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We propose new off-shell models for spontaneously broken local N ¼ 2 supersymmetry, in which the
supergravity multiplet couples to nilpotent Goldstino superfields that contain either a gauge one-form
or a gauge two-form in addition to spin-1=2 Goldstone fermions and auxiliary fields. In the case of
N ¼ 2 Poincaré supersymmetry, we elaborate on the concept of twisted chiral superfields and present a
nilpotentN ¼ 2 superfield that underlies the cubic nilpotency conditions given in J. High Energy Phys. 08
(2017) 109. in terms of constrained N ¼ 1 superfields.
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I. INTRODUCTION

In the last three years, there has been much interest in off-
shell models for spontaneously broken N ¼ 1 supergrav-
ity; see [1–10] and references therein. Recently, we have
constructed several off-shell models for spontaneously
brokenN ¼ 2 supergravity [10], in which the supergravity
multiplet couples to the nilpotent Goldstino superfields
introduced in [11,12]. The models proposed in [10] make
use of both reducible and irreducible Goldstino superfields,
following the terminology of [8]. Every irreducible N ¼ 2
Goldstino superfield contains only two independent com-
ponent fields, the spin-1=2 Goldstone fermions [13,14],
while the other component fields are composites con-
structed from the Goldstini. Reducible Goldstino super-
fields also contain some independent fields in addition to
the Goldstini.
In this paper we propose new models for spontaneously

broken N ¼ 2 supergravity in which the Goldstini belong
to nilpotent superfields containing either a gauge one-form
or a gauge two-form among its independent physical fields.
This is achieved by relaxing the constraints obeyed by
the Goldstino superfields introduced in [10,15]. The idea
can be illustrated by giving two examples. The oldest
irreducible Goldstino superfield in four dimensions is the
N ¼ 1 chiral scalar superfield ϕ [16,17], D̄ _αϕ ¼ 0, which
is subject to the constraints [16]

ϕ2 ¼ 0; ð1:1aÞ

fϕ ¼ −
1

4
ϕD̄2ϕ̄; ð1:1bÞ

where f is a real parameter of mass dimension þ2, which
characterizes the supersymmetry breaking scale. Removing
the second constraint, Eq. (1.1b), leads to the reducible
Goldstino superfield advocated in [18,19]. Our second
example is the irreducible Goldstino superfield introduced
in [8]. It is described by a real scalar N ¼ 1 superfield V
subject to the nilpotency constraints1

V2 ¼ 0; ð1:2aÞ

VDADBV ¼ 0; ð1:2bÞ

VDADBDCV ¼ 0; ð1:2cÞ

where DA ¼ ð∂a; Dα; D̄ _αÞ are the covariant derivatives of
N ¼ 1 Minkowski superspace, in conjunction with the
nonlinear constraint

fV ¼ 1

16
VDαD̄2DαV: ð1:3Þ

If the nonlinear constraint (1.3) is removed, we end up with
the reducible Goldstino superfield introduced in [10].
This paper is organized as follows. In Sec. II we couple

N ¼ 2 supergravity to a deformed reduced chiral super-
field subject to a cubic nilpotency condition. In Sec. III,
N ¼ 2 supergravity is coupled to a linear superfield [also
known as the Oð2Þ multiplet] subject to a cubic nilpotency
condition. In Sec. IV, we elaborate on the concept of
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1The constraints (1.2a) and (1.3) were introduced for the first
time in [20].
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twisted chiral superfields in N ¼ 2 Minkowski superspace
and present a nilpotent N ¼ 2 superfield that underlies the
cubic nilpotency conditions given in [21] in terms of
constrained N ¼ 1 superfields. The reason for restricting
our analysis to the super-Poincaré case is that there is
no simple definition of twisted chiral superfields on
arbitraryN ¼ 2 curved superspace backgrounds. The main
body of the paper is accompanied by two technical
appendixes. Appendix A reviews the prepotential formu-
lations for the N ¼ 2 reduced chiral and linear multiplets.
Appendix B provides a solution to the nilpotency condition
(3.2) in the flat case using the harmonic superspace
techniques.

II. NILPOTENT CHIRAL SUPERFIELD

In recent papers [15,22], a deformed reduced chiral
superfield Z coupled to N ¼ 2 supergravity was intro-
duced. It is described by the constraints

D̄i
_αZ ¼ 0; ð2:1aÞ

ðDij þ 4SijÞZ − ðD̄ij þ 4S̄ijÞZ̄ ¼ 4iGij; ð2:1bÞ

where we have defined Dij ¼ DαðiDjÞ
α and D̄ij ¼ D̄ði

_α D̄
jÞ _α.

Here Gij is a linear multiplet that obeys the constraints
(1.2). In addition, Gij is required to be nowhere vanishing,
GijGij ≠ 0. As reviewed in Appendix A, Gij is the gauge-
invariant field strength of a tensor multiplet. In this paper,
we identify Gij with one of the two conformal compensa-
tors of the minimal formulation for N ¼ 2 supergravity
proposed in [23]. The superfields Sij and S̄ij in (2.1) are
special dimension-1 components of the torsion; see [24]
for the technical details of the superfield formulation for
N ¼ 2 conformal supergravity [25] that we use. The
constraints (2.1a) and (2.2) are invariant under the N ¼2
super-Weyl transformations [24,25] if Z is chosen to be a
primary superfield of dimension 1.
In the super-Poincaré case, a chiral superfield obeying

the constraint (2.1b) with a constant SUð2Þ triplet Gij

appeared in the framework of partial N ¼ 2 → N ¼ 1
supersymmetry breaking [26–28].
In our previous paper [15], Z was subject to the

quadratic nilpotency condition

Z2 ¼ 0: ð2:2Þ
The constraints (2.1) and (2.2) imply that, for certain
N ¼ 2 supergravity backgrounds, the degrees of freedom
described by theN ¼ 2 chiral superfieldZ are in one-to-one
correspondence with those of an Abelian N ¼ 1 vector
multiplet. The specific feature of such N ¼ 2 supergravity
backgrounds is that they possess an N ¼ 1 subspace M4j4

of the full N ¼ 2 curved superspace M4j8. This property is
not universal. In particular, there exist maximally N ¼ 2
supersymmetric backgrounds with no admissible truncation

to N ¼ 1 [29]. As shown in [15], the superfield constrained
by (2.1) and (2.2) is suitable for the description of partial
N ¼ 2 → N ¼ 1 rigid supersymmetry breaking in every
maximally supersymmetric spacetime M4, which is the
bosonic body of an N ¼ 1 superspace M4j4 described by
the following algebra of N ¼ 1 covariant derivatives,2

fDα;Dβg ¼ 0; fD̄ _α; D̄_βg ¼ 0; fDα; D̄_βg ¼ −2iDα _β;

ð2:3aÞ

½Dα;Dβ _β� ¼ iεαβGγ
_βDγ; ½D̄ _α;Dβ _β� ¼ −iε _α _βGβ

_γD̄_γ;

ð2:3bÞ

½Dα _α;Dβ _β� ¼ −iε _α _βGβ
_γDα_γ þ iεαβGγ

_βDγ _α; ð2:3cÞ

where the real four-vector Gb is covariantly constant,

DαGb ¼ 0; Gb ¼ Ḡb: ð2:3dÞ

Since G2 ¼ GbGb is constant, the geometry (2.3) describes
three different superspaces, for Gb ≠ 0, which correspond to
the choices G2 < 0, G2 > 0, and G2 ¼ 0, respectively. The
Lorentzian manifolds M4 supported by these superspaces
are R × S3, AdS3 × S1 or its covering AdS3 × R, and a pp-
wave spacetime, respectively.
We constructed in [15] the Maxwell-Goldstone multiplet

actions for partialN ¼ 2 → N ¼ 1 supersymmetry break-
ing for all of them. In each of these cases, the action
coincides with a unique curved-superspace extension of the
N ¼ 1 supersymmetric Born-Infeld action [31–33], which
is singled out by the requirement of Uð1Þ duality invariance
[34–36]. In the super-Poincaré case, Gb ¼ 0, the approach
developed in [15] provided a simple N ¼ 2 superfield
derivation of the Bagger-Galperin action for partial
N ¼ 2 → N ¼ 1 supersymmetry breaking [33], which
differs in some technical details from the original derivation
given by Roček and Tseytlin [37].
If one is interested inN ¼ 2 → N ¼ 0 breaking of local

supersymmetry, the nilpotency condition (2.2) should be
replaced with a weaker constraint

Z3 ¼ 0: ð2:4Þ
In the super-Poincaré case, such a constraint has recently
been considered in [21]. As was demonstrated in [21], for a
certain range of parameters, in Minkowski superspace the
superfield Z constrained by (2.1) and (2.4) contains the
following independent fields: two Goldstini, a gauge one-
form, and a real, nowhere vanishing, SUð2Þ triplet of
auxiliary fields Dij ¼ Dji, with DijDij ≠ 0. We now
present a dynamical system describingN ¼ 2 supergravity
coupled to Z.

2These backgrounds are maximally supersymmetric solutions
of pure R2 supergravity [30].
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The action for our supergravity-matter theory involves
two contributions,

S ¼ SSUGRA þ SZ ; ð2:5Þ

where SSUGRA denotes the pure supergravity action and SZ
corresponds to the Goldstino superfield. We make use
of the minimal formulation for N ¼ 2 supergravity with
vector and tensor compensators [23]. In the superspace
setting, the supergravity action can be written in the
form [38] (derived using the projective-superspace formu-
lation [39] for this theory)

SSUGRA ¼ 1

κ2

Z
d4xd4θE

�
ΨW −

1

4
W2 þmΨW

�
þ c:c:

¼ 1

κ2

Z
d4xd4θE

�
ΨW −

1

4
W2

�
þ c:c:

þ m
κ2

Z
d4xd4θd4θ̄EGijVij; ð2:6Þ

where κ is the gravitational constant and m the cosmo-
logical parameter. Here E and E denote the full superspace
and chiral densities, respectively. The covariantly chiral
scalar Ψ and the real SUð2Þ triplet Vij are the prepotentials
of the tensor and vector multiplets, respectively; see
Appendix A for the technical details. The supergravity
action involves the composite

W ≔ −
G
8
ðD̄ij þ 4S̄ijÞ

�
Gij

G2

�
; ð2:7Þ

which proves to be a reduced chiral superfield. The
superfield (2.7) is one of the simplest applications of the
powerful approach to generate composite reduced chiral
multiplets, which was presented in [38]. Another applica-
tion is given in the next section.
The action for the Goldstino superfield Z in (2.5) is

SZ ¼
Z

d4xd4θE
�
1

4
Z2 þ ζWZ þ ρ

�
ZΨ −

i
2
Ψ2

��

þ c:c:; ð2:8Þ

where ζ and ρ are complex and real parameters,
respectively. The ρ-term in (2.8) was introduced in [15],
where it was shown to be invariant under gauge
transformations (A4).
The Goldstino superfield action (2.8) can be generalized

to include higher derivative couplings, for instance,

I ¼
Z

d4xd4θd4θ̄E

�
λ1

Z̄Z
W̄W

þ λ2

�
Z̄Z
W̄W

�
2
�
; ð2:9Þ

where λ1 and λ2 are coupling constants.

III. NILPOTENT LINEAR SUPERFIELD

We now introduce a linear superfield Hij,

Dði
αHjkÞ ¼ D̄ði

_αH
jkÞ ¼ 0; ð3:1Þ

which is subject to the following cubic nilpotency
condition [10]

Hði1i2Hi3i4Hi5i6Þ ¼ 0: ð3:2Þ

This algebraic constraint is one of the several nonlinear
constraints, which define the irreducible linear Goldstino
superfield Hij introduced in [10]. As is shown in
Appendix B, the cubic constraint (3.2) expresses the
SUð2Þ triplet of physical scalars, Hijjθ¼0, in terms of
the other component fields ofHij. Thus the field content of
Hij is as follows: two Goldstini, a gauge two-form, and a
complex nowhere vanishing auxiliary scalar. As for the
Goldstino superfield Hij, its only independent component
fields are the Goldstini, since the additional nonlinear
constraints, which Hij obeys, express the gauge two-form
and the auxiliary fields in terms of the Goldstone fer-
mions [10].
To describe the dynamics of N ¼ 2 supergravity

coupled to Hij we choose an action of the form

S ¼ SSUGRA þ SH; ð3:3Þ

where the supergravity action is given by (2.6). The action
SH for the Goldstino superfield has, probably, the simplest
form within the projective-superspace formulation for
N ¼ 2 supergravity [24,40]. Here we refer the reader to
[24,40] for the technical details of that formulation, and we
simply give the projective superfield Lagrangian corre-
sponding to SH. Using the modern projective-superspace
notation [41], the Lagrangian is

Lð2Þ
H ¼ −

1

2

Hð2ÞHð2Þ

Gð2Þ þ ξVHð2Þ; ð3:4Þ

with ξ being a coupling constant. Here we have denoted
Hð2Þ ¼Hijvivj,Gð2Þ ¼Gijvivj, where vi ∈ C2nf0g denotes
the homogeneous coordinates for CP1. Finally, the super-
field VðviÞ in (3.4) is the tropical prepotential for the
compensating vector multiplet; in particular, it is a hol-
omorphic homogeneous function of vi of degree 0.
The action SH can also be written, in a reasonably

compact form, in the conventional curved superspace using
the techniques developed in [38]. It is

SH ¼ −
1

2

Z
d4xd4θEΨW2 þ c:c:

þ ξ

Z
d4xd4θd4θ̄EHijVij; ð3:5Þ
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where W2 denotes the reduced chiral superfield [38]

W2 ¼ −
G
16

ðD̄ij þ 4S̄ijÞRij
2 ;

Rij
2 ¼ 1

G4

�
δijkl −

1

2G2
GijGkl

�
HðklHmnÞGmn: ð3:6Þ

The action (3.5) can be generalized to include higher
derivative terms that can be constructed using the tech-
niques developed in [38].

IV. NILPOTENT TWISTED
CHIRAL SUPERFIELDS

In this section we restrict our attention to the case of
N ¼ 2 Poincaré supersymmetry and introduce new nilpo-
tent superfields on Minkowski superspace M4j8 parame-
trized by Cartesian coordinates zA ¼ ðxa; θαi ; θ̄i_αÞ, where θ̄ _αi

is the complex conjugate of θαi , with i ¼ 1; 2. To start with,
we recall some salient features of the so-called projective
supermultiplets that live in the generalized N ¼ 2 super-
space M4j8 × CP1 [42–45]; see [41] for a pedagogical
review.3 As usual, the notation DA ¼ ð∂a;Dα

i ; D̄
i
_αÞ is used

for the superspace covariant derivatives. We denote by ζ the
inhomogeneous complex coordinate for CP1.
An N ¼ 2 superfield Ξðz; ζÞ of the general form

Ξðz; ζÞ ¼
Xþ∞

n¼−∞
ΞnðzÞζn ð4:1Þ

is called projective if it satisfies the constraints

∇αðζÞΞðζÞ ¼ 0; ∇αðζÞ ¼ ζD1
α −D2

α; ð4:2aÞ

∇̄ _αðζÞΞðζÞ ¼ 0; ∇̄ _αðζÞ ¼ D̄ _α
1 þ ζD̄ _α

2: ð4:2bÞ

These constraints are equivalent to the following differ-
ential conditions,

D2
αΞn ¼ D1

αΞn−1; D̄ _α
2Ξn ¼ −D̄ _α

1Ξnþ1; ð4:3Þ

which imply

ðD2Þ2Ξn ¼ ðD1Þ2Ξn−2; ðD̄2Þ2Ξn ¼ ðD̄1Þ2Ξnþ2: ð4:4Þ

Let us now consider a projective superfield ϒðζÞ whose
Laurent series is bounded below. Without loss of generality,
it can be represented by a Taylor series

ϒðζÞ ¼
Xþ∞

n¼0

ϒnζ
n: ð4:5Þ

Then the constraints (4.3) tell us that the lowest component
of ϒðζÞ, ϒ0, satisfies chiral and antichiral constraints

D̄ _α
1ϒ0 ¼ 0; D2

αϒ0 ¼ 0; ð4:6Þ

while the next-to-lowest component ϒ1 obeys linear con-
straints

ðD̄1Þ2ϒ1 ¼ 0; ðD2Þ2ϒ1 ¼ 0: ð4:7Þ

Making use of the constraints (4.3) and (4.4) also gives

D̄ _α
2ϒ0 ¼ −D̄ _α

2ϒ1; ð4:8aÞ

ðD̄2Þ2ϒ0 ¼ ðD̄1Þ2ϒ2: ð4:8bÞ

Constraints of the type (4.6) were considered for the first
time thirty-five years ago by Galperin et al. [49] in the
context of the Fayet-Sohnius hypermultiplet [50,51].
Recently they have been rediscovered, without any refer-
ence to [49] and the projective-superspace literature, in
[52]. These authors introduced a ring of N ¼ 2 superfields
Ω constrained by

D̄ _α
1Ω ¼ 0; D2

αΩ ¼ 0: ð4:9Þ

Such superfields were called “chiral antichiral” in [52].
Instead we call them “twisted chiral superfields” by
analogy with the two-dimensional terminology introduced
in [53]. The most general twisted chiral superfield has the
form

Ωðx; θi; θ̄jÞ ¼ e−iðθ1σ
aθ̄1−θ2σaθ̄2Þ∂aΩ̂ðx; θ1; θ̄2Þ; ð4:10Þ

where Ω̂ðx; θα1; θ̄2_αÞ is an arbitrary function of the four

Grassmann variables θα1 and θ̄
2

_α. We show that every twisted
chiral superfield Ω is the lowest component of a projective
superfield ϒðζÞ.
Given a projective superfield ΞðζÞ, the constraints (4.3)

imply that the dependence of the component superfields Ξn

on θα2 and θ̄
2

_α is uniquely determined in terms of their

dependence on θα1 ≡ θα and θ̄
1

_α ≡ θ̄ _α. In other words, the
projective superfield depends effectively on half the
Grassmann variables, which can be chosen to be the spinor
coordinates of the N ¼ 1 Minkowski superspace M4j4

parametrized by the coordinates ðxa; θα; θ̄ _αÞ. We introduce
the spinor covariant derivatives for M4j4, Dα ≔ D1

α and
D̄ _α ≔ D̄ _α

1. Associated with every N ¼ 2 superfield U is its
N ¼ 1 bar projection Uj ≔ Ujθ2¼θ̄2¼0, which is an N ¼ 1

3The superspace M4j8 × CP1 was introduced for the first time
by Rosly [46]. The same superspace is at the heart of the
harmonic [47,48] and projective [42–44] superspace approaches.
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superfield. As we have mentioned, all information about
the projective multiplet ΞðζÞ is encoded in its bar projection
ΞðζÞj. In particular, associated with the projective multiplet
(4.5) is the following family of N ¼ 1 superfields,

ϒðζÞj ¼ ϕþ ζΓþ
Xþ∞

n¼2

ϒnjζn; D̄ _αϕ ¼ 0; D̄2Γ ¼ 0:

ð4:11Þ

The explicit structure of the N ¼ 1 superfields ϒnj, with
n ¼ 2; 3;…, depends on the original projective multiplet.
Let us forget for a moment about the projective multip-

lets and consider a twisted chiral superfield Ω. All
information about Ω is encoded in the three N ¼ 1
superfields

ϕ≔ Ωj; ϒ _α ≔
1

2
D̄ _α

2Ωj; Ψ≔ −
1

4
ðD̄2Þ2Ωj; ð4:12Þ

all of which are chiral,

D̄ _αϕ ¼ 0; D̄ _αϒ_β ¼ 0; D̄ _αΨ ¼ 0; ð4:13Þ

by construction. The chirality of ϒ _α implies ϒ _α ¼
−1

4
D̄2Λ _α¼ 1

2
D̄ _αD̄_βΛ

_β≡−1
2
D̄ _αΓ. Thus, there exist N ¼ 1

superfields Γ ≔ ϒ1j and U ≔ ϒ2j, of which Γ obeys the
linear constraint D̄2Γ ¼ 0, such that

ϒ _α ¼ −
1

2
D̄ _αΓ; Ψ ¼ −

1

4
D̄2U: ð4:14Þ

Thus we have demonstrated that every twisted chiral
superfield is the lowest component of a projective super-
field. In what follows, we do not indicate explicitly the
bar projection.
We now turn to reviewing the structure of supersym-

metric actions constructed in terms of the projective
multiplets. As is well known, associated with every
projective multiplet (4.1) is its smile conjugate

Ξ̆ðζÞ ≔
Xþ∞

n¼−∞
ð−1ÞnζnΞ̄−n; ð4:15Þ

which is also a projective multiplet. If the theory is
formulated in terms of a projective multiplet ϒðζÞ and
its smile conjugate ϒ̆ðζÞ, the dynamics is described with
the aid of a Lagrangian LðζÞ≡ LðϒðζÞ; ϒ̆ðζÞ; ζÞ, which is
a projective multiplet. Using this Lagrangian, one can
construct a manifestly N ¼ 2 supersymmetric action; see
[41] for a pedagogical review. As explained in [41], the
manifestly N ¼ 2 supersymmetric action can be recast in
two different but equivalent forms,

S ¼ 1

16

I
ζdζ
2πi

Z
d4xðD1Þ2ðD̄2Þ2LðζÞ

¼
I

ζdζ
2πi

Z
d4xd2θ1d2θ̄2LðζÞ ð4:16aÞ

¼ 1

16

I
dζ
2πiζ

Z
d4xζðD1Þ2ðD̄1Þ2LðζÞ

¼
I

dζ
2πiζ

Z
d4xd2θd2θ̄LðζÞ; ð4:16bÞ

of which the latter is used in most applications.
We now consider an important example of applying

the action principles (4.16a) and (4.16b). As an extension
of the construction given in [54], we choose LðζÞ ¼
−FðϒðζÞÞζ−2, with FðzÞ being a holomorphic function
of one argument, and consider the action

S ¼ −
I
C

dζ
2πiζ

Z
d4xd2θd2θ̄

FðϒðζÞÞ
ζ2

þ c:c:; ð4:17Þ

where C is a contour around the origin. Performing the
contour integral gives

S ¼ −
Z

d4xd2θd2θ̄fF0ðϕÞU þ 1

2
F00ðϕÞΓ2g þ c:c:

¼
Z

d4xd2θfF00ðϕÞϒ _αϒ _α − F0ðϕÞΨg þ c:c: ð4:18Þ

On the other hand, making use of (4.16a) leads to the action

S ¼ −
Z

d4xd2θ1d2θ̄2Fðϒ0Þ þ c:c:; ð4:19Þ

which is an example of the twisted chiral supersymmetric
action

STC ¼
Z

d4xd2θ1d2θ̄2LTC; D̄ _α
1LTC ¼ 0; D2

αLTC ¼ 0:

ð4:20Þ

The N ¼ 2 supersymmetric theory introduced in [54]
made use of a short projective multiplet

HðζÞ ¼ H0 þ ζH1 − ζ2H̄0; H̄1 ¼ H1; ð4:21Þ

which is known under three different names: (i) real Oð2Þ
multiplet, (ii) linear multiplet, and (iii) tensor multiplet. Its
N ¼ 1 components include a chiral scalar ϕ ≔ H0j and a
real linear superfieldG ≔ H1j ¼ Ḡ,D2G ¼ D̄2G ¼ 0. The
N ¼ 2 superfield H0 in HðζÞ is called a short twisted
chiral superfield. Its N ¼ 1 components in (4.12) satisfy

ϒ _α ¼ −
1

2
D̄ _αG; Ψ ¼ 1

4
D̄2ϕ̄: ð4:22Þ
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The action (4.18) corresponding to the Oð2Þ multiplet
(4.21) reads [54]

S ¼
Z

d4xd2θd2θ̄

×
�
ϕ̄F0ðϕÞ þ ϕF̄0ðϕ̄Þ − 1

2
ðF00ðϕÞ þ F̄00ðϕ̄ÞÞG2

�
;

ð4:23Þ

which is a special case of the general models for self-
interacting N ¼ 2 tensor multiplets [55]. Dualizing the
linear superfieldG in (4.23) into a chiral scalar, one ends up
with a hyper-Kähler sigma model. The generalization of
(4.23) to the case of severalN ¼ 2 tensor multiplets, which
was given in [54], provides a superspace derivation of the
rigid c-map construction [56].
As was shown in [52], there exists a simple deformation

of the short twisted chiral superfield that can be used to
derive the tensor Goldstone multiplet for partial N ¼ 2 →
N ¼ 1 supersymmetry breaking [57] from N ¼ 2 super-
fields. Such a framework is actually closely related to the
earlier work of [37,58]. To describe partial N ¼2→N ¼1
breaking of supersymmetry, the authors of [37,58]
deformed the real Oð2Þ multiplet HðζÞ to a complex
Oð2Þ multiplet HðζÞ given by

HðζÞ ¼ H0 þ ζH1 þ ζ2H2

≔ ĤðζÞ þmððθ̄2Þ2 − ζðθ̄1θ̄2Þ þ ζ2ðθ̄1Þ2Þ: ð4:24Þ

Here ĤðζÞ has the functional form (4.21) and obeys the
analyticity conditions

∇αðζÞĤðζÞ ¼ 0; ∇̄ _αðζÞĤðζÞ; ð4:25Þ

but it does not transform as an N ¼ 2 superfield, unlike
HðζÞ. The deformed short twisted chiral multiplet H0 has
the properties

H0j ¼ ϕ; ϒ _α ≔
1

2
D̄ _α

2H0j ¼ −
1

2
D̄ _αG;

Ψ ≔ −
1

4
ðD̄2Þ2H0 ¼

1

4
D̄2ϕ̄þm; ð4:26Þ

which coincide with those of the deformed chiral-antichiral
multiplet considered in [52]. The mass parameter m (4.26)
plays a role similar to the deformation parameter of the
deformed reduced chiral superfield in the flat superspace
limit. The presence of the deformation parameter m
modifies the second supersymmetry transformation,

δϕ ¼ −2ϵ̄2_αϒ
_α; ð4:27aÞ

δϒ _α ¼ 1

2
mϵ̄ _α 2 þ 1

4
ϵ̄ _α 2D̄2ϕ̄ − iϵα2∂α

_αϕ: ð4:27bÞ

The action (4.20) with a Lagrangian LTC ¼ −FðH0Þ takes,
upon reduction to N ¼ 1 superspace, the following form:

S ¼
Z

d4xd2θd2θ̄WðϕÞϕ̄

þ
Z

d4xd2θfW0ðϕÞϒ _αϒ _α þmWðϕÞg þ c:c:; ð4:28Þ

where WðϕÞ ≔ F0ðH0Þj.
To describe N ¼ 2 → N ¼ 1 supersymmetry breaking,

it remains to impose the quadratic nilpotency condition [52]

H0
2 ¼ 0; ð4:29Þ

in agreement with the earlier results of [37,58]. In terms of
N ¼ 1 superfields, this constraint is equivalent to

ϕ2 ¼ 0; ϕϒ _α ¼ 0;

�
mþ1

4
D̄2ϕ̄

�
ϕ¼ϒ _αϒ _α; ð4:30Þ

which are exactly the Bagger-Galperin constraints [57].
Instead of imposing the constraint (4.29), we now

consider a cubic nilpotency condition

H0
3 ¼ 0: ð4:31Þ

Upon reduction to N ¼ 1 superfields, it implies

ϕ3 ¼ 0; ϕ2ϒ _α ¼ 0;

�
mþ 1

4
D̄2ϕ̄

�
ϕ2 ¼ ϕϒ _αϒ _α:

ð4:32Þ

These constraints were introduced in [21]. Our analysis
derives them in the full N ¼ 2 superspace in terms of a
deformed short twisted chiral Goldstone multiplet. As
discussed in [21] the solution of (4.32) mimics the case
of the deformed reduced chiral Goldstone multiplet subject
to a cubic nilpotent constraint. The solution includes two
branches: (i) one that is identical to the N ¼ 2 → N ¼ 1
supersymmetry breaking case solving (4.30), and (ii) one
that completely breaks supersymmetry in general and
determines H0 in terms of the following physical degrees
of freedom: a scalar, two Goldstini, and a gauge two-form
[21]. Note that for the first branch to exist it is necessary to
have the mass parameter be nonvanishing, m ≠ 0. This
feature distinguishes the present deformed short twisted
chiral model from a nilpotent linear multiplet.
In this paper, we did not describe the component

structure of the supergravity-matter theories proposed.
These theories can be reduced to components using the
results of [59].
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APPENDIX A: REDUCED CHIRAL
AND LINEAR MULTIPLETS

It is well known that the field strength of an Abelian
vector multiplet is a reduced chiral superfield [60]. In
curved superspace, it is a covariantly chiral superfield W,

D̄ _α
i W ¼ 0; ðA1aÞ

subject to the Bianchi identity [25,60]

ðDij þ 4SijÞW ¼ ðD̄ij þ 4S̄ijÞW̄: ðA1bÞ

We recall that theN ¼ 2 tensor multiplet is described in
curved superspace by its gauge-invariant field strength Gij,
which is a linear multiplet. The latter is defined to be a
real SUð2Þ triplet (that is, Gij ¼ Gji and Ḡij ≔ Gij ¼ Gij)
subject to the covariant constraints [61,62]

Dði
αGjkÞ ¼ D̄ði

_αG
jkÞ ¼ 0: ðA2Þ

These constraints are solved in terms of a chiral prepoten-
tial Ψ [63–66] via

Gij ¼ 1

4
ðDij þ 4SijÞΨþ 1

4
ðD̄ij þ 4S̄ijÞΨ̄; D̄i

_αΨ ¼ 0;

ðA3Þ

which is invariant under Abelian gauge transformations

δΛΨ ¼ iΛ; ðA4aÞ

with the gauge parameter Λ being a reduced chiral super-
field,

D̄i
_αΛ¼ 0; ðDijþ4SijÞΛ− ðD̄ijþ4S̄ijÞΛ̄¼ 0: ðA4bÞ

The constraints on Λ can be solved in terms of the
Mezincescu prepotential [67] (see also [63]), Vij ¼ Vji,
which is an unconstrained real SUð2Þ triplet. The curved-
superspace solution is [38]

Λ ¼ 1

4
Δ̄ðDij þ 4SijÞVij: ðA5Þ

Here Δ̄ denotes the chiral projection operator [68]

Δ̄ ¼ 1

96
ððD̄ij þ 16S̄ijÞD̄ij − ðD̄ _α _β − 16Ȳ _α _βÞD̄ _α _βÞ

¼ 1

96
ðD̄ijðD̄ij þ 16S̄ijÞ − D̄ _α _βðD̄ _α _β − 16Ȳ _α _βÞÞ; ðA6Þ

with D̄ _α _β ≔ D̄ð _α
k D̄

_βÞk. Its main properties can be formulated
using a super-Weyl inert scalar U. It holds that

D̄ _α
i Δ̄U ¼ 0; ðA7aÞ

δσU ¼ 0 ⇒ δσΔ̄U ¼ 2σΔ̄U; ðA7bÞ
Z

d4xd4θd4θ̄EU ¼
Z

d4xd4θEΔ̄U; ðA7cÞ

where σ is the real unconstrained parameter of a super-Weyl
transformation [24,25]. The detailed derivation of (A7c) is
given in [69].

APPENDIX B: SOLVING THE
NILPOTENCY CONDITION (3.2)

In this appendix we show how to solve the nilpotency
condition (3.2) in Minkowski superspace. We make use of
the harmonic superspace techniques [47,48].
Associated with the linear superfield HijðzÞ constrained

by (3.1) is the harmonic superfield Hþþðz; uÞ ≔
HijðzÞuþi uþj , which is analytic and short,

Dþ
αHþþ ¼ 0; D̄þ

_αH
þþ ¼ 0; ðB1aÞ

DþþHþþ ¼ 0: ðB1bÞ

The analyticity constraints mean that Hþþ lives on the
analytic subspace of the harmonic superspace parametrized
by ζA ≡ fxmA; θþα; θ̄þ_α g and u�i . Here the variables

xmA ¼ xm − 2iθðiσmθ̄jÞuþi u
−
j ; θ�α ¼ u�i θ

i
α; θ̄�_α ¼ u�i θ̄

i
_α

ðB2Þ

correspond to the analytic basis of the harmonic superspace.
In the analytic basis, the general expression for Hþþ

was given in [48]. It is

HþþðζA; uÞ ¼ hijðxAÞuþi uþj þ 2½θþαψ i
αðxAÞ − θ̄þ_α ψ̄

_αiðxAÞ�uþi þ ðθþÞ2MðxAÞ þ ðθ̄þÞ2M̄ðxAÞ
þ 2iθþσmθ̄þ½VmðxAÞ þ ∂mhijðxAÞuþi u−j � þ 2i½ðθ̄þÞ2θþα∂α _αψ̄

_αiðxAÞ þ ðθþÞ2θ̄þ_α ∂α _αψ i
αðxAÞ�u−i

þ ðθþÞ4□hijðxAÞu−i u−j : ðB3Þ
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Here hij ¼ hij, ψ̄ _αi ≡ ψ i
α, and Vm is a real conserved

vector,

∂mVm ¼ 0; ðB4Þ

which allows us to interpret Vm as the Hodge dual of the
field strength of a gauge two-form. Here one should keep in
mind that the operator Dþþ ¼ uþi∂=∂u−i in the analytic
basis takes the form

Dþþ
A ¼ uþi ∂

∂u−i − 2iθþσmθ̄þ
∂

∂xmA þ…; ðB5Þ

where the ellipsis denotes two additional terms that do not
contribute when acting on analytic superfields.
In the harmonic superspace setting, the nilpotency

condition takes the form

ðHþþÞ3 ¼ 0: ðB6Þ

At the component level, this condition is equivalent to the
following equations,

0 ¼ ðhþþÞ3; ðB7aÞ

0 ¼ðhþþÞ2ψþ
α ; ðB7bÞ

0 ¼ hþþðhþþM − 2ðψþÞ2Þ; ðB7cÞ

0 ¼ hþþðihþþðVm þ ∂mhþ−Þ þ 2ψþσmψ̄þÞ; ðB7dÞ

0 ¼ hþþðMψ̄þ
_α þ iðVm þ ∂mhþ−ÞðψþσmÞ _α

þ i
2
hþþð∂mψ

−σmÞ _αÞ − ðψþÞ2ψ̄þ
_α ; ðB7eÞ

0 ¼ hþþ
�
MM̄ þ ðVm þ ∂mhþ−Þ2 − 2iψþσm∂mψ̄

−

− 2i∂mψ
−σmψ̄þ þ 1

2
hþþ

□h−−
�

− ðψþÞ2M̄ − ðψ̄þÞ2M − 2iðVm þ ∂mhþ−Þψþσmψ̄þ;

ðB7fÞ

where we have introduced h��≔hiju�i u
�
j and ψ�

α ≔ψ i
αu�i .

Equations (B7) are solved by

hij ¼ ψ ðiψ jÞM̄ þ ψ̄ ðiψ̄ jÞM þ 2iψ ðiσmψ̄ jÞVm

MM̄ þ VnVn
þ…; ðB8Þ

where the ellipsis denotes all terms with derivatives of the
fields. It is assumed that the complex auxiliary field M is
nowhere vanishing, M ≠ 0, and the allowed values of the
field strength Vm are restricted by

MM̄ þ VnVn ≠ 0: ðB9Þ

We present the complete solution elsewhere. However it
should be pointed out that hij vanishes if the Goldstini are
switched off,

ψ i
α ¼ 0 ⇒ hij ¼ 0: ðB10Þ

Indeed, in the case ψ i
α ¼ 0 Eq. (B7c) reduces to

hþþhþþM ¼ 0. This implies hij ¼ 0 if the components
of hij are ordinary complex numbers, as a consequence of
the identity hij ¼ iqðiq̄jÞ, for some SUð2Þ spinor qi and its

conjugate q̄i ¼ qi.
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