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In 1979 Penrose hypothesized that the arrows of time are explained by the hypothesis that the
fundamental laws are time irreversible [R. Penrose, in General Relativity: An Einstein Centenary Survey
(1979)]. That is, our reversible laws, such as the standard model and general relativity are effective, and
emerge from an underlying fundamental theory which is time irreversible. In [M. Cortês and L. Smolin,
Phys. Rev. D 90, 084007 (2014); 90, 044035 (2014); 93, 084039 (2016)] we put forward a research
program aiming at realizing just this. The aim is to find a fundamental description of physics above the
Planck scale, based on irreversible laws, from which will emerge the apparently reversible dynamics we
observe on intermediate scales. Here we continue that program and note that a class of discrete dynamical
systems are known to exhibit this very property: they have an underlying discrete irreversible evolution, but
in the long term exhibit the properties of a time reversible system, in the form of limit cycles. We connect
this to our original model proposal in [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014)], and
show that the behaviors obtained there can be explained in terms of the same phenomenon: the attraction of
the system to a basin of limit cycles, where the dynamics appears to be time reversible. Further than that, we
show that our original models exhibit the very same feature: the emergence of quasiparticle excitations
obtained in the earlier work in the space-time description is an expression of the system’s convergence to
limit cycles when seen in the causal set description.
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I. INTRODUCTION

One of the most mysterious questions facing cosmology
is to account for the several arrows of time. If we accept the
usual assumption that the fundamental laws are time
reversible, the ubiquity of the arrows of time can only
be explained to be a consequence of extremely special and
improbable initial conditions. This was Boltzmann’s
explanation for the paradox of how the time asymmetric
second law of thermodynamics is to be derived, as
emergent from the statistical treatment of time symmetric
microscopic laws. The problem with this is that one
then has to account for the vastly improbable initial
conditions which must be imposed at the beginning of
the universe.
Back in 1979, Roger Penrose proposed a different

explanation for the arrows of time in [1], which we take
up in this paper. We posit, with Penrose, that there is
another layer of fundamental law below general relativity
and quantum theory which is time asymmetric. How-
ever after a transient period, time reversible behavior
emerges naturally. Thus, after a certain time, the time
asymmetric fundamental dynamics can be approximated by

a time symmetric effective dynamics, supplemented by
time asymmetric initial conditions.
Thus, when we observe a highly time asymmetric

history, in which, for example, electromagnetic waves
excited by point like sources propagate outwards toward
the future, but never toward the past, we are used to
believing that the time reversed history, in which waves
excited by local sources propagate to the past, are also
possible, as they are solutions to time symmetric laws. We
do not see them because they are forbidden by highly
improbable, time asymmetric, initial conditions. In the
alternative viewpoint we endorse here, only the histories
with outgoing propagation to the future are solutions to the
truly fundamental, time asymmetric, laws. Hence the time
asymmetric universe which is often explained by a combi-
nation of time symmetric laws and time asymmetric initial
conditions is, we envision, to be more simply explained by
time asymmetric laws. This requires that for long times,
some of the solutions to the time symmetric theory are also
to a good approximation to a more fundamental time
asymmetric theory. But the time reversals of those solutions
are not solutions to the fundamental theory.
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Here we support Penrose’s hypothesis, by first showing
that this emergence of apparently time symmetric dynamics
from time asymmetric dynamics is ubiquitous in a large
class of dynamical systems. These are systems that have the
following properties:
(1) There are a large, but finite number of discrete

states S ¼ fI; J; K; L;…g.
(2) There is a discrete and deterministic evolution rule.

Thus each state, I, has a unique successor:

I → J ð1Þ
(3) There is no rule constraining the number of prece-

dents a state I may have. In particular, there may be
states with several precedents, as well as “garden of
eden states” with no precedent.

Generic dynamical rules of this kind are irreversible. But
it is well known that such systems evolve to limit cycles [2].
This is for the simple reason that the evolution rule must
give each state a unique successor picked from a finite set
of states. So the evolution must return within a finite
number of steps to a previous state, after which, by the rule
of unique succession, it cycles.
These states, once having entered the limit cycle, have

unique precedents as well as unique successors. Hence, the
evolution in the limit cycle can be described by reversible
dynamical laws. These laws are supplemented by time
asymmetric initial conditions which impose the fact that,
due to the unique successor rule, the original dynamics
forces each cycle to be traveled in only one direction.1

This achieves three ends. First we give a large class of
examples of systems that start off irreversibly and evolve to
states which may be described by reversible evolution rules
supplemented by irreversible initial conditions. Second, we
show that this behavior is ubiquitous in discrete systems.
If the universe is ultimately described by a discrete
dynamical system then this is a natural and simple
explanation for the existence of an arrow of time.
The hypothesis that early universe cosmology was driven

by an irreversible dynamics, which gave rise to an emergent
reversible dynamics, is explored also in [3–5]. There we
presented a class of modified causal set models, which
we called energetic causal set models.2 These have an
irreversible dynamics. In the first of these papers [3] we
studied numerically a 1þ 1 dimensional energetic causal
set model. We found that the model exhibits two phases.
The initial phase is chaotic and clearly irreversible. It is
followed by a transition to a second, more ordered phase,
which appears to be dominated by a reversible regime.
In Sec. IV we show that the long term behavior of this

model is dominated by one of a small number of limit

cycles. This explains the emergence of quasireversible
dynamics in these models. This is the third and main
conclusion of this paper.
Two comments before proceeding. First, the properties

of discrete dynamical systems and, in particular, the
ubiquity of limit cycles is well known, so nothing new
is claimed about those. Second, this argument supports the
claim that time is real rather than emergent in nature, as it
makes little sense to posit an emergent but irreversible time.
If time is emergent or reducible to a block universe
prospective, so that the future is no different from the
past, there cannot emerge an irreversible dynamics. But if
time is fundamental so that the future has a very different
status from the past, it is natural to postulate an irreversible
dynamics. Thus, the results of this paper contribute to the
research program set out in [8,9] and further investigated
for example in [10].

II. DISCRETE DYNAMICAL SYSTEMS
AND LIMIT CYCLES

Consider a general finite state deterministic discrete
dynamical system (DDDS for short): this can be described
as a finite set of states, S ¼ fI; J; K; L;…g, with a
successor rule, so that each state has a unique successor

IðtÞ → Iðtþ 1Þ ð2Þ
or

I → J → K → … ð3Þ
here time, t, is discrete so t is an integer.
A given state can have more than one parent, but each

has only one child or successor. So a general DDS is
irreversible.
A limit cycle is when a bunch of states form a closed

loop under the successor rule:

Cycle ¼ C∶I → J → K → L → I ð4Þ
Once the system gets into a cycle it will stay there forever.
There can be several ways to enter the cycle,

X → K → L → I → J → K → L ð5Þ
etc but once in you are trapped forever.
Now within the cycle, each state has a unique parent and

a unique child. So a reverse cycle exists as a possibility,
even if it is not realized:

C�;L → K → J → I → L: ð6Þ
Hence once an observer realizes the system is trapped in a
cycle, they could describe the system by a time reversible
effective dynamics. The real dynamics is not reversible and
the reverse cycle never happens, but in the effective
dynamics, it is as if it could happen.
Hence, it is natural and generic that a general discrete

dynamical system is characterized by a transition from a

1The initial conditions are time asymmetric in the sense that
they are imposed only at the initial time state and not at the final
time state.

2Other versions of causal set models were introduced earlier
by [6,7].
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fundamental irreversible behavior to an emergent revers-
ible behavior.
Note that within the given DDS the time reversed

behavior never happens. Since each state has a unique
successor, if a cycle C is part of a DDS, its time reverse C�
is not part of the DDS. However if you chanced upon the
system after it has entered the cycle, you would notice that
each state has both a unique successor and unique prede-
cessor and you could be fooled into representing the system
as having reversible dynamics, please see for examples
Figs. 1 and 2.
Now, suppose you came upon a collection of copies of

the same DDS. You would be surprised to see that in all
cases the systems were going around the cycle C, while in
no cases were systems going around the time reversed cycle
C�. You would be tempted to speculate that the universe has
a “mysterious arrow of time” which (since you would
mistakenly believe the underlying dynamics is reversible)
can only be explained by “mysterious and highly improb-
able initial conditions” in which all the members of the
collection started off going around the cycle in the same
direction. In fact, the true explanation is that the cycle C is
only a limit cycle of a larger irreversible DDS. So the
apparent “improbable initial conditions” are actually
explained by a deeper irreversible dynamics. This is what
we assert could be true in nature and explain the mysterious
arrows of time in cosmology.
Now consider the limit set of S, this is a subset L in S of

states that are gotten to after a large number of steps
M ≫ N, starting at any state in S. It is easy to see that L
consists of one or more cycles, L ¼ union of cycles, C.
But this means that for any DDS, S, its limit set, L, has an
effective reversible dynamics.
We can call this kind of behavior mock-reversible. A

system is mock-reversible if its evolution has the property
that each state in the limit set has unique children and parent
states, so that the time reverse of the dynamics is defined on
the limit set. The reversibility is only mock because the time
reversed histories are not actual solutions of the dynamics.
Normally they would be eliminated by initial conditions,
instead they are eliminated by the dynamics.

III. RANDOM DISCRETE DYNAMICAL SYSTEMS

Consider an ensemble of random discrete dynamical
systems each with N states, where each state J (except I)
has an equal probability, p ¼ 1

N−1, of being the successor of
state I.
It is easy to show that in the case that N is large,3

(i) The length of a typical limit cycle is LC is

hLCi ≈
ffiffiffiffi

N
2

r

ð7Þ

The argument is as follows:
Choose a random starting point, state I, which has a

unique successor J. The probability that I is the successor
of J is pI→J→I ¼ 1

N. If this is not the case, then we have
I → J → K and the probability that either I or J is the
successor of K is 2

N. It follows that the probability that the
series closes after M steps, to somewhere along it is

pcloses ¼
1

N
þ 2

N
þ � � � þM

N
¼ MðM þ 1Þ

2N
ð8Þ

The appearance of a cycle becomes likely when this
approaches one, so that a typical length for a transient
from an arbitrary starting point to a cycle, plus once around
the cycle is M ≈

ffiffiffiffiffiffiffi

2N
p

. Now the cycle is equally likely to
close anywhere along these N steps, so that

MC ¼ hLCi ≈
ffiffiffiffi

N
2

r

ð9Þ
The typical number of steps from an arbitrary starting point
along a transient to a point on a cycle is then also,

hMTi ≈
ffiffiffiffi

N
2

r

: ð10Þ
But the arbitrary starting point is not the origin of the
transient. That origin, a so-called “garden of eden state” is
likely to be the same distance from the starting point as the
cycle, hence the typical length of a transient is:

hLTi ≈ 2

ffiffiffiffi

N
2

r

¼
ffiffiffiffiffiffiffi

2N
p

: ð11Þ
Note that the system can be represented by a directed

graph Γ with N links.
Now, each state has exactly one successor. This means

that on the average each state has a single predecessor. But
note that there are several ways this average could be
achieved. For example, if there are N=2 garden-of-eden
states, then all the other states will have an average of 2
predecessors. At the other extreme, if there are no garden of
eden states then the graph is a collection of closed loops and
there are no transients. In this case there are roughly

Ncycles ≈
N
LC

≈
ffiffiffiffi

N
p

ð12Þ

cycles, of average length LC ¼ ffiffiffiffi

N
p

.
Now, suppose that the number of garden of eden states is

much less than N. Then most states have just one

predecessor. In this case, the
ffiffiffi

N
2

q

states in a cycle will

haveOð1Þ transients approaching it. The basin of attraction
of a typical cycle is then of size order LB ≈Oð ffiffiffiffi

N
p Þ. There

are then again of order

Ncycles ≈
N
LB

≈
ffiffiffiffi

N
p

ð13Þ

cycles, each with a basin of attraction.
3For a detailed study and review of random boolean networks,

which are a large class of examples of these systems, see [11].
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IV. CONVERGING TO LIMIT CYCLES—
ENERGETIC CAUSAL SETS

In this section and for the remainder of the article we
focus on the convergence to limit cycles by energetic causal
sets (ECS). ECS are models proposed by us in [3–5] and
incorporate fundamental time asymmetry, causality, and
discreteness to give origin to a discrete irreversible causal
model for spacetime.
In numerical studies of a 1þ 1 dimensional version [3],

evidence was noted for a transition from an early, disor-
dered phase to a later, ordered, phase. The earlier phase
was characterized by irreversibility, while the later phase
appeared to be characterized by the emergence of reversible
phenomena such as the propagation and scattering of
quasiparticle excitations. This appeared also to involve the
collapse of the degrees of freedom to a small limit set,
shown by the regular trajectories of quasiparticles. This
naturally raises the question of whether the apparent
emergence of reversible dynamics is related to the con-
traction of the state space to limit cycles, as dis-
cussed above.
In this section we show that the answer is yes. Above we

have discussed deterministic DDS’s and their respective
attractions to the basin of limit cycles. We will then first
study a specialization to a deterministic case of ECS, and
then generalize to the larger set of ECS which have
evolution rule which are, typically, stochastic.
One might have expected the deterministic form of the

ECS to naturally exhibit limit cycles, since it satisfies all the
requisites discussed above. However, for the stochastic
model, the lack of determinism could threaten the regularity
of the evolution which is key to the formation of cycles in
the basin of attraction.
Despite this we show, quite surprisingly, that even in

their stochastic incarnation, ECS show a strong attrac-
tion to limit cycles in their typical dynamical regime.
The system will be caught in a particular limit cycle,
then due to stochasticity occasionally jump out of it, and
will be immediately caught by another limit cycle, see
Sec. IV C.
Once the system reaches the limit cycle regime, the effect

of the randomness in the evolution is to occasionally
perturb the system from one limit cycle to another.4

Hence we proceed in two steps. We first study a
deterministic specialization of the 1þ 1 dimensional
ECS model. We show that it can be mapped to a finite
state DDDS (discrete, deterministic, dynamical system), so
that the long term behavior is indeed determined by limit
cycles. After this we study the original stochastic energetic
causal set model we introduced in [3] and show that it
quickly evolves to a regime of successive limit cycles and
stays there.

A. Generating energetic causal sets

The (thick) present state of the system consists of N
events on a 1þ 1 dimensional cylinder,5 C ¼ S1 × R,
coordinatized by xa ¼ ðt; xÞ and subject to identifications

x ∼ xþ nL ð14Þ

where n is an integer describing revolutions or “windings”
wrapped around S1. We impose the Minkowski metric.
In energetic causal sets an event is defined by the

intersection of two momenta. Each event has therefore
two incoming and two outgoing momenta. For simplicity
we will use null momenta and then we will find it
convenient to employ null coordinates z� ¼ t� x. Each
event is then represented by a pair z�i ¼ ðzþi ; z−i Þ subject to
identifications

ðzþ; z−Þ ∼ ðzþ þ nL; z− − nLÞ ð15Þ

The rule by which new events are generated is a function
of the history of the events in the present state. What is
relevant for this rule is the causal past of each event. In ECS
each event has a set of ancestor events which we call its
past or lineage.
The past of an event is summarized by a number—the

average of the x positions of all of its ancestors, Σðz�i Þ. As
we show below, the pasts are going to determine which
events create the present. For computational simplicity we
only trace either the left or right ancestry, with no change
to results. The pasts of events in the initial time-like slice
t ¼ 0 is their current x.6

Therefore each event in the thick present, z�i ∈ C has a
past, Σðz�i Þ. A set of pairs of events in the present, plus their
pasts, fz�i ;Σðz�i Þg, is called a state, Ψ.

1. Running the model

We follow closely the prescription of [3] which can be
summarized as

(i) STEP 0: Initialize.
Pick N initial events z�i ∈ C, all relatively space

like. The number of initial events N corresponds to
the number of pasts or lineages in the model, and the
initial values of the pasts are simply the initial x1.
This is the initial state, Ψ0 and it constitutes the
present.

4This effect is illustrated in the “jump graph,” Sec. 20.3 in [2].

5For definitions and details, please see [3].
6The idea of taking the set consisting of the space-time

position of an event together with its past, and its influence on
the generation of new events, is the key concept in the creation of
the original ECS model. It ensures uniqueness of universal events
in cosmology, which is the starting point of the framework. Here
we show that this model, as proposed initially, already exhibits
limit cycles.
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(ii) STEP 1: Choose the events which will interact:
Next, we choose two events from the set of

present events which will interact to create a new
event. To do this, we define a positive fitness
function Fðzþi ; z−j Þ on all pairs of events in C, to
be the absolute value of the difference between the
pasts of those two events,

Fðzþi ; z−j Þ ¼ jΣðzþi Þ − Σðz−j Þj: ð16Þ

Now pick the pair which minimizes F, and call it
fz�� ; y�� g. This will be the pair which will interact
and generate the new event.
An event can only have two children. So we next

have to ascertain which (if any) of the two possible
pairs of outgoing momenta have not yet caused a
future event, and thus are available. If the most fit
pair fz�� ; y�� g has both pairs of momenta available,
then choose randomly (or deterministically) which
pair will interact. This, incidentally, will be one of
the two steps in the dynamics of the model which
determines if the algorithm is deterministic or
stochastic. If only one pair is available, use that
one. If no pair of momenta are available we choose
the next most fit pair.
When an event has both pairs of momenta

available for interaction we can choose randomly
or deterministically which pair will interact. Once an
event has used both momenta, it is no longer part of
the present.

(iii) STEP 2: Create a new event:
Take fz�� ; y�� g and choose a value for the integer n

defined in Eq. (14). The choice of n is the second
choice which can be made deterministically or
randomly and, together with the choice mentioned
above in Step 1, alters the overall performance of the
model. Then we create a new event by

z�new ¼ ðzþ� þ nL; y−� − nLÞ; ð17Þ

where we have ordered the events so zþ� < yþ� .
Add the new event z�new to the present set of

events, and assign it to the chosen lineage of
its ancestors, z�� or y�� . Add the new pair
fz�new;Σðz�newÞg to Ψ0.
If either z�� or y�� have both momenta used erase

them from Ψ0. Make the step Ψ0 → Ψ1 to obtain
the new present.7 Note that, at each step Ψi contains
both the events in the present and the values of their
pasts, so Ψi is the set of pairs fz�i ;Σðz�i Þg in the
thick present.

(iv) We then iterate STEPS 1 and 2.

B. Converging to limit cycles—deterministic
energetic causal set model

The process described above, the most general ECS, is a
discrete dynamical system. We now want to investigate
whether it exhibits limit cycles, that is, whether the
dynamics will converge to an apparent time reversible
evolution.
In Sec. II we showed that a finite state deterministic DDS

converges to limit cycles. Therefore here we will first
specialize to the deterministic version of ECS to investigate
the same argument. This is simply done by creating a rule
for the moves mentioned in Steps 1 and 2 above, the choice
of the pair of photons and winding number n. We will
systematically choose the incoming pair of photons (having
investigated that no loss of generality ensues) and
set n ¼ 1.
The next and final step for us to be able to use the

argument of Sec. II is to assert whether the number of
possible states of a given model, i.e., the number of
different Ψi ¼ fz�i ;Σðz�i Þg is finite.
The algorithm generates a discrete sequence of states

Ψ0 → Ψ1 → Ψ2 → … ð18Þ

Given the N initial events in C there are only NðN þ 1Þ
possible x positions. So the number of possible z�i is finite,
and the argument of Sec. II applies. This means that for
the space-time position values xa the model satisfies all
requirements of a finite state deterministic discrete dynami-
cal system and exhibits the convergence to limit cycles.
We double check this prediction with simulations of the
deterministic version of the ECS model and present the
results in Fig. 3.

garden-of-Eden states
or the leaves subtrees

transient tree
and subtrees

one of 7
attractor states

attractor
cycle

tim
e

tim
e

FIG. 1. The basin of attraction of one limit cycle in a discrete
deterministic dynamical system. Image courtesy of Andy Wuen-
sche from [2].

7We refer to Sec. IV of [3] for full details of the algorithm for
simulating energetic causal sets.
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We simulate a model with N ¼ 20 initial events, which
means there are 20 different lineages. In this and the next
figures we describe the simulations results in four panels
for each model. The upper left panel plots the coordinates
of the emergent space-time position x vs t in C. The events
are grouped in their lineage by the same color: two events
with the same color are in the same lineage. This upper left
panel is the same plot we already studied in the initial work
Ref. [3]. In the upper right panel we plot the same
simulation and events, but plotting the events according
to their order in the causal set. This is the order in which
they are simulated, step by step as described in the
algorithm in Sec. IVA 1. In this example the total number
of steps is 104.
The purpose of studying the event order in the causal set,

as opposed to the order in space-time, is so that we can
check for repeating patterns in the causal set sequence, and
from there look for limit cycles. Limit cycles will not be
visible in the space-time diagram. In the lower row we
make two zoom-ins of the upper right panel. In the lower
panel we plot the first 1% events in the sequence and in the
lower right the last 1%.
The most stark feature of Fig. 3 is the prompt capture

of the system by the limit cycles regime. For this

deterministic version of the ECS the attraction to the
regular phase of limit cycles is immediate. There is a
very small number of initial out-of-cycle steps, that we
can just distinguish from the bottom left panel displaying
the initial 1000 steps. The system then leaves the
irreversible phase and collapses promptly to a small
number of degrees of freedom, entering the limit cycle
regime. Once in the limit cycle the system stays there ad
infinitum. Such behavior holds for simulations of
increased number of steps (consistency of the attractor)
as well as for increased number of intervenient lineages
(increased overall complexity of the causal set).
We have thus far asserted the convergence to limit cycles

of the space-time coordinates xa. This is the first compo-
nent of the global state Ψ ¼ fz�;Σðz�Þg. To complete
the argument we then have to investigate the capture of the
values of the second component, the pasts Σðz�Þ, by the
limit cycles.
Since the same considerations of determinism and

discreteness apply to the pasts, Σðz�Þ, as those for the
positions xa, we are left with the last task of asserting
whether the number of possible values for the past is finite.
Like we said above, given the initial N events there

are ðN þ 1Þ2 possible positions in C. The values that Σðz�Þ

FIG. 2. The complete state space of a discrete deterministic dynamical system, showing several limit cycles and their basins of
attraction. Image courtesy of Andy Wuensche from [2].
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can take are averages of ever increasing numbers of
(repeated) elements within this set. Clearly that number
is infinite.
However, in practice, for our system this argument turns

out to be much simplified, and the number of values for the
pasts is small, and indeed a finite set. This is what we show
briefly in the next subsection.

1. Convergence of the pasts values

We will use a simple example to show the small number
of values that the pasts take, and then corroborate this with
the simulation results. We can understand the convergence
of the values of the pasts to a finite set of values in the
following way.
(1) Let us take a simplified version of ECS and show

that for this simplified version the number of values
of pasts is finite.
We will revert from the null coordinates za ¼

ðt − x; tþ xÞ to the space coordinates xa ¼ ðt; xÞ
and we’ll generate events xaA where A ¼ 1; 2; 3;… is
the number of the event.

Let the initial state have two events alone, xa1 ¼
ð0; x1Þ and xa2 ¼ð0;x2Þ with 0<x1<x2<L, and let
these events be in the same lineage. Then the initial
value of the pasts is Σðxa1Þ¼Σðxa2Þ¼ðx1þx2Þ=2.

(2) For simplicity let us take a generation rule that keeps
generating events at the same reduced coordinate x1.
This is essentially what happens to a lineage once it
enters a limit cycle, i.e., once the quasiparticle
emerges. We want to analyze what happens to the
values of the pasts once the positions enter limit
cycles so this example portrays the part of evolution
we want to zoom in on.

(3) At the first step a new event is created, at some time
t0, xa3 ¼ ðt0; x1Þ, and the past becomes

Σðxa3Þ ¼
2x1 þ x2

3
: ð19Þ

At the next event xa4 ¼ ðt00; x1Þ the past is updated to

Σðxa4Þ ¼
3x1 þ x2

4
: ð20Þ

FIG. 3. Deterministic energetic causal set model, showing the quick capture by a limit cycle. Model with 20 lineages and 104 total
steps. In this and the following figures, the story is told in four panels. The upper left panel shows the history plotted in the emergent
1þ 1 dimensional spacetime. The upper right panel plots the events in the order by which they take place in the simulation. The lower
left panel plots the first 1% of events in the sequence and the lower right plots the last 1% of events. In these we connect the events in the
order generated, which gives us a trajectory.
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After M new events, the past of Mth event, xaM, is

ΣðxaMÞ ¼
ðM þ 1Þx1 þ x2

M þ 2
: ð21Þ

Because 0 < x1 < x2 < L and for a number of
steps n ≫ M this number is approximately constant
and tends very rapidly to x1 with number of steps. So
the past in this lineage will asymptote rapidly to x1.

ΣðxaAÞ⟶A→∞
x1 ð22Þ

Now, in a generic ECS there is a much larger number
of intervening pasts than in this example—typically 10 to
100—as well as more complex generation rules. In these
cases the initial period of “jumping around” of the positions
x is longer than the example above. Accordingly, the value
of the pasts will also oscillate longer in those initial steps.

FIG. 4. Plot of the values of the numerical value of the pasts in each lineage of events, for each step, and for a model with 8 lineages.
Note that this is a plot of the value of the pasts of events, and not of their positions x, as in other plots. Just like it happens for the value of
positions, the evolution of each the pasts also enters a limit cycle promptly. Together with Fig. 3 this shows that the pair fz�i ;Σðz�i Þg in
the thick present collectively exhibit limit cycles.
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However, provided the values of the positions x enter
limit cycles, which we have asserted to be true by virtue of
the argument of Sec. II, and have seen in Fig. 3, the values
of the pasts will also follow entrapment just as in the
example above, Eqs. (21) and (22). That is, the imprint
on each past of the initial period of disorder gets pro-
gressively erased away once the positions enter limit
cycles. This means that the overall average—the value
of Σ—asymptotes to a fixed value as in Eq. (22).
Since the values of the pasts asymptote to a fixed

value, as opposed to being equal to it, if we consider
infinite precision numbers they take distinct values, natu-
rally. However the convergence happens promptly after
initiation, and in simulations we never have infinite
precision numbers. As a result, any machine precision is
immediately exceeded upon initiation (the number of
different digits saturates), and the values of the pasts
become indistinguishable.
We therefore conclude that
(1) the values of the pasts do convergence to a finite set,

and hence,
(2) the capture of the pasts by a limit set is exact, as we

set out to prove.

Lastly note that in a typical ECS there will naturally be
more than one lineage evolving at the same time, and so the
real model case is not the simple example portrayed above.
In the case of multiple lineages the example above gets
repeated in each one of the lineages all evolving simulta-
neously. The positions will individually converge to limit
cycles and the past follow in the same way as in the case for
one. This explains why the values of the pasts are trapped in
limit cycles. It is also what we see in the simulation results,
which we now turn to.
In Fig. 4 we plot the sequence of values of the pasts for

each lineage, and at each step in the causal set sequence.
This is simply the analogous plot as that for the positions in
the top left panel of Fig. 3. In Fig. 4 we plot this for a model
with 8 lineages, showing each lineage separately. Note that
this no longer a plot of the position x but the value of Σðz�Þ
at each step.
From Fig. 4 we see that
(1) Initially each lineage jumps around for a handful of

steps, before being locked-in a limit cycle of its own;
(2) Each lineage promptly enters the limit cycle regime

at the onset of evolutions, and stays there, just like
for the space-time positions;

FIG. 5. (Number of independent families ¼ 20; Number of events 105) Stochastic energetic causal set model, showing the quick
capture by a limit cycle. Panels shown as in Fig. 3. In this stochastic model the stark transition between the first 1% and the last 1% of
events, in this and later figures, depicts clearly the system’s evolution toward regularity and limit cycles.
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(3) This cycle is independent of other families;
(4) For every lineage there are at most only two distinct

elements in the limit cycle.
The last argument strongly limits the number of different

values that Σðz�Þ can take. This shows that, indeed, the
values of the pasts are a finite set, and is consistent with the
exhibition of the capture by the limit set.
Having asserted that both z� and Σðz�Þ take values in a

finest set we can conclude that the number of possible states
Ψi is finite.
The argument then follows that the deterministic version

of ECS exhibits limit cycles. Stronger than this its dynam-
ics is predominantly composed of limit cycles, for a wide
range of initial conditions. In particular the space-time
positions of the events of the causal set live in the lift of the
limit cycles. They can be visualized as spirals.
Having completed understood the regime of limit cycles

for the deterministic model we now proceed the stochastic
model behavior.

C. Converging to limit cycles—stochastic (original)
energetic causal set model

We next study the 1þ 1 dimensional energetic causal set
model we introduced in the original work [3]. Recall from

Sec. IVA 1 that the dynamics of ECS models is determin-
istic for the most part, with only a couple of steps where a
decision can be made deterministic or random. Those are
the choice of the number of windings n, and the choice of
the pair of momenta to interact. So, even in this original
model, the majority of dynamics remains deterministic.
However, the small detail of these two stochastic steps has a
substantial impact in the complexity of the model and
resulting dynamics. In Fig. 5 we show results from a
stochastic ECS model, displaying the same four panels as
in previous figures.
The effect of the stochastic part of the dynamics,

compared to that of determinism in the previous section,
can already be seen in the emergent space-time, by
comparing the two diagrams in the upper left panels of
Figs. 5 and 3. The complexity of structure in the stochastic
model is significantly higher, there is a initial irregular
phase followed by a very regular, where space-time
trajectories of quasiparticles emerge. The transition
between these two phases is prompt and very clearly
marked. In the initial work in [3], we observed this
transition and two-phase dynamics for a very large range
of initial conditions: the emergence of an ordered phase
from a disordered phase.

FIG. 6. (Number of independent families ¼ 20; Number of events 105) Here we show an example of another model to illustrate
variation between simulation runs.
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As mentioned above we now seek to interpret this
behavior observed already in the original work in terms
of the dynamics of systems which exhibit limit cycles.
We are now working with a stochastic model so the

argument used above for finite state DDDS does not
apply. Indeed we would expect that if the system is not
deterministic, in general a cycle or repeated pattern will
not arise since the uncertainty of the model disturbs it. The
argument we gave for the emergence of limit cycles
assumes determinism.
Nonetheless, and surprisingly, the stochastic system does

converge to limit cycles, contrary to expectation. Further,
and as we will now explain, a detailed study of the histories
of this model shows that the passage from an irregular to a
regular phase is explained by the long term behavior of the
model being dominated by limit cycles.
Figure 5 shows an example of a unique events model

with 20 interacting families (or pasts) and 105 total events.
In the upper left panel we reproduce the result of the
previous work: a plot of physical time on the x-axis by
spatial position on the y-axis, with the stark emergence of
the quasiparticle trajectories. The remainder panels are as in
Fig. 3: they plot the sequence in events of the model in the
causal set description. The x-axis plots the event number

the causal set sequence, that is, the order that they take
place in the simulation, and in the y axis the spatial position
of each event. We connect the events in the order generated,
which gives us a connected trajectory of jumps at each step,
as shown.
In order to convey variation between runs we give an

example in Figs. 6 and 7 of different runs with the same
parameters. In Fig. 8 we show a simulation with higher
number (30) of number of intervening pasts.
Note that, just like for the deterministic case, the order

of the events in the causal set description does not
necessarily correspond to the emergent space-time order
in which they take place, and which is shown in the
upper left panel. That is, we do not expect that a plot of
order of the events by their spatial position resembles a
plot of the physical time vs spatial position (like those in
the previous work). In other words, the first row of two
panels in each of the figures we present here will be
related, but not the same. The first is a plot of events by
physical time scale, and the other plots the events in their
sequence in the simulation.
It is interesting to observe that a space-time sequence of

events need not correspond to the causal set sequence. It is
possible that this can be connected to proposals concerning

FIG. 7. (Number of independent families ¼ 20; Number of events 105) Here we show an example of another model to illustrate
variation between simulation runs.
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the role of retrocausality in quantum physics [12]. This will
be addressed in a future work [13].
Now we look at the lower pair of panels in the figure.

These are a zoom-in on the sequence of events on the upper
right panel. The lower left panel plots the first 1% of events
in the sequence and the lower right plots the last 1% of
events. This clearly tells the same story as the space-time
diagram, the evolution of the system from irregularity
towards regularity, this time from another perspective, the
order of events in the causal set.
In Fig. 5 (upper right) we observe that initially the events

appear to be disordered and uncorrelated in spatial position.
This is just like the initial phase in the physical time plots
(upper left). However, when we plot the actual sequence of
events in the simulation (that is, in the DDS language, their
trajectory in the space of available states), we observe that
after an initial period of jumping around between available
states, the sequence gets caught in a repetitive cycle. It
remains trapped in the cycle for number of moves, but not,
as would be the case with a deterministic model, forever.
Instead, in a departure from the usual behavior of a

deterministic DDS, after a certain number of moves the
system exits the limit cycle and enters a phase of disordered
jumping around between states. Further on, it again gets

caught in a limit cycle, which may be the same or different
than the cycle in which it was initially caught. Again, after
moving cyclically for a while, it jumps out once more.
This difference in the convergence to the limit cycle

between the energetic causal set model and a standard
deterministic DDS behavior arises from the fact that the
unique events model is nondeterministic.
As it is nondeterministic, we might not have expected

that it would exhibit the convergence to limit cycles of the
DDS case, because the randomness would be a constant
destabilizer of evolution and destabilizer of the cycle.
However, contrary to this expectation, we see that this
initial disordered evolution between the available states still
gives rise to an ordered sequence of states in a limit cycle,
because of the dynamics is partly stochastic.
After exiting this initial cycle and going through an

amount of disordered evolution for some time, the system
again finds another limit cycle in which it will be trapped
for some number of steps. In this way the energetic causal
set model of [3] goes through a sequence of limit cycles in
its evolution, becoming a novel nondeterministic variation
of DDS.
Apart from this, throughout its evolution, the energetic

causal set model of [3] evolves progressively from a phase

FIG. 8. (Number of independent families ¼ 30; Number of events 105) If we increase the number of families in the simulation, as
expected the time scale for entering the limit cycles is increased.
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where most of the dynamics is disordered and limit cycles
are rare and short (lower left panel), towards a phase where
the cycles are longer in duration and the disordered regime
between them gets shorter. Towards the end the disordered
phase has all but disappeared and the systems jumps
between limit cycles (lower right panel). The lower panels
of each figure illustrate this behavior, representing the first
1% (left) and last 1% (right) of each simulation.
In order to convey variation between runs we give an

example in Figs. 6 and 7 of different runs with the same
parameters. In Fig. 8 we show a simulation with higher
number (30) of number of intervening pasts.

V. CONCLUSIONS

We began by reviewing results, from the study of
complex systems, that a large class of irreversible discrete
dynamical theories have long term behaviors which are
reversible, because their long term behavior is dominated
by limit cycles. When the dynamics is restricted to the limit
set, the system appears to exhibit time symmetric dynam-
ics, in that the behavior on the limit set is the same as a
reversible dynamics combined with a special initial
condition.
We then showed that the dominance of long term

behavior by limit cycles explains the behavior of the
energetic causal set models we introduced [3] which
featured the emergence of quasiparticle trajectories. We
have first shown this for the deterministic specialization of
ECS, but proceed to obtain the more surprising result that
also in their stochastic evolution version the models
converge to a limit set.
Thus, the non deterministic energetic causal set model of

[3] becomes “quasideterministic” and, hence, also trapped
in limit cycles, with the accompanying collapse of the
number of degrees of freedom to a finite set. These systems
then show a tendency to evolve towards regularity. Despite
being stochastic, they are attracted to, and get caught in
basins of attraction, and spend most of their time in limit
cycles. Because they are stochastic, they occasionally jump

out of a limit cycle, but are quickly caught up again in a
new one.
We have thus reinforced the argument of the previous

work [3], that systems which are time irreversible can
contain an evolution that is perceived as time reversible.
Further, we have shown that those systems can also be
interpreted in the framework of discrete dynamical systems.
The underlying assertion of both exercises is to show that
fundamental equations which are time asymmetric can
evolve in such way as to hide the time asymmetry.
Lastly, and as a result arising from the study of our model

through the novel view lens of DDS we arrived at the
conclusion that the order of events in the causal set
description is not the same as in the emergent space-time,
with the overall rule being the preserving of the causal
order between the two descriptions. This is work that can
perhaps be connected to ideas about the role of retro-
causality in quantum phenomena [12]. This is currently in
progress [13].
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