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We propose new off-shell models for spontaneously broken local A = 2 supersymmetry, in which the
supergravity multiplet couples to nilpotent Goldstino superfields that contain either a gauge one-form
or a gauge two-form in addition to spin-1/2 Goldstone fermions and auxiliary fields. In the case of
N = 2 Poincaré supersymmetry, we elaborate on the concept of twisted chiral superfields and present a
nilpotent A = 2 superfield that underlies the cubic nilpotency conditions given in J. High Energy Phys. 08
(2017) 109. in terms of constrained N = 1 superfields.
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I. INTRODUCTION

In the last three years, there has been much interest in off-
shell models for spontaneously broken A" = 1 supergrav-
ity; see [1-10] and references therein. Recently, we have
constructed several off-shell models for spontaneously
broken N = 2 supergravity [10], in which the supergravity
multiplet couples to the nilpotent Goldstino superfields
introduced in [11,12]. The models proposed in [10] make
use of both reducible and irreducible Goldstino superfields,
following the terminology of [8]. Every irreducible N = 2
Goldstino superfield contains only two independent com-
ponent fields, the spin-1/2 Goldstone fermions [13,14],
while the other component fields are composites con-
structed from the Goldstini. Reducible Goldstino super-
fields also contain some independent fields in addition to
the Goldstini.

In this paper we propose new models for spontaneously
broken A/ = 2 supergravity in which the Goldstini belong
to nilpotent superfields containing either a gauge one-form
or a gauge two-form among its independent physical fields.
This is achieved by relaxing the constraints obeyed by
the Goldstino superfields introduced in [10,15]. The idea
can be illustrated by giving two examples. The oldest
irreducible Goldstino superfield in four dimensions is the
N = 1 chiral scalar superfield ¢ [16,17], D ¢ = 0, which
is subject to the constraints [16]
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(1.1a)

1 . -
fb =140, (1.1b)
where f is a real parameter of mass dimension +2, which
characterizes the supersymmetry breaking scale. Removing
the second constraint, Eq. (1.1b), leads to the reducible
Goldstino superfield advocated in [18,19]. Our second
example is the irreducible Goldstino superfield introduced
in [8]. It is described by a real scalar ' = 1 superfield V
subject to the nilpotency constraints'

V=0, (1.2a)
VDADBDCV = 0, (12(:)

where D, = (9, D,, D%) are the covariant derivatives of
N =1 Minkowski superspace, in conjunction with the
nonlinear constraint

fvV = L VD*D?’D,V.
16

If the nonlinear constraint (1.3) is removed, we end up with

the reducible Goldstino superfield introduced in [10].
This paper is organized as follows. In Sec. II we couple
N =2 supergravity to a deformed reduced chiral super-
field subject to a cubic nilpotency condition. In Sec. III,
N = 2 supergravity is coupled to a linear superfield [also
known as the O(2) multiplet] subject to a cubic nilpotency
condition. In Sec. IV, we elaborate on the concept of

(1.3)

"The constraints (1.2a) and (1.3) were introduced for the first
time in [20].
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twisted chiral superfields in A = 2 Minkowski superspace
and present a nilpotent N = 2 superfield that underlies the
cubic nilpotency conditions given in [21] in terms of
constrained N' = 1 superfields. The reason for restricting
our analysis to the super-Poincaré case is that there is
no simple definition of twisted chiral superfields on
arbitrary A = 2 curved superspace backgrounds. The main
body of the paper is accompanied by two technical
appendixes. Appendix A reviews the prepotential formu-
lations for the A/ = 2 reduced chiral and linear multiplets.
Appendix B provides a solution to the nilpotency condition
(3.2) in the flat case using the harmonic superspace
techniques.

II. NILPOTENT CHIRAL SUPERFIELD

In recent papers [15,22], a deformed reduced chiral
superfield Z coupled to N =2 supergravity was intro-
duced. It is described by the constraints

DiZ =0, (2.1a)

(DY +48)Z — (D + 457) Z = 4iGY, (2.1b)
where we have defined D'/ = DD)) and Dii = ’.I_Df;l_)j)f’.
Here G is a linear multiplet that obeys the constraints
(1.2). In addition, G is required to be nowhere vanishing,
G'G;; # 0. As reviewed in Appendix A, GV is the gauge-
invariant field strength of a tensor multiplet. In this paper,
we identify G/ with one of the two conformal compensa-
tors of the minimal formulation for N = 2 supergravity
proposed in [23]. The superfields S and S in (2.1) are
special dimension-1 components of the torsion; see [24]
for the technical details of the superfield formulation for
N =2 conformal supergravity [25] that we use. The
constraints (2.1a) and (2.2) are invariant under the N’ =2
super-Weyl transformations [24,25] if Z is chosen to be a
primary superfield of dimension 1.

In the super-Poincaré case, a chiral superfield obeying
the constraint (2.1b) with a constant SU(2) triplet G%
appeared in the framework of partial N =2 —> AN =1
supersymmetry breaking [26—28].

In our previous paper [15], Z was subject to the
quadratic nilpotency condition

22 =0. (2.2)

The constraints (2.1) and (2.2) imply that, for certain
N =2 supergravity backgrounds, the degrees of freedom
described by the N = 2 chiral superfield Z are in one-to-one
correspondence with those of an Abelian A/ = 1 vector
multiplet. The specific feature of such N' = 2 supergravity
backgrounds is that they possess an N = 1 subspace M**
of the full A = 2 curved superspace M*®. This property is
not universal. In particular, there exist maximally A = 2
supersymmetric backgrounds with no admissible truncation

to NV = 1[29]. As shown in [15], the superfield constrained
by (2.1) and (2.2) is suitable for the description of partial
N =2 - N =1 rigid supersymmetry breaking in every
maximally supersymmetric spacetime M®*, which is the
bosonic body of an NV = 1 superspace M** described by
the following algebra of A/ = 1 covariant derivatives,’

{Dw Dﬁ} =0,

{DaDy} =0,  {Dy. Dy} = -2iD

(1/.)”
(2.3a)
[P Dyl = ieayG"3Dy [P Dyl = e jGy Dy
(2.3b)
[Daie: Dyl = =i€3Gy Dei + i€y G j Dy (2.3¢)

where the real four-vector G, is covariantly constant,

DaGb - 0, Gb - Gb' (23d)
Since G*> = GG, is constant, the geometry (2.3) describes
three different superspaces, for G, # 0, which correspond to
the choices G> < 0, G*> > 0, and G = 0, respectively. The
Lorentzian manifolds M* supported by these superspaces
are R x $3, AdS; x S' or its covering AdS; x R, and a pp-
wave spacetime, respectively.

We constructed in [15] the Maxwell-Goldstone multiplet
actions for partial N' = 2 - A = 1 supersymmetry break-
ing for all of them. In each of these cases, the action
coincides with a unique curved-superspace extension of the
N = 1 supersymmetric Born-Infeld action [31-33], which
is singled out by the requirement of U(1) duality invariance
[34-36]. In the super-Poincaré case, G, = 0, the approach
developed in [15] provided a simple N =2 superfield
derivation of the Bagger-Galperin action for partial
N =2 - N =1 supersymmetry breaking [33], which
differs in some technical details from the original derivation
given by Rocek and Tseytlin [37].

If one is interested in ' = 2 — A = 0 breaking of local
supersymmetry, the nilpotency condition (2.2) should be
replaced with a weaker constraint

Z3=0. (2.4)
In the super-Poincaré case, such a constraint has recently
been considered in [21]. As was demonstrated in [21], for a
certain range of parameters, in Minkowski superspace the
superfield Z constrained by (2.1) and (2.4) contains the
following independent fields: two Goldstini, a gauge one-
form, and a real, nowhere vanishing, SU(2) triplet of
auxiliary fields DY = D/', with DYD;; #0. We now
present a dynamical system describing N' = 2 supergravity
coupled to Z.

*These backgrounds are maximally supersymmetric solutions
of pure R? supergravity [30].
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The action for our supergravity-matter theory involves
two contributions,

S = Ssucra + Sz, (2.5)
where Sqygra denotes the pure supergravity action and Sz
corresponds to the Goldstino superfield. We make use
of the minimal formulation for A" = 2 supergravity with
vector and tensor compensators [23]. In the superspace
setting, the supergravity action can be written in the

form [38] (derived using the projective-superspace formu-
lation [39] for this theory)

1 1
SsuGra = K—z/ d4xd4¢95{‘I’W ~1 W2 + m‘I’W} +c.c.

1 1
= —2/ d4xd49€{‘l‘w - —WZ} +c.c.
K 4

/ d*xd*0dOEGIV, (2.6)
K'

lj’

where « is the gravitational constant and m the cosmo-
logical parameter. Here E and £ denote the full superspace
and chiral densities, respectively. The covariantly chiral
scalar ¥ and the real SU(2) triplet V;; are the prepotentials
of the tensor and vector multlplets respectively; see
Appendix A for the technical details. The supergravity
action involves the composite

G GY
W := D 4S
S+ >(G2)

(2.7)
which proves to be a reduced chiral superfield. The
superfield (2.7) is one of the simplest applications of the
powerful approach to generate composite reduced chiral
multiplets, which was presented in [38]. Another applica-
tion is given in the next section.

The action for the Goldstino superfield Z in (2.5) is

SZ_/d“ d49€{ ZZ+CWZ+,0< ‘P—%‘Iﬂ)}

+c.c., (2.8)
where ¢ and p are complex and real parameters,
respectively. The p-term in (2.8) was introduced in [15],
where it was shown to be invariant under gauge
transformations (A4).

The Goldstino superfield action (2.8) can be generalized
to include higher derivative couplings, for instance,

zZz zz
/ d4xd49d49E{/11_—W+/12 (WW> } (2.9)

where 1; and A, are coupling constants.

III. NILPOTENT LINEAR SUPERFIELD

We now introduce a linear superfield H",

DIiHHM = DIiHP =0 (3.1)
which is subject to the following cubic nilpotency
condition [10]
H i isiapisis) — () (32)
This algebraic constraint is one of the several nonlinear
constraints, which define the irreducible linear Goldstino
superfield HY introduced in [10]. As is shown in
Appendix B, the cubic constraint (3.2) expresses the
SU(2) triplet of physical scalars, H|,_,, in terms of
the other component fields of /. Thus the field content of
H is as follows: two Goldstini, a gauge two-form, and a
complex nowhere vanishing auxiliary scalar. As for the
Goldstino superfield H, its only independent component
fields are the Goldstini, since the additional nonlinear
constraints, which H” obeys, express the gauge two-form
and the auxiliary fields in terms of the Goldstone fer-
mions [10].
To describe the dynamics of AN =2 supergravity
coupled to H/ we choose an action of the form
S = Ssucra + Sx. (3.3)
where the supergravity action is given by (2.6). The action
Sy for the Goldstino superfield has, probably, the simplest
form within the projective-superspace formulation for
N =2 supergravity [24,40]. Here we refer the reader to
[24,40] for the technical details of that formulation, and we
simply give the projective superfield Lagrangian corre-
sponding to S4. Using the modern projective-superspace
notation [41], the Lagrangian is

1 HPH®?

2 _
Ly = 2 GO

+ EVH® (3.4)

with £ being a coupling constant. Here we have denoted
HP =H,;jv'v/, GB =G,jv'v/, where v’ € C*\{0} denotes
the homogeneous coordinates for CP'. Finally, the super-
field V(v') in (3.4) is the tropical prepotential for the
compensating vector multiplet; in particular, it is a hol-
omorphic homogeneous function of v of degree 0.

The action S3; can also be written, in a reasonably

compact form, in the conventional curved superspace using
the techniques developed in [38]. It is

1
SH = —E/ d4Xd49(€lPW2 4+ c.c.

lj’

+¢& / d*xd*0d*O0EHV,
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where W, denotes the reduced chiral superfield [38]

G~ | e vnil

ij 1 ij 1 ij mn
sz - a (5]{11 - ﬁGle1> H(kIH )Gmn (36)

The action (3.5) can be generalized to include higher
derivative terms that can be constructed using the tech-
niques developed in [38].

IV. NILPOTENT TWISTED
CHIRAL SUPERFIELDS

In this section we restrict our attention to the case of
N = 2 Poincaré supersymmetry and introduce new nilpo-
tent superfields on Minkowski superspace M*® parame-
trized by Cartesian coordinates z4 = (x¢, 6%, 6',), where 6%
is the complex conjugate of 8¢, with i = 1, 2. To start with,
we recall some salient features of the so-called projective
supermultiplets that live in the generalized A = 2 super-
space M* x CP' [42-45]; see [41] for a pedagogical
review.” As usual, the notation D, = (9, D%, D%,) is used
for the superspace covariant derivatives. We denote by ¢ the
inhomogeneous complex coordinate for CP!.

An N = 2 superfield E(z,{) of the general form

E(z,0) = i B, (2)¢" (4.1)

is called projective if it satisfies the constraints
V02 =0, V() =¢De-Di  (422)
ValQ)E() =0, V4 =Df+(¢D.  (4.2b)

These constraints are equivalent to the following differ-
ential conditions,

2= 1~
a2, = Da=,_q,

D

which imply

(Dy)’8, = (D1)’Ep40. (4.4)

(D?)°E, = (D)’E,,

Let us now consider a projective superfield Y ({) whose
Laurent series is bounded below. Without loss of generality,
it can be represented by a Taylor series

The superspace M*® x CP! was introduced for the first time
by Rosly [46]. The same superspace is at the heart of the
harmonic [47,48] and projective [42—44] superspace approaches.

T =3 1 (45)
n=0

Then the constraints (4.3) tell us that the lowest component
of T(), Yy, satisfies chiral and antichiral constraints
- 2
DTTO = O, D(_ITO = O, (46)
while the next-to-lowest component Y obeys linear con-
straints
(D l )ZTI — 0,

(D2YT, = 0. (4.7)

Making use of the constraints (4.3) and (4.4) also gives

DZTO = —D(_ZIT] s (483)

Constraints of the type (4.6) were considered for the first
time thirty-five years ago by Galperin er al. [49] in the
context of the Fayet-Sohnius hypermultiplet [50,51].
Recently they have been rediscovered, without any refer-
ence to [49] and the projective-superspace literature, in
[52]. These authors introduced a ring of N = 2 superfields
Q constrained by

DiQ —o0.

DiQ =0, (4.9)
Such superfields were called “chiral antichiral” in [52].
Instead we call them “twisted chiral superfields” by
analogy with the two-dimensional terminology introduced
in [53]. The most general twisted chiral superfield has the

form

Q(x, 0., @j) _ e—i(é’lguél—azaaéz)aag(x’ 6;1, gg)’ (4.10)

where fz(x, 6"1‘,@0%) is an arbitrary function of the four

Grassmann variables 6 and 9{2—1 We show that every twisted

chiral superfield € is the lowest component of a projective
superfield Y ().

Given a projective superfield Z(¢), the constraints (4.3)
imply that the dependence of the component superfields &,

on ¢ and 5% is uniquely determined in terms of their

dependence on ¢ = 6 and 8; = ;. In other words, the
projective superf:leld depends effectively on half the
Grassmann variables, which can be chosen to be the spinor
coordinates of the A" =1 Minkowski superspace M**
parametrized by the coordinates (x, 6, 95,). We introduce
the spinor covariant derivatives for M*4, D, := D% and
D® := D%. Associated with every N’ = 2 superfield U is its
N = 1 bar projection U| = Ul, _z_, which is an N = 1

026003-4
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superfield. As we have mentioned, all information about
the projective multiplet £(¢) is encoded in its bar projection
E({)|. In particular, associated with the projective multiplet
(4.5) is the following family of N = 1 superfields,

+0o0

)| =¢+T+> T,¢", D=0 DT=0.
n=2

(4.11)

The explicit structure of the A" = 1 superfields Y|, with
n=2,3,..., depends on the original projective multiplet.

Let us forget for a moment about the projective multip-
lets and consider a twisted chiral superfield Q. All
information about Q is encoded in the three N =1
superfields

S 1
$=Q, YT¢ ==§Dg§2 N = _Z(D2)2£2|, (4.12)
all of which are chiral,

Dip=0, D¥YF =0~ DW=0, (4.13)

by construction. The chirality of Y% implies Y%=
—1D?A% :%DdDbAﬁE—%D"’F. Thus, there exist NV = 1
superfields T":= Y| and U = Y,|, of which T obeys the
linear constraint D*T" = 0, such that

. 1-. 1.
Y¢ = —— DT, Y= —_D2U.
2 4

(4.14)
Thus we have demonstrated that every twisted chiral
superfield is the lowest component of a projective super-
field. In what follows, we do not indicate explicitly the
bar projection.

We now turn to reviewing the structure of supersym-
metric actions constructed in terms of the projective
multiplets. As is well known, associated with every
projective multiplet (4.1) is its smile conjugate

3 (4.15)

n—=——00

which is also a projective multiplet. If the theory is
formulated in terms of a projective multiplet Y({) and
its smile conjugate T(¢), the dynamics is described with
the aid of a Lagrangian £(¢) = £(Y(¢). T(£).£), which is
a projective multiplet. Using this Lagrangian, one can
construct a manifestly N = 2 supersymmetric action; see
[41] for a pedagogical review. As explained in [41], the
manifestly A/ = 2 supersymmetric action can be recast in
two different but equivalent forms,

1 d _
S—16 f 5 [ DD PLE)

d _
- f g—ﬂf / dtxd?0,d202L () (4.16a)
_ L dg 4 1207 \2
o o [@oroyre
d _
_ 7{ ﬁi“ d*x20020L(0), (4.16b)

of which the latter is used in most applications.

We now consider an important example of applying
the action principles (4.16a) and (4.16b). As an extension
of the construction given in [54], we choose L({) =
—F(Y(£))¢™2, with F(z) being a holomorphic function
of one argument, and consider the action

Y O 'S 2 F(Y(0)
S = _féznic/d *POP)— 2=+ e

(4.17)

where C is a contour around the origin. Performing the
contour integral gives

§=- / d*xd?0d*0{F'(¢)U + %F”((b)l“z} +c.c.

= / dxd2O{F" ()L, XY — F'($)¥} +cc.  (4.18)

On the other hand, making use of (4.16a) leads to the action
S =- / d*xd?0,d*62F () + c.c.,  (4.19)

which is an example of the twisted chiral supersymmetric
action

STC - /d4Xd291d2éZ£TC7 Dit[/rc - O, D(ZI‘CTC - O
(4.20)

The N = 2 supersymmetric theory introduced in [54]
made use of a short projective multiplet
H(¢) = Ho +(H, — (*H, Hy =H,, (4.21)
which is known under three different names: (i) real O(2)
multiplet, (ii) linear multiplet, and (iii) tensor multiplet. Its
N =1 components include a chiral scalar ¢ := Hy| and a
real linear superfield G := H,| = G, D>G = D>G = 0. The
N =2 superfield Hy in H(¢) is called a short twisted
chiral superfield. Its A" = 1 components in (4.12) satisfy

N 1.
Ti= - D'G. ¥ = D% (4.22)

026003-5
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The action (4.18) corresponding to the (O(2) multiplet
(4.21) reads [54]

S = / d*xd?0d%6

(F"() +F”<¢>>Gz}’
(4.23)

| =

< {(IﬁF’((ﬁ) L HF () -

which is a special case of the general models for self-
interacting N' =2 tensor multiplets [55]. Dualizing the
linear superfield G in (4.23) into a chiral scalar, one ends up
with a hyper-Kihler sigma model. The generalization of
(4.23) to the case of several N' = 2 tensor multiplets, which
was given in [54], provides a superspace derivation of the
rigid c-map construction [56].

As was shown in [52], there exists a simple deformation
of the short twisted chiral superfield that can be used to
derive the tensor Goldstone multiplet for partial N' =2 —
N =1 supersymmetry breaking [57] from A = 2 super-
fields. Such a framework is actually closely related to the
earlier work of [37,58]. To describe partial N'=2—>N =1
breaking of supersymmetry, the authors of [37,58]
deformed the real O(2) multiplet H({) to a complex
O(2) multiplet H({) given by

H()=H,+(H, +*H,

= H(O) +m((62) - £(616%) + 2(61)).  (4.24)
Here H(() has the functional form (4.21) and obeys the
analyticity conditions

Vi OHE) =0 Vy(OH©Q). (429
but it does not transform as an A/ = 2 superfield, unlike
H({). The deformed short twisted chiral multiplet H, has
the properties

. 1-. 1._.
Hy| = ¢, e ==§DZH0| :—ED‘IG’

1, - 1 -, -
lP::——( 2)2H021D2¢+m,

i (4.26)

which coincide with those of the deformed chiral-antichiral
multiplet considered in [52]. The mass parameter m (4.26)
plays a role similar to the deformation parameter of the
deformed reduced chiral superfield in the flat superspace
limit. The presence of the deformation parameter m
modifies the second supersymmetry transformation,

Sp = —2Ea Y%, (4.27a)

R TV B .
ST = S met? 4 @D~ ie§0," . (4.27b)

The action (4.20) with a Lagrangian Lyc = —F(H,) takes,
upon reduction to N = 1 superspace, the following form:

S = / d*xd>0d*OW (¢)¢

+ / d*xd?0{W' () Y3 X% + mW(p)} + c.c., (4.28)

where W(¢) := F'(H,)|.
To describe N' =2 — N = 1 supersymmetry breaking,
it remains to impose the quadratic nilpotency condition [52]

(4.29)

in agreement with the earlier results of [37,58]. In terms of
N =1 superfields, this constraint is equivalent to

¢ =0, ¢Ti=0, <m+%D2$>¢:T&Td, (4.30)

which are exactly the Bagger-Galperin constraints [57].
Instead of imposing the constraint (4.29), we now
consider a cubic nilpotency condition

Hy® =0. (4.31)

Upon reduction to A/ = 1 superfields, it implies

P =0, P =0, (m + %D%}) P’ = Y Y4

(4.32)

These constraints were introduced in [21]. Our analysis
derives them in the full N' =2 superspace in terms of a
deformed short twisted chiral Goldstone multiplet. As
discussed in [21] the solution of (4.32) mimics the case
of the deformed reduced chiral Goldstone multiplet subject
to a cubic nilpotent constraint. The solution includes two
branches: (i) one that is identical to the ' =2 - N =1
supersymmetry breaking case solving (4.30), and (ii) one
that completely breaks supersymmetry in general and
determines H, in terms of the following physical degrees
of freedom: a scalar, two Goldstini, and a gauge two-form
[21]. Note that for the first branch to exist it is necessary to
have the mass parameter be nonvanishing, m # 0. This
feature distinguishes the present deformed short twisted
chiral model from a nilpotent linear multiplet.

In this paper, we did not describe the component
structure of the supergravity-matter theories proposed.
These theories can be reduced to components using the
results of [59].
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APPENDIX A: REDUCED CHIRAL
AND LINEAR MULTIPLETS

It is well known that the field strength of an Abelian
vector multiplet is a reduced chiral superfield [60]. In
curved superspace, it is a covariantly chiral superfield W,

DIW =0, (Ala)
subject to the Bianchi identity [25,60]
(D +4ST)W = (D + 4S7)W. (Alb)

We recall that the A = 2 tensor multiplet is described in
curved superspace by its gauge-invariant field strength G/,
which is a linear multiplet. The latter is defined to be a
real SU(2) triplet (that is, GV = G/" and G; := G = Gy))
subject to the covariant constraints [61,62]

DiGM = DG = 0. (A2)

These constraints are solved in terms of a chiral prepoten-
tial ¥ [63-66] via

. . I, 1 .. S _
GY=7(DV+4S)¥ + (DY +457)¥, DY =0,

Bl =

(A3)
which is invariant under Abelian gauge transformations

O\Y = iA, (Ada)
with the gauge parameter A being a reduced chiral super-
field,
DiA=0, (DV+4S7)A— (D7 +4S7)A=0. (A4b)
The constraints on A can be solved in terms of the
Mezincescu prepotential [67] (see also [63]), V;; =V,
which is an unconstrained real SU(2) triplet. The curved-
superspace solution is [38]
|

1- .. .
Here A denotes the chiral projection operator [68]
- | = _ o
A = ¢ (DY + 168%)D;; - (D — 1677)D, )
| R s _ .
= %(Dij(D” +168Y) — Ddﬁ(Daﬂ —16Y%7)),  (A6)

with D/ = Z_?I(f’f)/.’)k. Its main properties can be formulated
using a super-Weyl inert scalar U. It holds that

DIAU =0, (A7a)

5,U =0 = 5,AU = 26AU, (A7b)

/ d*xd*0d*0EU = / d*xd*9€AU, (A7c)

where o is the real unconstrained parameter of a super-Weyl
transformation [24,25]. The detailed derivation of (A7c¢) is
given in [69].

APPENDIX B: SOLVING THE
NILPOTENCY CONDITION (3.2)

In this appendix we show how to solve the nilpotency
condition (3.2) in Minkowski superspace. We make use of
the harmonic superspace techniques [47,48].

Associated with the linear superfield H"/(z) constrained

by (3.1) is the harmonic superfield H*"(z,u):=
HY(z)u; u;, which is analytic and short,

DiH*t =0, DIt =0, (Bla)

DHHH = 0. (B1b)

The analyticity constraints mean that H*" lives on the
analytic subspace of the harmonic superspace parametrized
by o = {x%,07%,0}} and ui. Here the variables

At _ D
05, = u; 0,

(B2)

m _ ,m so(i smpj),,+,,— + _ ,,Epi
X =x"=2i00c"0)ufuy, 05 = ut6L,

correspond to the analytic basis of the harmonic superspace.
In the analytic basis, the general expression for H*™
was given in [48]. It is

T (Casu) = W (xp)ui uj +2[07 i (xa) — 055 (xa)Ju + (07)*M(x) + (67)*M (x,)
+ 2i9+6mé+[vm (xA) + amhij(xA)u;Lu;] + 2i[(é+>20+aaa(xlpdi (XA) + (9+)2é;aadWé(xA)]ui_

+ (07)*0hY (xp)u; uj.
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Here h;; = hil, Wi = @, and V™ is a real conserved
vector,

0,V" =0, (B4)
which allows us to interpret V™ as the Hodge dual of the
field strength of a gauge two-form. Here one should keep in

mind that the operator D*+ = u™9/0u~" in the analytic
basis takes the form

.0 _. 0
DXJF = I/l_H W - 2i9+0mH+ a—m + ey (BS)

XA

where the ellipsis denotes two additional terms that do not
contribute when acting on analytic superfields.
In the harmonic superspace setting, the nilpotency
condition takes the form
(HtF)3 =0. (B6)
At the component level, this condition is equivalent to the
following equations,

0= (h*+)3, (B7a)
0 =(h+)y, (B7b)
0= It (WM = 2(y)?). (B7c)
0= htH (it (V,y + 0,h"7) 4+ 2yt 6,5, (B7d)
0=h""(My}; +i(V,,+ 0,k ) (w o™,

PR D)) ~ i (B7¢)

0=ntt (MM + (Vyy + Oh )2 = 216" 0,00

1
= 210y ~0"p + 5 h++Dh——>

- (U/+)2M - (l/_ﬁ_)zM - 2i(Vm + (9mh+_)l//+0'ml/_/+,
(B7f)

where we have introduced /*= == h'uj u; and yy = yiu;.
Equations (B7) are solved by

iy B + i) M+ 2iyliG, g v
MM + V"V,

hil = +..., (B8

where the ellipsis denotes all terms with derivatives of the
fields. It is assumed that the complex auxiliary field M is
nowhere vanishing, M # 0, and the allowed values of the
field strength V™ are restricted by

MM + V"V, #0. (B9)
We present the complete solution elsewhere. However it
should be pointed out that 4/ vanishes if the Goldstini are
switched off,

wh=0= hi=0. (B10)
Indeed, in the case w, =0 Eq. (B7c) reduces to
h**h*+tM = 0. This implies A"/ = 0 if the components
of h' are ordinary complex numbers, as a consequence of
the identity 4"/ = igg/), for some SU(2) spinor ¢’ and its
conjugate g; = q'.
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