads

UABðr; r̄Þ ¼ −
G2

8π
αAð0ÞαBð0Þ

�
ĝrijklĝ

~r
ijkl

1

r~rðrþ ~rÞ − σkmσlnĝrijklĝ
r̄
ijmn

1

rr̄ðrþ r̄Þ

− σkmσlnĝr̄ijmnĝ
r
ijkl

1

rr̄ðr̄þ rÞ þ ĝr̄ijklĝ
~̄r
ijkl

1

r̄ ~̄rðr̄þ ~̄rÞ

�
j~r→r; ~̄r→r̄: ð29Þ

Following the same procedure as in the preceding section, we get that in the case of the Dirichlet boundary the interaction
potential is

UABðr; r̄Þ ¼ −
G2

4π
αAð0ÞαBð0Þ

�
3987

r11
þ 3987

r̄11
−

144

r5r̄5ðrþ r̄Þ9 ½Aþ Br4 cos 4θ

þ 4Cr2 cos 2θ þ 12Br2r̄2 cos 2θ cos 2θ̄ þ 4C̄r̄2 cos 2θ̄ þ Br̄4 cos 4θ̄�
�
; ð30Þ

with A, B, C, and C̄ being given in Eq. (24). This result is
less than the one obtained in the Neumann boundary since
the third term is subtracted in the Dirichlet boundary while
it is added in the Neumann boundary, which indicates that
different boundary conditions lead to different interaction
potentials between two massive objects.

A. Two special cases

For the special case of two objects placed in parallel with
the plane boundary, we take the limit of z ≪ r and obtain

UABðrÞ ¼ −
G2

4π
αAð0ÞαBð0Þ

�
5706

r11
− 55638

z2

r13

�
: ð31Þ

Thus, a Dirichlet boundary also reinforces the interaction,
but it increases only about 1.4 times compared with the case
without boundary, which is less than that in the case of a
Neumann boundary. Another noteworthy difference is that
the higher-order correction term is also less than that in the
Neumann boundary case.
If objects A and B are placed in perpendicular to the

plane boundary, we obtain

UABðrÞ ¼ −
G2

4π
αAð0ÞαBð0Þ

�
6696

r11
− 73656

z
r12

�
ð32Þ

in the limit of z ≪ r, which is about 1.7 times that in the
absence of the plane boundary and is less than that from the
Neumann boundary. Comparing Eqs. (31) and (32) reveals
that the leading term in the potential is larger when the pair
of the objects is perpendicularly placed than when it is in
parallel with the boundary, which is different from the
Neumann boundary case where the former is less than the
latter. Similar to the Neumann boundary case, the z
dependence of the higher-order correction term in the
present case is also different from that of the parallel case.

V. CONCLUSION

In this paper, we have investigated the quantum correc-
tion to the classical Newtonian force between a pair of
polarizable objects in the presence of plane boundaries in
the framework of the linearized quantum gravity and the
leading-order perturbation theory. Two kinds of boundary
conditions, i.e., Neumann and Dirichlet, are imposed. The
general results are given in Eqs. (23) and (30). In both
cases, the potentials consist of three terms, i.e., the usual
r−11-dependent interaction potential between two objects in
the absence of the plane boundary where r is the separation
of the two objects, the r̄−11 term which is the interaction
between the object A and the image of object B reflected by
the plane boundary where r̄ is the distance between the
object A and the image of object B, and the term depending
on both r and r̄. Different boundary conditions in general
lead to different interaction potentials, with the Neumann
boundary yielding a larger interaction than the Dirichlet
boundary.
When one partner of the pair is placed very close to the

boundary (z ≪ r), where z is the distance between the
boundary and the closer partner, we find, for both special
cases, i.e., the pair is in parallel with or perpendicular to the
plane boundary, that the boundary strengthens the inter-
action potential as compared with the case in the absence of
a boundary. In the Neumann boundary case, the potential in
the parallel case is larger than that of the perpendicular
case, which is just opposite to the Dirichlet boundary case
where the latter is larger than the former. In addition, we
find that the sign of the higher-order correction term is
negative and the pair-boundary separation dependence of
the correction is determined by the orientation of the object
pair, with the parallel case and the perpendicular case
giving a quadratic and a linear correction, respectively.
Finally, let us briefly comment on the issue of how to

realize the boundary conditions considered in this paper in
some specific physical setups. It is well known that
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ordinary materials can hardly reflect nor absorb gravita-
tional waves [21], and thus the reflection coefficient for
gravitational waves will be extremely small. However,
recently, there have been interesting speculations that
quantum matter such as superconducting films might
behave like highly reflective mirrors that realize the
Dirichlet boundary condition for gravitational waves, since
the incident gravitational waves may be reflected effec-
tively due to the so-called Heisenberg-Coulomb effect [22].

As for the Neumann boundary condition, we do not know
of any specific physical setup that can realize it. So, at
present, it only remains as a theoretical curiosity.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under Grants No. 11775077,
No. 11435006, No. 11690034, and No. 11375092.

[1] J. F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994); Phys. Rev.
D 50, 3874 (1994); H. W. Hamber and S. Liu, Phys. Lett. B
357, 51 (1995); I. B. Khriplovich and G. G. Kirilin, Zh.
Eksp. Teor. Fiz. 95, 1139 (2002) [J. Exp. Theor. Phys. 95, 981
(2002)]; N. E. J. Bjerrum-Bohr, J. F. Donoghue, and B. R.
Holstein, Phys. Rev. D 67, 084033 (2003); 71, 069903(E)
(2005).

[2] L. H. Ford, M. P. Hertzberg, and J. Karouby, Phys. Rev. Lett.
116, 151301 (2016).

[3] B. R. Holstein, J. Phys. G 44, 01LT01 (2017); arXiv:
1610.07957.

[4] P. Wu, J. Hu, and H. Yu, Phys. Lett. B 763, 40 (2016).
[5] P. Wu, J. Hu, and H. Yu, Phys. Rev. D 95, 104057

(2017).
[6] H. Khosravi and R. Loudon, Proc. R. Soc. London, Ser. A

433, 337 (1991).
[7] K. A. Milton, The Casimir Effect: Physical Manifestations

of Zero-Point Energy (World Scientific, Singapore, 2001).
[8] R. Weigand and J. M. Guerra, Eur. J. Phys. 18, 40

(1997).
[9] H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).

[10] E. A. Power and T. Thirunamachandran, Phys. Rev. A 25,
2473 (1982); J. Mahanty and B.W. Ninham, J. Phys. A 6,
1140 (1973).

[11] H. Safari, S. Y. Buhmann, D. G. Welsch, and H. T. Dung,
Phys. Rev. A 74, 042101 (2006).

[12] S. Spagnolo, R. Passante, and L. Rizzuto, Phys. Rev. A 73,
062117 (2006).

[13] H. Yu and L. H. Ford, Phys. Rev. D 60, 084023 (1999).
[14] H. Yu and L. H. Ford, Phys. Lett. B 496, 107 (2000).
[15] H. Yu, N. F. Svaiter, and L. H. Ford, Phys. Rev. D 80,

124019 (2009).
[16] H. Yu and P. Wu, Phys. Rev. D 68, 084019 (2003).
[17] L. H. Ford, Phys. Rev. D 51, 1692 (1995).
[18] W. B. Campbell and T. A. Morgan, Am. J. Phys. 44,

356 (1976); A. Matte, Can. J. Math. 5, 1 (1953); W.
Campbell and T. Morgan, Physica (Amsterdam) 53,
264 (1971); P. Szekeres, Ann. Phys. (N.Y.) 64, 599
(1971); R. Maartens and B. A. Bassett, Classical Quantum
Gravity 15, 705 (1998); M. L. Ruggiero and A. Tartaglia,
Nuovo Cimento B 117, 743 (2002); J. Ramos, M.
de Montigny, and F. Khanna, Gen. Relativ. Gravit. 42,
2403 (2010).

[19] S. Y. Buhmann, Dispersion Forces II (Springer Press,
New York, 2012).

[20] S. Y. Buhmann, Dispersion Forces I (Springer Press,
New York, 2012).

[21] L. Smolin, Gen. Relativ. Gravit. 17, 417 (1985).
[22] S. J. Minter, K. Wegter-McNelly, and R. Y. Chiao, Physica

42E, 234 (2010); R. Y. Chiao, J. S. Sharping, L. A. Martinez,
B. S. Kang, A. Castelli, N. Inan, and J. J. Thompson,
arXiv:1712.08680.

QUANTUM INTERACTION BETWEEN TWO … PHYS. REV. D 97, 026008 (2018)

026008-7

https://doi.org/10.1103/PhysRevLett.72.2996
https://doi.org/10.1103/PhysRevD.50.3874
https://doi.org/10.1103/PhysRevD.50.3874
https://doi.org/10.1016/0370-2693(95)00790-R
https://doi.org/10.1016/0370-2693(95)00790-R
https://doi.org/10.1134/1.1537290
https://doi.org/10.1134/1.1537290
https://doi.org/10.1103/PhysRevD.67.084033
https://doi.org/10.1103/PhysRevD.71.069903
https://doi.org/10.1103/PhysRevD.71.069903
https://doi.org/10.1103/PhysRevLett.116.151301
https://doi.org/10.1103/PhysRevLett.116.151301
https://doi.org/10.1088/0954-3899/44/1/01LT01
http://arXiv.org/abs/1610.07957
http://arXiv.org/abs/1610.07957
https://doi.org/10.1016/j.physletb.2016.10.025
https://doi.org/10.1103/PhysRevD.95.104057
https://doi.org/10.1103/PhysRevD.95.104057
https://doi.org/10.1098/rspa.1991.0052
https://doi.org/10.1098/rspa.1991.0052
https://doi.org/10.1088/0143-0807/18/1/009
https://doi.org/10.1088/0143-0807/18/1/009
https://doi.org/10.1103/PhysRev.73.360
https://doi.org/10.1103/PhysRevA.25.2473
https://doi.org/10.1103/PhysRevA.25.2473
https://doi.org/10.1088/0305-4470/6/8/010
https://doi.org/10.1088/0305-4470/6/8/010
https://doi.org/10.1103/PhysRevA.74.042101
https://doi.org/10.1103/PhysRevA.73.062117
https://doi.org/10.1103/PhysRevA.73.062117
https://doi.org/10.1103/PhysRevD.60.084023
https://doi.org/10.1016/S0370-2693(00)01287-9
https://doi.org/10.1103/PhysRevD.80.124019
https://doi.org/10.1103/PhysRevD.80.124019
https://doi.org/10.1103/PhysRevD.68.084019
https://doi.org/10.1103/PhysRevD.51.1692
https://doi.org/10.1119/1.10195
https://doi.org/10.1119/1.10195
https://doi.org/10.4153/CJM-1953-001-3
https://doi.org/10.1016/0031-8914(71)90074-7
https://doi.org/10.1016/0031-8914(71)90074-7
https://doi.org/10.1016/0003-4916(71)90117-5
https://doi.org/10.1016/0003-4916(71)90117-5
https://doi.org/10.1088/0264-9381/15/3/018
https://doi.org/10.1088/0264-9381/15/3/018
https://doi.org/10.1007/s10714-010-0990-8
https://doi.org/10.1007/s10714-010-0990-8
https://doi.org/10.1007/BF00761902
https://doi.org/10.1016/j.physe.2009.06.056
https://doi.org/10.1016/j.physe.2009.06.056
http://arXiv.org/abs/1712.08680

