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We construct two distinct yet related M-theory models that provide suitable frameworks for the study of
knot invariants. We then focus on the four-dimensional gauge theory that follows from appropriately
compactifying one of these M-theory models. We show that this theory has indeed all required properties to
host knots. Our analysis provides a unifying picture of the various recent works that attempt an
understanding of knot invariants using techniques of four-dimensional physics. This is a companion paper
to K. Dasgupta, V. Errasti Díez, P. Ramadevi, and R. Tatar, Phys. Rev. D 95, 026010 (2017), covering all
but Sec. III C. It presents a detailed mathematical derivation of the main results there, as well as additional
material. Among the new insights, those related to supersymmetry and the topological twist are
highlighted. This paper offers an alternative, complementary formulation of the contents in the first
paper, but is self-contained and can be read independently.

DOI: 10.1103/PhysRevD.97.026001

I. INTRODUCTION

Knot theory is the branch of topology that studies knots.
In this context, a knot is an embedding of a circle in three-
dimensional Euclidean space or its compact analog: the
three-sphere. Two such knots are said to be equivalent if
and only if there exists an ambient isotopy transforming
one to the other. This formal definition of equivalent knots
is, unfortunately, insufficient in practice—to such a great
degree that one of the main unresolved problems in knot
theory consists on distinguishing knots. That is, determin-
ing when two knots are (or are not) equivalent. This is
known as the “classification problem of knots.” Very
elaborate algorithms exist to this end, yet the problem
persists.
Another approach to the knot differentiation puzzle

involves knot invariants: numbers, polynomials, or homol-
ogies defined for each knot which remain unchanged
for equivalent knots. Interestingly, invariants such as
Khovanov and Floer homologies are capable of telling
apart the unknot from any other nonequivalent knot.
Although this is a phenomenal achievement, there is still
much to be accomplished. So much so that, at present, it is
not known whether a knot invariant exists which is capable
of distinguishing all inequivalent knots.

There are various ways to compute knot invariants.
Mathematicians use recursive relations, known as skein
relations, to compute the Conway [1,2], Alexander [3], and
Jones [4] polynomials, among others. The first physics
understanding of knot invariants appeared much later, in
the groundbreaking work [5]. In it, knot polynomials are
obtained as expectation values of the holonomy of a Chern-
Simons gauge field around a knot carrying a representation
of the underlying (compact) gauge group. In particular, the
Jones and HOMFLY-PT [2,6] polynomials follow from
considering the defining representations of SUð2Þ and
SUðNÞ, respectively.
Starting roughly at the same time and up to now, there

have been a number of works that address the study of knot
invariants from the point of view of four-dimensional
physics: [7–12], to mention a few. It is within this context
that the present work attempts to provide a unifying and
neat scheme of the results obtained so far and contribute
new insights. Specifically, we will first establish a precise
connection between the models in [8,10]. Then, we will
reproduce the conclusions of [10] in the low energy
supergravity description of a given M-theory model. As
we shall see, our approach leads to a strikingly simple
analysis in the context of the usual classical Hamiltonian
formalism.
This paper and [13] constitute the first step in the path of

computing knot invariants from M-theory, compactified
down to four dimensions. We here lay the (fertile) ground
for embedding knots in our setting. The simplest knot
invariant, the so-called linking number, is computed in
[13]. We leave the realization of more challenging invar-
iants to the sequel.
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A. Organization of the paper

The paper is arranged as follows. In Secs. II and III,
we construct two distinct M-theory configurations that have
all necessary features to harbor knots. We refer to these as
(M, 1) and (M, 5). Specifically, Sec. II is devoted to the
construction of (M, 1), starting from the well-known
D3-NS5 system in type IIB superstring theory considered
in [10]. The very same D3-NS5 system is also the basis for
the construction of (M, 5), presented in Sec. III. It is worth
pointing out that (M, 5) is dual to the resolved conifold in
the presence of fluxes considered in [8].
Sections IV–VI focus on the study of the four-dimen-

sional gauge theory that follows from appropriately com-
pactifying model (M, 1). In particular, Sec. IV deals with
the derivation of its action. The corresponding Hamiltonian
is obtained in Sec. V, where we also minimize its energy for
static configurations of the fields. We thus find the BPS
conditions for the gauge theory. After the energy mini-
mization process, the Hamiltonian reduces to an action in a
three-dimensional subspace, as proved in Sec. VI. Further,
a careful analysis of the symmetries and physics of this
three-dimensional space shows that knots can be consis-
tently embedded in its Euclidean version.
Due to the considerable length of the computational

details and arguments presented, we have included a
graphical summary of the paper. It works in the following
manner. By looking at the 12 figures (and their captions)
here shown, the reader can quickly grasp the fundamental

logic articulating each part and section. Additionally, most
of the figures refer to equations in the text: these constitute
our main results. Hence, the figures can be used to
efficiently localize any particular information of interest
within the text.

B. Relation between the present work and [13]

This is a companion paper to [13]. As such, it aims to
clarify the main results stated there, providing precise
mathematical computations to endorse them. The complete
list of equations in [13] that are here proven is shown in
Table I. Broadly speaking, the following are the key points
we address exhaustively:
(1) The details of the construction of the M-theory

configurations (M, 1) and (M, 5). In [13], these
are called Model A and Model B, respectively, and
are, to a large extent, simply stated rather than
derived. Part I is devoted to rectifying this situation.
Specifically, a special effort is made to quantify all
the intermediate geometries and fluxes that one
encounters in constructing (M, 1) and (M, 5) from
the D3-NS5 system of [10]. Additionally, we em-
phasize how all considered configurations are ex-
actly related to each other. It should be noted that the
figures in part I are conceived to help in this respect.

(2) A meticulous explanation (missing in [13]) on what is
the four-dimensional gauge theory action associated
with (M, 1). Ultimately, the action is given by (4.146),

TABLE I. List of equations in [13] for which a detailed derivation can be found in the present work and the section where this is done.
The listed equations are the main results in [13] and they cover all but Sec. III C there.

Present work Equations in [13]

Part I Section II Section II A (3.4), (3.5), (3.19)-(3.25), (3.33)-(3.39), (3.41)-(3.44),
(3.46), (3.47), (3.49), (3.53)-(3.55)

Section II A 1 (3.85), (3.86), (3.89), (3.90)
Section II B (3.26), (3.29)-(3.32), (3.56)-(3.58)

Section III Section III A (4.1), (4.20), (4.23)
Section III B (4.2), (4.3)
Section III B 1 (4.9), (4.10), (4.13), (4.16), (4.17), (4.24)-(4.26), (4.30)
Section III B 2 (4.8)
Section III C (4.39), (4.40), (4.48), (4.51), (4.52)

Part II Section IV Section IVA (3.52), (3.91)-(3.98)
Section IVA 1 (3.76), (3.78)-(3.81)
Section IVA 2 (3.101), (3.102), (3.105)-(3.111), (3.114)-(3.119), (3.121), (3.124)-(3.128)
Section IV B (3.63), (3.67), (3.68)
Section IV C (3.136)-(3.139), (3.142)-(3.148), (3.153)

Section V Section VA (3.158), (3.160)
Section VA 1 (3.161), (3.162), (3.167), (3.169), (3.171)-(3.173), (3.177)-(3.182)
Section VA 2 (3.174), (3.207), (3.218), (3.220), (3.252)-(3.275)
Section V B (3.183), (3.187), (3.225)

Section VI Section VI A (3.233)
Section VI B (3.155), (3.222), (3.223), (3.243), (3.251)
Section VI C (3.156), (3.157), (3.184), (3.191), (3.224), (3.232), (3.236), (3.237),

(3.240)-(3.242), (3.246), (3.346)-(3.350)
Section VI C 1 (3.282), (3.287)
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or by (3.153) in the language of [13]. It depends on
various coefficients, summarized in Table II, that can
be traced to the supergravity parameters in (M, 1). An
important side result is the derivation of these
coefficients, which were merely asserted in [13].

(3) The ins and outs involved in rewriting the action
(4.146) as a Hamiltonian that consists on a sum of
squared terms, plus contributions from a three-
dimensional boundary. The Hamiltonian in question
is first obtained as (5.31), for a particularly simple
limiting case of the gauge theory. This corresponds
to (3.158) in [13]. Right afterwards, it is generalized
to (5.88), a novel result from the perspective of [13].

(4) The present work includes a comprehensive study of
the supersymmetry of the gauge theory following
from (M, 1). In particular, it obtains the boundary
conditions that the fields must obey so that the
theory is N ¼ 2 supersymmetric. Such discussion
and results are not part of [13].

(5) A basic review of the technique of topological twist
and a careful investigation of its compatibility with
the desired amount of supersymmetry is another
relevant addendum to [13] that we elaborate on. The
main advantage of doing so results into further
insight into the origin and relevance of the all-
important parameter t̂ (or simply t in [10,13])
defined in (6.32).

In spite of its companion paper nature, the present work
is self-contained and coherent by itself. Consequently, it
may be read independently of [13]. Nonetheless, an attempt
is made to present all results in a different manner from
[13], so that both works are mutually enriching. In this way,
it should be fruitful to check [13] at times and so comple-
ment the present reading.
It is worth mentioning that the mathematical notation,

albeit mostly coincident with the one used in [13], at

times differs from it. The reason is simple: to avoid
repetition of characters and thus prevent possible confusion
that may arise while reading through [13]. Nevertheless,
since a one-to-one mapping of equations is done, the reader
should have no difficulty in going from one work to
the other.
There is a part of [13] which is not touched upon: it is

Sec. III C. No complementary material to Sec. III C applies;
it is detailed enough in its own right. In it, knots are
embedded in the aforementioned gauge theory. This is
achieved by introducing M2-branes along some particular
directions in the M-theory configuration (M, 1). From the
four-dimensional point of view, such M2-branes are surface
operators, extensively studied co-dimension two objects
(for example, see [14]). Further, the M2-brane surface
operators are used to obtain the linking numbers of any
arbitrary knot. The present paper is written so as to allow
the interested reader to directly jump from the end of Sec. 6
to Sec. 3 3 in [13] without any hurdle.

II. THE D3-NS5 SYSTEM MODIFIED

Sections II and III make up the first part of the paper:
Two M-theory constructions to study knot invariants:
(M, 1) and (M, 5). In these sections, we will construct
two different M-theory configurations that provide an
appropriate framework for the study of knots and their
invariants. We will refer to these configurations as (M, 1)
and (M, 5). Both of them will be directly obtained from the
well-known type IIB system of a D3-brane ending on an
NS5-brane considered in [10]. Section II contains the
construction of (M, 1) from the D3-NS5 system, while
Sec. III derives (M, 5). As will be argued towards the end of
this first part, in Sec. III B 2, (M, 5) is intimately related to
the model in [8]. Consequently, this part lays the ground for
an explicit connection between the two seemingly different
approaches to study knot invariants of [8,10].

TABLE II. List of coefficients appearing in the bosonic action (4.146) and the equation numbers where they are expressed in terms of
only the warp factors in (2.2) and (2.26), the deformation parameter in (2.24), and the leading constant term of the dilaton in (4.5). [Top
five coefficients depend onJ 3 in (4.29).] Note that we do not compute ðC1=V3Þ explicitly. However, its Abelian version ðc1=v3Þ is given
by (4.10). Note also that the top five coefficients require ~F2 ≥ F3 to be finite. The first five coefficients stem from Sð1Þ discussed in
Sec. IVA, the sixth coefficient is related to Sð2Þ in Sec. IV B, and the last three coefficients of Sð3Þ in Sec. IV C.

Coefficient Given in

c11 (4.30)
c12 (4.38) Depends on ðb; b2; b3Þ in (4.31) and J 4 in (4.37).
a1, a2, a4 (4.68)

Depend on ð ~a�; ~a2; ~a4Þ in (4.69).ca~3, car, ~caϕ1
(4.78)

c ~ψ ~3, c ~ψr, ~c ~ψϕ1
(4.91) Depend on all the above via ða01; b01; c01Þ in (4.92), as well as ~b2 in (4.83) and ðfð1Þ; fð2ÞÞ in (4.93).

c2 (4.113)
bak, b ~ψk (4.125) Depend on b in (4.31) and ðΘ12;Θ34Þ in (4.124).
dkl (4.131) Depends on Θ56 in (4.130).
c~3k, crk, cϕ1k (4.137) Depend on ðΘ12;Π78Þ in (4.124) and (4.142).
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Before proceeding to the details, a word of warning: we
will consider multiple type IIA, IIB, and M-theory configu-
rations. Figure 1 provides a visual sketch of the overall logic
in this part. Hence, the reader may find it clarifying to come
back to this image while reading through Secs. II and III.
As we just mentioned, the starting point of our analysis is

the well-known type IIB superstring theory configuration of
a D3-brane ending on an NS5-brane. In more detail, we
consider Minkowski spacetime R1;9, with mostly positive
metric signature. We denote the coordinates as ðt; x1; x2; x3;
θ1;ϕ1;ψ ; r; x8; x9Þ. [The identifications ðx4 ≡ θ1; x5 ≡ ϕ1;
x6 ≡ ψ ; x7 ≡ rÞ will shortly become sensible.] We take the
D3-brane to stretch along ðt; x1; x2;ψÞ and the NS5-brane
along ðt; x1; x2; x3; x8; x9Þ. The Uð1Þ gauge theory on the
D3-brane has N ¼ 4 supersymmetry and the intersecting
NS5-brane provides a half-BPS boundary condition. The
world-volume gauge theory thus hasN ¼ 2 supersymmetry.
This is, essentially, the starting point of [10] as well. (The
only difference is that, in [10], an axionic background C0 is
switched on. We will elaborate on this point in Sec. II B.)
Next, we make three modifications to the above setup.

These are depicted schematically in Fig. 2 and discussed in
the following.
(1) First, we introduce a second NS5-brane, parallel to

the first one and which also intersects the D3-brane.

This means that the orthogonal direction to the NS5-
branes of the D3-brane, namely ψ, is now a finite
interval. The inclusion of the second NS5-brane
halves the amount of supersymmetry of the gauge
theory on the D3-brane. However, we consider the
case when the ψ interval is very large (that is, the two
NS5-branes are far from each other). Then, near the
original NS5-brane, effectively no supersymmetry is
lost in this step.

(2) Second, we make a T-duality to type IIA superstring
theory along x3. As a result, we now have a
D4-brane (instead of a D3-brane) between the same
two NS5-branes of before.

(3) Third,wemakeaT-dualitybacktotypeIIBalongψ .The
NS5-branes thus disappear and give rise to a warped
Taub-NUTspace in the ðθ1;ϕ1;ψ ; rÞdirections. (This
justifies thecoordinate relabelingabove.)Asargued in
[15], because ψ is a finite interval and because our
construction leads to an N ¼ 2 supersymmetric
world-volumegauge theory, theD4-brane converts to
aD5=D5pairwhichwrapstheψ directionandstretches
alongr.

The geometry corresponding to this last configuration is
well known (in fact, the three modifications above were

Fig 6

Fig 7 Fig 5

Fig 2

Fig 3

Fig 4

Fig 8

Fig 9

FIG. 1. Graphical summary of Secs. II and III. Starting from the type IIB D3-NS5 system of [10], we construct two different M-theory
configurations where knots and their invariants can be studied. We refer to these as (M, 1) (and its non-Abelian enhancement) and
(M, 5). [The configuration (M, 2) is equivalent to (M, 1) for the purposes of our work, yet computationally tougher to handle. We will
thus focus our efforts in the study of (M, 1) only.] Note that (M, 1) is dual to [10]. Similarly, (M, 5) is dual to the resolved conifold in the
presence of fluxes considered in [8]. The right-hand side of the figure, colored green, schematizes the contents of Sec. II. The left-hand
side, in blue, depicts the discussion in Sec. III.
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made only to be able to write the corresponding metric) and
is given by (3.4) and (3.5) in [13]:

ds2ðB;1Þ ¼ e−ϕð−dt2 þ dx21 þ dx22 þ dx23Þ
þ eϕF4ðdx28 þ dx29Þ
þ eϕ½F1dr2 þ F2ðdψ þ cos θ1dϕ1Þ2
þ F3ðdθ21 þ sin2θ1dϕ2

1Þ�; ð2:1Þ

where e−ϕ is the usual type IIB dilaton. (Since we will
consider many metrics in the following, we adopt the
notation ds2ðX;nÞ. Here X ¼ A, B, M stands for type IIA,

type IIB, and M-theory, respectively and n ∈ N is an index
to label the different metrics that will occur.) We consider,
for simplicity, the following dependence of the warp factors
and dilaton.1:

Fi ¼ FiðrÞ; F4 ¼ F4ðr; x8; x9Þ;
ϕ ¼ ϕðθ1; r; x8; x9Þ; i ¼ 1; 2; 3: ð2:2Þ

The warped Taub-NUT space metric is, quite obviously, the
second line in (2.1).
Let us move the D5-brane far away along the ðx8; x9Þ

directions (the Coulomb branch) and consider only the
D5-brane. This will simplify the flux discussion in the
construction of the M-theory configurations (M, 1) (and its
non-Abelian enhanced version) and (M, 2) that concern us
in the present Sec. II (see Fig. 1). Nonetheless, in Sec. IV B,
we will “move back” this D5-brane and appropriately
account for its effects. We will then see that the D5-brane
plays an important, nontrivial role in our investigations.
It has been known for quite some time now that D-branes

carry Ramond-Ramond (RR) charges [16]. In this case that
concerns us, the D5-brane sources an RR three-form flux

F ðB;1Þ
3 that can be computed as2

F ðB;1Þ
3 ¼ e2ϕ � dJ ðB;1Þ; ð2:3Þ

(a) (b)

(d) (c)

FIG. 2. Illustration of the modifications to the D3-NS5 system described in Sec. II. This chain of dualities is done so that the
corresponding metric can be written: the geometry of (d) is well known. (a) The well-known type IIB D3-NS5 system. The
corresponding world-volume gauge theory has N ¼ 2 supersymmetry. The D3-brane spans the ðt; x1; x2;ψÞ directions and the NS5-
brane the ðt; x1; x2; x3; x8; x9Þ directions. The ðθ1;ϕ1; rÞ directions are suppressed. (b) Introducing a second NS5-brane, parallel to the
first one, converts the ψ direction into an interval. We take this interval to be large (but finite) in order to effectively retain the same
amount of supersymmetry. (c) AT-duality along x3 does not affect the parallel NS5-branes, but converts the D3-brane into a D4-brane.
(d) AT-duality along ψ converts the parallel NS5-branes to a warped Taub-NUT space along ðθ1;ϕ1;ψ ; rÞ. The D4-brane converts to a
D5=D5 pair that wraps the ψ direction and stretches along r. The ðθ1;ϕ1; x8; x9Þ directions are suppressed.

1As will be made more precise in Sec. III A, a definite choice
of the warp factors and dilaton will in general not preserve
the N ¼ 2 supersymmetry of the world-volume gauge theory.
Consequently, any concrete choice one may wish to consider
must be checked to indeed preserve the desired amount of
supersymmetry. 2For a review on how fluxes can be determined, see [17].
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where J ðB;1Þ stands for the fundamental form of the metric e−ϕds2ðB;1Þ along the directions ðθ1;ϕ1;ψ ; r; x8; x9Þ, which we

call ds2ð1Þ:

ds2ð1Þ ≡ F1dr2 þ F2ðdψ þ cos θ1dϕ1Þ2 þ F3ðdθ21 þ sin2 θ1dϕ2
1Þ þ F4ðdx28 þ dx29Þ: ð2:4Þ

Let us calculate F ðB;1Þ
3 in details next.

We take the vielbeins of (2.4) to be

EðB;1Þ
θ1

¼
ffiffiffiffiffiffi
F3

p
eðB;1Þθ1

¼
ffiffiffiffiffiffi
F3

p
dθ1; EðB;1Þ

ϕ1
¼

ffiffiffiffiffiffi
F3

p
eðB;1Þϕ1

¼
ffiffiffiffiffiffi
F3

p
sin θ1dϕ1;

EðB;1Þ
ψ ¼

ffiffiffiffiffiffi
F2

p
eðB;1Þψ ¼

ffiffiffiffiffiffi
F2

p
ðdψ þ cos θ1dϕ1Þ; EðB;1Þ

r ¼
ffiffiffiffiffiffi
F1

p
eðB;1Þr ¼

ffiffiffiffiffiffi
F1

p
dr;

EðB;1Þ
8 ¼

ffiffiffiffiffiffi
F4

p
eðB;1Þ8 ¼

ffiffiffiffiffiffi
F4

p
dx8; EðB;1Þ

9 ¼
ffiffiffiffiffiffi
F4

p
eðB;1Þ9 ¼

ffiffiffiffiffiffi
F4

p
dx9: ð2:5Þ

These vielbeins can be used to compute the fundamental form J ðB;1Þ. The result is (3.19) in [13]:

J ðB;1Þ ¼ EðB;1Þ
θ1

∧ EðB;1Þ
ϕ1

þ EðB;1Þ
ψ ∧ EðB;1Þ

r þ EðB;1Þ
8 ∧ EðB;1Þ

9

¼ F3 sin θ1dθ1 ∧ dϕ1 þ
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
ðdψ þ cos θ1dϕ1Þ ∧ drþ F4dx8 ∧ dx9: ð2:6Þ

The exterior derivative of J ðB;1Þ is given by

dJ ðB;1Þ ¼ F3;r sin θ1dr ∧ dθ1 ∧ dϕ1 −
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
sin θ1dθ1 ∧ dϕ1 ∧ drþ F4;rdr ∧ dx8 ∧ dx9

¼ ðF3;r −
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
Þ sin θ1dr ∧ dθ1 ∧ dϕ1 þ F4;rdr ∧ dx8 ∧ dx9; ð2:7Þ

where ðF3;r; F4;rÞ stand for the derivatives of ðF3; F4Þ with respect to r. In order to take the Hodge dual of dJ ðB;1Þ, we start
by showing a few intermediate steps. First, we write the metric (2.4) in matrix form:

M ¼

0
BBBBBBBB@

F3 0 0 0 0 0

0 F2cos2θ1 þ F3sin2θ1 F2 cos θ1 0 0 0

0 F2 cos θ1 F2 0 0 0

0 0 0 F1 0 0

0 0 0 0 F4 0

0 0 0 0 0 F4

1
CCCCCCCCA
: ð2:8Þ

We denote as M the square root of the determinant of this matrix:

M≡ ffiffiffiffiffiffiffiffiffiffiffi
detM

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
F3F4 sin θ1: ð2:9Þ

The inverse of M is

M−1 ¼

0
BBBBBBBBBBBB@

1
F3

0 0 0 0 0

0 csc2θ1
F3

− cot θ1 csc θ1
F3

0 0 0

0 − cot θ1 csc θ1
F3

1
F2
þ cot2θ1

F3
0 0 0

0 0 0 1
F1

0 0

0 0 0 0 1
F4

0

0 0 0 0 0 1
F4

1
CCCCCCCCCCCCA
: ð2:10Þ

The above three equations allow us to compute the Hodge dual of the wedge products in (2.7). We obtain

�ðdr ∧ dθ1 ∧ dϕ1Þ ¼ MM−1
rr M−1

θ1θ1
ðM−1

ϕ1ϕ1
ϵrθ1ϕ1ψx8x9dψ þM−1

ϕ1ψ
ϵrθ1ψϕ1x8x9dϕ1Þ ∧ dx8 ∧ dx9

¼ −

ffiffiffiffiffiffi
F2

F1

s
F4

F3

ðcsc θ1dψ þ cot θ1dϕ1Þ ∧ dx8 ∧ dx9; ð2:11Þ
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� ðdr ∧ dx8 ∧ dx9Þ
¼ MM−1

rr M−1
x8x8M

−1
x9x9ϵrx8x9ψθ1ϕ1

dψ ∧ dθ1 ∧ dϕ1

¼
ffiffiffiffiffiffi
F2

F1

s
F3

F4

sin θ1dψ ∧ dθ1 ∧ dϕ1: ð2:12Þ

Consequently, the Hodge dual of dJ ðB;1Þ is

�dJ ðB;1Þ ¼ e−2ϕ½k2ðdψ þ cos θ1dϕ1Þ ∧ dx8 ∧ dx9

þ k1 sin θ1dψ ∧ dθ1 ∧ dϕ1�; ð2:13Þ
where we have defined, following (3.21) in [13],

k1 ≡ e2ϕ

ffiffiffiffiffiffi
F2

F1

s
F3

F4

F4;r;

k2 ≡ e2ϕ

ffiffiffiffiffiffi
F2

F1

s
F4

F3

ð
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F3;rÞ: ð2:14Þ

Further using the vielbeins (2.5), we obtain the desired

result, the RR three-form flux F ðB;1Þ
3 , which precisely

matches (3.20) in [13]:

F ðB;1Þ
3 ¼ eðB;1Þψ ∧ ðk1eðB;1Þθ1

∧ eðB;1Þϕ1
þ k2e

ðB;1Þ
8 ∧ eðB;1Þ9 Þ:

ð2:15Þ

It is important to note that this three-form is not closed:

dF ðB;1Þ
3 ≠ 0. This reflects the presence of the D5-brane in

this configuration.
Summing up, the type IIB configuration shown in

Fig. 2(d) can be obtained directly from the well-known
D3-NS5 system. It has the metric (2.1), dilaton e−ϕ, and an
RR three-form flux (2.15).
An essential ingredient that makes the study of knots

using the D3-NS5 system possible is the presence of a
Θ-term in the D3-brane gauge theory. In the case of [10],
this term is sourced by an axionic background C0. In the
following (Sec. II A), we will present an alternative (and
computationally simpler) way to source the required
Θ-term: by further modifying the above setup switching
on a noncommutative deformation. The fact that we do not
need to (though, of course, we can) switch on C0 in order to
have an M-theory construction on which knot invariants
can be studied will be the focus of Sec. II B.

A. Sourcing the Θ-term: A noncommutative
deformation

The starting point in this section is, of course, the just
discussed type IIB geometry in (2.1). Wewill first T-dualize
this to type IIA along ψ . [This means we will move from
(d) to (c) in Fig. 2.] Here, we will use the noncommutative
deformation, which will only affect the ðx3;ψÞ directions:

ðx3;ψÞ → ð~x3; ~ψÞ. This will be followed by another
T-duality along ~ψ . At this point, we will have a type IIB
configuration capable of sourcing the required Θ-term in
the Uð1Þ world-volume gauge theory. Then, we will
T-dualize along ϕ1 to type IIA. Finally, we will lift the
resulting configuration to M-theory. Along the way, we will
also study the NS B-field, dilaton, and fluxes associated
with each geometry considered, which will in turn shed
some light onto the connection between the noncommu-
tative deformation and the Θ-term. [The precise connection
between these two will be shown early in Sec. V B, see
(5.82).] Figure 3 summarizes this chain of modifications
and points out what the most relevant equations in this
section are.
Let us go ahead and show in details the above outlined

M-theory construction. We start by rewriting the metric
(2.1) in a more convenient way for our present purposes3:

ds2ðB;1Þ ¼ ds2ð2Þ þ e−ϕdx23 þ eϕF2ðdψ þ cos θ1dϕ1Þ2;
ð2:16Þ

with ds2ð2Þ defined as

ds2ð2Þ ≡ e−ϕð−dt2 þ dx21 þ dx22Þ
þ eϕ½F1dr2 þ F3ðdθ21 þ sin2θ1dϕ2

1Þ
þ F4ðdx28 þ dx29Þ�: ð2:17Þ

We recall that the dilaton here is

eϕðB;1Þ ¼ e−ϕ ð2:18Þ
and the RR three-form flux was given in (2.15).
T-dualizing along ψ , we get the metric

ds2ðA;1Þ ¼ ds2ð2Þ þ e−ϕdx23 þ
e−ϕ

F2

dψ2; ð2:19Þ

with associated Neveu-Schwarz (NS) B-field and dilaton

BðA;1Þ ¼ cos θ1dψ ∧ dϕ1; eϕðA;1Þ ¼ ðe3ϕF2Þ−1=2:
ð2:20Þ

We take the relevant vielbeins associated with ds2ðA;1Þ to be

eðA;1Þθ1
¼ dθ1; eðA;1Þϕ1

¼ sin θ1dϕ1;

eðA;1Þψ ¼ dψ þ cos θ1dϕ1;

eðA;1Þr ¼ dr; eðA;1Þ8 ¼ dx8; eðA;1Þ9 ¼ dx9: ð2:21Þ

3All through this paper, we will use the formulas in Sec. 6.5 of
[18] to perform T- and S-dualities and to go from (to) type IIA to
(from) M-theory. Accordingly, we will always write the relevant
metrics in the form that makes it straightforward to apply those
formulas.
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As for the fluxes, the Ramond-Ramond (RR) three-form
flux in (2.15) now gives rise to the following RR two-form
flux:

F ðA;1Þ
2 ¼ k1e

ðA;1Þ
θ1

∧ eðA;1Þϕ1
þ k2e

ðA;1Þ
8 ∧ eðA;1Þ9 : ð2:22Þ

Note that, for an arbitrary value of the warp factors and ϕ,

the above flux is not closed: dF ðA;1Þ
2 ≠ 0. This is consistent

with having a D4-brane as a source [see Fig. 2(c)]. The NS
three-form flux is given by

HðA;1Þ
3 ¼ dBðA;1Þ ¼ − sin θ1dθ1 ∧ dψ ∧ dϕ1: ð2:23Þ

We will now deform the above type IIA configuration.
The noncommutative deformation ðx3;ψÞ → ð~x3; ~ψÞ that
we will consider is

ψ ¼ cos θnc ~ψ ; x3 ¼ sec θnc ~x3 þ sin θnc ~ψ ; ð2:24Þ

where θnc ∈ ½0; 2πÞ is the deformation parameter. Note that
the ðx3;ψÞ directions in ds2ðA;1Þ form a square torus; that is,

a geometry which is isometric to a square with opposite
sides identified. Hence, the noncommutative deformation
simply inclines the torus. This same deformation was
considered in [19], albeit in a different context. Under this
deformation, the above type IIA metric changes to

ds2ðA;2Þ ¼ ds2ð2Þ þe−ϕðsecθncd~x3þ sinθncd ~ψÞ2

þe−ϕ

F2

cos2θncd ~ψ2

¼ ds2ð2Þ þe−ϕ
�
~F2

F2

sec2θncd~x23

þ cos2θnc
~F2

ðd ~ψþ ~F2sec2θnc tanθncd~x3Þ2
�
; ð2:25Þ

where we have defined

~F2 ≡ F2

1þ F2 tan2 θnc
; ð2:26Þ

as in (3.35) in [13] and the last rewriting of ds2ðA;2Þ was done
in anticipation to the T-duality along ~ψ that will soon

φ1

ψ

ψ

FIG. 3. Graphical summary of Sec. II A. To the type IIB configuration of Fig. 2(d) we make a series of modifications in order to source
a Θ-term in the Uð1Þ world-volume gauge theory. This is achieved in going from the configuration (B,1) to (B,2). The presence of a
Θ-term is essential to, later on, construct a three-dimensional space with the required features to allow for the realization of knots. The
(B,2) configuration is then lifted to M-theory. The configuration (M, 1) (and its non-Abelian enhanced version, studied in Sec. II A 1) is
the first M-theory construction where knots can be studied.

VERÓNICA ERRASTI DÍEZ PHYS. REV. D 97, 026001 (2018)

026001-8



follow. The NS B-field is also affected by the deformation
and now takes the form

BðA;2Þ ¼ cos θnc cos θ1d ~ψ ∧ dϕ1: ð2:27Þ

On the other hand, due to our simplifying choices in (2.2),
the dilaton remains unchanged: eϕðA;2Þ ¼ eϕðA;1Þ . The RR
two-form flux (2.22) is also not affected by this deforma-

tion, F ðA;2Þ
2 ¼ F ðA;1Þ

2 , but the NS three-form flux in (2.23)
changes to

HðA;2Þ
3 ¼ dBðA;2Þ ¼ − cos θnc sin θ1dθ1 ∧ d ~ψ ∧ dϕ1:

ð2:28Þ
T-dualizing the metric (2.25) along ~ψ , one obtains the

type IIB metric given in (3.22) in [13]:

ds2ðB;2Þ ¼ ds2ð2Þ þ e−ϕ
~F2

F2

sec2θncd~x23

þ eϕ ~F2

�
d ~ψ

cos θnc
þ cos θ1dϕ1

�
2

: ð2:29Þ

The NS B-field associated with ds2ðB;2Þ is

BðB;2Þ ¼ ~F2sec2θnc tan θncðd ~ψ þ cos θnc cos θ1dϕ1Þ ∧ d~x3

ð2:30Þ

and the dilaton is that suggested in (3.25) in [13]:

eϕðB;2Þ ¼
ffiffiffiffiffiffi
~F2

F2

s
sec θnce−ϕ: ð2:31Þ

To the ds2ðB;2Þ metric, we associate the following relevant

vielbeins:

eðB;2Þ~3
¼ d~x3; eðB;2Þθ1

¼ dθ1; eðB;2Þϕ1
¼ sin θ1dϕ1;

eðB;2Þ~ψ ¼ d ~ψ þ cos θnc cos θ1dϕ1; eðB;2Þ8 ¼ dx8;

eðB;2Þ9 ¼ dx9: ð2:32Þ

In terms of these, it is not hard to see that the RR three-form

flux F ðB;2Þ
3 dual to F ðA;2Þ

2 can be written as in (3.23) in [13]:

F ðB;2Þ
3 ¼ eðB;2Þ~ψ ∧ ðk1eðB;2Þθ1

∧ eðB;2Þϕ1
þ k2e

ðB;2Þ
8 ∧ eðB;2Þ9 Þ:

ð2:33Þ

Once again, it is important to note that the flux F ðB;2Þ
3 is not

closed: dF ðB;2Þ
3 ≠ 0. This implies that indeed there is

a D5-brane in this setup. For completeness, we give the

expression of dF ðB;2Þ
3 . Rewriting (2.33) as

F ðB;2Þ
3 ¼ k1 sin θ1d ~ψ ∧ dθ1 ∧ dϕ1

þ k2ðd ~ψ þ cos θnc cos θ1dϕ1Þ ∧ dx8 ∧ dx9;

ð2:34Þ

it is easy to see that its exterior derivative is that in (3.38) in
[13]:

dF ðB;2Þ
3 ¼ k1;a sin θ1da ∧ d ~ψ ∧ dθ1 ∧ dϕ1 þ k2;ada

∧ ðd ~ψ þ cos θnc cos θ1dϕ1Þ ∧ dx8 ∧ dx9

− k2 cos θnc sin θ1dθ1 ∧ dϕ1 ∧ dx8 ∧ dx9;

ð2:35Þ

where we have defined a≡ ðθ1; r; x8; x9Þ since, due to our
choices (2.2), ðk1; k2Þ only depend on these coordinates
(and on the deformation parameter θnc). Determining

HðB;2Þ
3 is also not difficult. Taking the exterior derivative

of BðB;2Þ, we obtain

HðB;2Þ
3 ¼ sec θnc tan θnc½ ~F2;r sec θncdr

∧ ðd ~ψ þ cos θnc cos θ1dϕ1Þ
− ~F2 sin θ1dθ1 ∧ dϕ1� ∧ d~x3; ð2:36Þ

which is a closed form by definition. From (2.26) it can be
easily checked that ~F2;r ¼ ð ~F2=F2Þ2F2;r. Also using the
vielbeins in (2.32), we can rewrite the NS flux as in (3.24)
in [13]:

HðB;2Þ
3 ¼ ~F2 sec θnc tan θnc

�
~F2F2;r

F2
2

sec θnce
ðB;2Þ
r

∧ eðB;2Þ~ψ − eðB;2Þθ1
∧ eðB;2Þϕ1

�
∧ eðB;2Þ~3

: ð2:37Þ

So far, all we have done in this section boils down to
introducing an NS B-field to the type IIB configuration that
was our starting point [described in Sec. II and depicted in
Fig. 2(d)]. This NS B-field, in turn, sources the NS three-
form flux we just determined. In Sec. VII, we will see how
this NS flux sources the desired Θ-term in the Uð1Þ world-
volume gauge theory. For the time being, however, let us
focus on the construction of the M-theory configuration
associated with this setup.
The following step in the duality chain outlined at the

beginning of this section is to take the T-dual along ϕ1 of
(2.29). In order to make this step easy, we rewrite the
aforementioned metric as

ds2ðB;2Þ ¼ ds2ð3Þ þ eϕð ~F2cos2θ1 þ F3sin2θ1Þ

×

�
dϕ1 þ

~F2 cos θ1 sec θnc
~F2cos2θ1 þ F3sin2θ1

d ~ψ

�
2

; ð2:38Þ
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where we have defined

ds2ð3Þ ≡ e−ϕ
�
−dt2 þ dx21 þ dx22 þ

~F2

F2

sec2θncd~x23

�

þ eϕ
~F2F3sec2θncsin2θ1
~F2cos2θ1 þ F3sin2θ1

d ~ψ2

þ eϕ½F1dr2 þ F3dθ21 þ F4ðdx28 þ dx29Þ�: ð2:39Þ

Similarly, a rewriting of its associated NS B-field will make
the next duality straightforward:

BðB;2Þ ¼ ~F2 secθnc tanθnc

×

�
secθnc

ðF3sin2θ1 þ ~F2cos2θ1Þ
~F2cos2θ1 þF3sin2θ1

d ~ψ þ cosθ1dϕ1

�
∧ d~x3: ð2:40Þ

T-dualizing along ϕ1, we obtain the type IIA geometry of
(3.33) in [13]:

ds2ðA;3Þ ¼ ds2ð3Þ þ e−ϕ
ðdϕ1 þ ~F2 secθnc tanθnc cosθ1d~x3Þ2

~F2cos2θ1 þF3sin2θ1
:

ð2:41Þ

The NS B-field associated with the ds2ðA;3Þ metric is that in

(3.34) in [13]:

BðA;3Þ ¼
~F2 sec θnc

~F2cos2θ1 þ F3sin2θ1
ðF3 sec θnc tan θncsin2θ1d ~ψ

∧ d~x3 þ cos θ1dϕ1 ∧ d ~ψÞ: ð2:42Þ

The corresponding dilaton is (3.36) in [13]:

eϕðA;3Þ ¼
ffiffiffiffiffiffi
~F2

F2

s
sec θncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~F2cos2θ1 þ F3sin2θ1

q e−3ϕ=2: ð2:43Þ

Coming to the fluxes, the type IIA two-form flux F ðA;3Þ
2

dual to F ðB;2Þ
3 in (2.34) can be easily seen to be

F ðA;3Þ
2 ¼ k1 sin θ1d ~ψ ∧ dθ1 þ k2 cos θnc cos θ1dx8 ∧ dx9:

ð2:44Þ

It is again important to note that, of course, this two-form

flux is not closed: dF ðA;3Þ
2 ≠ 0, which reflects the presence

of a D6-brane (dual to the D5-brane in the previous type IIB
configuration). Thus, if we denote asA1 the type IIA gauge

field for this configuration, then it follows thatF ðA;3Þ
2 can be

written as in (3.53) in [13]:

F ðA;3Þ
2 ¼ dA1 þ Δ; dΔ ¼ sources: ð2:45Þ

The explicit expression of the dΔ ¼ dF ðA;3Þ
2 sources is that

in (3.39) in [13]:

dF ðA;3Þ
2 ¼ k1;a sin θ1da ∧ d ~ψ ∧ dθ1

þ ðk2;a cos θnc cos θ1da − k2 cos θnc sin θ1dθ1Þ
∧ dx8 ∧ dx9: ð2:46Þ

We define A1 as

A1 ≡A1θ1dθ1 þA18dx8 þA19dx9; ð2:47Þ

with ðA1θ1 ;A18;A19Þ depending only on the ðθ1; x8; x9Þ
coordinates. We further define

α1 ≡ ∂A19

∂x8 −
∂A18

∂x9 ; α2 ≡ ∂A1θ1

∂x8 −
∂A18

∂θ1 ;

α3 ≡ ∂A1θ1

∂x9 −
∂A19

∂θ1 : ð2:48Þ

Using the above quantities, the exterior derivative of A1 is
(3.42) in [13]:

dA1 ≡ α1dx8 ∧ dx9 þ α2dx8 ∧ dθ1 þ α3dx9 ∧ dθ1:

ð2:49Þ

Since dðdA1Þ ¼ 0, the α’s just introduced are subject to the
constraint

∂α1
∂θ1 −

∂α2
∂x9 þ

∂α3
∂x8 ¼ 0; ð2:50Þ

mentioned in (3.43) in [13]. The definition (2.47) will
become sensible in the M-theory uplift that follows. But
first let us finish the flux discussion for this type IIA
configuration. We note that the corresponding NS three-
form flux is given by the exterior derivative of BðA;3Þ.
This is

HðA;3Þ
3 ¼ db ∧ ðk̂1;bd ~ψ ∧ d~x3 þ k̂2;bdϕ1 ∧ d ~ψÞ; ð2:51Þ

where we have defined

k̂1 ≡
~F2F3sec2θnc tan θncsin2θ1
~F2cos2θ1 þ F3sin2θ1

;

k̂2 ≡
~F2F3 sec θnc cos θ1
~F2cos2θ1 þ F3sin2θ1

ð2:52Þ

and b≡ ðθ1; rÞ are the only coordinates on which the above
two functions depend [recall our choices in (2.2)].
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Finally, we will uplift the above type IIA configuration to
M-theory. To this aim, we rewrite the metric ds2ðA;3Þ in
(2.41) in a more convenient way. We first introduce the
quantities of (3.41) in [13]:

H1 ≡ ðH2H3Þ−1=3; H2 ≡ ðcos2θnc þ F2sin2θncÞ−1;
H3 ≡ ð ~F2cos2θ1 þ F3sin2θ1Þ−1;
H4 ≡H3

~F2F3sec2θncsin2θ1;

f3 ≡ ~F2 sec θnc tan θnc cos θ1: ð2:53Þ
In terms of these, the metric ds2ðA;3Þ can be written as

ds2ðA;3Þ ¼
e−ϕ

H1

fH1½−dt2 þ dx21 þ dx22 þH2d~x23

þH3ðdϕ1 þ f3d~x3Þ2� þ e2ϕH1½F1dr2 þ F3dθ21

þ F4ðdx28 þ dx29Þ þH4d ~ψ2�g: ð2:54Þ
It is essential to note that the M-theory uplift will only be
able to capture the dynamics of the type IIA theory in the
strong coupling limit of the latter. For us, that means that
we can only rely on the M-theory description when eϕðA;3Þ is
of order one or bigger. However, we will be interested in
having a finite radius for the eleventh direction after we
uplift. Therefore, we will be careful to avoid the infinite
coupling limit where

eϕðA;3Þ → ∞: ð2:55Þ
From (2.43) it follows that the above is true when e−ϕ→∞,
for an arbitrary choice of ðF2; F3Þ. Additionally, the infinite
coupling limit also applies at two isolated points ðp1; p2Þ
given by p1 ¼ ðθ1 ¼ 0; r ¼ r1Þ and p2 ¼ ðθ1 ¼ π=2; r ¼
r2Þ (for any value of the remaining coordinates), where
ðr1; r2Þ are the values of the radial coordinate for which
F2ðr1Þ ¼ 0 and F3ðr2Þ ¼ 0, respectively. (These are the
same two points in (3.37) in [13].)
The M-theory metric corresponding to (2.54) is

ds2ðM;1Þ ¼ H1½−dt2 þ dx21 þ dx22 þH2d~x23

þH3ðdϕ1 þ f3d~x3Þ2 þ e2ϕðF1dr2 þH4d ~ψ2Þ�
þ e2ϕH1½F3dθ21 þ F4ðdx28 þ dx29Þ�
þ e−2ϕH−2

1 ðdx11 þA1Þ2; ð2:56Þ
where A1 is the type IIA gauge field defined in (2.47). We
note that, due to (2.2) and (2.47), for a fixed value of the
radial coordinate, r ¼ r0, the second line above describes a
warped Taub-NUT space in the ðθ1; x8; x9; x11Þ directions.
[Indeed, this is what motivated the definition (2.47).]
This is most easily seen by introducing the quantities in
(3.45) in [13],

G1 ≡ e2ϕH1F3jr¼r0 ; G2; G3 ≡ e2ϕH1F4jr¼r0 ;

G4 ≡ e−2ϕH−2
1 jr¼r0 ð2:57Þ

and writing the warped Taub-NUT metric as in (3.44)
in [13]:

ds2TN1
¼ G1dθ21 þG2dx28 þG3dx29 þG4ðdx11 þA1Þ2:

ð2:58Þ

Note that, as we just explained,

Gi ¼ Giðθ1; x8; x9Þ; i ¼ 1; 2; 3; 4: ð2:59Þ

We take the vielbeins of (2.58) as

eðM;1Þ
θ1

¼
ffiffiffiffiffiffi
G1

p
dθ1; eðM;1Þ

8 ¼
ffiffiffiffiffiffi
G2

p
dx8;

eðM;1Þ
9 ¼

ffiffiffiffiffiffi
G3

p
dx9; eðM;1Þ

11 ¼
ffiffiffiffiffiffi
G4

p
ðdx11 þA1Þ: ð2:60Þ

To better understand this Taub-NUT space, recall that,
before the M-theory uplift, we had a D6-brane in our type
IIA configuration. The M-theory uplift then converts this
D6-brane to geometry. In particular, we obtain the metric
(2.56), where (2.58) is a single-centered (warped) Taub-
NUT space. In other words, in (2.58), G−1

4 ¼ 0 occurs once
and the coordinate singularity at this point is the location of
the D6-brane in the dual type IIA picture. This is an
important observation and essential to the G-flux compu-
tation that follows.
As we just hinted, the remaining of this section will be

devoted to the determination of the G-flux corresponding to
this M-theory configuration. As is well known, there exists
a unique, normalizable (anti-)self-dual harmonic two-form
ω associated with a single-centered (warped) Taub-NUT
space [20]. Using which, the G-flux4 for our M-theory
configuration is given by (3.55) in [13]:

GðM;1Þ
4 ¼ hGðM;1Þ

4 i þ F ∧ ω; ð2:61Þ

where hGðM;1Þ
4 i ¼ HðA;3Þ

3 ∧ dx11 is the background G-flux

[HðA;3Þ
3 was determined in (2.51)] and F ¼ dA is the field

strength of the Uð1Þ world-volume gauge theory (A is the
corresponding gauge field). Thus, in order to obtain the

explicit form of GðM;1Þ
4 , we have one task left: ω must be

computed. We do so in the following.
We start by making the ansatz in (3.46) in [13] for ω

ω ¼ dζ; ζ ¼ gðθ1; x8; x9Þðdx11 þA1Þ ð2:62Þ

and proceed to determine its precise value from the (anti-)
self-duality requirement:ω ¼ � � ω, where the Hodge dual
is taken with respect to the metric (2.58). Let us see this in
details. Using (2.49) and (2.60), ω can be written as

4We remind the reader that the computation of fluxes is nicely
summarized in [17].
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ω ¼ 1ffiffiffiffiffiffi
G4

p
�

1ffiffiffiffiffiffi
G1

p ∂g
∂θ1 e

ðM;1Þ
θ1

þ 1ffiffiffiffiffiffi
G2

p ∂g
∂x8 e

ðM;1Þ
8 þ 1ffiffiffiffiffiffi

G3

p ∂g
∂x9 e

ðM;1Þ
9

�
∧ eðM;1Þ

11

þ g

�
α1ffiffiffiffiffiffiffiffiffiffiffi
G2G3

p eðM;1Þ
8 ∧ eðM;1Þ

9 þ α2ffiffiffiffiffiffiffiffiffiffiffi
G1G2

p eðM;1Þ
8 ∧ eðM;1Þ

θ1
þ α3ffiffiffiffiffiffiffiffiffiffiffi

G1G3

p eðM;1Þ
9 ∧ eðM;1Þ

θ1

�
: ð2:63Þ

Quite obviously,

�ðeðM;1Þ
θ1

∧ eðM;1Þ
11 Þ ¼ eðM;1Þ

8 ∧ eðM;1Þ
9 ; �ðeðM;1Þ

8 ∧ eðM;1Þ
11 Þ ¼ eðM;1Þ

9 ∧ eðM;1Þ
θ1

;

�ðeðM;1Þ
9 ∧ eðM;1Þ

11 Þ ¼ eðM;1Þ
8 ∧ eðM;1Þ

θ1
ð2:64Þ

and so, the Hodge dual of ω is

�ω ¼ þg

�
α1ffiffiffiffiffiffiffiffiffiffiffi
G2G3

p eðM;1Þ
θ1

þ α3ffiffiffiffiffiffiffiffiffiffiffi
G1G3

p eðM;1Þ
8 −

α2ffiffiffiffiffiffiffiffiffiffiffi
G1G2

p eðM;1Þ
9

�
∧ eðM;1Þ

11

þ 1ffiffiffiffiffiffi
G4

p
�

1ffiffiffiffiffiffi
G1

p ∂g
∂θ1 e

ðM;1Þ
8 ∧ eðM;1Þ

9 þ 1ffiffiffiffiffiffi
G3

p ∂g
∂x9 e

ðM;1Þ
8 ∧ eðM;1Þ

θ1
þ 1ffiffiffiffiffiffi

G2

p ∂g
∂x8 e

ðM;1Þ
9 ∧ eðM;1Þ

θ1

�
: ð2:65Þ

Imposing (anti-)self-duality of ω leads to three partial differential equations (PDEs):

1

g
∂g
∂θ1 ¼ �α1

ffiffiffiffiffiffiffiffiffiffiffi
G1G4

G2G3

s
;

1

g
∂g
∂x8 ¼ �α3

ffiffiffiffiffiffiffiffiffiffiffi
G2G4

G1G3

s
;

1

g
∂g
∂x9 ¼∓ α2

ffiffiffiffiffiffiffiffiffiffiffi
G3G4

G1G2

s
: ð2:66Þ

Using (2.53) and (2.57) in the above, we can rewrite these equations in terms of the warp factors and ϕ, as in (3.47) in [13]:

1

g
∂g
∂θ1 ¼ �e−2ϕ

α1
F4

ffiffiffiffiffiffiffiffiffiffiffi
~F2F3

F2

s
sec θncð ~F2cos2θ1 þ F3sin2θ1Þ−1=2j

r¼r0

;

1

g
∂g
∂x8 ¼ �e−2ϕα3

ffiffiffiffiffiffiffiffiffiffiffi
~F2

F2F3

s
sec θncð ~F2cos2θ1 þ F3sin2θ1Þ−1=2j

r¼r0

¼ −
α3
α2

1

g
∂g
∂x9 : ð2:67Þ

Solving the above set of PDEs generically is not easy.
Consequently, we will make some more simplifying
assumptions. To begin with, let us take, as in (3.49)
in [13],

α1 ¼ 0; α2 ¼ β2ðx9Þfðθ1; r; x8; x9Þjr¼r0 ;

α3 ¼ β3ðx8Þfðθ1; r; x8; x9Þjr¼r0 ; ð2:68Þ

where we have defined

f ¼ fðθ1; r; x8; x9Þ≡ e2ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2cos2θ1 þ F3sin2θ1

q
: ð2:69Þ

If we now choose e2ϕ as in (3.54) in [13],

e2ϕ ¼ e2ϕ0Qðr; x8; x9Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 cos2 θ1 þ F3 sin2 θ1

q ; ð2:70Þ

with ϕ0 some constant, then ðα2; α3Þ become independent
of θ1 [that is, functions of the coordinates ðx8; x9Þ only].

Recall that the α’s were subject to the constraint (2.50).
Hence, Q ¼ Qðr; x8; x9Þ above must satisfy

Q
�
dβ3
dx8

−
dβ2
dx9

�
þ β3

∂Q
∂x8 − β2

∂Q
∂x9
����
r¼r0

¼ 0: ð2:71Þ

Additionally, we define

c0 ≡
ffiffiffiffiffiffiffiffiffiffiffi
~F2

F2F3

s
sec θnc

����
r¼r0

; ð2:72Þ

which is a constant that only depends on the deformation
parameter θnc. Inserting all our choices and definitions in
(2.67), these PDEs reduce to

1

g
∂g
∂x8 ¼ �c0β3ðx8Þ;

1

g
∂g
∂x9 ¼ ∓ c0β2ðx9Þ; ð2:73Þ

where g is now independent of θ1 and thus g ¼ gðx8; x9Þ. It
is finally easy to use separation of variables to solve the
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above. Assuming g ¼ ~g1ðx8Þ~g2ðx9Þ, we obtain two ordi-
nary differential equations,

d~g1
~g1

¼ �c0β3ðx8Þdx8;
d~g2
~g2

¼ ∓ c0β2ðx9Þdx9;

ð2:74Þ

which can readily be solved to yield

g ¼ g0 exp

�
�c0

�Z
x8

0

β3ðx08Þdx08 −
Z

x9

0

β2ðx09Þdx09
��

;

ð2:75Þ

with g0 some integration constant. This completes the
computation of ω in (2.62), which in turn gives us the
explicit form of the G-flux in (2.61).

1. Enhancing the symmetry of the world-volume
gauge theory: Tensionless M2-branes

It is an intrinsically interesting question to ask whether
our first M-theory construction above can be generalized to
account for non-Abelian world-volume gauge theories [and
not just the particularly simple Uð1Þ case discussed so far].
The answer is yes and the way to do so is discussed in [21].
Consequently, in this section we review and adapt the
arguments in [21] to our case.
But before we jump into the details of non-Abelian

enhancement in M-theory, it is instructive to recall the well-
known equivalent discussion in type IIA superstring theory
[22]. Consider N parallel D6-branes (N ¼ 2; 3; 4;…).
Consider there are open strings stretched between these
D6-branes. In this case, the symmetry group of the
corresponding world-volume gauge theory is

Uð1Þ ×Uð1Þ ×… × Uð1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N times

: ð2:76Þ

In the limit when the open strings become tensionless,
the D6-branes come on top of each other (we thus
have N coincident D6-branes). Then, the symmetry group
of the corresponding world-volume gauge theory
becomes SUðNÞ.
If we lift the above type IIA configuration to M-theory,

then the D6-branes convert to geometry and we obtain
the metric (2.56),5 with (2.58) a multi-centered (warped)
Taub-NUT space. Indeed, G−1

4 ¼ 0 now occurs N times in
(2.58), the coordinate singularities at these points denoting
the location of the D6-branes in the dual type IIA picture.
As for the open strings, they convert to M2-branes wrap-
ping the two-cycles in the Taub-NUT space (2.58). In the

limit of tensionless M2-branes, the two-cycles vanish
and the world-volume gauge theory symmetry group
becomes SUðNÞ.
Let us see how the above discussion applies to our setup

in details. The first step will be to construct the independent
two-cycles in the space (2.58). In order to do so, let us start
by rewriting the metric (2.58) in a more convenient way.
Defining, as in (3.86) in [13],

U ≡ e2ϕH2
1jr¼r0 ;

dx⃗2 ≡H−1
1 ½F3dθ21 þ F4ðdx28 þ dx29Þ�jr¼r0 ; ð2:77Þ

we can rewrite (2.58) as in (3.85) in [13]:

ds2TN1
¼ Udx⃗2 þ U−1ðdx11 þA1Þ2: ð2:78Þ

Recall that now this warped Taub-NUT space is a multi-
centered one. Using (2.53) and (2.70), U above can be
written in terms of the warp factors and Q as

U ¼ e2ϕ0Qðcos2θnc þ F2sin2θncÞ2=3
× ð ~F2cos2θ1 þ F3sin2θ1Þ1=6jr¼r0 : ð2:79Þ

For simplicity, we will make two assumptions next: we will
take the deformation parameter to be sufficiently small (that
is, θnc ≪ 1) and we will consider

F2jr¼r0 ¼ F3jr¼r0 : ð2:80Þ

Then, expanding to first order around θnc ¼ 0 and using
(2.80), U becomes independent of θ1:

~U ¼ ~Uðx8; x9Þ≡ lim
θnc→0

U ¼ e2ϕ0Qðr; x8; x9ÞF1=6
3 jr¼r0 :

ð2:81Þ

~U ¼ 0 has N solutions, which we denote as ⃗li ¼ ðx8i; x9iÞ
(i ¼ 1; 2;…; N). Consider two such points ⃗li and ⃗lj (i ≠ j)
and a geodesic Cg in the ðx8; x9Þ space joining them.
Attaching to each point in Cg a circle labeled by x11, we
obtain a minimal area two-cycle Xij. We take Xk;kþ1

(k ¼ 1; 2;…; N − 1) as the (minimal area) independent
two-cycles.
It is well known that to each such two-cycle Xk;kþ1, with

k fixed, we can associate a unique, normalizable, (anti-)
self-dual two-form ωk. Obtaining the explicit form of ωk is
straightforward, in view of our earlier results. We only need
to modify (2.62) to

ωk ¼ dζk; ζk ¼ gkðx8; x9Þðdx11 þA1Þ ð2:82Þ

and restrict the integrals in (2.75) to the Xk;kþ1

two-cycle:

5Since we never determined our warp factors andQ function in
(2.70), we can absorb the changes in the geometry due to the
inclusion of the D6-branes and open strings in these quantities.
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gk ¼ ~g0 exp
�
�c0

Z ⃗lkþ1

⃗lk

ðβ3 − β2Þjd⃗lCg j
�
; ð2:83Þ

where ~g0 is some integration constant and d⃗lCg denotes line

element along the geodesic Cg joining ⃗lk and ⃗lkþ1.
Let us now compute the areas of the two-cycles Xk;kþ1

and derive their intersection matrix. It will soon be clear
why we do so. As measured in the Taub-NUT metric, the
area of Xk;kþ1 is given by

Sk;kþ1 ¼
Z
Xk;kþ1

ð ~U−1=2dx11Þð ~U1=2
ffiffiffiffiffiffi
F4

p
jr¼r0 jd⃗lCg jÞ

¼ ~βR11

Z ⃗lkþ1

⃗lk

ffiffiffiffiffiffi
F4

p
jr¼r0 jd⃗lCg j; ð2:84Þ

with ~β a constant that avoids possible conical singularities
along Cg and R11 the physical radius of the x11 coordinate.
It is easy to see that the self-intersection number for each
Sk;kþ1 is two: the Sk;kþ1’s self-intersect at ⃗lk and ⃗lkþ1, with
geodesics transversed in the same direction. Sk;kþ1 inter-

sects Sk−1;k only at ⃗lk, their geodesics being transversed in
opposite directions. No other two-cycles’ areas intersect.
Thus, the ðN − 1Þ × ðN − 1Þ intersection matrix of the
areas of the two-cycles Xk;kþ1 is

0
BBBBBBBBBB@

2 −1 0 0 … 0 0

−1 2 −1 0 … 0 0

0 −1 2 −1 … 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 0 … 2 −1
0 0 0 0 … −1 2

1
CCCCCCCCCCA
: ð2:85Þ

Or, written more compactly, as in (3.89) in [13],

½Sk;kþ1�∘½Sl;lþ1� ¼
	
2δk;l

−δl;k−1
: ð2:86Þ

This is, of course, the Cartan matrix of the AN−1 algebra.
Recall that there are M2-branes in this configuration.

They wrap the Xk;kþ1 two-cycles and thus their intersection
matrix is (2.85). As previously explained, when the area of
all these two-cycles tends to zero, the limit of tensionless
M2-branes sets in. This corresponds to an AN−1 singularity,
which in turn is responsible for enhancing the world-
volume gauge symmetry to SUðNÞ, as shown in [23].
Figure 4 schematically depicts the above discussion for
N ¼ 3, both in the type IIA and M-theory pictures.
To finish this section, we use all the above results to write

the G-flux of this non-Abelian enhanced M-theory con-
figuration as in (3.90) in [13]:

GðM;1Þ
4 ¼ hGðM;1Þ

4 i þ
XN−1

k¼1

F k ∧ ωk: ð2:87Þ

Here, F k’s are the Cartan algebra values of the world-

volume field strength F , the background G-flux hGðM;1Þ
4 i is

as earlier6 in (2.61), and the two-forms ωk were computed
in (2.82).

B. Accounting for an axionic background: An
additional RR B-field

Suppose we follow the prescription of [10] to source the
Θ-term in the world-volume gauge theory. That is, suppose
we consider the type IIB D3-NS5 system with an axionic
background C0. How would that affect the results in the
previous section (Sec. II A), where C0 ¼ 0?
Long story made short, we need to follow C0 along the

modifications of Sec. II, depicted in Fig. 2. We note that C0
would not be affected while going from (a) to (b) in Fig. 2.
However, on going from (b) to (c), C0 would dualize to a
gauge field in the x3 direction. Finally, on going from (c) to
(d), the gauge field would lead to an RR B-field in the
ðx3;ψÞ directions. Schematically,

C0⟶
but finite interval

Convertψ to a large
C0⟶

along x3

T-duality
C1 ¼ ðC1Þ3dx3⟶alongψ

T-duality
C2 ¼ ðC2Þ3ψdx3 ∧ dψ : ð2:88Þ

Thus, in our construction, switching on an axionic back-
ground in the usual type IIB D3-NS5 system of [10], shown
in Fig. 2(a), amounts to adding an RR B-field in the ðx3;ψÞ
directions to the type IIB configuration shown in Fig. 2(d).
In this section, however, we will see a different way in

which we can obtain such an RR B-field in the type IIB
configuration before we uplift to M-theory. This will
involve another, distinct (although similar) chain of dual-
ities and modifications to the type IIB configuration of

Fig. 2(d) to that considered before, in Sec. II A. In the
following, we make precise this idea.
The starting point here is the starting point of Sec. II A as

well: the last configuration of Sec. II, schematically

6Remember, however, that the warp factors and Q function
introduced in (2.70) are different from those in the Abelian case,
due to the inclusion of the D6-branes and open strings in the dual
type IIA theory.
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depicted in Fig. 2(d). To this configuration we will
associate an RR B-field. We will then use an S-duality.
The next step will be a T-duality along ψ to type IIA, where
we will use the same noncommutative deformation
ðx3;ψÞ → ð~x3; ~ψÞ that was considered in Sec. II A. Next,
we will consider a T-duality along ~ψ back to type IIB,
followed by an S-duality. At this point we will have a type
IIB configuration with an RR B-field along ð~x3; ~ψÞ. Thus,
effectively we will have accounted for the axionic back-
ground, as we wished to do. The last T-duality will be along
ϕ1 to type IIA. The resulting configuration will be then
lifted to M-theory. As in Sec. II A, the NS and RR B-fields,
dilaton, and fluxes of all the above geometries will be
determined. Figure 5 serves as a summary of the chain of
modifications just described and indicates the key equa-
tions in this section.
As just explained, we start by considering the type IIB

geometry ds2ðB;1Þ in (2.1), which has a dilaton eϕðB;1Þ in

(2.18) and an RR three-form flux F ðB;1Þ
3 in (2.15). We will

associate an RR B-field CðB;1Þ2 to this setup as in (3.29)
in [13]:

F ðB;1Þ
3 ¼ dCðB;1Þ2 þ ~Δ; d ~Δ ¼ sources: ð2:89Þ

Note that the sources above are required to keep consistent

with the fact that F ðB;1Þ
3 is not closed. These sources, of

course, refer to the D5-brane present in this configuration.
For concreteness and as a particularly simple case, we will

assume that CðB;1Þ2 is of the form in (3.26) in [13]. That is,
we consider

CðB;1Þ2 ¼ bθ1ϕ1
dθ1 ∧ dϕ1 þ b89dx8 ∧ dx9; ð2:90Þ

where ðbθ1ϕ1
; b89Þ are functions of only ðθ1; r; x8; x9Þ, in

order to respect all isometries in (2.1). It follows then that
its exterior derivative is

dCðB;1Þ2 ¼ dθ1 ∧ dϕ1

∧
�∂bθ1ϕ1

∂r drþ ∂bθ1ϕ1

∂x8 dx8 þ
∂bθ1ϕ1

∂x9 dx9

�

þ
�∂b89
∂θ1 dθ1 þ

∂b89
∂r dr

�
∧ dx8 ∧ dx9: ð2:91Þ

Using (2.5), (2.15) and the above, ~Δ in (2.89) can be easily
checked to be

(a)

(b)

FIG. 4. Schematics of the non-Abelian enhancement of the world-volume gauge symmetry from Uð1Þ ×Uð1Þ × Uð1Þ to SUð3Þ in
type IIA (top) and in M-theory (bottom). (a) Three parallel D6-branes in type IIA, with open strings stretching between them. The D6-
branes span the ðt; x1; x2; ~x3;ϕ1; ~ψ ; rÞ directions and the open strings are in the ðx8; x9Þ plane. The θ1 direction is suppressed. When the
open strings become tensionless, the D6-branes coincide. This produces the non-Abelian enhancement. (b) Uplift to M-theory of the
type IIA configurations in (a). The D6-branes convert to geometry, giving rise to a multicentered warped Taub-NUT space along
ðθ1; x8; x9; x11Þ, for a fixed value of the radial coordinate: r ¼ r0. R11 is the physical radius of the coordinate x11. The
ðt; x1; x2; ~x3; θ1;ϕ1; ~ψ ; rÞ directions are suppressed in the figure. The singularities in the Taub-NUT space lie at ð⃗l1; ⃗l2; ⃗l3Þ: the
position of the D6-branes in the dual type IIA configuration. The open strings become M2-branes wrapping the minimal area,
independent two-cycles ðX12; X23Þ between the singularities. In the limit of tensionless M2-branes, these two-cycles vanish, leading to
the non-Abelian enhancement.
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~Δ¼ dθ1 ∧ dϕ1

∧
�
k1 sinθ1dψ −

∂bθ1ϕ1

∂r dr−
∂bθ1ϕ1

∂x8 dx8 −
∂bθ1ϕ1

∂x9 dx9

�

þ
�
k2dψ þ k2 cosθ1dϕ1 −

∂b89
∂θ1 dθ1 −

∂b89
∂r dr

�
∧ dx8 ∧ dx9: ð2:92Þ

S-dualizing the above, we obtain a type IIB configura-
tion with metric, dipole, and NS B-field given by

ds2ðB;3Þ ¼ eϕds2ðB;1Þ; eϕðB;3Þ ¼ e−ϕðB;1Þ ; BðB;3Þ ¼ CðB;1Þ2 ;

ð2:93Þ

respectively. The corresponding NS three-form flux is the
exterior derivative of BðB;3Þ, plus sources coming from the
NS5-brane (dual to the D5-brane before). Consequently,
this is

HðB;3Þ
3 ¼ dCðB;1Þ2 þ ~Δ ¼ F ðB;1Þ

3 ; ð2:94Þ

FIG. 5. Graphical summary of Sec. II B. To the type IIB configuration of Fig. 2(d) we associate an RR B-field and then proceed to
make a series of modifications in order to account for the axionic background considered in [10]. This is achieved in going from the
configuration (B,1), with the mentioned RR B-field added, to (B,5). The (B,5) configuration is then lifted to M-theory. However, as
argued in the text, it will suffice to study the M-theory configuration (M,1) of Fig. 3.
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not closed: dHðB;3Þ
3 ≠ 0. In other words, after the S-duality,

the RR three-form flux becomes an NS one. This is of
course very convenient (and the reason to take the S-dual to
begin with): NS B-fields and fluxes are easier to deal with
than RR ones. In preparation for the T-duality along ψ that
will follow, we rewrite this metric as

ds2ðB;3Þ ¼ eϕds2ð2Þ þ dx23 þ e2ϕF2ðdψ þ cos θ1dϕ1Þ2;
ð2:95Þ

where ds2ð2Þ was defined in (2.17).
A T-duality along ψ leads to the type IIA geometry

ds2ðA;4Þ ¼ eϕds2ð2Þ þ dx23 þ
e−2ϕ

F2

dψ2; ð2:96Þ

with associated dilaton and NS B-field

eϕðA;4Þ ¼ ðF2Þ−1=2; BðA;4Þ ¼ CðB;1Þ2 þ cos θ1dψ ∧ dϕ1:

ð2:97Þ

The NS three-form flux is then given by

HðA;4Þ
3 ¼ dBðA;4Þ ¼ dCðB;1Þ2 − sin θ1dθ1 ∧ dψ ∧ dϕ1:

ð2:98Þ

Note that this NS three-form flux is closed: dHðA;4Þ
3 ¼ 0.

This is because, under the T-duality, the NS5-brane
sources turn to geometry, as is well known (see, for
example, [24]).
Under the noncommutative deformation in (2.24), the

type IIA metric changes to

ds2ðA;5Þ ¼ eϕds2ð2Þ þ ðsec θncd~x3 þ sin θncd ~ψÞ2

þ e−2ϕ

F2

cos2θncd ~ψ2 ¼ eϕds2ð2Þ þ
F̂2

F2

sec2θncd~x23

þ e−2ϕ

F̂2

cos2θncðd ~ψ þ e2ϕF̂2sec2θnc tan θncd~x3Þ2;

ð2:99Þ

where we have defined

F̂2 ≡ F2

1þ e2ϕF2 tan2 θnc
ð2:100Þ

and the last rewriting of the metric was done in anticipation
to the T-duality along ~ψ that we will soon perform. Note the
resemblance between F̂2 and ~F2, defined in (2.26). Due to
our choices in (2.2), the dilaton is not affected by the
noncommutative deformation: eϕðA;5Þ ¼ eϕðA;4Þ . Similarly,

our choice in (2.90) ensures that CðB;1Þ2 remains unchanged
too. The NS B-field, however, does change to

BðA;5Þ ¼ CðB;1Þ2 þ cos θnc cos θ1d ~ψ ∧ dϕ1; ð2:101Þ

which in turn induces the NS three-form flux to change
accordingly:

HðA;5Þ
3 ¼ dBðA;5Þ ¼ dCðB;1Þ2 − cosθnc sinθ1dθ1 ∧ d ~ψ ∧ dϕ1:

ð2:102Þ

Needless to say, this flux remains closed: dHðA;5Þ
3 ¼ 0.

Upon a T-duality along ~ψ , we obtain the type IIB
geometry

ds2ðB;4Þ ¼ eϕds2ð2Þ þ
F̂2

F2

sec2 θncd~x23

þ e2ϕF̂2 sec2 θncðd ~ψ þ cos θnc cos θ1dϕ1Þ2
ð2:103Þ

with dilaton

eϕðB;4Þ ¼
ffiffiffiffiffiffi
F̂2

F2

s
sec θnceϕ: ð2:104Þ

The NS B-field BðA;5Þ dualizes to

BðB;4Þ ¼ CðB;1Þ2 þ e2ϕF̂2sec2θnc tan θnc

× ðd ~ψ þ cos θnc cos θ1dϕ1Þ ∧ d~x3; ð2:105Þ

which contributes to the NS three-form flux

HðB;4Þ
3 ¼ tan θnc

cos θnc

�
k3;ada ∧

�
d ~ψ

cos θnc
þ cos θ1dϕ1

�

− k3 sin θ1dθ1 ∧ dϕ1

�
∧ d~x3 þ sources;

ð2:106Þ

where we have defined k3 ≡ e2ϕF̂2 and we recall that
a≡ ðθ1; r; x8; x9Þ. These are the only coordinates on which
k3 depends, as a consequence of our choices in (2.2). The
above flux is not closed, owing to the sources which denote
the presence of an NS5-brane. We do not determine the
precise form of the sources here, for reasons that will soon
become clear.
Next, we use an S-duality. This changes the metric to that

in (3.30) in [13]:
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ds2ðB;5Þ ¼
e−ϕ

sec θnc

ffiffiffiffiffiffi
F2

F̂2

s �
eϕds2ð2Þ þ

F̂2

F2

sec2θncd~x23

þ k3sec2θncðd ~ψ þ cos θnc cos θ1dϕ1Þ2
�
:

ð2:107Þ

In preparation to the T-duality along ϕ1 that will follow, we
rewrite ds2ðB;5Þ in a more convenient way:

ds2ðB;5Þ ¼ ds2ð4Þ þ eϕ
ffiffiffiffiffiffi
F2

F̂2

s
cos θncðF3sin2θ1 þ F̂2cos2θ1Þ

×

�
dϕ1 þ

F̂2 sec θnc cos θ1
F3sin2θ1 þ F̂2cos2θ1

d ~ψ

�
2

; ð2:108Þ

where we have defined

ds2ð4Þ≡e−ϕ
ffiffiffiffiffiffi
F2

F̂2

s
cosθnc

	
−dt2þdx21þdx22þ

F̂2

F2

sec2θncd~x23

þe2ϕ
�
F1dr2þF3dθ21þF4ðdx28þdx29Þ

þ F̂2F3sec2θncsin2θ1
F3sin2θ1þ F̂2cos2θ1

d ~ψ2

�

: ð2:109Þ

The corresponding dilaton is that in (3.31) in [13],

eϕðB;5Þ ¼
ffiffiffiffiffiffi
F2

F̂2

s
cos θnce−ϕ: ð2:110Þ

The NS B-field now dualizes to an RR two-form flux given
by (3.32) in [13]:

CðB;5Þ2 ¼ −BðB;5Þ ¼ −CðB;1Þ2 þ k3 sec2 θnc tan θncd~x3

∧ ðd ~ψ þ cos θnc cos θ1dϕ1Þ: ð2:111Þ

The above contributes to an RR three-form flux as

F ðB;5Þ
3 ¼ dCðB;5Þ2 þ sources, where

dC2 ¼ −dCðB;1Þ2 þ tan θnc
cos θnc

�
k3 cos θ1dθ1 ∧ dϕ1 − k3;ada

∧
�

d ~ψ
cos θnc

þ cos θ1dϕ1

��
∧ d~x3 ð2:112Þ

and the sources reflect the presence of a D5-brane (S-dual

to the previous NS5-brane), thus leading to dF ðB;5Þ
3 ≠ 0.

All the modifications considered so far in this section
have at this stage satisfied the desired goal: to source an RR
2-form flux along ð~x3; ~ψÞ in our type IIB configuration
before the uplift to M-theory. As we explained in the

beginning of the section, this is equivalent to switching on
an axionic background C0 in the usual D3-NS5 system.
Having noted this important point, let us proceed with the
remaining dualities to obtain the M-theory uplift of the
above configuration.
Upon a T-duality along ϕ1, the type IIB configuration

above leads to a type IIA geometry given by

ds2ðA;6Þ ¼ ds2ð4Þ þ
ffiffiffiffiffiffi
F̂2

F2

s
e−ϕ sec θnc

F3sin2θ1 þ F̂2cos2θ1
dϕ2

1: ð2:113Þ

The type IIA dilaton in this case is

eϕðA;6Þ ¼
�
F2

F̂2

�
1=4
�

e−3ϕ sec θnc
F3sin2θ1 þ F̂2cos2θ1

�
1=2

: ð2:114Þ

There is an NS B-field associated with this metric,

BðA;6Þ ¼ k4dϕ1 ∧ d ~ψ ; k4 ≡ F̂2 sec θnc cos θ1
F3sin2θ1 þ F̂2cos2θ1

;

ð2:115Þ

which gives rise to an NS three-form flux of the form

HðA;6Þ
3 ¼ dBðA;6Þ ¼ k4;ada ∧ dϕ1 ∧ d ~ψ : ð2:116Þ

Note that, as a consequence of our choices in (2.2) and
because F̂2 depends on ϕ [see (2.100)], k4 ¼ k4ðaÞ with

a≡ ðθ1; r; x8; x9Þ. The RR three-form flux F ðB;5Þ
3 dualizes

to an RR two-form flux. Using (2.95), this can be written as

F ðA;6Þ
2 ¼ dθ1 ∧

�∂bθ1ϕ1

∂r drþ ∂bθ1ϕ1

∂x8 dx8 þ
∂bθ1ϕ1

∂x9 dx9

�

þ tan θnc
cos θnc

ðk3;a cos θ1da − k3 sin θ1dθ1Þ

∧ d~x3 þ sources ð2:117Þ

and, of course, is not closed: dF ðA;6Þ
2 ≠ 0, denoting a D6-

brane source. This is dual to the D5-brane sourcing F ðB;5Þ
3

before. Denoting as ~A1 the type IIA gauge field for this
configuration, we can further rewrite the above as

F ðA;6Þ
2 ¼ d ~A1 þ Δ0; dΔ0 ¼ sources; ð2:118Þ

with ~A1 as in (3.58) in [13]:

~A1 ¼ bθ1ϕ1
dθ1 þ k3

tan θnc
cos θnc

cos θ1d~x3: ð2:119Þ

At last, we will uplift the above type IIA configuration to
M-theory. For this purpose, we start by rewriting ds2ðA;6Þ in a
more convenient way. Defining
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~H1 ≡ ðF3sin2θ1 þ F̂2cos2θ1Þ1=3 ~H−1=3
2 ;

~H2 ≡ F̂2F−1
2 sec2θnc; ~H3 ≡ ~H−3

1 ;

~H4 ≡ F2F3sin2θ1 ~H
−3
1 ; ð2:120Þ

as in (3.57) in [13], we can rewrite (2.113) as

ds2ðA;6Þ ¼
e−ϕ

~H1

ffiffiffiffiffiffi
~H2

q f ~H1ð−dt2 þ dx21 þ dx22 þ ~H2d~x23

þ ~H3dϕ2
1Þ þ e2ϕ ~H1½F1dr2 þ F3dθ21

þ F4ðdx28 þ dx29Þ þ ~H4d ~ψ2�g: ð2:121Þ

Again it should be borne in mind that the following
M-theory only captures the dynamics of this type IIA
theory in the strong coupling limit where eϕðA;6Þ is, at least,
of order one. Being once more interested in having a finite
radius for the eleventh direction, we shall be careful to
avoid the eϕðA;6Þ → ∞ limit. This limit applies in the same
cases as discussed in (2.55) before.
The correspondingM-theorymetric is that in (3.56) in [13]:

ds2ðM;2Þ ¼ ~H1½−dt2 þ dx21 þ dx22 þ ~H2d~x23 þ ~H3dϕ2
1

þ e2ϕðF1dr2 þ ~H4d ~ψ2Þ�
þ e2ϕ ~H1½F3dθ21 þ F4ðdx28 þ dx29Þ�

þ e−2ϕ

~H2
1
~H2

ðdx11 þ ~A1Þ2: ð2:122Þ

In analogy to (2.57) earlier, fixing r ¼ r0 and defining

~G1 ≡ e2ϕ ~H1F3jr¼r0 ;
~G2; ~G3 ≡ e2ϕ ~H1F4jr¼r0 ;

~G4 ≡ e−2ϕ ~H−2
1

~H−1
2 jr¼r0 ; ð2:123Þ

the last lineabovecanbeeasily seen tobeawarpedTaub-NUT
space with metric

ds2TN2
¼ ~G1dθ21 þ ~G2dx28 þ ~G3dx29 þ ~G4ðdx11 þ ~A1jr¼r0Þ2:

ð2:124Þ

The G-flux corresponding to this second M-theory construc-
tion is very similar to that in (2.61):

GðM;2Þ
4 ¼ hGðM;2Þ

4 i þ ~F ∧ ~ω; ð2:125Þ

where hGðM;2Þ
4 i ¼ HðA;6Þ

3 ∧ dx11 is the background G-flux

[HðA;6Þ
3 is given by (2.116)] and ~ω is the unique, normalizable

(anti-)self-dual harmonic two-formassociatedwith the single-
centered (warped) Taub-NUT space in (2.124). Here, ~F
stands for the field strength of theUð1Þworld-volume gauge
theory.

It would not be hard to adapt the computation of ω in
Sec. II A to the present case and obtain the explicit form of
~ω. In fact, we could adapt the discussion of Sec. II A 1 to
the present case and obtain a non-Abelian enhancement of
the world-volume gauge theory in this setup too. However,
before doing any more computations, let us compare the
two M-theory metrics: (2.56) and (2.122). They are very
similar. In fact, they just differ in the warp factors. It is
important to note that both of them break the Lorentz
invariance along the ðt; x1; x2Þ and the ~x3 directions.
Moreover, both M-theories capture the dynamics of their
dual type IIA configurations in the same limit, as we noted
a bit earlier. Since the supergravity analysis that we will
perform in Secs. IV–VI will only depend on the metric
deformations, the above noted similarities are enough to
consider that, for our purposes, both M-theory configura-
tions are equivalent. Nonetheless, it is clear from our
calculations so far that the first M-theory configuration
is computationally simpler to handle. Indeed, as we already
anticipated, the noncommutative deformation by itself
sources the required Θ-term in the world-volume theory
and that is all we will really need. The present section
explicitly has shown that (2.56) captures all the information
needed from the type IIB configuration in [10] to embed
knots and study their invariants. Consequently, we will
drop any further study of the M-theory configuration in
(2.122) and instead carry all our investigations in the
configuration with metric (2.56). That is, the first M-theory
construction to study knot invariants is (M, 1) in Fig. 3 and
its non-Abelian enhancement in Sec. II A 1.
It is important to bear in mind that the configuration (M,

1) has been obtained from the D3-NS5 system of [10] using
the well-defined chain of dualities depicted in Figs. 2 and 3
(along with Fig. 4, for the non-Abelian enhanced case).
Consequently, (M, 1) is dual to the model in [10], by
construction.
Sections IV–VI will be devoted to the study of the

physics following from (M, 1). A special emphasis will be
made on what this is and why it is a suitable framework for
the realization of knots. Before proceeding in this direction,
however, we shall first construct yet another M-theory
configuration, which we will refer to as (M, 5). The
configuration (M, 5) also follows from [10], but is not
dual to it, as we shall see. Instead, we will show that it is
dual to the model in [8] and thus provides a second,
independent natural framework for the realization of knots
and the computation of knot invariants.

III. A DIFFERENT MODIFICATION
TO THE D3-NS5 SYSTEM

As was the case in Sec. II and as schematically shown in
Fig. 1, the starting point of our analysis here too is the well-
known type IIB superstring theory configuration of a D3-
brane ending on an NS5-brane considered in [10]. For the
time being, we will not consider an axionic background:
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C0 ¼ 0. The notation and orientation of the branes are
exactly as before, but with the further identifications
ðx8 ≡ θ2; x9 ≡ ϕ2Þ, which will soon become sensible.
Next, we make five modifications to the above setup.

Figure 6 schematically depicts them. The modifications
aim to ultimately make a precise connection between
[8,10]. We will discuss such connection later on. For the
time being, let us just discuss the modifications.
(1) We introduce a second NS5-brane, oriented along

ðt; x1x2; x3; θ1;ϕ1Þ andwhich intersects theD3-brane.
In analogy to the first modification in Sec. II, this

makes the direction orthogonal to both NS5-branes of

theD3-brane, namelyψ, a finite interval.Theψ interval
in this case is taken to be not too large. Consequently,
the Uð1Þ gauge theory on the D3-brane has only
N ¼ 1 supersymmetry now.

(2) We use a T-duality to type IIA superstring theory
along x3, which results in the D3-brane converting to
a D4-brane. The NS5-branes are not affected by this
T-duality. This same duality was discussed at length
in [25,26].

(3) We introduce a large number of coincident D4-branes,
so thatwehave a stackofN (whereN ∈ N andN ≪ 1)
D4-branes between the two NS5-branes.

(a) (b)

(d) (c)

(e) (f)

FIG. 6. Illustration of the modifications to the D3-NS5 system described in Sec. III. The reason to consider this chain of dualities is
twofold: to be able to write the corresponding metric [the geometry of (f) is well known] and to ultimately connect [8,10]. (a) The well-
known type IIB D3-NS5 system. The D3-brane spans the ðt; x1; x2;ψÞ directions and the NS5-brane the ðt; x1; x2; x3; θ2;ϕ2Þ directions.
The ðθ1;ϕ1; rÞ directions are suppressed. The gauge theory on the D3-brane hasN ¼ 2 supersymmetry. (b) Introducing a second NS5-
brane, oriented along ðt; x1; x2; x3; θ1;ϕ1Þ converts the ψ direction into an interval. This reduces the amount of supersymmetry of the
gauge theory on the D3-brane from N ¼ 2 to N ¼ 1. The r direction is suppressed. (c) A T-duality along x3 does not affect the NS5-
branes but converts the D3-brane into a D4-brane. (d) We add a large amount of coincident D4-branes to the previous configuration. The
aim of this step is to later on establish a precise connection with the configuration studied in [8]. (e) A T-duality along ψ converts the
NS5-branes to a singular conifold along ðθ1;ϕ1;ψ ; r; θ2;ϕ2Þ. The D4-branes convert to as many D5-branes that wrap the vanishing two-
cycle of the conifold. (f) The blowing up of the two-cycle of the singular conifold leads to a resolved conifold. The D5-branes are not
affected.
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(4) We use a T-duality back to type IIB along ψ . As a
result, the NS5-branes disappear and give rise to a
singular conifold in the ðθ1;ϕ1;ψ ; r; θ2;ϕ2Þ direc-
tions, which explains the coordinate relabeling
above. The N D4-branes convert to N D5-branes
which wrap the vanishing two-cycle of the conifold.
This T-duality has been carefully discussed in
[15,27]. Note that, unlike in Sec. II [see Fig. 2(d)],
there are no D5-branes here. This is because there is
no Coulomb branch in this setup (the associated

world-volume gauge theory is an N ¼ 1 supersym-
metric one).

(5) Finally, we blow up the two-cycle of the singular
conifold and thus obtain a resolved conifold. The
metric on the resolved conifold is a non-Kähler one,
as succinctly pointed out in [27] and as discussed in
details in [28].

The geometry corresponding to this last configuration is
known (which also explains why the above modifications
were done) and is given by (4.1) in [13]:

ds2ðB;7Þ ¼ e− ~ϕð−dt2 þ dx21 þ dx22 þ dx23Þ

þ e ~ϕ

�
F 1dr2 þ F 2

�
dψ þ

X2
i¼1

cos θidϕi

�
2

þ
X2
i¼1

F 2þiðdθ2i þ sin2θidϕ2
i Þ
�
: ð3:1Þ

Here, e− ~ϕ is the usual type IIB dilaton:

e ~ϕðB;7Þ ¼ e− ~ϕ: ð3:2Þ

For simplicity, we assume that the warp factors and the dilaton only depend on the radial coordinate r:

F i ¼ F iðrÞ; ~ϕ ¼ ~ϕðrÞ; i ¼ 1; 2; 3; 4: ð3:3Þ

Under such assumption and for a fixed value of the radial coordinate, r ¼ r0, the second line in (3.1) is the resolved conifold

metric. As was the case in Sec. II, the D5-branes in this configuration source an RR three-form flux F ðB;7Þ
3 which can be

computed as

F ðB;7Þ
3 ¼ e2 ~ϕ � dJ ðB;7Þ; ð3:4Þ

where J ðB;7Þ is the fundamental two-form of the warped internal six-dimensional manifold [note the dilaton is taken care of
in (3.4) already] with metric

ds2ð7Þ ≡ F 1dr2 þ F 2

�
dψ þ

X2
i¼1

cos θidϕi

�
2

þ
X2
i¼1

F 2þiðdθ2i þ sin2θidϕ2
i Þ: ð3:5Þ

We determine F ðB;7Þ
3 in the following. [Note the coming calculation is very similar to that presented earlier, between (2.5)

and (2.15), so we will be more succinct now.]
We start by defining the vielbeins associated with ds2ð7Þ as

EðB;7Þ
θi

¼ ffiffiffiffiffiffiffiffiffiffi
F 2þi

p
eðB;7Þθi

¼ ffiffiffiffiffiffiffiffiffiffi
F 2þi

p
dθi; EðB;7Þ

ϕi
¼ ffiffiffiffiffiffiffiffiffiffi

F 2þi

p
eðB;7Þϕi

¼ ffiffiffiffiffiffiffiffiffiffi
F 2þi

p
sin θidϕi;

EðB;7Þ
ψ ¼

ffiffiffiffiffiffi
F 2

p
eðB;7Þψ ¼

ffiffiffiffiffiffi
F 2

p �
dψ þ

X2
i¼1

cos θidϕi

�
; EðB;7Þ

r ¼
ffiffiffiffiffiffi
F 1

p
eðB;7Þr ¼

ffiffiffiffiffiffi
F 1

p
dr; ð3:6Þ

where i ¼ 1, 2. Using these vielbeins, it is easy to write down the fundamental two-form of our interest:

J ðB;7Þ ¼
X2
i¼1

EðB;7Þ
θi

∧ EðB;7Þ
ϕi

þ EðB;7Þ
ψ ∧ EðB;7Þ

r

¼
X2
i¼1

F 2þi sin θidθi ∧ dϕi þ
ffiffiffiffiffiffiffiffiffiffiffiffi
F 1F 2

p �
dψ þ

X2
i¼1

cos θidϕi

�
∧ dr: ð3:7Þ
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The exterior derivative of the above is

dJ ðB;7Þ ¼
X2
i¼1

ðF 2þi;r −
ffiffiffiffiffiffiffiffiffiffiffiffi
F 1F 2

p
Þ sin θidr ∧ dθi ∧ dϕi; ð3:8Þ

where, quite obviously, F 2þi;r stands for the derivative with respect to r of F 2þi (i ¼ 1, 2). Next, we wish to take the Hodge
dual of the above. For this purpose, let us begin by writing (3.5) in matrix form:

~M ¼

0
BBBBBBBBB@

F 3 0 0 0 0 0

0 F 2 cos2 θ1 þ F 3 sin2 θ1 0 F 2 cos θ1 0 F 2 cos θ1 cos θ2
0 0 F 1 0 0 0

0 F 2 cos θ1 0 F 2 0 F 2 cos θ2
0 0 0 0 F 4 0

0 F 2 cos θ1 cos θ2 0 F 2 cos θ2 0 F 2 cos2 θ2 þ F 4 sin2 θ2

1
CCCCCCCCCA
: ð3:9Þ

The inverse of the above metric is

~M−1 ¼

0
BBBBBBBBBBBB@

1
F 3

0 0 0 0 0

0 csc2 θ1
F 3

0 − cot θ1 csc θ1
F 3

0 0

0 0 1
F 1

0 0 0

0 − cot θ1 csc θ1
F 3

0 1
F 2

þ cot2 θ1
F 3

þ cot2 θ2
F 4

0 − cot θ2 csc θ2
F 4

0 0 0 0 1
F 4

0

0 0 0 − cot θ2 csc θ2
F 4

0 csc2 θ2
F 4

1
CCCCCCCCCCCCA

ð3:10Þ

and the square root of its determinant is

~M≡
ffiffiffiffiffiffiffiffiffiffiffi
det ~M

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
F 1F 2

p
F 3F 4 sin θ1 sin θ2: ð3:11Þ

All this information can now be used to compute the Hodge dual of the wedge products in (3.8). For a fixed value of i (i ¼ 1
or i ¼ 2),

�ðdr ∧ dθi ∧ dϕiÞ ¼ ~M ~M−1
rr

~M−1
θiθið ~M−1

ϕiϕi
ϵrθiϕiψθjϕj

dψ þ ~M−1
ϕiψϵrθiψϕiθjϕj

dϕiÞ ∧ dθj ∧ dϕj

¼
ffiffiffiffiffiffi
F 2

F 1

s
F 2þj

F 2þi
csc θi sin θjðdψ þ cos θidϕiÞ ∧ dθj ∧ dϕj; ð3:12Þ

with j fixed and not equal to i. That is, either ði; jÞ ¼ ð1; 2Þ or ði; jÞ ¼ ð2; 1Þ. Putting everything together, the three-form
flux in (3.4) can be easily seen to be

F ðB;7Þ
3 ¼ e2 ~ϕ

ffiffiffiffiffiffi
F 2

F 1

s X2
i;j¼1
i≠j

F 2þj

F 2þi
ðF 2þi;r −

ffiffiffiffiffiffiffiffiffiffiffiffi
F 1F 2

p
Þ sin θjðdψ þ cos θidϕiÞ ∧ dθj ∧ dϕj: ð3:13Þ

Note that, in good agreement with the previously pointed
out presence of D5-branes in this configuration, the above
flux is not closed: dF ðB;7Þ

3 ≠ 0.
Later on, in Sec. III B 1, we will be interested in making

a fully precise choice of the warp factors and dilaton in

(3.3). Accordingly, we note that not any such choice
will eventually lead to a world-volume gauge theory with
N ¼ 1 supersymmetry. The story is in fact a bit more
involved: the warp factors and dilaton must satisfy a
particular constraint equation so that we indeed have
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N ¼ 1 supersymmetry. In the following section, we derive
this constraint equation.

A. Demanding N = 1 supersymmetry: Torsion classes

The aforementioned constraint equation relating the
warp factors and dilaton in (3.3) that ensures N ¼ 1
supersymmetry in the associated world-volume gauge
theory is most easily derived using the technique of torsion
classes. A detailed yet concise review of the technique and
its applications to string theory can be found in [29]. A
more mathematical approach to the same material is [30].
In this section, we review and adapt the results in these
references to the present case and thus obtain the desired
constraint equation. (This is, essentially, the content of
Sec. 3.1 in [31] too.)
We start by noting that the type IIB configuration

determined in the previous section has an internal six-
dimensional manifold, whose (Riemannian) metric was
given in (3.5). This manifold is equipped with a funda-
mental two-form, given in (3.7). In a more mathematical
language, we say that this is a six-dimensional manifold
with a Uð3Þ structure J. An SUð3Þ structure is then
determined by a real three-form Ωþ, which we will soon
compute. There is an intrinsic torsion associated with each
of these structures. For our purposes, only the intrinsic
torsion τ1 of the SUð3Þ structure will be relevant. τ1
belongs to a space which can be decomposed into five
classes:

τ1 ∈ W1 ⊕ W2 ⊕ W3 ⊕ W4 ⊕ W5; ð3:14Þ

according to its decomposition into the irreps of SUð3Þ

ð1þ 1Þ þ ð8þ 8Þ þ ð6þ 6̄Þ þ ð3þ 3̄Þ þ ð3̄þ 3Þ:
ð3:15Þ

We denote the component of τ1 in Wi as Wi (i ¼ 1, 2, 3,
4, 5).
Before proceeding further, let us introduce the so-called

contraction operator ⌟, which will immediately become
useful to us. Let ðe1; e2;…; eiÞ be an orthonormal basis of
the cotangent space T�M of any i-dimensional manifoldM.
Given a j-form ω1 and a k-form ω2 in T�M (with
i ≥ j ≥ k ≥ 0),

ω1 ≡ ðω1Þ12…j

Yj
l¼1

el; ω2 ≡ ðω2Þ12…k

Yk
l¼1

el; ð3:16Þ

the contraction operator ⌟ is a map from the pair ðω1;ω2Þ to
a (j − k)-form given by

ω2 ⌟ ω1 ≡ 1

j!

�
j

k

�
ðω1Þ12…jðω2Þ12…k

Yj
l¼kþ1

el; ð3:17Þ

with the convention that e1 ∧ e2 ⌟ e1 ∧ e2 ∧ e3 ¼ e3, etc.
Having introduced the contraction operator, we now have
all the ingredients required to derive the desired constraint
equation.
The necessary and sufficient conditions to ensureN ¼ 1

supersymmetry in the world-volume gauge theory corre-
sponding to the geometry (3.1) have long been known
[32].7 These conditions were then reformulated in [29] in
terms of the torsion classes we just introduced in (3.14). For
the present case, they amount to demanding that (4.23) in
[13] should hold true:

2W4 þW5 ¼ 0; ð3:18Þ

with ðW4;W5Þ defined as

W4 ≡ 1

2
J ⌟ dJ; W5 ≡ 1

2
Ωþ ⌟ dΩþ: ð3:19Þ

The remainder of this section is devoted to the calcu-
lation of (3.18) in terms of the warp factors and dilaton
in (3.3).
In order to match the conventions in [31], where the

interested reader can find an elaboration of the present
discussion, we take the complex vielbeins of the internal
six-manifold of (3.1) as in there:

EðB;7Þ
1 ¼ e ~ϕð

ffiffiffiffiffiffi
F 1

p
eðB;7Þr þ i

ffiffiffiffiffiffi
F 2

p
eðB;7Þψ Þ;

EðB;7Þ
1þi ¼ e ~ϕþiψ=2

ffiffiffiffiffiffiffiffiffiffi
F 2þi

p ðeðB;7Þθi
þ ieðB;7Þϕi

Þ; ð3:20Þ

where the vielbeins eðB;7Þ were defined in (3.6) and i ¼ 1,
2. In terms of these vielbeins, the Uð3Þ structure J of the
internal space is given by

J¼ ĒðB;7Þ
1 ∧EðB;7Þ

1 þ
X2
i¼1

EðB;7Þ
1þi ∧ ĒðB;7Þ

1þi

¼2ie2 ~ϕ
� ffiffiffiffiffiffiffiffiffiffiffiffi

F 1F 2

p
eðB;7Þr ∧eðB;7Þψ þ

X2
i¼1

F 2þie
ðB;7Þ
ϕi

∧eðB;7Þθi

�
;

ð3:21Þ

where the bar denotes complex conjugation. We also define
the three-form Ω as

Ω≡ E1 ∧ E2 ∧ E3 ¼ e3 ~ϕþiψ
ffiffiffiffiffiffiffiffiffiffiffiffi
F 3F 4

p
ð
ffiffiffiffiffiffi
F 1

p
eðB;7Þr

þ i
ffiffiffiffiffiffi
F 2

p
eðB;7Þψ Þ ∧Y2

i¼1

ðeðB;7Þθi
þ ieðB;7Þϕi

Þ: ð3:22Þ

7The conditions in [32] are actually a bit too stringent. Later
on, examples of N ¼ 1 supersymmetric theories which did not
satisfy all these conditions were found (see, for example [19]).
For our case, however, the list in [32] will suffice.

KNOT INVARIANTS AND M-THEORY: PROOFS AND … PHYS. REV. D 97, 026001 (2018)

026001-23



The SUð3Þ structure Ωþ of the internal space is just the real part of the above three-form: Ωþ ≡ ReðΩÞ. Using Euler’s
formula, it is not hard to show that

Ωþ ¼ e3 ~ϕ
ffiffiffiffiffiffiffiffiffiffiffiffi
F 3F 4

p
½ð

ffiffiffiffiffiffi
F 1

p
cosψeðB;7Þr −

ffiffiffiffiffiffi
F 2

p
sinψeðB;7Þψ Þ ∧ ðeðB;7Þθ1

∧ eðB;7Þθ2
− eðB;7Þϕ1

∧ eðB;7Þϕ2
Þ

− ð
ffiffiffiffiffiffi
F 1

p
sinψeðB;7Þr þ

ffiffiffiffiffiffi
F 2

p
cosψeðB;7Þψ Þ ∧ ðeðB;7Þθ1

∧ eðB;7Þϕ2
þ eðB;7Þϕ1

∧ eðB;7Þθ2
Þ�: ð3:23Þ

In order to obtain the exterior derivative of the two structures of our interest, ðJ;ΩþÞ, it is necessary to use the explicit form
of the vielbeins in (3.6). Rather tedious algebra yields

dJ ¼ 2ie2 ~ϕ
X2
i¼1

ð
ffiffiffiffiffiffiffiffiffiffiffiffi
F 1F 2

p
− F 2þi;r − 2 ~ϕrF 2þiÞeðB;7Þr ∧ eðB;7Þθi

∧ eðB;7Þϕi
; ð3:24Þ

dΩþ ¼ k01e
ðB;7Þ
r ∧ eðB;7Þϕ1

∧ eðB;7Þϕ2
∧X2

i¼1

cot θie
ðB;7Þ
θi

þ k01dψ ∧ eðB;7Þr ∧ ðeðB;7Þθ1
∧ eðB;7Þϕ2

þ eðB;7Þϕ1
∧ eðB;7Þθ2

Þ

þ k02e
ðB;7Þ
r ∧ eðB;7Þθ1

∧ eðB;7Þθ2
∧X2

i¼1

cot θie
ðB;7Þ
ϕi

þ k02dψ ∧ eðB;7Þr ∧ ðeðB;7Þθ1
∧ eðB;7Þθ2

− eðB;7Þϕ1
∧ eðB;7Þϕ2

Þ; ð3:25Þ

where the subscript r, as before, denotes derivation with respect to the radial coordinate and we have defined

k01 ≡ e3 ~ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2F 3F 4

p
cosψ

 
3 ~ϕr −

ffiffiffiffiffiffi
F 1

F 2

s
þ
X4
i¼2

F i;r

2F i

!
; k02 ≡ − tanψk01: ð3:26Þ

Using (3.17) and all the above in (3.19), it is a matter of care and patience to obtain the relevant components of the intrinsic
torsion of Ωþ as in (4.20) in [13]:

W4 ¼
�
~ϕr þ

X4
i¼3

F i;r −
ffiffiffiffiffiffiffiffiffiffiffiffi
F 1F 2

p
4F i

�
eðB;7Þr ; W5 ¼

1

2

 
~ϕr −

1

3

ffiffiffiffiffiffi
F 1

F 2

s
þ
X4
i¼2

F i;r

6F i

!
eðB;7Þr : ð3:27Þ

Finally, inserting these values of ðW4;W5Þ in (3.18), the desired constraint ensuring N ¼ 1 supersymmetry is

30 ~ϕr − 2

ffiffiffiffiffiffi
F 1

F 2

s
þ F 2;r

F 2

þ
X4
i¼3

�
7
F i;r

F i
− 6

ffiffiffiffiffiffiffiffiffiffiffiffi
F 1F 2

p
F i

�
¼ 0: ð3:28Þ

At this point one may wonder if similar constraints should not have been worked out for our configuration (M, 1) with
metric (2.1) in Sec. II as well. Surely if N ¼ 1 supersymmetry constrains the choice of warp factors and dilaton in (3.3),
N ¼ 2 supersymmetry will also constrain the choice in (2.2). The resolution to this issue is, unfortunately, beyond the scope
of this work, as the powerful technique of torsion classes has not yet been generalized to the case ofN ¼ 2 supersymmetry.
Consequently, any specific choice for the warp factors in (2.2) andQ in (2.70) that one may want to consider will require an
explicit verification that it indeed preserves the desired amount of supersymmetry.8

To sum things up, so far we have obtained from the well-known D3-NS5 system (with no axion) of [10] the type IIB
configuration with metric (3.1), dilaton e− ~ϕ, and an RR three-form flux (3.13). In order for this configuration to lead to a
N ¼ 1 supersymmetric world-volume gauge theory, the constraint (3.28) should be satisfied. However, we would like to
consider a type IIB configuration which, besides having an RR three-form flux, also has an NS three-form flux. This is, in
principle, not an easy task. However, the series of dualities first presented in [27] and later on further studied in [28,31],
when applied to our above configuration, precisely serves this purpose. In the following section, we explain these dualities
in details and obtain a type IIB configuration with both RR and NS fluxes. Such a generalization will then, in Sec. III B 2,
allow us to establish a direct connection with the model to study knots presented in [8].

8We will discuss how this is achieved in the gauge theory following from (M, 1) in Sec. VI B later on.
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B. Obtaining a type IIB configuration with RR and NS
fluxes: A boost in M-theory

We start this section considering the type IIB configu-
ration described in Sec. III and depicted in Fig. 6(f). Wewill
first perform three T-dualities, along ðx1; x2; x3Þ, to type
IIA. The resulting configuration will then be lifted to M-
theory, where we will perform a boost along the ðt; x11Þ
directions: ðt; x11Þ → ð~t; ~x11Þ. This will be followed by a
dimensional reduction to type IIA. The last step will be to
T-dualize along ðx1; x2; x3Þ back to type IIB. Of course, we
will work out the NS B-field, dilaton and RR and NS fluxes
associated with each geometry considered along this chain
of modifications. As we already pointed out, starting from a
type IIB configuration which only has RR fluxes, we will
thus obtain a type IIB configuration with RR and NS fluxes.
As already said and as we shall show, the additional NS
fluxes are required in order to precisely reproduce the
model in [8]. Figure 7 outlines the just described chain of
modifications and serves as a summary of the key results in
the present section.
As just mentioned, to the type IIB configuration

shown in Fig. 6(f) we use three T-dualities, along
ðx1; x2; x3Þ. It is rather straightforward to see that the
metric then becomes

ds2ðA;7Þ ¼ −e− ~ϕdt2 þ e ~ϕðdx21 þ dx22 þ dx23 þ ds2ð7ÞÞ;
ð3:29Þ

where ds2ð7Þ was defined in (3.5). Coming to the dilaton, its

changes can be summarized as follows:

e ~ϕðB;7Þ ¼ e− ~ϕ⟶
along x1

T-duality
e− ~ϕ=2⟶

along x2

T-duality
1⟶

along x3

T-duality
e ~ϕ=2 ¼ e ~ϕðA;7Þ :

ð3:30Þ

This can be used to rewrite our type IIA metric in a form
that will soon make it straightforward to uplift it to M-
theory:

ds2ðA;7Þ ¼ e ~ϕ=3½−e−4 ~ϕ=3dt2

þ e2 ~ϕ=3ðdx21 þ dx22 þ dx23 þ ds2ð7ÞÞ�: ð3:31Þ

Regarding the F ðB;7Þ
3 flux, we note that each T-duality will

add a leg to it along its corresponding Minkowskian
direction ðx1; x2; x3Þ. That is,

FIG. 7. Graphical summary of Sec. III B. To the type IIB configuration of Fig. 6(f) we make a series of modifications. In this manner,
we obtain a type IIB configuration that, besides RR fluxes, has NS fluxes as well.
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F ðB;7Þ
3 ⟶

along x1

T-duality
dx1 ∧ F ðB;7Þ

3 ⟶
along x2

T-duality
dx2 ∧ dx1 ∧ F ðB;7Þ

3

⟶
along x3

T-duality
dx3 ∧ dx2 ∧ dx1 ∧ F ðB;7Þ

3 ¼ F ðA;7Þ
6 : ð3:32Þ

We thus obtain an RR six-form flux. This flux is not closed

(dF ðA;7Þ
6 ≠ 0), which is to be expected, since the three

T-dualities convert the N coincident D5-branes of the
previous type IIB configuration to N coincident D2-branes

that source F ðA;7Þ
6 . The Hodge dual of this six-form flux

then gives us the more convenient (for the coming uplift)
RR four-form flux of this type IIA configuration:

F ðA;7Þ
4 ¼�F ðA;7Þ

6 ¼�F ðB;7Þ
3 ∧dt¼dJ ðB;7Þ∧dt

¼
X2
i¼1

ðF 2þi;r−
ffiffiffiffiffiffiffiffiffiffiffiffi
F 1F 2

p
Þsinθidr∧dθi∧dϕi∧dt;

ð3:33Þ

where the first Hodge dual is with respect to the full ten-
dimensional metric (3.31), whereas the second one is with
respect to (3.5). The above result makes use of (3.4), (3.8)
and (3.39).
We wrote our type IIA configuration so that the uplift to

M-theory would be effortless. We get the following metric
and G-flux:

ds2ðM;3Þ ¼ −e−4 ~ϕ=3dt2 þ e2 ~ϕ=3ðdx21 þ dx22 þ dx23

þ ds2ð7Þ þ dx211Þ;
GðM;3Þ
4 ¼ F ðA;7Þ

4 : ð3:34Þ
Note that the D2-branes now convert to N coincident
M2-branes.
The key step in this chain of dualities comes next: we

perform a boost in the eleventh direction. Explicitly,

x11 ¼ cosh β ~x11 − sinh β~t; t ¼ − sinh β ~x11 þ cosh β~t;

ð3:35Þ

with β the boost parameter. Following equation (4.3) in
[13], we define the quantity

ϒ≡ sinh2βðe2 ~ϕ=3 − e−4 ~ϕ=3Þ: ð3:36Þ

Using the above two equations in ds2ðM;3Þ, it is a matter of

simple algebra to check that the boosted M-theory metric is
given by

ds2ðM;4Þ ¼ e2 ~ϕ=3ðdx21 þ dx22 þ dx23 þ ds2ð7ÞÞ
þ ðϒ − e−4 ~ϕ=3Þd~t2 þ ðϒþ e2 ~ϕ=3Þd~x211
− 2ϒ coth βd~x11d~t: ð3:37Þ

Note that the boost has now generated a gauge field in the
M-theory. This is most clearly seen upon rewriting the
above metric as

ds2ðM;4Þ ¼ e2 ~ϕ=3ðdx21 þ dx22 þ dx23 þ ds2ð7ÞÞ −
e−2 ~ϕ=3

ϒþ e2 ~ϕ=3
d~t2

þ ðϒþ e2 ~ϕ=3Þ
�
d~x11 −

ϒ coth β

ϒþ e2 ~ϕ=3
d~t

�
2

:

ð3:38Þ

This rewriting is convenient for the coming dimensional
reduction too. Similarly, the boosted G-flux can be easily
seen to be

GðM;4Þ
4 ¼ dJ ðB;7Þ ∧ ðcosh βd~t − sinh βd~x11Þ; ð3:39Þ

with dJ ðB;7Þ as in (3.8).
The next step in the chain of dualities outlined in the

beginning of the section is to dimensionally reduce the
above to type IIA. The metric corresponding to this
configuration is

ds2ðA;8Þ ¼ −
e−2 ~ϕ=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϒþ e2 ~ϕ=3

p d~t2

þ e2 ~ϕ=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϒþ e2 ~ϕ=3

q
ðdx21 þ dx22 þ dx23 þ ds2ð7ÞÞ

ð3:40Þ

and the corresponding dilaton is

e ~ϕðA;8Þ ¼ ðϒþ e2 ~ϕ=3Þ3=4: ð3:41Þ

Coming now to the fluxes, we note that the M2-branes of
the previous M-theory setup now convert to D2-branes,
which source an RR four-form flux given by

F ðA;8Þ
4 ¼ cosh βdJ ðB;7Þ ∧ d~t: ð3:42Þ

The Hodge dual of the above will soon be useful. This is an
RR six-form flux of the form

F ðA;8Þ
6 ¼ �F ðA;8Þ

4 ¼ cosh βdx1 ∧ dx2 ∧ dx3 ∧ F ðB;7Þ
3 ;

ð3:43Þ

which is clearly not closed, dF ðA;8Þ
6 ≠ 0, as expected.

[Recall F ðB;7Þ
3 was given in (3.13).] Additionally, the M-

theory gauge field generated by the boost (3.35) effectively
converts to a “D0-charge.” This D0-charge sources a closed
RR two-form flux: the exterior derivative of the just
mentioned gauge field. Explicitly,
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F ðA;8Þ
2 ¼ −d

�
ϒ coth β

ϒþ e2 ~ϕ=3
d~t

�
¼ coth β

d
dr

�
ϒ

ϒþ e2 ~ϕ=3

�
d~t

∧ dr; ð3:44Þ

where we have used the fact that, as a consequence of our
choices in (3.3), the gauge field only depends on the radial
coordinate r (and the boost parameter β). To finish this flux
discussion, we note that the boost generates a closed NS
three-form flux, just as we wanted:

HðA;8Þ
3 ¼ − sinh βdJ ðB;7Þ: ð3:45Þ

To finish this section, the only remaining task is to
perform three T-dualities, along ðx1; x2; x3Þ, back to type
IIB. From (3.40), it follows that the geometry correspond-
ing to our final configuration is

ds2ðB;8Þ ¼
e−2 ~ϕ=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϒþ e2 ~ϕ=3

p ð−d~t2 þ dx21 þ dx22 þ dx23Þ

þ e2 ~ϕ=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϒþ e2 ~ϕ=3

q
ds2ð7Þ: ð3:46Þ

The changes in the dilaton can be summarized as follows:

e ~ϕðA;8Þ⟶
along x1

T-duality
e− ~ϕ=3ðϒþ e2 ~ϕ=3Þ1=2⟶

along x2

T-duality
e−2 ~ϕ=3ðϒþ e2 ~ϕ=3Þ1=4⟶

along x3

T-duality
e− ~ϕ: ð3:47Þ

Hence, the dilaton remains as in the beginning:

e ~ϕðB;8Þ ¼ e ~ϕðB;7Þ ¼ e− ~ϕ: ð3:48Þ

It is rather obvious that, since the dualities are along diagonal directions of the metric, the NS three-form flux will not be
affected in this case:

HðB;8Þ
3 ¼ HðA;8Þ

3 ¼ − sinh βdJ ðB;7Þ: ð3:49Þ

Regarding theF ðA;8Þ
6 flux, we note that each T-duality will remove a leg to it along its corresponding Minkowskian direction

ðx1; x2; x3Þ. That is, we have the reverse process to that earlier in (3.39):

F ðA;8Þ
6 ¼ cosh βdx1 ∧ dx2 ∧ dx3 ∧ F ðB;7Þ

3 ⟶
along x1

T-duality
cosh βdx2 ∧ dx3 ∧ F ðB;7Þ

3

⟶
along x2

T-duality
cosh βdx3 ∧ F ðB;7Þ

3 ⟶
along x3

T-duality
cosh βF ðB;7Þ

3 ¼ F ðB;8Þ
3 : ð3:50Þ

We thus obtain a nonclosed RR three-form flux, an
indication of the N coincident D5-branes present in this
configuration. Finally, the D0-charge previously sourcing

F ðA;8Þ
2 now converts to a D3-charge. The D3-charge then

sources an RR five-form flux which, in analogy to (3.32), is

given by F ðA;8Þ
2 ∧ dx1 ∧ dx2 ∧ dx3, plus its Hodge dual

(since the D3-charge is self-dual, the corresponding RR
flux must be self-dual too). We thus obtain

F ðB;8Þ
5 ¼ coth βð1þ �Þ d

dr

�
ϒ

ϒþ e2 ~ϕ=3

�
d~t ∧ dr ∧ dx1

∧ dx2 ∧ dx3; ð3:51Þ

where the Hodge dual is, of course, with respect to the
metric (3.46). The geometry and fluxes of this final type IIB
configuration are precisely those in (4.2) in [13]. As a
consistency check, one may verify that setting β ¼ 0 (no

boost), we recover the initial type IIB configuration with
only dilaton and RR three-form flux:

configuration ðB; 8Þ⟶
β¼0

configuration ðB; 7Þ: ð3:52Þ

It is important to note that none of the modifications
performed in this section affects the supersymmetry of the
starting configuration [configuration (B, 7)]. In other
words, the previously derived constraint equation (3.28)
is enough to ensure that the end configuration [configura-
tion (B, 8)] is associated with an N ¼ 1 supersymmetric
world-volume gauge theory too. We refer the interested
reader to Sec. 3.2 in [31] for an enlightening discussion on
the difficulties to derive this constraint equation in the
context of the configuration (B, 8), where the internal six-
dimensional manifold is not complex, unlike in the con-
figuration (B, 7).
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1. Exact results: A specific choice of the warp factors

At this stage, we would like to make our discussion fully
precise. Thus, following (4.9) in [13], we choose our warp
factors as

F 1 ¼
e− ~ϕ

2F
; F 2 ¼

r2e− ~ϕF
2

;

F 3 ¼
r2e− ~ϕ

4
þ a2; F 4 ¼

r2e− ~ϕ

4
; ð3:53Þ

where, in good agreement with our previous choices in
(3.3),

F ¼ FðrÞ; a2 ≡ a20 þ ~aðrÞ: ð3:54Þ

The constant a20 is to be interpreted as the resolution
parameter of the blown up two-cycle in the resolved
conifold. (This choice was already studied in [31,33].) In
this section, we work out three constraint equations that

ultimately allow us to compute ðF; e ~ϕ; aÞ above and
thereby fully determine our type IIB configuration in this
case. We will do so for a particularly simple case, as the
most general scenario is computationally difficult to
handle.
The first constraint equation follows from demanding

that the choice (3.53) leads to a world-volume gauge theory
with N ¼ 1 supersymmetry. As we argued in Sec. III A,
this amounts to requiring that (3.28) holds true. Using
(3.53) in (3.28), it is quite straightforward to show that the
first constraint can be written as in (4.25) in [13]:

�
15þ 88

a2e ~ϕ

r2

�
~ϕr þ 56e ~ϕ a

r2
ar þ

2

r

þ
�
4

r
þ 1

F
Fr −

2

rF

��
1þ 4a2e ~ϕ

r2

�
¼ 0; ð3:55Þ

where ð ~ϕr; ar; FrÞ stand for the derivatives with respect to
the radial coordinate r of ð ~ϕ; a; FÞ.
For the second constraint equation, we will demand

quantization of the magnetic charge of the D5-branes in our
configuration. Recall that, in spite of the duality chain of
Fig. 7, our D5-branes remain as in Fig. 6(f): oriented along
ðt; x1; x2; x3Þ and wrapping the two-cycle parametrized by
ðθ2;ϕ2Þ. As is well known,9 the D5-branes’ charge stems

from the RR three-form flux F ðB;8Þ
3 . Accordingly, let us

begin by giving the explicit form of this flux when the warp
factors are chosen as just mentioned. This amounts to
inserting (3.53) in (3.50) and further using (3.6) and (3.13).
Rather easy and quick algebra then gives

F ðB;8Þ
3 ¼ −

e ~ϕr3F
4

cosh βð~k1eðB;7Þθ1
∧ eðB;7Þϕ1

þ ~k2e
ðB;7Þ
θ2

∧ eðB;7Þϕ2
Þ ∧ eðB;7Þψ ; ð3:56Þ

where we have defined

~k1 ≡ ~ϕr

�
1þ 4a2e ~ϕ

r2

�
; ~k2 ≡ r2 ~ϕr − 8aare

~ϕ

r2 þ 4a2e ~ϕ
:

ð3:57Þ

This is (4.10) in [13]. Now, the magnetic charge of the
D5-branes in our setup can be calculated as the integral of
their RR three-form flux over the three cycle orthogonal to
them:

qm ¼
Z
S3
F ðB;8Þ

3 ; ð3:58Þ

with S3 the three cycle labeled by ðθ1;ϕ1;ψÞ and depicted
in Fig. 6(f). It is easy to see that only the first term in (3.56)
will contribute to the magnetic charge. Normalizing the
three cycle volume as

VS3 ≡
Z
S3
eðB;7Þθ1

∧ eðB;7Þϕ1
∧ eðB;7Þψ ¼ 1 ð3:59Þ

and demanding qm ∈ Z, we obtain the second constraint
equation:

~c0 ≡ e ~ϕr3F
4

~k1 cosh β ∈ Z: ð3:60Þ

The third and last constraint follows from d2F ðB;8Þ
3 ¼ 0.

For simplicity, we will consider the limit when ða; arÞ are
of the same order and sufficiently small, a ∼ ar ≪ 1. Under
this assumption, we can expand ~k2 around a2 ¼ 0 and
obtain

~k2 ¼ ~ϕr

�
1 −

4a2e ~ϕ

r2

�
−
8aare

~ϕ

r2
þOða3Þ: ð3:61Þ

Further introducing the quantities in (4.13) and (4.17) in
[13],

η3 ≡ ðeðB;7Þθ1
∧ eðB;7Þϕ1

− eðB;7Þθ2
∧ eðB;7Þϕ2

Þ ∧ eðB;7Þψ ;

G≡ e2 ~ϕrF cosh β

�
2aar −

e− ~ϕr2 ~ϕr

2

�
; ð3:62Þ

it is not hard to convince oneself that F ðB;8Þ
3 can be written

in the very suggestive way

F ðB;8Þ
3 ¼ −~c0η3 þGeðB;7Þθ2

∧ eðB;7Þϕ2
∧ eðB;7Þψ ; ð3:63Þ

9A succinct and clear review on charge quantization of
D-branes can be found in [17].
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where we have used our first constraint (3.60). Note that η3 is a closed form (dη3 ¼ 0). Consequently, the exterior derivative

of the above comes solely from the second term. Denoting as Gr the derivative of G with respect to r, we obtain dF ðB;8Þ
3 as

in (4.16) in [13]:

dF ðB;8Þ
3 ¼ Gre

ðB;7Þ
r ∧ eðB;7Þθ2

∧ eðB;7Þϕ2
∧ eðB;7Þψ þ GdðeðB;7Þθ2

∧ eðB;7Þϕ2
∧ eðB;7Þψ Þ

¼ Gre
ðB;7Þ
r ∧ eðB;7Þψ ∧ eðB;7Þθ2

∧ eðB;7Þϕ2
− GeðB;7Þθ1

∧ eðB;7Þϕ1
∧ eðB;7Þθ2

∧ eðB;7Þϕ2
; ð3:64Þ

where in the last step we have made use of (3.6). Of course, the exterior derivative of the above must vanish and this leads to
our third constraint equation:

0 ¼ d2F ðB;8Þ
3 ¼ −Gre

ðB;7Þ
r ∧ eðB;7Þθ1

∧ eðB;7Þϕ1
∧ eðB;7Þθ2

∧ eðB;7Þϕ2
⇒ Gr ¼ 0: ð3:65Þ

Having derived the three constraints of our interest,
(3.55), (3.60) and (3.65), we will now solve them under the
assumption a ∼ ar ≪ 1, keeping only terms up to order
OðaÞ. (Other solutions to these equations are of course
possible, but we will not attempt them here.) In this case,
(3.55) reduces to (4.24) in [13],

r ~ϕr þ
r

15F
Fr −

2

15F
þ 2

5
þOða2Þ ¼ 0 ð3:66Þ

and (3.60) becomes

~c0 ¼
e ~ϕr3F
4

~ϕr cosh β þOða2Þ; ð3:67Þ

which immediately ensures that (3.65) is satisfied in the

limit here considered. Defining Z≡e ~ϕ and ĉ0≡ ~c0=coshβ,
we can solve for F in the above

F ¼ 4ĉ0
r3Zr

þOða2Þ: ð3:68Þ

Substitution in (3.66) then yields (4.26) in [13]:

rZrr − 3Zr þ r

�
r2

2c0
−
15

Z

�
Z2
r þOða2Þ ¼ 0; ð3:69Þ

with Zrr ≡ d2Z=dr2. One may easily verify that a solution
to (3.69) is given by Z ¼ 24ĉ0r−2. It follows then that
(4.30) in [13],

e ~ϕ ¼ 24ĉ0
r2

þOða2Þ; F ¼ −
1

12
þOða2Þ; ð3:70Þ

fully determines our choices in (3.53), up to order Oða2Þ.
The explicit form of the type IIB configuration (B, 8) in
Fig. 7 can then be obtained by simply using (3.53) and
(3.70) in (3.46) and in (3.48)–(3.51).

2. Connection to the model in [8]

The present section is devoted to sketching how the
configuration (B, 8) of Fig. 7 is related to the resolved

conifold in the presence of fluxes considered by Ooguri and
Vafa in [8]. Here, we will clearly point out the modifica-
tions needed to obtain the model in [8] from (B, 8). These
are depicted in Fig. 8, which serves as a graphical summary
of the present section too. Nonetheless, unlike in previous
sections, we will not present a thorough derivation of the
geometries and fluxes for each intermediate configuration
considered in the process. Such exhaustive study is beyond
the scope of this work and is deferred to the sequel. In the
sequel, following [8], we also intend to explore knot
invariants in the configuration (M, 5), which follows from
(B, 8) and which is constructed in details in Sec. III C. For
the time being, we refer the interested reader to Sec. 4.4 in
[13] for a preliminary discussion of the physics stemming
from (M, 5) and the realization of knots in this setup.
As we just mentioned, our starting point in this section is

the configuration (B, 8) summarized in Fig. 7. Essentially,
this is the same configuration as that drawn in Fig. 6(f), but
in the presence of both RR and NS fluxes. In Fig. 8, this is
shown in the top, left corner. As can be seen, (B, 8) consists
on a large number N of D5-branes wrapping the two-cycle
S2 of a non-Kähler resolved conifold. Let us start by
making an observation that will soon be relevant to us.
From the orientation of the D5-branes shown in Fig. 6(f) it
is clear that, upon a dimensional reduction, we expect
to obtain an SUðNÞ world-volume gauge theory along
ð~t; x1; x2; x3Þ. Loosely speaking, the physics following
from (B, 8) are encoded in the directions ð~t; x1; x2; x3Þ.
Next, recall that the metric corresponding to (B, 8) was

given in (3.46). Note in particular that the spacetime
directions ð~t; x1; x2Þ in this geometry parametrize a
three-dimensional Minkowski subspace. The first modifi-
cation to (B, 8) that one needs to consider in order to obtain
the model in [8] consists of Euclideanizing and compacti-
fying these directions, so that they parametrize a sphere:
ð~t; x1; x2Þ → S3ðEÞ. Then, the corresponding physical theory

will lie in S3ðEÞ × R, where R stands for the line labeled by

the coordinate x3.
Secondly, we must perform a series of T- and SYZ-

dualities to the resulting configuration, which will take us
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to the so-called mirror picture. The required dualities are far
from trivial, involving many subtleties. Nevertheless, the
works [34–37] deal with all difficulties exhaustively and
show that the mirror picture consists of N D6-branes
wrapping the three-cycle S3 of a non-Kähler deformed
conifold. This is true only for energies higher than the
inverse size of the two-cycle S2 of the dual resolved
conifold. As a consequence, we will restrict ourselves in
the following to this energy regime.10

In the described mirror picture of our interest, the N D6-
branes are oriented along the seven-dimensional subspace
S3ðEÞ × S3 × R. The third and last modification required to

obtain the model in [8] is given by a flop operation, that
exchanges S3ðEÞ and S3 as described in (4.8) in [13]:

S3ðEÞ ↔ S3. Clearly, this does not affect the orientation of

the D6-branes, yet it transfers the physics from S3ðEÞ ×R to

S3 ×R, thus yielding the D6-brane realization of the model
in [8] depicted on the bottom, left corner of Fig. 8.
A more well-known realization of the setup in [8] is

obtained by simply taking the large N dual (in other words,

performing a geometric transition) of the above configu-
ration. In this case, the deformed conifold becomes a
resolved one. The D6-branes disappear in the dual picture,
giving rise to fluxes. This configuration is precisely that
shown on the bottom, right corner of Fig. 8.
Alternatively, one may take the large N dual of (B, 8)

first and consider the mirror picture afterwards. The result
is the same: we obtain the deformed conifold with fluxes of
[8]. This equivalent procedure is depicted on the top, right
corner of Fig. 8.
At this stage, we have argued that our configuration (B,

8) is related to the model in [8] by a simple chain of
dualities. That is, (B, 8) is dual to [8]. In the next section,
we will build an M-theory configuration (M, 5) from (B, 8).
As we shall see, (B, 8) is dual to (M, 5) and so this will
allow us to conclude that (M, 5) is dual to [8] too.

C. Noncommutative deformation and M-theory uplift

In this section we will obtain the second M-theory
construction where knot invariants can be studied: (M,
5). Clearly, the starting point will be the configuration (B,
8) in Fig. 7. We will first use a T-duality along ψ to type
IIA, where we will perform the same noncommutative
deformation we considered in Sec. II A: ðx3;ψÞ → ð~x3; ~ψÞ.
As we argued in both Secs. II A and II B, this deformation
sources the Θ-term in the associated world-volume gauge
theory, which is crucial for allowing the embedding of

FIG. 8. Depiction of the discussions in Sec. III B 2. To the configuration (B, 8) of Fig. 7 we make the following modifications:
Euclideanize and compactify the ð~t; x1; x2Þ directions, go to the mirror picture, perform a flop operation, and take the gravity dual. The
resulting configuration is that of a resolved conifold in the presence of fluxes studied in [8]. Our configuration (B, 8) is that on the top,
left corner, whereas the most well-known realization of the model in [8] is drawn on the bottom, right corner. It should be noted that, as
explained in the text, the mirror operations here shown are only valid in a certain energy range.

10As argued around (2.5) in [13], for energies lower than the
size of S2, the mirror picture will lead to D4-branes instead of D6-
branes. Although such scenario may be interesting as well, it does
not relate to the model in [8] and thus we are presently not
concerned with it.

VERÓNICA ERRASTI DÍEZ PHYS. REV. D 97, 026001 (2018)

026001-30



knots in our model. Finally, we will uplift the resulting
configuration to M-theory. As has been the case so far, the
dilaton and fluxes for each geometry considered will be
worked out here too. Figure 9 provides a graphical
summary of this chain of modifications and indicates what
the main results in this section are.
In order to obtain the T-dual of the (B, 8) configuration,

we first rewrite its geometry in (3.46) in a convenient form
for our present purposes:

ds2ðB;8Þ ¼
1ffiffiffi
h

p ðds2t12 þ dx23Þ

þ
ffiffiffi
h

p �
F 2

�
dψ þ

X2
i¼1

cos θidϕi

�2

þ ds2ð8Þ

�
;

ð3:71Þ

where we have defined

ds2t12 ≡ −d~t2 þ dx21 þ dx22;

ds2ð8Þ ≡ F 1dr2 þ
X2
i¼1

F 2þiðdθ2i þ sin2θidϕ2
i Þ ð3:72Þ

and, following (4.40) in [13], we have also introduced

h≡ e4 ~ϕ=3ðϒþ e2 ~ϕ=3Þ: ð3:73Þ

[We remind the reader thatϒwas defined in (3.36).] As can
be easily inferred from (3.49), the above geometry is
associated with an NS B-field

BðB;8Þ ¼ sinh β
X2
i¼1

ð
ffiffiffiffiffiffiffiffiffiffiffiffi
F 1F 2

p
cos θidr

− F 2þi sin θidθiÞ ∧ dϕi: ð3:74Þ

It is now straightforward to T-dualize along ψ the metric
(3.71). We thus obtain the type IIA geometry in (4.39)
in [13]:

ds2ðA;9Þ ¼
1ffiffiffi
h

p
�
ds2t12 þ dx23 þ

1

F 2

dψ2

�
þ

ffiffiffi
h

p
ds2ð8Þ;

ð3:75Þ

with associated NS B-field

BðA;9Þ ¼ BðB;8Þ þ
X2
i¼1

cos θidψ ∧ dϕi: ð3:76Þ

The dilaton for this type IIA configuration is, quite
obviously, that in (4.40) in [13]:

e ~ϕðA;9Þ ¼ h−1=4F−1=2
2 e− ~ϕ: ð3:77Þ

The NS three-form flux can be easily derived to be

HðA;9Þ
3 ¼ dBðA;9Þ ¼ HðB;8Þ

3 þ
X2
i¼1

sin θidθi ∧ dϕi ∧ dψ ;

ð3:78Þ

withHðB;8Þ
3 as in (3.8) and (3.49). Coming to the RR fluxes

now, we note that the T-duality converts the D5-branes
which wrap the two-cycle of the resolved conifold in the

FIG. 9. Graphical summary of Sec. III C. To the configuration (B, 8) of Fig. 7 we make a series of modifications, so as to source a Θ-
term in the corresponding world-volume gauge theory. The resulting configuration is then lifted to M-theory. The configuration (M, 5) is
the second M-theory construction where knots can be studied.
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configuration (B, 8) to N coincident D6-branes that wrap the two-sphere parametrized by ðθ1;ϕ1Þ in the dual type IIA

picture.11 Consequently, the RR three-form flux (3.50) [whereF ðB;7Þ
3 was given in (3.13)] that was sourced by the D5-branes

now gives rise to the RR two-form flux

F ðA;9Þ
2 ¼ e2 ~ϕ cosh β

ffiffiffiffiffiffi
F 2

F 1

s X2
i;j¼1
i≠j

F 2þj

F 2þi
ðF 2þi;r −

ffiffiffiffiffiffiffiffiffiffiffiffi
F 1F 2

p
Þ sin θjdθj ∧ dϕj; ð3:79Þ

as well as to the RR four-form flux

F ð1Þ
4 ¼ e2 ~ϕ cosh β

ffiffiffiffiffiffi
F 2

F 1

s X2
i;j¼1
i≠j

F 2þj

F 2þi
ðF 2þi;r −

ffiffiffiffiffiffiffiffiffiffiffiffi
F 1F 2

p
Þ sin θj cos θidψ ∧ dϕi ∧ dθj ∧ dϕj: ð3:80Þ

Both are sourced by the dual D6-branes (and hence, dF ðA;9Þ
2 ≠ 0 ≠ dF ð1Þ

4 ). On the other hand, the D3-charge that sourced
the self-dual RR five-form flux in (3.51) converts to a D4-charge after the T-duality. They now source RR four- and six-form
fluxes, which are Hodge dual to each other [with respect to the metric (3.75)]. Starting from (3.51) and using (3.73), it is
clear that the RR six-form flux is

F ðA;9Þ
6 ¼ coth β

d
dr

�
e2 ~ϕ

h

�
d~t ∧ dx1 ∧ dx2 ∧ dx3 ∧ dψ ∧ dr: ð3:81Þ

However, its Hodge-dual four-form will become more convenient once we perform the uplift to M-theory, with views to
computing the G-flux there. Since the metric (3.75) is diagonal, it is not hard to show that the flux of our interest is given by

F ð2Þ
4 ¼ �F ðA;9Þ

6 ¼ − coth β
d
dr

�
e2 ~ϕ

h

�
h2

ffiffiffiffiffiffi
F 2

F 1

s Y2
i¼1

F 2þi sin θidθi ∧ dϕi: ð3:82Þ

The total RR four-form flux for this configuration is thus

F ðA;9Þ
4 ¼ F ð1Þ

4 þ F ð2Þ
4 : ð3:83Þ

Wewill now apply the noncommutative deformation ðx3;ψÞ → ð~x3; ~ψÞ in (2.24) to the above type IIA configuration. The
metric (3.75) then changes to

ds2ðA;10Þ ¼
1ffiffiffi
h

p ds2t12 þ
1ffiffiffi
h

p ðsec θncd~x3 þ sin θncd ~ψÞ2 þ
cos2θncffiffiffi

h
p

F 2

d ~ψ2 þ
ffiffiffi
h

p
ds2ð8Þ

¼ ðe ~ϕðA;9Þ Þ2=3
�
F 2e2

~ϕ

h

�1=3�
ds2t12 þ

�
d~x3

cos θnc
þ sin θncd ~ψ

�
2

þ cos2θncffiffiffi
h

p
F 2

d ~ψ2 þ hds2ð8Þ

�
; ð3:84Þ

where the last rewriting was done in preparation to the M-theory uplift that will follow. The dilaton and RR two-form flux
can be readily seen not to be affected by the deformation:

e ~ϕðA;10Þ ¼ e ~ϕðA;9Þ ; F ðA;10Þ
2 ¼ F ðA;9Þ

2 : ð3:85Þ

However, the RR four-form flux and the NS three-form flux do change to

11Actually, this T-duality is more subtle and can also lead to D4-branes. We discuss this important point in Sec. III B 2.
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F ðA;10Þ
4 ¼ e2 ~ϕ cosh β cos θnc

ffiffiffiffiffiffi
F 2

F 1

s
d ~ψ ∧ ð ˆ̂k1dϕ1 ∧ dθ2 ∧ dϕ2 þ ˆ̂k2dθ1 ∧ dϕ1 ∧ dϕ2Þ þ F ð2Þ

4 ;

HðA;10Þ
3 ¼ HðB;8Þ

3 þ cos θnc
X2
i¼1

sin θidθi ∧ dϕi ∧ d ~ψ ; ð3:86Þ

where we have defined

ˆ̂k1 ≡ F 4

F 3

ðF 3;r −
ffiffiffiffiffiffiffiffiffiffiffiffi
F 1F 2

p
Þ sin θ2 cos θ1; ˆ̂k2 ≡ F 3

F 4

ðF 4;r −
ffiffiffiffiffiffiffiffiffiffiffiffi
F 1F 2

p
Þ sin θ1 cos θ2: ð3:87Þ

Once more, the RR two-form flux not being closed, we can rewrite it in a similar fashion to what we did earlier in (2.45)
and (2.118):

F ðA;10Þ
2 ¼ dÂ1 þ Δ̂; Â1 ≡ cosh β

X2
i¼1

cos θidϕi; dΔ̂ ¼ sources; ð3:88Þ

with Â1 the type IIA gauge field for this configuration (A, 10). We will soon see that it is opportune to define Â1 as we just
did, which is (4.51) in [13]. Before we proceed, let us make one last observation: the subsequent M-theory uplift will only

capture the dynamics of this type IIA theory when e ~ϕðA;10Þ is of order one, or bigger.
The M-theory metric corresponding to (3.84) is (4.48) in [13]:

ds2ðM;5Þ ¼ ðe ~ϕðA;9Þ Þ−2=3ds2ðA;10Þ þ ðhF 2
2e

4 ~ϕÞ−1=3ðdx11 þ Â1Þ2: ð3:89Þ

We note that, due to (3.3) and (3.88), for a fixed value of the ϕ1 coordinate, ϕ1 ¼ ϕ�
1, the metric along the directions

ðr; θ2;ϕ2; x11Þ describes a warped Taub-NUT space. Introducing the quantities

Ĝ1 ≡ F 1ðh2F 2e2
~ϕÞ1=3; Ĝ2 ≡ F 4

F 1

Ĝ1; Ĝ3 ≡ sin2θ2Ĝ2; Ĝ4 ≡ ðhF 2
2e

4 ~ϕÞ−1=3; ð3:90Þ

which are only functions of the coordinates ðr; θ2Þ (and the boost parameter β), we can write the metric for the Taub-NUT
space as

ds2TN3
¼ Ĝ1dr2 þ Ĝ2dθ22 þ Ĝ3dϕ2

2 þ Ĝ4ðdx11 þ Â�
1Þ2; ð3:91Þ

where we have defined

Â�
1 ≡ Â1jϕ1¼ϕ�

1
¼ cosh β cos θ2dϕ2: ð3:92Þ

To the metric (3.91), we associate the following vielbeins:

eðM;5Þ
r ¼

ffiffiffiffiffiffi
Ĝ1

q
dr; eðM;5Þ

θ2
¼

ffiffiffiffiffiffi
Ĝ2

q
dθ2; eðM;5Þ

ϕ2
¼

ffiffiffiffiffiffi
Ĝ3

q
dϕ2; eðM;5Þ

11 ¼
ffiffiffiffiffiffi
Ĝ4

q
ðdx11 þ Â�

1Þ: ð3:93Þ

As was the case in Sec. II A 1, this is a multicentered (warped) Taub-NUT space. Recall that we had N D6-branes in the
configuration (A, 10) prior to the uplift. Hence, Ĝ−1

4 ¼ 0 happensN times, leading to coordinate singularities that denote the
location of the D6-branes in the dual type IIA picture. Further, the D6-branes in (A, 10) were coincident and consequently
we are, by construction, at the non-Abelian enhanced scenario discussed in II A 1: the symmetry group of the associated
world-volume gauge theory is SUðNÞ. It follows then that the G-flux for this M-theory configuration is of the same form as
that in (2.87):

GðM;5Þ
4 ¼ hGðM;5Þ

4 i þ
XN−1

k¼1

F̂ k ∧ ω̂k; ð3:94Þ
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where F̂ k’s are the Cartan algebra values of the world-volume field strength F̂ , the ω̂k’s are the unique, normalizable, (anti-)
self-dual two-forms associated with the minimal area independent two-cycles in the space (3.91) and the background G-flux
is given by

hGðM;5Þ
4 i ¼ F ðA;10Þ

4 þHðA;10Þ
3 ∧ dx11: ð3:95Þ

Writing it explicitly, we obtain (4.52) in [13]12:

hGðM;5Þ
4 i ¼ e2 ~ϕ cosh β cos θnc

ffiffiffiffiffiffi
F 2

F 1

s
d ~ψ ∧ ð ˆ̂k1dϕ1 ∧ dθ2 ∧ dϕ2 þ ˆ̂k2dθ1 ∧ dϕ1 ∧ dϕ2Þ

− coth β
d
dr

�
e2 ~ϕ

h

�
h2

ffiffiffiffiffiffi
F 2

F 1

s Y2
i¼1

F 2þi sin θidθi ∧ dϕi

þ
X2
i¼1

sin θidθi ∧ dϕi ∧ dx11 ∧ ½sinh βðF 2þi;r −
ffiffiffiffiffiffiffiffiffiffiffiffi
F 1F 2

p
Þdr − cos θncd ~ψ �: ð3:96Þ

It can be readily seen that the only quantities left to be computed are the ω̂k’s. We do so in the following. The discussion is
analogous to that in Sec. II A 1, so we will be brief.
We begin the computation of the ω̂k’s by constructing the minimal area independent two-cycles of (3.91) to which they

are associated. Note that Ĝ4 ¼ Ĝ4ðrÞ. Thus, we can call the N solutions to Ĝ−1
4 ¼ 0 as rðiÞ, where i ¼ 1; 2;…; N. Consider

two such solutions, rðiÞ and rðjÞ (where i ≠ j) and the straight line in the r direction connecting them, Cr. Attaching to each
point in Cr a circle labeled by x11, we obtain the corresponding minimal area two-cycle Xij. We take Xk;kþ1 (with
k ¼ 1; 2;…; N − 1) as the independent minimal area two-cycles where the ω̂k’s are defined and consider the following
ansatze for them:

ω̂k ¼ dζ̂k; ζ̂k ¼ ĝkðdx11 þ Â�
1Þ: ð3:97Þ

Easy algebra then yields

ω̂k ¼
ĝk;rffiffiffiffiffiffiffiffiffiffiffi
Ĝ1Ĝ4

p eðM;5Þ
r ∧ eðM;5Þ

11 −
ĝkffiffiffiffiffiffiffiffiffiffiffi
Ĝ2Ĝ3

p cosh β sin θ2e
ðM;5Þ
θ2

∧ eðM;5Þ
ϕ2

;

�ω̂k ¼
ĝk;rffiffiffiffiffiffiffiffiffiffiffi
Ĝ1Ĝ4

p eðM;5Þ
θ2

∧ eðM;5Þ
ϕ2

−
ĝkffiffiffiffiffiffiffiffiffiffiffi
Ĝ2Ĝ3

p cosh β sin θ2e
ðM;5Þ
r ∧ eðM;5Þ

11 ; ð3:98Þ

where, obviously, the Hodge dual is with respect to the
metric (3.91) and ĝk;r stands for the derivative of ĝk with
respect to the radial coordinate r. Using (3.90) and
demanding (anti-)self-duality of ω̂k we obtain the ordinary
differential equation

1

ĝk

dĝk
dr

¼ ∓ cosh β
e− ~ϕ

F 4

ffiffiffiffiffiffiffiffiffi
F 1

hF 2

s
; ð3:99Þ

which can be readily solved to give

ĝk ¼ ĝ0 exp

 
∓
Z

rðkþ1Þ

rðkÞ

e− ~ϕ

F 4

ffiffiffiffiffiffiffiffiffi
F 1

hF 2

s
dr

!
; ð3:100Þ

with ĝ0 some integration constant where we have absorbed
the contribution of cosh β. The above fully determines the
G-flux in (3.94).
We remind the reader that all the discussion in this

section (so far) is subject to the constraint (3.28) so as to
ensure N ¼ 1 supersymmetry in the corresponding world-
volume gauge theory.
The configuration (M, 5) is the second and last theory we

construct for the study of knots and their invariants. [The
first one is (M, 1) and its non-Abelian enhancement,
discussed earlier in Secs. II A and II A 1, respectively.]
In the remainder of this work, we will only study the

12Note that the contribution to the G-flux stemming from the
RR five-form flux F ðB;8Þ

5 [this is the second line in (3.96)] is
written in a different yet equivalent manner in [13]. In this
reference, the relationship dF ðB;8Þ

5 ∝ HðB;8Þ
3 ∧ F ðB;8Þ

3 ∝ dθ1 ∧
dϕ1 ∧ dψ ∧ dr ∧ dθ2 ∧ dϕ2 is used. Then, F ðB;8Þ

5 is expressed
as a sum of two contributions, obtained by integration over θ1 and
θ2, respectively. In this language, our approach consists of
integrating over r instead.
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configuration (M, 1). Indeed, in part II, we will understand
in details the four-dimensional gauge theory stemming
from (M, 1). In doing so, we will argue how and why (M, 1)
provides a natural framework to realize knots. All inves-
tigation of the embedding of knots in (M, 5) is deferred to
the sequel.
Before proceeding further, it is important to emphasize

that, in constructing (M, 1) and (M, 5), we have already

achieved a very major result in this work. Note that, as
depicted in Fig. 1, the configuration (M, 1) is dual to the
D3-NS5 system of [10]. On the other hand, the configu-
ration (M, 5) follows from the very same D3-NS5 system
and is dual to the resolved conifold in the presence of fluxes
considered in [8]. Hence, we have made explicit the
modifications that directly connect the seemingly very
distinct models in [8,10]. In plain English, we have

Non-Abelian

FIG. 10. Graphical summary of Secs. IV–VI. In orange, the starting point: the non-Abelian enhanced M-theory configuration (M, 1) of
Sec. II. In purple, the contents of Sec. IV: the derivation of the four-dimensional gauge theory stemming from (M, 1). Colored green, the
obtention and minimization of the corresponding Hamiltonian, presented in Sec. V. Blue is associated with Sec. VI, which focuses on the
study of the three-dimensional subspace where knots can be embedded.
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provided a unifying picture between the two existing
approaches to computing knot invariants in string theory.

IV. BOSONIC ACTION FOR THE FOUR-
DIMENSIONAL SUðNÞ GAUGE THEORY

We now turn to the second part of the paper which
includes Secs. IV–VII: Study of the four-dimensional
gauge theory following from the configuration (M, 1).
This second part focuses on the (non-Abelian enhanced)

M-theory configuration (M, 1) constructed in Sec. II. The
fundamental purpose here will be to show that indeed (M,
1) provides a suitable framework for the realization of
knots. To this aim, we shall derive and investigate the four-
dimensional,N ¼ 2 supersymmetric, SUðNÞ gauge theory
associated to (M, 1). Such study is presented in three main
steps. In Sec. IV, we obtain the action of the aforemen-
tioned gauge theory. Section V is devoted to the associated
Hamiltonian and the minimization of its energy, which
yields the BPS conditions for the theory. This analysis
naturally leads to a three-dimensional subspace, which we
denote as X3 and which is the main object of interest in
Sec. VI. As we shall see, the physics in X3 are governed by
a Chern-Simons action. Consequently, X3 (or, more pre-
cisely, its Euclideanization) constitutes a suitable space
where knots can be embedded.
Figure 10 provides a visual sketch of the overall logic and

key results in this part. Given the considerable length of the
calculations involved, the reader may find it useful to keep an
eye in this image while reading through the following three
sections. In this way, the underlying principal flow of ideas
shall hopefully not be lost during the presentation of the
corresponding computational details.
In accordance to the plan above outlined, in this section

we argue that the bosonic action is for the SUðNÞ world-
volume gauge theory along ðt; x1; x2; ~ψÞ that follows from
the non-Abelian enhanced M-theory configuration (M, 1).
This gauge theory has N ¼ 2 supersymmetry by construc-
tion. (We will not be interested in doing so here, but
supersymmetry could be used to obtain the fermionic sector
of the theory.) In principle, one could explicitly write the
eleven-dimensional M-theory action and then work out the
desired four-dimensional reduction.13 However, this is more
easily said than done. We will thus follow a different
approach here: we will obtain the total action as the sum
of three distinct contributions, providing ample motivation
for each term.
The first two of these three terms directly stem from our

construction of (M, 1) in Sec. II and are indeed initially
written in terms of only quantities there defined. Writing
these terms as functions of the vector multiplet of theN ¼ 4

supersymmetric (with half-BPS boundary conditions)
SUðNÞ world-volume gauge theory is, however, far from
trivial. In achieving this task, we further split the two terms in
many parts.
The third and last term is, unluckily, difficult to present

in such a manner. Consequently, we start by directly writing
it in terms of the aforementioned vector multiplet.
Nonetheless, the length and complexity of the term lead
us to further divide it into smaller pieces too.
To help the reader make sense of the very many terms

that follow, we include Fig. 11. This figure provides a
graphical summary of this Sec. IV, pointing out all the
different contributions to the total action and their origin.
A last important remark before jumping into computa-

tion. To avoid as much as possible dragging long pre-
factors, we set the Planck length to one right from the
onset: lp ≡ 1.

A. Kinetic term of the G-flux

The first contribution to the aforementioned bosonic
action we will consider is the kinetic term of the G-flux
(2.87). Our approach will be to work out in details this term
for the Abelian configuration (M, 1) of Sec. II A and then
generalize the result to the non-Abelian scenario of Sec. II
A 1. With this aim in mind, let us first recall the main
features of both the Abelian and non-Abelian configura-
tions (M, 1).
The geometry of the configuration (M, 1) was given

in (2.56), be it for the Abelian or non-Abelian case. By
simple inspection, it can be readily seen that the eleven-
dimensional manifold X11 on which this metric is defined
naturally decomposes into three subspaces:

X11 ¼ X4 ⊗ Σ3 ⊗ TN; X4 ¼ X3 ⊗ Rþ: ð4:1Þ

Here, X4 is the four-dimensional subspace where we will
define our gauge theory. This further decomposes into X3

[the Minkowski-type three-dimensional subspace along
ðt; x1; x2Þ] and Rþ (the half real line labeled by ~ψ). This
second decomposition clearly denotes that there is no
Lorentz invariance along ~ψ . On the other hand, Σ3 is the
three-cycle parametrized by ð~x3;ϕ1; rÞ and TN stands for
the warped Taub NUT space spanning ðθ1; x8; x9; x11Þ. For
the Abelian (M, 1), this is a single-centered Taub NUT,
whereas for the non-Abelian (M, 1) it is an N-centered one.
After the non-Abelian enhancement, there are N coinci-

dent M2-branes oriented along ðx8; x9; x11Þ in the configu-
ration (M, 1), as depicted in Fig. 4(b). Following the
notation of Sec. II A 1, we denote as ⃗l1 the location of these
M2-branes in the ðx8; x9Þ plane. It is around this point ⃗l1
that we shall determine the action of the non-Abelian
world-volume gauge theory.
Coming to the fluxes, the G-flux for the non-Abelian

enhanced (M, 1) was given in (2.87). This G-flux consists
of two pieces: the delocalized background flux hGðM;1Þ

4 i and

13Compactification is done via the G-flux (2.87) and metric
(2.56) reduced over the normalizable internal harmonic forms.
The Taub-NUT subspace has normalizable harmonic two-forms
(2.82). For our case, compactification can thus be defined.
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the localized contribution of
P

N−1
k¼1 F k ∧ ωk, sharply

peaked around ⃗l1. As it is common practice in the literature,
we will assume the delocalized piece is such that its
contribution around ⃗l1 is negligible.
In the Abelian case, the situation is essentially the same.

The only difference being that the G-flux is now given by
(2.61). The Taub-NUT space has a unique singularity,
whose location we can denote as ⃗l1 as well. The G-flux
again splits into delocalized and localized parts. We assume
the delocalized part’s contribution is inconsequential
around ⃗l1.
We will now use all the above remarks to obtain the first

term for the Uð1Þ world-volume gauge theory action:

Sð1Þ ≡
Z
X11

TrðGðM;1Þ
4 ∧ �GðM;1Þ

4 Þ; ð4:2Þ

where the Hodge dual is with respect to the eleven-
dimensional metric (2.56). Using (2.61) and because we

are interested in the gauge theory around ⃗l1, where hGðM;1Þ
4 i

is negligible, the above reduces to

Sð1Þ ¼
Z
X11

TrðF ∧ ωÞ ∧ �ðF ∧ ωÞ; ð4:3Þ

with F the seven-dimensional Abelian field strength. By
definition, ω is (anti-)self-dual and is restricted to the

FIG. 11. Graphical summary of Sec. IV, where we obtain the bosonic action for the four-dimensional SUðNÞ gauge theory following
from the non-Abelian M-theory configuration (M, 1) of part I. This figure sketches the connection between the very many terms whose
addition gives the aforementioned action. The colors correspond to the subsections where the mentioned equations can be found: in blue
results derived in Sec. IVA, in green those explained in Sec. IV B, and in yellow the terms worked out in Sec. IV C.
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subspace TN. For concreteness, we take it to be self-dual in
the ongoing. On the other hand, F spans X4 ⊗ Σ3. Then,
we can rewrite Sð1Þ as

Sð1Þ ¼
Z
TN

ω ∧ ω

Z
X4⊗Σ3

F ∧ �F ; ð4:4Þ

where the Hodge duals are taken with respect to the
subspaces of (2.56) indicated by the corresponding inte-
grals. This drastic simplification where the Taub-NUT
completely decouples is not as trivial as we just made it
sound. Hence, before proceeding further, let us carefully
show how this can be made to happen consistently.
Naively, the decoupling happens if the following two

conditions are satisfied:
(1) The integral over TN above only depends on the

ðθ1; x8; x9; x11Þ coordinates.
(2) The integral over X4 ⊗ Σ3 is independent

of ðθ1; x8; x9; x11Þ.
The first condition can easily be seen to hold true. The two-
form ω was defined in (2.62), with the gauge fieldA1 given
by (2.47). It is clear from these expressions that the
integrand ω ∧ ω only depends on the Taub-NUT coordi-
nates, as desired. The metric for the space TN was given
in (2.58) and, as pointed out there, only depends on
ðθ1; x8; x9; x11Þ. This implies the measure for the integral
over TN will have the same coordinate dependence. The
second condition, however, does not hold true. An inspec-
tion of the metric (2.56) along the directions of X4 and Σ3

leads us to conclude that the measure of the second integral
in (4.4) will depend on ðθ1; x8; x9Þ. [Recall our choices for
the warp factors in (2.2) and for the dilaton in (2.70) to
understand this last statement.] Nevertheless, this desired
decoupling can be effectively made to happen. Let us
see how.
A careful inspection of (2.56) restricted to X4 ⊗ Σ3

shows that the dependence of the second integral in (4.4) on
ðx8; x9Þ comes solely from the dilaton (2.70). We can
therefore remove this ðx8; x9Þ dependence by assuming that
the dilaton is given, to leading order, by its constant piece:

e2ϕ ≈ e2ϕ0 : ð4:5Þ

[Note that the above assumption is in excellent agreement
to the strong coupling limit discussed around (2.55),
required for our M-theory configuration to be valid, if
we consider e2ϕ0 to be of order one.] The θ1 dependence of
the second integral in (4.4) is, however, not “removable.”
Let us thus turn to the θ1 dependence of the first integral
in (4.4).
To match the notation in [13], we will call the first

integral in (4.4) as

c1
v3

≡
Z
TN

ω ∧ ω: ð4:6Þ

Using (2.47), (2.60), the first equation in (2.68) and (2.75)
in (2.63), it is a matter of easy algebra to obtain the two-
form ω as

ω ¼
X9
i¼8

∂g
∂xi dxi ∧ ðdx11 þA1θ1dθ1Þ

þ
� ∂g
∂x8A19 −

∂g
∂x9A18

�
dx8 ∧ dx9

þ gðα2dx8 þ α3dx9Þ ∧ dθ1: ð4:7Þ

Then, ðg; α2; α3Þ being all functions of only ðx8; x9Þ, it
follows that (4.6) is actually independent of θ1:

ω ∧ ω ¼ 2g

�
α3

∂g
∂x8 − α2

∂g
∂x9
�
dθ1 ∧ dx8 ∧ dx9 ∧ dx11:

ð4:8Þ

[The above is (3.52) in [13].] Consequently, choosing (4.5)
and transferring the θ1 integral to the second integral in
(4.4) as an average, we can consistently decouple the
contribution to this term of the action of the Taub-NUT
space:

Sð1Þ ¼ c1
v3

Z
π

0

dθ1
2π

Z
X4⊗Σ3

F ∧ �F ; ð4:9Þ

where this prefactor should be understood, in this Abelian
case, as

c1
v3

¼
Z

R8

0

dx8

Z
R9

0

dx9

Z
R11

0

dx112g

�
α3

∂g
∂x8 − α2

∂g
∂x9
�
;

ð4:10Þ

with Ri denoting the radius of the xi direction (for i ¼ 8, 9,
11). Note that ðx8; x9Þ are noncompact directions, while x11
is compact.
At this point, it is easy to infer what the generalization of

(4.9) is to the non-Abelian case:

Sð1Þ ¼ C1

V3

Ið1Þ; Ið1Þ ≡
Z

π

0

dθ1
2π

Z
X4⊗Σ3

TrðF ∧ �F Þ;

ð4:11Þ

where F is now the non-Abelian seven-dimensional field
strength and the trace is taken in the adjoint representation
of SUðNÞ. There are just two subtleties in going from (4.9)
to (4.11) that we better discuss.
The first one is regarding the prefactor ðC1=V3Þ. This

prefactor is, of course, no longer given by (4.10). Instead, it
depends on the two-forms ωk in (2.82). Its explicit form is
rather tedious to work out and we will not attempt to
compute it here. For our purposes, it suffices to note that, by
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construction (see the details in Sec. II A 1), we are
guaranteed its independence on the θ1 coordinate. So we
can transfer the θ1 integral to the subspace orthogonal to
TN as an average and indeed obtain (4.11).
The second subtlety is regarding the appearance of the

trace. [Note that the non-Abelian G-flux in (2.87) only
involves the Cartan algebra values of F .] Let us try to shed
some light to this point by first recalling how the non-
Abelian enhancement was achieved in Sec. II A 1 [perhaps
it suffices to take a second look at Fig. 4(b)]. There, we
wrapped M2-branes around the (minimal area, indepen-
dent) two-cycles of theN-centered Taub-NUT space (2.58).
The two-cycles were then shrunk to zero size, making the
M2-branes tensionless. From this point of view, internal
fluctuations of the Taub-NUT space are supposed to
provide the Cartan values of the field strength.
Fluctuations of the M2-branes along the Taub-NUT direc-
tions would then contribute the remaining roots and
weights, thus leading to the full trace in (4.11). A more
detailed version of this argument may be found in [21–23]
and references therein. However, no rigorous proof of this
conjecture exists. The argument between (3.91) and (3.98)
in [13] in terms of a sigma model may well be the most
solid evidence for this claim.
The fact that the trace should be in the adjoint repre-

sentation has a simple enough heuristic explanation.
Additionally, this very argument settles what the bosonic
matter content is in our non-Abelian world-volume gauge
theory. Recall Fig. 2(b). There, to the usual type IIB D3-
NS5 system we added a second, parallel NS5-brane. The
distance between the two NS5-branes being large enough
then allows for effectively retainingN ¼ 2 supersymmetry
in the whole of the system. By the same logic, deep in the
bulk of the D3-brane, far away from both the NS5-branes,
we expect N ¼ 4 supersymmetry effectively. As is well
known, any N ¼ 4 supersymmetric gauge theory has a
vector multiplet consisting on four gauge fields and six real
scalars, all of them in the adjoint representation. Certainly,
this is the matter content we expect in the bosonic sector for
our D3-brane gauge theory too, far from the NS5-branes.
On the other hand, the bosonic matter content of any N ¼
2 supersymmetric gauge theory is arranged in a vector
multiplet of four gauge fields and two real scalars in the
adjoint representation and a chiral multiplet containing four
real scalars in any representation. Needless to say, this is the
matter content we expect in the bosonic sector of our gauge
theory nearby the NS5-branes. It then stands to reason that,
if we are to reconcile these two limits in our setup, we
require the four scalars of the N ¼ 2 chiral multiplet to be
in the adjoint representation. Therefore, the bosonic matter
content of our SUðNÞ gauge theory is settled to that of the
N ¼ 4 vector multiplet: four gauge fields and six real
scalars, all of them in the adjoint representation.
Subtleties aside, we take (4.11) as our starting point and

devote the remaining of this section to writing Ið1Þ in terms

of the just discussed N ¼ 4 vector multiplet, which spans
the directions ðt; x1; x2; ~ψÞ. To begin with, we assume that
the seven-dimensional non-Abelian field strength F only
depends on these coordinates:

F ¼ F ðt; x1; x2; ~ψÞ: ð4:12Þ

Secondly, and owing to the decomposition (4.1), we make a
distinction between the seven-dimensional field strengths
along X4 and Σ3:

F ¼ F ðX4Þ þ F ðΣ3Þ: ð4:13Þ

Using such distinction in (4.11), we naturally split the first
contribution to the non-Abelian action into two pieces:

Sð1Þ ¼ C1

V3

ðIð1;1Þ þ Ið1;2ÞÞ; ð4:14Þ

with

Ið1;1Þ ≡
Z

π

0

dθ1
2π

Z
X4⊗Σ3

TrðF ðX4Þ ∧ �F ðX4ÞÞ;

Ið1;2Þ ≡
Z

π

0

dθ1
2π

Z
X4⊗Σ3

TrðF ðΣ3Þ ∧ �F ðΣ3ÞÞ: ð4:15Þ

Rather obviously, the Hodge dual in both Ið1;1Þ and Ið1;2Þ is
(still) with respect to the seven-dimensional metric
of X4 ⊗ Σ3.
Note that the crossed terms ðF ðX4Þ ∧ �F ðΣ3ÞÞ and

ðF ðΣ3Þ ∧ �F ðX4ÞÞ are zero and thus have not been included
in (4.14). The argument for the vanishing of the first such
term is as follows. Each component of F ðΣ3Þ spans two
directions of Σ3. Consequently, the corresponding term of
�F ðΣ3Þ is oriented along all four directions of Σ4 and the
remaining direction of Σ3. As the components ofF ðX4Þ span
two directions of Σ4, the term ðF ðX4Þ ∧ �F ðΣ3ÞÞ necessarily
contains the wedge product of two same X4 directions and
thus yields zero. The argument for the vanishing of the
second crossed term is similar.
At this stage, the only quantities left to be determined to

explicitly write Sð1Þ are Ið1;1Þ and Ið1;2Þ, defined in (4.15).
Their computation is quite long and involved. Con-
sequently, we will do so in separate sections. In the end,
we will put together in (4.14) the Ið1;1Þ and Ið1;2Þ we shall
obtain, thereby expressing the first term for the gauge
theory action in terms of the N ¼ 4 vector multiplet’s
matter content.

1. Determining Ið1;1Þ: The contribution
of gauge field strengths

As the title suggests, this section is devoted to the
computation of Ið1;1Þ in (4.15) in terms of the field strengths
associated to theN ¼ 4 vector multiplet’s gauge fields. But
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before jumping into the details of the calculation, let us
introduce some quantities that will soon be useful.
We begin by taking a closer look at the seven-

dimensional space X4 ⊗ Σ3, where Ið1;1Þ is defined. Its
metric can be directly read from (2.56) to be

ds2X4⊗Σ3
¼ H1½−dt2 þ dx21 þ dx22 þH2d~x23

þH3ðdϕ1 þ f3d~x3Þ2 þ e2ϕ0ðF1dr2 þH4d ~ψ2Þ�;
ð4:16Þ

where we have made use of our assumption (4.5).
Following the spirit of the language in [13], we denote
as g7 the determinant of the above metric:

g7 ≡ detðds2X4⊗Σ3
Þ ¼ e4ϕ0F1H7

1H2H3H4 ¼ e4ϕ0F1H4
1H4;

ð4:17Þ

where in the last step we have used the fact that
H3

1H2H3 ¼ 1, which follows from (2.53). It will also come
in handy to write the metric along the subspace X4, albeit in
matrix form:

gab ¼ H1diagð−1; 1; 1Þ; g ~ψ ~ψ ¼ e2ϕ0H1H4: ð4:18Þ

Here, the subscripts ða; bÞ take values (0,1,2) and stand for
the Lorentz-invariant directions ðt; x1; x2Þ. Being diagonal,
it is straightforward to see that the inverse of the X4 metric,
in matrix form, is given by

gab ¼ 1

H1

diagð−1; 1; 1Þ; g ~ψ ~ψ ¼ e−2ϕ0

H1H4

: ð4:19Þ

Calling g4 the (absolute value of the) determinant of the X4

metric, this is

g4 ≡ j detðds2X4
Þj ¼ e2ϕ0H4

1H4: ð4:20Þ

Having introduced our notation, we may now proceed to
the determination of Ið1;1Þ. First of all, we explicitly write
the wedge product of its integrand as

F ðX4Þ ∧ �F ðX4Þ

¼ ffiffiffiffiffi
g7

p X2
a;b;c;d¼0

gabðgcdF acF bd þ g ~ψ ~ψF a ~ψF b ~ψ Þ

¼
ffiffiffiffiffiffi
F1

H4

s �
e2ϕ0H4

X2
a;b¼0
a<b

F 2
ab þ

X2
a¼0

F 2
a ~ψ

�
: ð4:21Þ

Using the above in (4.15), we have that

Ið1;1Þ ¼ c11

Z
d4x

X2
a;b¼0
a<b

TrðF 2
abÞ þ c12

Z
d4x

X2
a¼0

TrðF 2
a ~ψ Þ;

ð4:22Þ

where the integration is with respect to the world-volume
coordinates ðt; x1; x2; ~ψÞ and where we have defined the
coefficients c11 and c12 as

c11 ≡ e2ϕ0

Z
d4 ~ζ

ffiffiffiffiffiffiffiffiffiffiffi
F1H4

p
; c12 ≡

Z
d4 ~ζ

ffiffiffiffiffiffi
F1

H4

s
:

ð4:23Þ

As a shorthand notation that will keep appearing, we have
introducedZ

d4 ~ζ ≡
Z

R3

0

d~x3

Z
2π

0

dϕ1

Z
∞

0

dr
Z

π

0

dθ1
2π

ð4:24Þ

above, with R3 the radius of the noncompact direction ~x3.
Note that these coefficients have been taken out of the
integral over the world-volume coordinates in (4.22)
because F1 and H4 are only functions of the radial
coordinate and θnc [recall our choice in (2.2) and the
definitions in (2.26) and (2.53)]. For this same reason, we
can right away perform the ð~x3;ϕ1Þ integrals above. Further
using (2.53), we can express c11 and c12 as

c11 ¼ 2R3e2ϕ0 sec θnc

Z
∞

0

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

q
I ð1Þ;

c12 ¼ 2R3 cos θnc

Z
∞

0

dr

ffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

s
I ð2Þ; ð4:25Þ

where we have defined

I ð1Þ ≡
Z

π=2

0

sin θ1dθ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2cos2θ1 þ F3sin2θ1

q ;

I ð2Þ ≡
Z

π=2

0

dθ1 csc θ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2cos2θ1 þ F3sin2θ1

q
: ð4:26Þ

Since they will keep showing up, it is useful to introduce
the functions

χðθ1Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 þ F3 þ ð ~F2 − F3Þ cos 2θ1

q
;

~χðθ1Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð ~F2 − F3Þ

q
cos θ1: ð4:27Þ

Using these, the first of these integrals can be readily
performed to yield
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I ð1Þ ¼−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~F2−F3

q ln jχðθ1Þþ ~χðθ1Þjjθ1¼π=2
θ1¼0 ¼ J 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2−F3

q ;

ð4:28Þ

where we have defined

J 3 ≡ ln

������
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
������; ð4:29Þ

a quantity which will appear in the present analysis very
often. It is clear that the above will be real if and only if we
require that ~F2 ≥ F3, for all values of ðr; θncÞ. Thus, we
will demand this holds true in the ongoing. Using the above
in (4.25), we obtain c11 as in (3.76) in [13]:

c11 ¼ R3e2ϕ0 sec θnc

Z
∞

0

drJ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

~F2 − F3

s
: ð4:30Þ

It is important to note that the above coefficient is just a
number. The numerical value of c11 depends only on the
choice of warp factors one would like to consider in (2.2).
This choice is subject to the constraint ~F2 ≥ F3 and should
be checked to preserve the desired N ¼ 4 supersymmetry
in the world-volume (later on reduced to N ¼ 2 super-
symmetry via half-BPS boundary conditions).
Coming now to I ð2Þ, we start by defining the soon-to-be

useful three quantities in (3.79) in [13]:

b1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F3

~F2 − F3

s
; b2 ≡ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1ð ~F2 − F3Þ

~F2F3

s
;

b3 ≡ 2

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F3 þ b2ð ~F2 − F3Þ

~F2 − F3

s
; b ∈ ðRþ − f1gÞ: ð4:31Þ

We can use b1 to rewrite the integral of our interest in the
more convenient form

I ð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q Z
π=2

0

dθ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ cos2 θ1
1 − cos2 θ1

s
: ð4:32Þ

Under the change of variables

cos θ1 ¼ z; dθ1 ¼ −
dzffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ; ð4:33Þ

the above can be further rewritten as

I ð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
2

Z
1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ z2

p
b2 − z2

; ð4:34Þ

where b as defined in (4.31) is a regularization factor that
we have introduced by hand in order to avoid the
singularities of I ð2Þ at z ¼ �1. In the same spirit of
ðχðθ1Þ; ~χðθ1ÞÞ before, let us introduce two more functions
that will come in handy repeatedly:

ηðzÞ≡ arctanh

 
z
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b2

b21 þ z2

s !
;

~ηðzÞ≡ ln
���zþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b21 þ z2
q ���: ð4:35Þ

Finally, all the above can be used to integrate over z in
(4.34) and obtain

2I ð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b2

p
b

ηðzÞ − ~ηðzÞ
���z¼1

z¼−1
¼ b3J 4 þ J −1

3 ;

ð4:36Þ

where we have defined the many times to occur quantity
J 4 as

J 4 ≡ arctanh

 
1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F3 þ b2ð ~F2 − F3Þ

~F2

s !
: ð4:37Þ

Plugging our result in (4.23), the coefficient c12 may be
expressed as in (3.78) in [13]:

c12 ¼ 2R3 cos θnc

Z
∞

0

drb2ðb3J 4 þ J −1
3 Þ: ð4:38Þ

As was the case for c11 before, we want c12 to be a well-
defined number for all choices of warp factors in (2.2)
satisfying the constraint ~F2 ≥ F3 (and preserving N ¼ 2
supersymmetry). It is not clear from our above result that
this should be the case in the following two cases:
(1) F3→0. This limit also includes the case ð ~F2;F3Þ→0

since, in order to be consistent with the constraint
~F2 ≥ F3, we must demand that F3 approaches zero
faster than ~F2. Hence, the case ð ~F2; F3Þ → 0 should
be studied by first demanding F3 → 0 and after-
wards considering the ~F2 → 0 limit of the resulting
expression.

(2) ~F2 → F3↛0.
Let us thus study such subtle scenarios in details and show
that c12 in (4.38) is indeed a finite number even then.
To consider the first case, namely F3 → 0, we start by

rewriting the argument of the inverse hyperbolic tangent in
(4.37) as

1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F3 þ b2ð ~F2 − F3Þ

~F2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
1 − b2

b2

�
F3

~F2

s
: ð4:39Þ
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Next, we note that in the logarithmic term of (4.38), namely J 3 in (4.29), only the numerator diverges as F3 → 0, while the
denominator is well defined in this limit. Hence, retaining only the divergent terms in the integrand of (4.38) and using
(4.39), we focus on the study of

lim
F3→0

c12 ∼ lim
F3→0

"
b2b3arctanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
1 − b2

b2

�
F3

~F2

s !
þ b2 ln

��� ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q ���
#
: ð4:40Þ

From our definitions in (4.31) it follows that

lim
F3→0

b2 ¼ lim
F3→0

ffiffiffiffiffiffi
F1

F3

s
¼ lim

F3→0
b2b3 ð4:41Þ

which, used in (4.40), gives

lim
F3→0

c12 ∼ lim
F3→0

ffiffiffiffiffiffi
F1

F3

s "
arctanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
1 − b2

b2

�
F3

~F2

s !
þ ln

��� ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q ���
#
: ð4:42Þ

Applying L’Hôpital’s rule to the two terms above, it is easy to see that

lim
F3→0

ffiffiffiffiffiffi
F1

F3

s
arctanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
1 − b2

b2

�
F3

~F2

s !
¼ − lim

F3→0

ffiffiffiffiffiffi
F1

F3

s
ln
��� ffiffiffiffiffiffi

~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q ���: ð4:43Þ

That is, the divergent contribution to ðlimF3→0c12Þ is zero,
as pointed out in (3.80) in [13] too. This implies c12 takes
some finite numerical value when F3 → 0.
If we now turn our attention to the ð ~F2; F3Þ → 0 case, the

above still holds true. However, the denominator the of
logarithmic term of (4.38) is no longer well defined and
consequently, we must study it. As already argued, we first
should consider the F3 → 0 limit of this term and then
impose ~F2 → 0 there.Using (4.41) and applyingL’Hôpital’s
rule, this additional divergent termcan also be seen tovanish:

lim
~F2;F3→0

c12 ∼ lim
~F2;F3→0

1ffiffiffiffiffiffi
F3

p ln
���2 ffiffiffiffiffiffi

~F2

q ��� ¼ lim
~F2;F3→0

−
F3=2
3

~F2

¼ 0:

ð4:44Þ

Thus, c12 ¼ 0 when ð ~F2; F3Þ → 0.
Finally, we study the limit ~F2 → F3↛0. From (4.31), it

is not hard to work out the following two limits:

lim
~F2→F3

b2 ¼ 0; lim
~F2→F3

b2b3 ¼
1

b

ffiffiffiffiffiffi
F1

F3

s
: ð4:45Þ

Inserting the above in (4.38), we obtain (3.81) in [13]:

lim
~F2→F3

c12 ¼ 2R3 cos θnc

Z
∞

0

dr
1

b

ffiffiffiffiffiffi
F1

F3

s
arctanh

�
1

b

�

∼ arctanh

�
1

b

�
; ð4:46Þ

which can be very large, yet is finite (as the regularization
factor satisfies b ≠ 1 by definition). This proves that c12 is
just some number as ~F2 → F3.
Summing up, Ið1;1Þ is given by (4.22), with c11 given by

(4.30) and c12 by (4.38). Both of the coefficients are well-
defined numbers for any choice of the warp factors one may
want to consider, as long as the constraint ~F2 ≥ F3 is
respected.

2. Determining Ið1;2Þ: The contribution
of three scalar fields

In this section we compute Ið1;2Þ in (4.15) in terms of the
N ¼ 4 vector multiplet’s matter content. As in the previous
Sec. IVA 1, it is convenient to first introduce certain
quantities, which will be necessary in the subsequent
calculation.
Let us begin by looking at the three-cycle Σ3, para-

metrized by ð~x3;ϕ1; rÞ. Its metric can be easily inferred
from (4.16) to be

ds2Σ3
¼ H1H2d~x23 þH1H3ðdϕ1 þ f3d~x3Þ2 þ e2ϕ0H1F1dr2:

ð4:47Þ

We take the vielbeins associated with the above metric as in
(3.102) in [13]:

eðΣ3Þ
~3

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p
d~x3; eðΣ3Þ

r ¼ eϕ0

ffiffiffiffiffiffiffiffiffiffiffi
H1F1

p
dr;

eðΣ3Þ
ϕ1

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
H1H3

p
ðdϕ1 þ f3dx3Þ: ð4:48Þ
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It is not hard to see that these vielbeins satisfy

�eðΣ3Þ
~3

¼ eðΣ3Þ
r ∧ eðΣ3Þ

ϕ1
; �eðΣ3Þ

r ¼ eðΣ3Þ
ϕ1

∧ eðΣ3Þ
~3

;

�eðΣ3Þ
ϕ1

¼ eðΣ3Þ
~3

∧ eðΣ3Þ
r ; ð4:49Þ

where the Hodge duals are with respect to the metric (4.47).
Let us now focus on F ðΣ3Þ in (4.15). This field strength is

related to the corresponding three-dimensional non-
Abelian gauge field AðΣ3Þ in the usual manner

F ðΣ3Þ ¼ DAðΣ3Þ þAðΣ3Þ ∧ AðΣ3Þ; ð4:50Þ

where the covariant derivative is given by (3.116) in [13]:

Da ≡ ∂a þ i½Aa; �; D ~ψ ≡ ∂ ~ψ þ i½A ~ψ ; �; ð4:51Þ

with a ¼ ð0; 1; 2Þ standing for the Lorentz-invariant direc-
tions ðt; x1; x2Þ and ðAa;A ~ψ Þ the world-volume gauge
fields associated with the field strengths in (4.22).
Following (3.101) in [13], we define AðΣ3Þ as

AðΣ3Þ ≡A~3d~x3 þAϕ1
dϕ1 þArdr ¼ α̂1e

ðΣ3Þ
~3

þ α̂2e
ðΣ3Þ
r þ α̂3e

ðΣ3Þ
ϕ1

: ð4:52Þ

In the last step above we have used (4.48) and the
one-forms

α̂1 ≡A~3 − f3Aϕ1ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p ; α̂2 ≡ e−ϕ0Arffiffiffiffiffiffiffiffiffiffiffi
H1F1

p ; α̂3 ≡ Aϕ1ffiffiffiffiffiffiffiffiffiffiffiffi
H1H3

p :

ð4:53Þ

Because of (4.12), ðA~3;Aϕ1
;ArÞ are functions of only

ðt; x1; x2; ~ψÞ. [Note that this also explains our definitions in
(4.51).] On the other hand, from (2.2), (2.26) and (2.53), it
is clear that the α̂i’s (with i ¼ 1, 2, 3) additionally depend
on ðθ1; rÞ. A vital remark follows: from the point of view of
the four-dimensional gauge theory, ðA~3;Aϕ1

;ArÞ should
be understood as three real scalar fields in the adjoint
representation.
Our above discussion settles the ground to determine

Ið1;2Þ in (4.15) in terms of the real scalar fields
ðA~3;Aϕ1

;ArÞ. The integrand there is of the form

F ðΣ3Þ ∧ �F ðΣ3Þ ¼ DAðΣ3Þ ∧ �ðDAðΣ3ÞÞ
þAðΣ3Þ ∧ AðΣ3Þ ∧ �ðAðΣ3Þ ∧ AðΣ3ÞÞ
þAðΣ3Þ ∧ AðΣ3Þ ∧ �ðDAðΣ3ÞÞ
þDAðΣ3Þ ∧ �ðAðΣ3Þ ∧ AðΣ3ÞÞ; ð4:54Þ

where all the Hodge duals are with respect to the seven-
dimensional metric (4.16) and we have made use of

(4.50). Owing to the decomposition (4.1), it is easy to see
that the last line above vanishes. [The reason is analogous
to that given around (4.15) for the vanishing of the there-
called “crossed terms.”] Consider the first such term. The
two-form DAðΣ3Þ spans one direction in X4 and another
one in Σ3. Consequently, its corresponding Hodge dual
five-form is defined along the remaining three directions
of X4 and two directions of Σ3. But, since AðΣ3Þ ∧ AðΣ3Þ
stretches along two directions of Σ3, the wedge product
of these two last forms will necessarily contain the wedge
product of one of the directions of Σ3 with itself. Anti-
symmetry of the wedge product then implies zero value
for this first term. A similar argument applies to the
second term too. The decomposition (4.1) also allows for
a drastic simplification of the two terms in the first line
above. Indeed, we can decouple X4 and Σ3 completely
and write

F ðΣ3Þ ∧ �F ðΣ3Þ ¼ ffiffiffiffiffi
g4

p
d4x

�X2
a¼0

DaAðΣ3Þ ∧ �ðDaAðΣ3ÞÞ

þD ~ψAðΣ3Þ ∧ �ðD ~ψAðΣ3ÞÞ

þAðΣ3Þ ∧ AðΣ3Þ ∧ �ðAðΣ3Þ ∧ AðΣ3ÞÞ
�
;

ð4:55Þ

where the Hodge dual on the left-hand side is with
respect to the seven-dimensional metric (4.16), whereas
the Hodge duals on the right-hand side are with res-
pect to the three-dimensional metric (4.47). We remind
the reader that g4 was defined in (4.20) and that
ðd4x≡ dtdx1dx2d ~ψÞ, as in (4.22). Inserting the above
in (4.15), we can split the computation of Ið1;2Þ into
three as

Ið1;2Þ ¼
Z

d4xTrðIð1;2;1Þ þ Ið1;2;2Þ þ Ið1;2;3ÞÞ; ð4:56Þ

where we have defined

Ið1;2;1Þ ≡
Z

π

0

dθ1
2π

Z
Σ3

ffiffiffiffiffi
g4

p
AðΣ3Þ ∧AðΣ3Þ ∧ �ðAðΣ3Þ ∧AðΣ3ÞÞ;

Ið1;2;2Þ ≡
Z

π

0

dθ1
2π

Z
Σ3

ffiffiffiffiffi
g4

p X2
a¼0

DaAðΣ3Þ ∧ �ðDaAðΣ3ÞÞ;

Ið1;2;3Þ ≡
Z

π

0

dθ1
2π

Z
Σ3

ffiffiffiffiffi
g4

p
D ~ψAðΣ3Þ ∧ �ðD ~ψAðΣ3ÞÞ: ð4:57Þ

Clearly, the Hodge duals here are with respect to (4.47).
In the following, we determine all these three terms
separately.
Computation of Ið1;2;1Þ in (4.57).—To begin with, we

focus on Ið1;2;1Þ in (4.57). Using (4.49) and (4.52), it is a
matter of quick and easy algebra to obtain
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AðΣ3Þ ∧ AðΣ3Þ ¼ ½α̂1; α̂2�eðΣ3Þ
~3

∧ eðΣ3Þ
r þ ½α̂1; α̂3�eðΣ3Þ

~3
∧ eðΣ3Þ

ϕ1
þ ½α̂2; α̂3�eðΣ3Þ

r ∧ eðΣ3Þ
ϕ1

;

�ðAðΣ3Þ ∧ AðΣ3ÞÞ ¼ ½α̂1; α̂2�eðΣ3Þ
ϕ1

− ½α̂1; α̂3�eðΣ3Þ
r þ ½α̂2; α̂3�eðΣ3Þ

~3
: ð4:58Þ

The wedge product of the above two quantities is then

AðΣ3Þ ∧ AðΣ3Þ ∧ �ðAðΣ3Þ ∧ AðΣ3ÞÞ ¼ ð½α̂1; α̂2�2 þ ½α̂1; α̂3�2 þ ½α̂2; α̂3�2ÞeðΣ3Þ
~3

∧ eðΣ3Þ
r ∧ eðΣ3Þ

ϕ1
: ð4:59Þ

From the above, as well as our definitions in (4.20), (4.48) and (4.53), it follows (without much algebraic effort) that Ið1;2;1Þ
in (4.57) can be rewritten as in (3.105) in [13]:

Ið1;2;1Þ ¼ a1

�
Ar;Aϕ1

−
a3
2a1

A~3

�
2

þ 4a1a2 − a23
4a1

½A~3;Ar�2 þ a4½A~3;Aϕ1
�2; ð4:60Þ

where we have defined, using (4.24),

a1 ≡
Z

d4 ~ζ

ffiffiffiffiffiffi
H4

F1

s �
1

H3

þ f23
H2

�
; a2 ≡

Z
d4 ~ζ

ffiffiffiffiffiffi
H4

F1

s
1

H2

;

a3 ≡ 2

Z
d4 ~ζ

ffiffiffiffiffiffi
H4

F1

s
f3
H2

; a4 ≡ e2ϕ0

Z
d4 ~ζ

ffiffiffiffiffiffiffiffiffiffiffi
H4F1

p
H2H3

: ð4:61Þ

These coefficients can be easily written in terms of the warp factors using (2.53). Further, remember our warp factor choices
in (2.2), the definition of ~F2 in (2.26) and our assumption of constant dilaton in (4.5). Then, it is clear that the ai’s (with
i ¼ 1, 2, 3, 4) only depend on the ðr; θ1Þ coordinates and so the ð~x3;ϕ1Þ integrals in (4.24) are trivial and can be carried out
right away. Altogether, we have that

a1 ¼ R3 sec θnc

Z
∞

0

dr

ffiffiffiffiffiffiffiffiffiffiffi
~F2F3

F1

s
ðI ð3Þ þ ~F2

2tan2θncð1þ F2tan2θncÞI ð4ÞÞ;

a2 ¼ 2R3 sec θnc

Z
∞

0

dr

ffiffiffiffiffiffiffiffiffiffiffi
~F2F3

F1

s
I ð1Þ; a3 ∝ I ð5Þ;

a4 ¼ e2ϕ0R3 sec θnc

Z
∞

0

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

q
ðcos2θnc þ F2sin2θncÞI ð3Þ; ð4:62Þ

where I ð1Þ was defined in (4.26) and where we have further defined

I ð3Þ ≡
Z

π

0

dθ1 sin θ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2cos2θ1 þ F3sin2θ1

q
; I ð4Þ ≡

Z
π

0

sin θ1cos2θ1dθ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2cos2θ1 þ F3sin2θ1

q ;

I ð5Þ ≡
Z

π

0

dθ1
sin θ1 cos θ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~F2cos2θ1 þ F3sin2θ1

q : ð4:63Þ

It is most interesting to note that a3 vanishes, since

I ð5Þ ∝ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 þ F3 þ ð ~F2 − F3Þ cos 2θ1

~F2 þ F3

s �����
θ1¼π

θ1¼0

¼ 0; ð4:64Þ

as noted in (3.108) in [13] too. This greatly simplifies Ið1;2;1Þ in (4.60). Specifically, (4.64) implies that there are no crossed
terms for the interactions among the real scalars ðA~3;Aϕ1

;ArÞ:
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Ið1;2;1Þ ¼ a1½Ar;Aϕ1
�2 þ a2½A~3;Ar�2 þ a4½A~3;Aϕ1

�2; ð4:65Þ

in good agreement with (3.114) in [13]. In the ongoing, we shall focus on the determination of the remaining coefficients in
(4.62) and show that they are well-defined numbers for any choice of the warp factors one may wish to consider.
With this aim in mind, we start by performing the integrals in (4.63). Using our definitions in (4.27), we obtain for I ð3Þ

I ð3Þ ¼ −
1

4

 ffiffiffi
2

p
cos θ1χðθ1Þ þ

2F3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q ln jχðθ1Þ þ ~χðθ1Þj
!������

θ1¼π

θ1¼0

¼
ffiffiffiffiffiffi
~F2

q
þ F3J 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q ; ð4:66Þ

where J 3 was defined in (4.29). Similarly, I ð4Þ ≡ ð ~F2 − F3ÞI ð4Þ gives

~I ð4Þ ¼ 1

4

 
−
ffiffiffi
2

p
cos θ1χðθ1Þ þ

2F3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q ln jχðθ1Þ þ ~χðθ1Þj
!������

θ1¼π

θ1¼0

¼
ffiffiffiffiffiffi
~F2

q
−

F3J 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q : ð4:67Þ

We remind the reader that I ð1Þ was determined in (4.28) already. Then, substitution of these results in (4.62) immediately
gives us the coefficients ða1; a2; a4Þ in the desired form:

a1 ¼ R3 sec θnc

Z
∞

0

dr

ffiffiffiffiffiffiffiffiffiffiffi
~F2F3

F1

s  
~aþ

ffiffiffiffiffiffi
~F2

q
þ ~a−F3J 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
!

a2 ¼ R3 sec θnc

Z
∞

0

dr ~a2J 3; a4 ¼ R3 sec θnc

Z
∞

0

dr ~a4

 ffiffiffiffiffiffi
~F2

q
þ F3J 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
!
; ð4:68Þ

which are (3.106), (3.109) and (3.110) in [13], respectively.
Following (3.107) and (3.111) in [13], the ð ~a�; ~a2; ~a4Þ
coefficients appearing above are defined as

~a� ≡ 1� ð ~F2 tan θncÞ2
~F2 − F3

ð1þ F2tan2θncÞ;

~a2 ≡ ðcos2θnc þ F2sin2θncÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~F2F3

F1ð ~F2 − F3Þ

s
;

~a4 ≡ e2ϕ0ðcos2θnc þ F2sin2θncÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

q
: ð4:69Þ

Upon a careful inspection of the coefficients in (4.68), it is
not hard to convince oneself that these all are just numbers
for any choice of the warp factors in (2.2). The only

constraint is that ~F2 ≥ F3 should hold true, as was the case
for the other coefficients as well.
In short, Ið1;2;1Þ is given by (4.65), with ða1; a2; a3Þ in

(4.68) well-defined numbers for any choice of warp factors
satisfying ~F2 ≥ F3.
Computation of Ið1;2;2Þ in (4.57).—We now turn our

attention to Ið1;2;2Þ in (4.57). From (4.52), it is easy to obtain

DaAðΣ3Þ ¼ ðDaα̂1ÞeðΣ3Þ
~3

þ ðDaα̂2ÞeðΣ3Þ
r þ ðDaα̂3ÞeðΣ3Þ

ϕ1
:

ð4:70Þ

The Hodge dual of the above with respect to the metric
(4.47) is straightforward, in view of (4.49) and is given by

�DaAðΣ3Þ ¼ ðDaα̂1ÞeðΣ3Þ
r ∧ eðΣ3Þ

ϕ1
− ðDaα̂2ÞeðΣ3Þ

~3
∧ eðΣ3Þ

ϕ1
þ ðDaα̂3ÞeðΣ3Þ

~3
∧ eðΣ3Þ

r : ð4:71Þ

The wedge product of the above two quantities is

ðDaAðΣ3ÞÞ ∧ �ðDaAðΣ3ÞÞ ¼ ½ðDaα̂1Þ2 þ ðDaα̂2Þ2 þ ðDaα̂3Þ2�eðΣ3Þ
~3

∧ eðΣ3Þ
r ∧ eðΣ3Þ

ϕ1
: ð4:72Þ

Feeding the above to (4.57) and further using (4.20), (4.48) and (4.53), Ið1;2;2Þ can be written as
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Ið1;2;2Þ ¼
X2
a¼0

�
ca~3ðDaA~3 −

μ

ca~3
DaAϕ1

Þ2 þ carðDaArÞ2 þ caϕ1
ðDaAϕ1

Þ2
�
; ð4:73Þ

where, making use of (4.24), we have further defined the coefficients

ca~3 ≡ e2ϕ0

Z
d4 ~ζ

ffiffiffiffiffiffiffiffiffiffiffi
H4F1

p
H2

; μ≡ e2ϕ0

Z
d4 ~ζ

ffiffiffiffiffiffiffiffiffiffiffi
H4F1

p f3
H2

;

car ≡
Z

d4 ~ζ

ffiffiffiffiffiffi
H4

F1

s
; caϕ1

≡ e2ϕ0

Z
d4 ~ζ

ffiffiffiffiffiffiffiffiffiffiffi
H4F1

p
H3

: ð4:74Þ

These coefficients can be written in terms of the warp factors using (2.53). Exactly as was the case before with the
coefficients in (4.61), the ð~x3;ϕ1Þ integrals are trivial here too. Thus, we have that

ca~3 ¼ 2R3 sec θnc

Z
∞

0

dr ~a4I ð1Þ; μ ∝ I ð5Þ;

car ¼ 2R3 sec θnc

Z
∞

0

dr

ffiffiffiffiffiffiffiffiffiffiffi
~F2F3

F1

s
I ð1Þ; caϕ1

¼ e2ϕ0R3 sec θnc

Z
∞

0

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

q
I ð3Þ; ð4:75Þ

where ðI ð1Þ; I ð3Þ;I ð5Þ; ~a4Þ were defined in (4.26), (4.63) and (4.69), respectively.
In a similar fashion to what happened in the determination of Ið1;2;1Þ, the result in (4.64) makes μ vanish. This implies that

there are no crossed terms for the kinetic terms of ðA~3;Aϕ1
;ArÞ we presently study. In other words, (4.73) reduces to the

second line of (3.115) in [13]:

Ið1;2;2Þ ¼
X2
a¼0

½ca~3ðDaA~3Þ2 þ carðDaArÞ2 þ ~caϕ1
ðDaAϕ1

Þ2�; ð4:76Þ

with ~caϕ1
defined as

~caϕ1
≡ caϕ1

þ μ2

ca~3
;

μ2

ca~3
¼ R3sec3θnctan2θnc

Z
∞

0

dr ~a4 ~F2I ð4Þ: ð4:77Þ

In writing the second equality above, we have made use of all (2.53), (4.24), (4.63), (4.69) and (4.74). At this point, we are
left with only the task of computing ðca~3; car; ~caϕ1

Þ and showing they are all some real number.
The computation part is straightforward, in view of our earlier results in (4.28), (4.66) and (4.67). We thus obtain (3.117)–

(3.119) in [13]:

ca~3 ¼ R3 sec θnc

Z
∞

0

dr
~a4J 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q ; car ¼ R3 sec θnc

Z
∞

0

drJ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2F3

F1ð ~F2 − F3Þ

s
;

~caϕ1
¼ e2ϕ0R3 sec θnc

Z
∞

0

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

q  
~aþ

ffiffiffiffiffiffi
~F2

q
þ ~a−F3J 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
!
; ð4:78Þ

where ðJ 3; ~a�; ~a4Þ were defined in (4.29) and (4.69), respectively. On the other hand, the issue of proving that all three
coefficients above are numbers is also simple enough. Once again, one must demand that ~F2 ≥ F3 to prevent the “blowing
up” of these quantities. However, any value of the warp factors in (2.2) satisfying this constraint can be readily seen to yield
a finite, real result when used in (4.78).
Consequently, we conclude that Ið1;2;2Þ is given by (4.76), with ðca~3; car; ~caϕ1

Þ there appearing given by (4.78). These are
well-defined numbers as long as the warp factors are chosen such that ~F2 ≥ F3.
Computation of Ið1;2;3Þ in (4.57).—At last, we consider Ið1;2;3Þ in (4.57). Its computation is very similar to that of Ið1;2;2Þ,

albeit algebraically more involved. In the following, we show all the relevant details. With the aid of (4.49) and (4.52), it is
easy to see that
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D ~ψAðΣ3Þ ∧ �ðD ~ψAðΣ3ÞÞ ¼ ½ðD ~ψ α̂1Þ2 þ ðD ~ψ α̂2Þ2 þ ðD ~ψ α̂3Þ2�eðΣ3Þ
~3

∧ eðΣ3Þ
r ∧ eðΣ3Þ

ϕ1
: ð4:79Þ

Using the above and the definitions in (4.20), (4.48) and (4.53) in (4.57), one can rewrite Ið1;2;3Þ as

Ið1;2;3Þ ¼ c ~ψ ~3

�
D ~ψA~3 −

ν

c ~ψ ~3

D ~ψAϕ1

�
2

þ c ~ψrðD ~ψArÞ2 þ c ~ψϕ1
ðD ~ψAϕ1

Þ2; ð4:80Þ

where, making use of (4.24), we have defined

c ~ψ ~3 ≡
Z

d4 ~ζ
H2

ffiffiffiffiffiffi
F1

H4

s
; ν≡

Z
d4 ~ζ

f3
H2

ffiffiffiffiffiffi
F1

H4

s
;

c ~ψr ≡ e−2ϕ0

Z
d4 ~ζffiffiffiffiffiffiffiffiffiffiffi
H4F1

p ; c ~ψϕ1
≡
Z

d4 ~ζ
H3

ffiffiffiffiffiffi
F1

H4

s
: ð4:81Þ

These coefficients can be expressed in terms of the warp factors in (2.2) by inserting (2.53) in the above. It is again the case
that the ð~x3;ϕ1Þ integrals are trivial and so we obtain

c ~ψ ~3 ¼ 2R3 cos θnc

Z
∞

0

dr
~b2I ð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q ; ν ∝ I ð6Þ;

c ~ψr ¼ 4e−2ϕ0R3 cos θnc

Z
∞

0

dr
b2I ð2Þ

F1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q ; c ~ψϕ1
¼ R3 cos θnc

Z
∞

0

dr

ffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

s
I ð7Þ; ð4:82Þ

Here, we have defined ~b2 as a slight variant of b2 in (4.31):

~b2 ≡ ðcos2 θnc þ F2 sin2 θncÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1ð ~F2 − F3Þ

~F2F3

s
; ð4:83Þ

I ð2Þ is as in (4.26), and the remaining integrals there appearing are defined as

I ð6Þ ≡
Z

π

0

dθ1 cot θ1ð ~F2cos2θ1 þ F3sin2θ1Þ1=2;

I ð7Þ ≡
Z

π

0

dθ1 csc θ1ð ~F2cos2θ1 þ F3sin2θ1Þ3=2: ð4:84Þ

In view of our earlier results for ða3; μÞ in (4.62) and (4.75), respectively, it will come as no surprise that ν above vanishes.
To see this, we simply need to use b1 in (4.31) and the change of variables in (4.33). Then, after regularization, I ð6Þ vanishes
by symmetry:

I ð6Þ ∝
Z

1

−1
dz

zðb21 þ z2Þ1=2
b2 − z2

¼ 0; b ∈ ðRþ − f1gÞ: ð4:85Þ

Therefore, (4.80) simplifies considerably, leading to no crossed terms between the kinetic terms of ðA~3;Aϕ1
;ArÞ here

considered:

Ið1;2;3Þ ¼ c ~ψ ~3ðD ~ψA~3Þ2 þ c ~ψrðD ~ψArÞ2 þ ~c ~ψϕ1
ðD ~ψAϕ1

Þ2: ð4:86Þ

This is the first line of (3.115) in [13], with ~c ~ψϕ1
defined as
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~c ~ψϕ1
≡ c ~ψϕ1

þ ν2

c ~ψ ~3

;
ν2

c ~ψ
¼ R3 sec θnctan2θnc

Z
∞

0

dr ~a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
F1

~F2

F3

I ð8Þ: ð4:87Þ

In order to obtain the second equality above, the definitions in (2.53), (4.24), (4.69) and (4.81) have been used and we have
further introduced

I ð8Þ ≡
Z

π

0

dθ1
cos2θ1
sin θ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2cos2θ1 þ F3sin2θ1

q
: ð4:88Þ

Hence, we are only left with the task of computing ðc ~ψ ~3; c ~ψr; ~c ~ψϕ1
Þ.

To do so, we first recall I ð2Þ was already determined in (4.36) and so we still need to perform the integrals ðI ð7Þ; I ð8ÞÞ. For
I ð7Þ, it is convenient to use the same set of transformations that we considered for I ð2Þ between (4.32) and (4.36) earlier on.
Namely,

I ð7Þ

ð ~F2 − F3Þ3=2
¼
Z

1

−1
dz

ðb21 þ z2Þ3=2
b2 − z2

¼ ðb21 þ b2Þ3=2
b

ηðzÞ − 3b21 þ 2b2

2
~ηðzÞ − z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ z2

q ���z¼1

z¼−1

¼ b2

4
b33J 4 −

3b21 þ 2b2

2
J 3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2

~F2 − F3

s
; ð4:89Þ

where b ∈ ðRþ − f1gÞ is a regularization factor, ðηðzÞ; ~ηðzÞÞwere defined in (4.35) and in the last step we have used (4.29),
(4.31) and (4.37). In fact, we can do essentially the same for I ð8Þ and obtain

I ð8Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q ¼
Z

1

−1
dzz2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ z2

p
b2 − z2

¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b2

q
ηðzÞ − b21 þ 2b2

2
~ηðzÞ − z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ z2

q ���z¼1

z¼−1

¼ b2b3J 4 −
b21 þ 2b2

2
J 3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2

~F2 − F3

s
: ð4:90Þ

With all these results at hand, it is now a matter of substitution and easy algebra to obtain the desired coefficients as in
(3.121) and (3.124) in [13]:

c ~ψ ~3 ¼ R3 cos θnc

Z
∞

0

dr ~b2ðb3J 4 þ J −1
3 Þ; ~c ~ψϕ1

¼
Z

∞

0

drða01J 4 þ b01J −1
3 − c01Þ;

c ~ψr ¼ 2e−2ϕ0R3 cos θnc

Z
∞

0

dr
b2
F1

ðb3J 4 þ J −1
3 Þ: ð4:91Þ

Recall that ð ~F2; b2; b3; ~b2Þ were defined in (2.26), (4.31) and (4.83), respectively. Following (3.125)-(3.128) in [13], the
other factors in ~c ~ψϕ1

are defined as

a01 ≡ R3b2b3ð ~F2 − F3Þ
 
cos θncb23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1ð ~F2 − F3Þ

q
4 ~F2F3

þ ~a2
tan2θnc
cos θnc

F1
~F2

F3

!
;

b01 ≡ R3

2

ffiffiffiffiffiffi
F1

F3

s  
cos θncfð1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

~F2

s
þ ~a2 ~F2fð2Þ

tan2θnc
cos θnc

ffiffiffiffiffiffi
F1

F3

s !
;

c01 ≡ R3ð ~F2 − F3Þ
ffiffiffiffiffiffi
F1

F3

s  
cos θnc þ ~a2 ~F

2
2

tan2θnc
cos θnc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1ð ~F2 − F3Þ

~F2F3

s !
; ð4:92Þ

with ðfð1Þ; fð2ÞÞ given by
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fð1Þ ≡ 3F3 þ 2b2ð ~F2 − F3Þ; fð2Þ ≡ fð1Þ − 2F3:

ð4:93Þ

In exactly the same way shown in the end of Sec. IVA 1
for c12, it follows that ðc ~ψ ~3; c ~ψrÞ are just numbers for any
choice of the warp factors satisfying ~F2 ≥ F3. The scenario
is more subtle in the case of ~c ~ψϕ1

. It is not clear at all that
this coefficient is finite when
(1) F3 → 0. [As discussed after (4.38), this limit also

includes the case ð ~F2; F3Þ → 0.]
(2) ~F2 → F3↛0.

However, it turns out that

lim
F3→0

~c ~ψϕ1
¼ 0; ð4:94Þ

the mathematical details precisely as in between (4.40) and
(4.44) for c12 before. Consequently, we will just show that
~c ~ψϕ1

is well defined when ~F2 → F3. To do this, we call
ϵ2 ≡ ~F2 − F3 and take the ϵ → 0 limit. Used in ðb3; ~a4Þ in
(4.31) and (4.69), we get

lim
ϵ→0

b3 ∼ lim
ϵ→0

1

ϵ
∼ lim

ϵ→0
~a2: ð4:95Þ

Then, feeding the above to (4.92), we obtain

lim
ϵ→0

a01 ∼ 1; lim
ϵ→0

b01 ∼ lim
ϵ→0

1

ϵ
; lim

ϵ→0
c01 ¼ 0: ð4:96Þ

We consider this very same limit for ðJ 3;J 4Þ in (4.29) and
(4.37):

lim
ϵ→0

J 3 ¼ lim
ϵ→0

ln

���� 1þ ϵ

1 − ϵ

����; lim
ϵ→0

J 4 ¼ arctanh
1

b
; ð4:97Þ

which is finite, as b ≠ 1 by definition. All the above can be
used in ~c ~ψϕ1

in (4.91). Retaining only the divergent part, we
have that

lim
ϵ→0

~c ~ψϕ1
∼ lim

ϵ→0

1

ϵ
ln

���� 1þ ϵ

1 − ϵ

���� ¼ lim
ϵ→0

�
1

1þ ϵ
þ 1

1 − ϵ

�
¼ 2;

ð4:98Þ

where in the last step we have applied L’Hôpital’s rule. In
other words, the seemingly divergent part of ~c ~ψϕ1

is actually
finite. Thus, ~c ~ψϕ1

is a well-defined number for any warp
factors one may wish to consider, as long as ~F2 ≥ F3.
Quickly summing up, Ið1;2;3Þ is given by (4.86) and the

coefficients ðc ~ψ ~3; c ~ψr; ~c ~ψϕ1
Þ there appearing are all well-

defined numbers if ~F2 ≥ F3. Their explicit form is that
in (4.91).
We can finally collect all our results so far into a quite

simple form. First, we use (4.65), (4.76) and (4.86) in (4.56)
and write Ið1;2Þ as

Ið1;2Þ ¼
Z

d4xTr

	
a1½Ar;Aϕ1

�2þa2½A~3;Ar�2þa4½A~3;Aϕ1
�2

þ
X2
a¼0

½ca~3ðDaA~3Þ2þcarðDaArÞ2þ ~caϕ1
ðDaAϕ1

Þ2�

þc ~ψ ~3ðD ~ψA~3Þ2þc ~ψrðD ~ψArÞ2þ ~c ~ψϕ1
ðD ~ψAϕ1

Þ2


:

ð4:99Þ

Now, inserting (4.22) and the above in (4.14), the first term
of the bosonic action for the SUðNÞ world-volume gauge
theory along ðt; x1; x2; ~ψÞ can be readily seen to be

Sð1Þ ¼C1c11
V3

Z
d4x
X2
a;b¼0
a<b

TrðF 2
abÞþ

C1c12
V3

Z
d4x
X2
a¼0

TrðF 2
a ~ψÞ

þC1

V3

Z
d4xTr

	
a1½Ar;Aϕ1

�2

þa2½A~3;Ar�2þa4½A~3;Aϕ1
�2

þ
X2
a¼0

½ca~3ðDaA~3Þ2þcarðDaArÞ2þ ~caϕ1
ðDaAϕ1

Þ2�

þc ~ψ ~3ðD ~ψA~3Þ2þc ~ψrðD ~ψArÞ2þ ~c ~ψϕ1
ðD ~ψAϕ1

Þ2


:

ð4:100Þ

It is important to bear in mind that all the coefficients
appearing in this first term of the action have been shown to
be real numbers for any choice of the warp factors
satisfying ~F2 ≥ F3. We remind the reader that any specific
choice of warp factors must additionally ensure N ¼ 2
supersymmetry. We will dwell into such considerations in
Sec. VI B. Presently and without further delay, let us turn to
the second term of this bosonic action.

B. Mass term of the G-flux

In order to obtain the second term for the bosonic action
of the N ¼ 2 supersymmetric gauge theory along
ðt; x1; x2; ~ψÞ, we first need to brush up a bit the construction
of the Abelian M-theory configuration (M, 1) of Sec. II. In
particular, we need to recall how we moved far away along
the Coulomb branch the D5-brane of Fig. 2(d). [Bear in
mind that, as depicted, these branes stretch along the
directions ðt; x1; x2; x3;ψ ; rÞ.] In this manner, we managed
to effectively ignore the presence of this D5-brane in the
configuration (B, 1) of Fig. 3, thereby simplifying the
starting point of our quantitative derivation of (M, 1). It is
now time to study the essential effects that the presence of
this D5-brane has for the gauge theory.
Let us begin by bringing back to its original position the

D5-brane. In other words, let us consider that the D5-brane
in the configuration (B, 1) has right next to it a parallel
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D5-brane. To prevent the D5=D5 pair from collapsing
(thus giving rise to tachyons), we switch on a small NS

B-field ~BðB;1Þ
2 along the directions ðx3; rÞ in both the

D5- and D5-branes. As carefully explained in [15], the
D5=D5 pair with such an NS B-field on it can alter-
natively be interpreted as two fractional D3-branes
spanning ðt; x1; x2;ψÞ. (Note that our choice of orienta-
tion of the NS B-field leads to the stretching of the
fractional D3-branes along precisely the directions of the
gauge theory.) From this point of view, it is easy to
infer that we must also switch on a small RR B-field
~CðB;1Þ2 along the same directions ðx3; rÞ, so as to ensure
the tadpole cancellation condition is satisfied.14 As a
particularly simple and consistent choice, we will con-
sider both these fields to only depend on the ðθ1; rÞ
coordinates:

~BðB;1Þ
2 ≡ Fð1Þdx3 ∧ dr; ~CðB;1Þ2 ≡ Fð2Þdx3 ∧ dr;

FðiÞ ¼ FðiÞðθ1; rÞ; i ¼ 1; 2: ð4:101Þ

With the goal of understanding how these new B-fields
will affect the configuration (M, 1), in the following
we will subject them to the chain of modifications
in Fig. 3.
For our present purposes, it turns out we need not do the

whole analysis in details, as in Secs. II–III before. Further,
we need not worry about the NS B-field either. Rather, it
suffices to note that, in going from (B, 1) to (B, 2), the
above RR B-field will be affected by the noncommutative
deformation in (2.24) and will also receive additional
contributions along other directions. We shall not be
interested in such additional terms, so we will consider
simply that

~CðB;2Þ2 ¼ sec θncFð2Þd~x3 ∧ drþ other terms: ð4:102Þ

(The reader should not be worried about the drastic
simplification in the analysis at this point, since it will
shortly become clear why one can consistently do so.)
Then, in T-dualizing along ϕ1 to the configuration (A, 3),
we obtain an RR three-form potential of the form

~CðA;3Þ3 ¼ sec θncFð2Þdϕ1 ∧ d~x3 ∧ drþ other terms:

ð4:103Þ

Without loss of generality, the relevant part of ~CðA;3Þ3 will be
assumed to be of the form suggested in (3.67) in [13]:

~CðA;3Þ3 ¼ Nr sin 2θnc cos θncpðθ1ÞqðθncÞ
2ðcos2θnc þ Nsin2θncÞ2

dr ∧ d~x3 ∧ dϕ1;

ð4:104Þ

with ðp; qÞ periodic functions of ðθ1; θncÞ with period
ðπ; 2πÞ, respectively, and N ¼ Nðr; θncÞ sufficiently small
for all values of the radial coordinate and such that

lim
r→0

N ¼ 0; lim
r→∞

N ¼ 1: ð4:105Þ

Quite obviously, Nr stands for the derivative of N with
respect to r. Finally, in the uplift from (A, 3) to (M, 1),
(4.104) will lead to the background G-flux of (2.61)
receiving the additional contribution given by

δhGðM;1Þ
4 i ¼ d ~CðA;3Þ3 : ð4:106Þ

[For completeness, let us just mention that the NS B-field
~BðB;1Þ
2 will also add to the background G-flux of (M, 1), as

roughly d ~BðB;1Þ
2 ∧ dx11.]

Summing up, the inclusion of the D5-brane in such a
way that tachyons are avoided affects only the background
G-flux of the Abelian configuration (M, 1). As already
argued in Sec. IVA, the background G-flux does not
contribute at all to the first term of the action (4.107).
Consequently, the D5-brane does not affect our results so
far (and hence there is no need to make more precise the
above analysis).
However, the particular contribution (4.104) to the RR

three-form potential of the configuration (A, 3) does play a
key role. It sources a new term15 for the gauge theory
action, which we can interpret as a mass term for the G-flux
of (M, 1):

Sð2Þ ≡
Z
X11

~CðA;3Þ3 ∧ GðM;1Þ
4 ∧ GðM;1Þ

4 ; ð4:107Þ

with GðM;1Þ
4 given by (2.61) in this Abelian scenario

and the eleven-dimensional manifold X11 as described
around (4.1).
Moving on to the non-Abelian enhanced case (con-

structed in Sec. II A 1), our entire discussion hitherto
straightforwardly goes through. The only two differences
are that we have N number of D5=D5 pairs instead of just

one and that GðM;1Þ
4 in (4.107) is now the non-Abelian

G-flux in (2.87). Since the background G-flux in (2.87) is
negligible and using the non-Abelian generalization of
(4.6), the second term of the action reduces to

14The tadpole condition is, essentially, the statement that the
charge of the fractional D3-branes should be conserved. It follows
directly from the Bianchi identity and equations of motion of the
corresponding fluxes. A neat derivation of the tadpole condition
can be found in Sec. 4.2 of [38].

15Actually, this second term for our bosonic action is well
known and usually referred to as “anomalous interaction term” in
the literature. The interested reader can find a lucid review of its
main features in Sec. 4 of [39] (and references therein).
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Sð2Þ ¼ C1

V3

Z
π

0

dθ1
2π

Z
X4⊗Σ3

Trð ~CðA;3Þ3 ∧ F ∧ F Þ; ð4:108Þ

with F the non-Abelian seven-dimensional field strength.
As was the case with the first term Sð1Þ of the bosonic
action, the trace is taken in the adjoint representation of the
gauge group, in this case SUðNÞ. Also, note that we have
transferred the θ1 integral (as an average) to the X4 ⊗ Σ3

subspace of X11, to consistently decouple the contribution
of the Taub-NUT space to Sð2Þ. Relevant comments
regarding the appearance of this trace and the decoupling
of the Taub-NUT subspace are as discussed before,
between equations (4.4) and (4.12).
The Sð2Þ term in (4.108) is actually very simple. Note that

~CðA;3Þ3 spans all three directions of the three-cycle Σ3. Recall
also the decomposition of F in (4.13). It is clear that F ðΣ3Þ

cannot contribute to Sð2Þ, as it would then lead to a
(vanishing) wedge product between two same directions
of Σ3. On the other hand, F ðX4Þ does contribute, but is
restricted to X4 and does not depend on the θ1 coordinate,
both properties following by definition. Thus, the integral
over X4 ⊗ Σ3 naturally decomposes into independent
integrals in X4 and Σ3 and (4.108) is in reality just
given by

Sð2Þ ¼ c2Ið2Þ Ið2Þ ≡
Z
X4

TrðF ðX4Þ ∧ F ðX4ÞÞ;

c2 ≡ C1

V3

Z
π

0

dθ1
2π

Z
Σ3

~CðA;3Þ3 : ð4:109Þ

For the moment, the above form of Ið2Þ will suffice. We will
work on further rewritings of this integral in due time, when
the need arises. Consequently, let us focus on the only task
left: the determination of the coefficient c2.
This too turns out to be quite easy. Using (4.24) and

(4.104), we can rewrite c2 as

c2 ¼
C1

V3

Z
d4 ~ζ

Nr sin 2θnc cos θncpðθ1ÞqðθncÞ
2ðcos2 θnc þ N sin2 θncÞ2

: ð4:110Þ

Once more, the integrals over ð~x3;ϕ1Þ here are trivial. To
simplify the notation a bit, we absorb the contribution of the
θ1 integral in the radius of the ~x3 noncompact direction as

~R3 ≡ R3

2

Z
π

0

dθ1pðθ1Þ: ð4:111Þ

Then, c2 can be seen to be exactly as suggested in (3.63)
and (3.68) in [13]:

c2 ¼
C1

V3

~R3 sin 2θnc cos θncqðθncÞ
Z

∞

0

Nrdr
ðcos2θnc þ Nsin2θncÞ2

¼ 2
C1

~R3

V3

sin θncqðθncÞ; ð4:112Þ

where in the last step we have used the boundary values in
(4.105). Our final expression for c2 leaves no room for
doubt: this coefficient is just some well-defined number. To
match the notation in [13] and without loss of generality,
one may set 2 ~R3 ¼ V3 and thus simply consider c2 as

c2 ¼ C1 sin θncqðθncÞ: ð4:113Þ

Written in this manner, C1 accounts for the dependence
of the c2 coefficient on the non-Abelian version of the
M-theory configuration (M, 1) of Sec. II. The factor sin θnc
ensures that θnc ¼ 0 implies c2 ¼ 0 (recall that θnc was
introduced to this aim precisely). Finally, qðθncÞ allows
us to have as complex a dependence on θnc of c2 as one
may wish.

C. Completing the four-dimensional vector multiplet:
Third term for the action

In this section, we compute the third and last term Sð3Þ

that contributes to the bosonic action of the N ¼ 2 four-
dimensional gauge theory. As we already pointed out in the
beginning of Sec. IV, this third term is not easily derivable
from the non-Abelian M-theory configuration (M, 1). (In

fact, there is no rigorous derivation of this type of term in
the literature.) Nonetheless, all the knowledge we have
gathered while deriving the first two terms, Sð1Þ and Sð2Þ,
will now pay off and allow us to obtain the remaining
third term.
Let us begin by recalling that in the end of Sec. IVAwe

argued that the bosonic matter content in the gauge theory
must be exactly that in the N ¼ 4 vector multiplet. That is,
in our action we must have four gauge fields and six real
scalars, all of them in the adjoint representation of SUðNÞ.
However, upon inspection of the already derived first two
terms in the gauge theory action [given by (4.100) and
(4.109)], we note that so far only the gauge fields
ðAt;A1;A2;A ~ψ Þ and three real scalars ðA~3;Aϕ1

;ArÞ have
appeared in our analysis. Hence, we are missing the
contribution of the other three real scalars. Following the
notation of [13], we will refer to these as ðφ1;φ2;φ3Þ.
Accordingly, Sð3Þ will capture the dynamics of these scalar
fields.
Let us next note that the terms Sð1Þ and Sð2Þ originate

from the G-flux of the non-Abelian configuration (M, 1),
which is given by (2.87). Further, these two terms exhaust
all possible contributions of the G-flux to the action. [This
is most clearly seen by looking at the initial form of Sð1Þ and
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Sð2Þ in (4.2) and (4.107), respectively.] As a consequence,
Sð3Þ must emerge purely from the geometry of (M, 1). In
other words, we expect the scalar fields φk (with k ¼ 1, 2,
3) to stem from fluctuations of the eleven-dimensional
supergravity Einstein term of (M, 1). In terms of our non-
Abelian scenario of Fig. 4(b), this means that the Taub-
NUT space TN and the M2-branes wrapping its two-cycles
fluctuate along X4 ⊗ Σ3.

16 We will right away simplify the
scenario and assume the fluctuations are restricted to X4

only, so that

φk ¼ φkðt; x1; x2; ~ψÞ ∀ k ¼ 1; 2; 3: ð4:114Þ

We will further suppose that, in fluctuating along
orthogonal directions of X11, TN itself does not get
backreacted. Or, more accurately, that the backreac-
tion of TN is negligible compared to the change that the

metric of X4 ⊗ Σ3 experiences. This last key assumption
allows us to write Sð3Þ as an integral over X4 ⊗ Σ3 only. In
the same vein as for the previous two terms of the action,
we will also average over the contribution of the θ1
coordinate.
Having shed sufficient qualitative light onto the nature

and content of Sð3Þ, we are now ready to make this term in
the action fully precise. Naturally, Sð3Þ must contain the
kinetic terms and the self-interaction terms of ðφ1;φ2;φ3Þ,
as well as their interaction terms with ðA~3;Aϕ1

;ArÞ:

Sð3Þ ¼ SðφÞkin þ SðφφÞint þ SðAφÞ
int : ð4:115Þ

This just mimics the well-known N ¼ 4 vector multiplet’s
action for the φ scalar fields. In the same spirit of (4.57), we
can write the above as

SðφÞkin ¼
Z

π

0

dθ1
2π

Z
X4⊗Σ3

Tr
X3
k¼1

�X2
a¼0

gaaðDaφkÞ2 þ g ~ψ ~ψ ðD ~ψφkÞ2
�
;

SðφφÞint ¼
Z

π

0

dθ1
2π

Z
X4⊗Σ3

Tr
X3
k¼1

½φk;φl�2;

SðAφÞ
int ¼

Z
π

0

dθ1
2π

Z
X4⊗Σ3

Tr
X3
k¼1

ð½AðΣ3Þ;φk� ∧ �½AðΣ3Þ;φk�Þ; ð4:116Þ

where ðgaa; g ~ψ ~ψ Þ are given by (4.19), the covariant derivatives were defined in (4.51),AðΣ3Þ stands for (4.52) and the Hodge
dual is with respect to the three-dimensional metric of Σ3 in (4.47). In the following, we work out these terms separately.
Computation of SðφÞkin in (4.116).—This kinetic piece is rather unchallenging to work out. Simply writing out explicitly the

integral over X4 ⊗ Σ3 there appearing and using (4.17), (4.19) and (4.24), SðφÞkin can be written as in (3.139) in [13]:

SðφÞkin ¼
Z

d4xTr
X3
k¼1

�X2
a¼0

bakðDaφkÞ2 þ b ~ψkðD ~ψφkÞ2
�

ð4:117Þ

where, once more, d4x≡ dtdx1dx2d ~ψ and the coefficients ðbak; b ~ψkÞ are defined as

bak ≡ e2ϕ0

Z
d4 ~ζH1

ffiffiffiffiffiffiffiffiffiffiffi
F1H4

p
; b ~ψk ≡

Z
d4 ~ζH1

ffiffiffiffiffiffi
F1

H4

s
: ð4:118Þ

Further introducing (2.53) in the above and noting that the integrands are independent of ð~x3;ϕ1Þ, these coefficients
considerably simplify:

bak ¼ e2ϕ0R3 sec θnc

Z
∞

0

drðcos2θnc þ F2sin2θncÞ1=3F1=3
3

ffiffiffiffiffiffiffiffiffiffiffi
F1

~F2

q
I ð9Þ;

b ~ψk ¼ R3 sec θnc

Z
∞

0

drðcos2θnc þ F2sin2θncÞ1=3F1=3
3

ffiffiffiffiffiffi
F1

~F2

s
I ð10Þ; ð4:119Þ

16We remind the reader that the subspaces ðTN;X4;Σ3Þ of the full eleven-dimensional manifold X11 were introduced and described
around (4.1).
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with the integrals there appearing defined as

I ð9Þ ≡
Z

π

0

dθ1
sin θ1
χ̂1=6

; I ð10Þ ≡
Z

π

0

dθ1
χ̂5=6

sin θ1
; χ̂ ¼ χ̂ðθ1Þ≡ 1þ

~F2 − F3

F3

cos2θ1: ð4:120Þ

These integrals are most easily performed after making the by now a familiar change of variables in (4.33). For I ð9Þ we
obtain

I ð9Þ ¼
Z

1

−1
dz

�
1þ

~F2 − F3

F3

z2
�−1=6

¼ z2F1

�
1

6
;
1

2
;
3

2
;
F3 − ~F2

F3

z2
�����z¼1

z¼−1
¼ 2Θ12: ð4:121Þ

Similarly, using (4.33), introducing the regularization factor b ∈ ðRþ − f1gÞ in the same way as in (4.34) previously and
further changing variables as

z2 ¼ ẑ; dz ¼ dẑ

2
ffiffiffî
z

p ; ð4:122Þ

the integral I ð10Þ yields

I ð10Þ ¼ 2

Z
1

0

dz
b2 − z2

�
1þ

~F2 − F3

F3

z2
�5=6

¼
Z

1

0

dẑffiffiffî
z

p 1

b2 − ẑ

�
1þ

~F2 − F3

F3

ẑ

�5=6

¼ 2
ffiffiffî
z

p

b2
F1

�
1

2
;−

5

6
; 1;

3

2
;
F3 − ~F2

F3

ẑ;
ẑ
b2

�����ẑ¼1

ẑ¼0

¼ 2

b2
Θ34: ð4:123Þ

Following the notation in (3.136) and (3.138) in [13], ðΘ12;Θ34Þ above stands for the following hypergeometric functions:

Θ12 ≡ 2F1

�
1

6
;
1

2
;
3

2
;
F3 − ~F2

F3

�
; Θ34 ≡ F1

�
1

2
;−

5

6
; 1;

3

2
;
F3 − ~F2

F3

;
1

b2

�
: ð4:124Þ

Putting everything together, we obtain the coefficients ðbak; b ~ψkÞ exactly as in (3.135) and (3.137) in [13]:

bak ¼ 2e2ϕ0R3 sec θnc

Z
∞

0

drðcos2θnc þ F2sin2θncÞ1=3F1=3
3

ffiffiffiffiffiffiffiffiffiffiffi
F1

~F2

q
Θ12;

b ~ψk ¼ 2
R3

b2
cos θnc

Z
∞

0

drðcos2θnc þ F2sin2θncÞ1=3F1=3
3

ffiffiffiffiffiffi
F1

~F2

s
Θ34: ð4:125Þ

Recalling the constraint ~F2 ≥ F3 of Sec. IVA, the reader will not have a hard time of convincing himself that the above two
coefficients are well-defined numbers for any choice of warp factors in (2.2).
Computation of SðφφÞint in (4.116).—The determination of this self-interaction term is a simplified version of the

computation we just presented for the kinetic term. As in there, all boils down to explicitly writing the integral overX4 ⊗ Σ3

in (4.116) with the aid of (4.17) and (4.24):

SðφφÞint ¼
Z

d4xTr
X3
k;l¼1

dkl½φk;φl�2; dkl ≡ e2ϕ0

Z
d4 ~ζH2

1

ffiffiffiffiffiffiffiffiffiffiffi
F1H4

p ∀ k; l ¼ 1; 2; 3; ð4:126Þ

with d4x≡ dtdx1dx2d ~ψ . For the determination of the dkl coefficients, the first step is to use (2.53) and carry out the trivial
ð~x3;ϕ1Þ integrals. We thus find that

dkl ¼ e2ϕ0R3 sec θnc

Z
∞

0

drðcos2θnc þ F2sin2θncÞ2=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

q
I ð11Þ ∀ k; l ¼ 1; 2; 3; ð4:127Þ

where we have defined, using χ̂ in (4.120),
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I ð11Þ ≡ F1=6
3

Z
π

0

dθ1 sin θ1χ̂1=6: ð4:128Þ

Given the similarity between the above and ðI ð9Þ; I ð10ÞÞ before, the attentive reader will already have guessed that the
easiest way to perform the above integral is by making the change of variables in (4.33):

F−1=6
3 I ð11Þ ¼

Z
1

−1
dz

�
1þ

~F2 − F3

F3

z2
�1=6

¼ 3z
4

�
1þ

~F2 − F3

F3

z2
�

1=6
þ z
4 2F1

�
1

2
;
5

6
;
3

2
;
F3 − ~F2

F3

z2
�����z¼1

z¼−1
¼ Θ56

2F1=6
3

;

ð4:129Þ

where Θ56 is as in (3.143) in [13]:

Θ56 ≡ 3 ~F1=6
2 þ F1=6

3 2F1

�
1

2
;
5

6
;
3

2
;
F3 − ~F2

F3

�
: ð4:130Þ

As a result, we can write the dkl coefficients as suggested by (3.142) in [13]:

dkl ¼
e2ϕ0

2
R3 sec θnc

Z
∞

0

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

q
ðcos2θnc þ F2sin2θncÞ2=3Θ56 ∀ k; l ¼ 1; 2; 3; ð4:131Þ

which are just some number whatever choice of warp factors one may wish to consider in (2.2).
Computation of SðAφÞ

int in (4.116).—The final term to be computed, namely the interaction term between the two sets of
three real scalarsAðΣ3Þ and φk (k ¼ 1, 2, 3), is mathematically more involved than its previous two counterparts. Hence, let
us first take a few preparatory baby steps. From (4.49) and (4.52) it follows that

½AðΣ3Þ;φk� ¼ ½α̂1;φk�eðΣ3Þ
~3

þ ½α̂2;φk�eðΣ3Þ
r þ ½α̂3;φk�eðΣ3Þ

ϕ1
;

�½AðΣ3Þ;φk� ¼ ½α̂1;φk�eðΣ3Þ
r ∧ eðΣ3Þ

ϕ1
− ½α̂2;φk�eðΣ3Þ

~3
∧ eðΣ3Þ

ϕ1
þ ½α̂3;φk�eðΣ3Þ

~3
∧ eðΣ3Þ

r ; ð4:132Þ

the Hodge dual having been taken with respect to (4.47). The wedge product between the above two quantities is then

½AðΣ3Þ;φk� ∧ �½AðΣ3Þ;φk� ¼ ð½α̂1;φk�2 þ ½α̂2;φk�2 þ ½α̂3;φk�2ÞeðΣ3Þ
~3

∧ eðΣ3Þ
r eðΣ3Þ

ϕ1
: ð4:133Þ

Since H3
1H2H3 ¼ 1, as a direct consequence of our definitions in (2.53), and reversing (4.48) and (4.52), the above can be

rewritten in the more convenient form

½AðΣ3Þ;φk� ∧ �½AðΣ3Þ;φk� ¼ eϕ0

ffiffiffiffiffiffi
F1

p
H1

	
e−2ϕ0

F1

½Ar;φk�2 þ
1

H2

½A~3;φk�2

þ
�
f23
H2

þ 1

H3

�
½Aϕ1

;φk�2 −
2f3
H2

½A~3;φk�½Aϕ1
;φk�



d~x3 ∧ dr ∧ dϕ1: ð4:134Þ

This is nothing but the integrand of SðAφÞ
int in (4.116). There, after expanding the integral over X4 ⊗ Σ3 and using (4.20) and

(4.24), we get the interaction term as

SðAφÞ
int ¼

Z
d4xTr

X3
k¼1

ðcrk½Ar;φk�2 þ c~3k½A~3;φk�2 þ cϕ1k½Aϕ1
;φk�2 − ckk½A~3;φk�½Aϕ1

;φk�Þ: ð4:135Þ
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The four coefficients above (and these are the very last ones) are defined as

crk ≡
Z

d4 ~ζH1

ffiffiffiffiffiffi
H4

F1

s
; c~3k ≡ e2ϕ0

Z
d4 ~ζ

H1

H2

ffiffiffiffiffiffiffiffiffiffiffi
F1H4

p
;

cϕ1k ≡ e2ϕ0

Z
d4 ~ζH1

ffiffiffiffiffiffiffiffiffiffiffi
F1H4

p �
f23
H2

þ 1

H3

�
; ckk ≡ 2e2ϕ0

Z
d4 ~ζ

f3
H2

ffiffiffiffiffiffiffiffiffiffiffi
F1H4

p
: ð4:136Þ

Introducing (2.53) and carrying out the trivial ð~x3;ϕ1Þ integrals, these coefficients simplify to (3.144)-(3.146) in [13]:

crk ¼ 2R3 sec θnc

Z
∞

0

drF1=3
3

ffiffiffiffiffiffi
~F2

F1

s
ðcos2θnc þ F2sin2θncÞ1=3Θ12;

c~3k ¼ 2e2ϕ0R3 sec θnc

Z
∞

0

drF1=3
3

ffiffiffiffiffiffiffiffiffiffiffi
F1

~F2

q
ðcos2θnc þ F2sin2θncÞ4=3Θ12;

cϕ1k ¼ e2ϕ0R3 sec θnc

Z
∞

0

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

q
ðcos2θnc þ F2sin2θncÞ1=3Π78 ð4:137Þ

and ckk ∝ I ð5Þ, with I ð5Þ defined in (4.63). Note that in the case of ðcrk; c~3kÞ we have also integrated over θ1, using to this
aim (4.120), (4.121) and (4.124). Also, we have defined Π78 as in (3.147) in [13]:

Π78 ≡ Π̂78 þ 3 sec2 θnc tan2 θnc ~F
2
2ðcos2 θnc þ F2 sin2 θncÞ ~Π78; ð4:138Þ

with ðΠ̂78; ~Π78Þ depending on the χ̂ function in (4.120) as

Π̂78 ≡ F5=6
3

Z
π

0

dθ1 sin θ1χ̂5=6; ~Π78 ≡ 1

3F1=6
3

Z
π

0

dθ1
sin θ1cos2θ1

χ̂1=6
: ð4:139Þ

Once more, these integrals are most easily carried out after making the change of variables in (4.33). For Π̂78 we get

F−5=6
3 Π̂78 ¼

Z
1

−1
dz

�
1þ

~F2 − F3

F3

z2
�5=6

¼ 3z
8

�
1þ

~F2 − F3

F3

z2
�5=6

þ 5z
8 2F1

�
1

6
;
1

2
;
3

2
;
F3 − ~F2

F3

z2
�����z¼1

z¼−1
¼ 3

4

�
~F2

F3

�5=6

þ 5

4
Θ12; ð4:140Þ

where in the last step we have made use of (4.124). Similarly, ~Π78 gives

F−5=6
3

~Π78 ¼
1

3F3

Z
1

−1
dzz2

�
1þ

~F2 − F3

F3

z2
�−1=6

¼ z

8ð ~F2 − F3Þ

��
1þ

~F2 − F3

F3

z2
�5=6

−2F1

�
1

6
;
1

2
;
3

2
;
F3 − ~F2

F3

z2
��z¼1

z¼−1
¼ ð ~F2=F3Þ5=6 − Θ12

4ð ~F2 − F3Þ
: ð4:141Þ

The above two results recover (3.148) in [13] and, used in (4.138), allow us to write Π78 as

Π78 ¼
3

4
~F5=6
2 þ 5

4
F5=6
3 Θ12 þ

3

4

�
tan θnc
cos θnc

�
2

ðcos2θnc þ F2sin2θncÞð ~F5=6
2 − F5=6

3 Θ12Þ
~F2
2

~F2 − F3

: ð4:142Þ

As we saw in (4.64), I ð5Þ ¼ 0 and so the coefficient ckk vanishes. This reduces our interaction term in (4.135) to its final
form:

SðAφÞ
int ¼

Z
d4xTr

X3
k¼1

ðcrk½Ar;φk�2 þ c~3k½A~3;φk�2 þ cϕ1k½Aϕ1
;φk�2Þ: ð4:143Þ
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For the very last time, we observe that the coefficients appearing above are, as a simple inspection of their form in (4.137)
suggests, well-defined numbers for any choice of the warp factors one may wish to consider in (2.2). Just to make the entire
analysis transparent, we show that the only seemingly divergent term is actually finite. Defining ϵ≡ ð ~F2 − F3Þ, we have
that

lim
~F2→F3

~Π78 ¼ lim
ϵ→0

ðF3 þ ϵÞ5=6 − F5=6
3

4ϵ
≈

5

24F1=6
3

; ð4:144Þ

a finite result as predicted. [Recall that F3 → 0 cannot be considered in this case, as we explained after (4.38) earlier on.]
It is now the time to collect all our results in this section. First, we introduce all (4.117), (4.126) and (4.143) in (4.115).

We then have that the third and last term for our gauge theory action is

Sð3Þ ¼
Z

d4xTr
	X3

k¼1

�X2
a¼0

bakðDaφkÞ2 þ b ~ψkðD ~ψφkÞ2
�
þ
X3
k;l¼1

dkl½φk;φl�2

þ
X3
k¼1

ðcrk½Ar;φk�2 þ c~3k½A~3;φk�2 þ cϕ1k½Aϕ1
;φk�2Þ



: ð4:145Þ

At last, adding all three contributions Sð1Þ in (4.100), Sð2Þ in (4.109) and Sð3Þ right above, we obtain the total bosonic action
for the four-dimensional gauge theory to be that in (3.153) in [13]:

S ¼ C1c11
V3

Z
d4x

X2
a;b¼0
a<b

TrðF 2
abÞ þ

C1c12
V3

Z
d4x

X2
a¼0

TrðF 2
a ~ψ Þ þ c2

Z
X4

TrðF ðX4Þ ∧ F ðX4ÞÞ

þ C1

V3

Z
d4xTr

	
a1½Ar;Aϕ1

�2 þ a2½A~3;Ar�2 þ a4½A~3;Aϕ1
�2 þ

X2
a¼0

½ca~3ðDaA~3Þ2

þ carðDaArÞ2 þ ~caϕ1
ðDaAϕ1

Þ2� þ c ~ψ ~3ðD ~ψA~3Þ2 þ c ~ψrðD ~ψArÞ2 þ ~c ~ψϕ1
ðD ~ψAϕ1

Þ2



þ
Z

d4xTr

	X3
k¼1

�X2
a¼0

bakðDaφkÞ2 þ b ~ψkðD ~ψφkÞ2
�
þ
X3
k;l¼1

dkl½φk;φl�2

þ
X3
k¼1

ðcrk½Ar;φk�2 þ c~3k½A~3;φk�2 þ cϕ1k½Aϕ1
;φk�2Þ



: ð4:146Þ

To finish this section, we include Table II. This is a quick
guide to finding the explicit form [in terms of the warp
factors in (2.2), the deformation parameter θnc in (2.24),
and the constant dilaton in (4.5)] of the abundant coef-
ficients on which our above action depends. These will
keep appearing all through the remainder of Secs. IV–VI.
Recall that we have explicitly shown that all these coef-
ficients are well-defined numbers for any choice of the
warp factors, as long as the constraint ~F2 ≥ F3 is satisfied,
with ~F2 as in (2.26).
Before proceeding ahead in our analysis, it is worth

noting that in the present work we do not study the four-
dimensional bosonic action stemming from the configura-
tion (M, 2) of Sec. II B. This is because (M, 2) was shown
to be equivalent to the configuration (M, 1) of Secs. II A
and II A 1 (see Fig. 1), the latter being computationally
easier to handle. However, this action is discussed in [13]

and argued to be of the form (4.146), the only difference
being that the coefficients of Table II would in that case
change. We refer the interested reader to [13] for the
pertinent details.

V. THE BULK THEORY: THE HAMILTONIAN
AND ITS MINIMIZATION

This section is devoted to the derivation of the BPS
conditions for the N ¼ 2 four-dimensional gauge theory
along ðt; x1; x2; ~ψÞ, whose action we just obtained in
(4.146). It goes without saying that the BPS conditions
follow from minimizing the energy of the system with
action (4.146), considering static configurations of the
fields there. Hence, it is quite clear that the first step
towards achieving our aim in this section will be to obtain
the Hamiltonian associated with (4.146). The second and
last step will be to minimize this Hamiltonian, under the
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assumption that the gauge and scalar fields are time-
independent.
Yet once more, this is more easily said than done.

Consequently, we will do the following. First, we shall
determine and minimize the Hamiltonian following from
(4.146) in a particularly simple limit: we will set c2 ¼ 0
there. That is to say, we will begin by performing the
analysis when there is no topological term in the action.
Then, we will use the insights thus gathered to generalize
the results to the c2 ≠ 0 case we are really interested in.
This procedure is depicted in Fig. 12, where we also

make reference to the main results in the present section. As
such, the reader may find it useful to look at Fig. 12 as a

guiding map for Sec. V: it captures the main logic behind
the computational details shown in the following.

A. Analysis for the case c2 = 0 in (4.146)

Obtaining the Hamiltonian associated with a given
action is a well-defined problem in classical mechanics,
which our readers surely know by heart. As such, after
setting c2 ¼ 0 in (4.146), one could go ahead with the
standard procedure: infer the conjugate momenta and write
the Hamiltonian as the Legendre transformation of the
Lagrangian. However, in view of the length and complexity
of the action (4.146), this procedure would be quite a long

(a)

(b)

FIG. 12. Sketch of the main results in Sec. V, where we obtain the Hamiltonian following from the gauge theory action (4.146) and
minimize its energy. As a result, we obtain a set of equations the gauge and scalar fields in the theory must obey. The so-called BHN
equations are particularly important, as they are related to knot invariants. (a) Since the computation is a bit involved, in Sec. VA this is
done in a particularly simple limit: setting c2 ¼ 0 in (4.146). (b) The generalization to the case of interest, c2 ≠ 0 in (4.146), is done in
Sec. V B and follows without much effort from the previous analysis.
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and tiresome mathematical exercise for us. Therefore, we
will use a different approach to obtain the Hamiltonian: we
will map our action to that in (2.1) in [40] and directly read
off our Hamiltonian from (2.4) in the same reference.
The Lagrangian density L of our theory can be directly

inferred from the action (4.146), since

S ¼
Z

d4xL: ð5:1Þ

With c2 ¼ 0, L in (4.146) is precisely of the form of the
Lagrangian (2.1) in [40], up to relative factors, under the
following identifications17:

xM → ðt; x1; x2; ~ψÞ; ϕA → ðA~3;Aϕ1
;Ar;φ1;φ2;φ3Þ; ϕ5 → A~3: ð5:2Þ

Note that our definitions for the covariant derivatives in (4.51) differ from the covariant derivatives in [40]. This mismatch is
accounted for by replacing factors of (i) there by ð−iÞ in our case. Properly accounting for the additional prefactors in our
theory as well, it is rather simple to see that the different terms that compose the Hamiltonian (2.4) in [40] are, in the
language of the present paper, given byX

a

ðFa0 −Daϕ5Þ2 → T 1;
X
a

ðD0ϕa þ i½ϕ5;ϕa�Þ2 → T 2; ðD0ϕ5Þ2 → T 3;

1

2

X
a≠b

ðFab − ϵabcdDcϕd þ i½ϕa;ϕb�Þ2 → T 4;

�X
a

Daϕa

�
2

→ 0; ð5:3Þ

where we have defined ðT 1; T 2; T 3Þ as

T 1 ≡ C1

V3

X2
α¼1

ð ffiffiffiffiffiffi
c11

p
F α0 −

ffiffiffiffiffiffiffi
cα~3

p
DαA~3Þ2 þ

C1

V3

ð ffiffiffiffiffiffi
c12

p
F ~ψ0 −

ffiffiffiffiffiffiffiffi
c ~ψ ~3

p
D ~ψA~3Þ2;

T 2 ≡ C1

V3

ð ffiffiffiffiffiffi
c0r

p
D0Ar − i

ffiffiffiffiffi
a2

p ½A~3;Ar�Þ2 þ
C1

V3

� ffiffiffiffiffiffiffiffi
~c0ϕ1

q
D0Aϕ1

− i
ffiffiffiffiffi
a4

p ½A~3;Aϕ1
�
�
2

þ
X3
k¼1

ð
ffiffiffiffiffiffiffi
b0k

p
D0φk − i

ffiffiffiffiffiffi
c~3k

p ½A~3;φk�Þ2; T 3 ≡ C1

V3

c0~3ðD0A~3Þ2 ð5:4Þ

and where T 4 naturally splits into two, T 4 ¼ T ð1Þ
4 þ T ð2Þ

4 , due to the decomposition of the subspace X4 explained in (4.1):

T ð1Þ
4 ¼ 1

2

X2
α;β¼1

 ffiffiffiffiffiffi
C1

V3

s
τð1Þ þ τð2Þ

!
2

; T ð2Þ
4 ¼ 1

2

X2
α¼1

 ffiffiffiffiffiffi
C1

V3

s
τð3Þ þ τð2Þ

!
2

; ð5:5Þ

with ðτð1Þ; τð2Þ; τð3ÞÞ standing for

τð1Þ ≡ ffiffiffiffiffiffi
c11

p
F αβ −

ffiffiffiffiffiffiffi
c ~ψr

p
ϵαβ ~ψrD ~ψAr −

ffiffiffiffiffiffiffiffiffi
~c ~ψϕ1

q
ϵαβ ~ψϕ1

D ~ψAϕ1
−

ffiffiffiffiffiffi
V3

C1

s X3
k¼1

ffiffiffiffiffiffiffi
b ~ψk

q
ϵαβ ~ψkD ~ψφk;

iτð2Þ ≡
ffiffiffiffiffiffiffiffiffiffi
C1a1
V3

s
½Ar;Aϕ1

� þ
X3
k;l¼1

ð ffiffiffiffiffiffi
crk

p ½Ar;φk� þ ffiffiffiffiffiffiffiffi
cϕ1k

p ½Aϕ1
;φk� þ

ffiffiffiffiffiffi
dkl

p
½φk;φl�Þ;

τð3Þ ≡ ffiffiffiffiffiffi
c12

p
F αψ − ffiffiffiffiffiffi

cβr
p

ϵα ~ψβrDβAr −
ffiffiffiffiffiffiffiffi
~cβϕ1

q
ϵα ~ψβϕ1

DβAϕ1
−

ffiffiffiffiffiffi
V3

C1

s X3
k¼1

ffiffiffiffiffiffiffi
bβk

q
ϵα ~ψβkDβφk: ð5:6Þ

Putting everything together as in (2.4) in [40], we obtain the Hamiltonian associated with the action (4.146) (with c2 ¼ 0) to
be given by

17In all the identifications of our present work to other references we will show the quantities of the cited source (our theory) on the
left-hand (right-hand) side.
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H ¼
Z

d4xTr

(X3
i¼1

T i þ
1

2

X2
α;β¼1

 ffiffiffiffiffiffi
C1

V3

s
τð1Þ þ τð2Þ

!
2

þ 1

2

X2
α¼1

 ffiffiffiffiffiffi
C1

V3

s
τð3Þ þ τð2Þ

!
2
)

þQEM; ð5:7Þ

where QEM denotes the sum of electric and magnetic
charges in the theory. As is well known (see (2.5) in
[40]), these charges are boundary terms. We will study
these boundary terms in exquisite detail in Sec. VI A [for
the case where c2 ≠ 0 in (4.146) only]. Hence, for the time
being, we shall not make them precise and focus instead on
the bulk terms. Also, this Hamiltonian incorporates the
Gauss law in it, as explained in [40]. Consequently, there
are no constraints on the gauge and scalar fields of our
theory imposed by the Gauss law.18

According to the plan of action described in the begin-
ning of this section, having obtained the Hamiltonian for
our gauge theory, we should now proceed to minimize it. It
turns out, however, that the minimization process simplifies
considerably if we first rewrite (5.7) in a certain manner.
(Further, in Sec. VA 2 we shall obtain important results
from this rewriting.) Thus, we will now simply rewrite the
Hamiltonian (5.7) in a more convenient form and postpone
the minimization problem to Sec. VA 1.
The rewriting we will carry out consists on introducing

new, arbitrary coefficients in some of the terms inside the
sums of squares of (5.7) and, at the same time, summing
new terms to the Hamiltonian so that there is no change in
its quadratic components. We shall not yet make precise the
additional crossed terms produced in this manner. But the

reader should not worry, the crossed terms will be deter-
mined meticulously in Sec. VA 2. (In fact, their study leads
to the important results we were anticipating a little before.)
Perhaps a toy model will make the rewriting we intend to
perform most transparent. Consider the Hamiltonian

Hð1Þ ¼ ðAþ BÞ2 þ C: ð5:8Þ

Introducing the arbitrary parameters ðx̂; ŷÞ, the above can
be rewritten as

Hð1Þ ¼ ðAþ x̂BÞ2 þ ŷB2 þ ~C; ð5:9Þ

as long as the constraints

x̂2 þ ŷ ¼ 1; ~C ¼ Cþ 2ABð1 − x̂Þ; ð5:10Þ

are enforced. Written in this language, our earlier statement
of ignoring the “additional crossed terms” simply means
that the second constraint above shall not be studied
presently, but rather in Sec. VA 2.
Actually, we shall only rewrite the term T 4 and leave

ðT 1; T 2; T 3Þ as they are. We do so piecewise and first

focus on the first three terms of T ð1Þ
4 in (5.5):

1

2

X2
α;β¼1

 ffiffiffiffiffiffiffiffiffiffiffiffi
C1c11
V3

s
F αβ −

ffiffiffiffiffiffiffiffiffiffiffiffi
C1c ~ψr

V3

s
ϵαβ ~ψrD ~ψAr −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 ~c ~ψϕ1

V3

s
ϵαβ ~ψϕ1

D ~ψAϕ1
þ…

!
2

: ð5:11Þ

In the above, we introduce arbitrary coefficients in the second and third terms, which depend on ðα; βÞ. Clearly, these must
be antisymmetric in the mentioned indices, so as not to yield zero due to the present epsilon tensors. We absorb the minus
signs in the coefficients and also transfer the factor of ð1=2Þ inside the square. All in all, we rewrite the above as

X2
α;β¼1

 ffiffiffiffiffiffiffiffiffiffiffiffi
C1c11
2V3

s
F αβ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
C1c ~ψr

V3

s
sð1Þαβ ϵαβ ~ψrD ~ψAr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 ~c ~ψϕ1

V3

s
sð2Þαβ ϵαβ ~ψϕ1

D ~ψAϕ1
þ…

!
2

þ C1c ~ψr

V3

sð1ÞðD ~ψArÞ2 þ
C1 ~c ~ψϕ1

V3

sð2ÞðD ~ψAϕ1
Þ2 þ χs; ð5:12Þ

where χs contains the additional crossed terms created by the inclusion of the ðsð1Þαβ ; s
ð2Þ
αβ Þ coefficients and we demand the

constraints

2ðsðiÞ12Þ2 þ sðiÞ ¼ 1; ∀ i ¼ 1; 2 ð5:13Þ

hold true, so as to ensure the quadratic pieces remain the same. In exactly the same way, the first three terms of T ð2Þ
4

in (5.5), namely

18The skeptical reader can alternatively be convinced of this last statement by the combination of (5.2) and our later choice (5.40).
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1

2

X2
α¼1

 ffiffiffiffiffiffiffiffiffiffiffiffi
C1c12
V3

s
F α ~ψ −

ffiffiffiffiffiffiffiffiffiffiffiffi
C1cβr
V3

s
ϵα ~ψβrDβAr −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 ~cβϕ1

V3

s
ϵα ~ψβϕ1

DβAϕ1
þ…

!
2

; ð5:14Þ

can be rewritten as

X2
α¼1

 ffiffiffiffiffiffiffiffiffiffiffiffi
C1c12
2V3

s
F α ~ψ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
C1cβr
V3

s
tð1Þα ϵα ~ψβrDβAr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 ~cβϕ1

V3

s
tð2Þα ϵα ~ψβϕ1

DβAϕ1
þ…

!
2

þ C1cβr
V3

tð1ÞðDβArÞ2 þ
C1 ~cβϕ1

V3

tð2ÞðDβAϕ1
Þ2 þ χt; ð5:15Þ

where χt takes into account the additional crossed terms created by the inclusion of ðtð1Þα ; tð2Þα Þ and we impose the constraints

X2
α¼1

ðtðiÞα Þ2 þ tðiÞ ¼ 1; ∀ i ¼ 1; 2; ð5:16Þ

which guarantee the squared terms are not affected in the rewriting.
With the very same idea in mind, we look at the fifth terms in both T ð1Þ

4 and T ð2Þ
4 next:

1

2

X2
α;β¼1

 
… − i

ffiffiffiffiffiffiffiffiffiffi
C1a1
V3

s
½Ar;Aϕ1

� þ…

!
2

þ 1

2

X2
α¼1

 
… − i

ffiffiffiffiffiffiffiffiffiffi
C1a1
V3

s
½Ar;Aϕ1

� þ…

!
2

: ð5:17Þ

We introduce antisymmetric (in their indices) coefficients in both the two terms, add squared terms that make sure we do not
alter that part and encompass the new crossed terms in χ4, which we do not presently determine. We also pull in the factor of
ð1=2Þ, as before. Explicitly, the above becomes

X2
α;β¼1

 
… − igð4Þαβ

ffiffiffiffiffiffiffiffiffiffi
C1a1
V3

s
½Ar;Aϕ1

� þ…

!
2

þ
X2
α¼1

 
… − ihð4Þα ~ψ

ffiffiffiffiffiffiffiffiffiffi
C1a1
V3

s
½Ar;Aϕ1

� þ…

!
2

þ C1a1
V3

qð4Þ½Ar;Aϕ1
�2 þ χ4; ð5:18Þ

where we require that the following must be satisfied19:

2ðgð4Þ12 Þ2 þ
X2
α¼1

ðhð4Þα ~ψ Þ2 − qð4Þ ¼ 1: ð5:19Þ

Similarly, the last terms in T ð1Þ
4 and T ð2Þ

4 ,

1

2

X2
α;β¼1

�
… − i

X3
k;l¼1

ffiffiffiffiffiffi
dkl

p
½φk;φl�

�
2

þ 1

2

X2
α¼1

�
… − i

X3
k;l¼1

ffiffiffiffiffiffi
dkl

p
½φk;φl�

�
2

; ð5:20Þ

are rewritten in the form

19Note that the relative difference in signs between (5.19) and the previous constraints (5.13) and (5.16) is a consequence of the
overall factors of ð−iÞ in the terms of the action being considered.
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X2
α;β¼1

�
… − i

X3
k;l¼1

gð1Þαβkl

ffiffiffiffiffiffi
dkl

p
½φk;φl�

�
2

þ
X2
α¼1

�
… − i

X3
k;l¼1

hð1Þα ~ψkl

ffiffiffiffiffiffi
dkl

p
½φk;φl�

�
2

þ
X3
k;l¼1

qð1Þkl dkl½φk;φl�2 þ χ1; ð5:21Þ

with the constraint

2ðgð1Þ12klÞ2 þ
X2
α¼1

ðhð1Þα ~ψklÞ2 − qð1Þkl ¼ 1; ∀ k; l ¼ 1; 2; 3; ð5:22Þ

where gð1Þαβkl has been defined to be antisymmetric in ðα; βÞ and in ðk; lÞ. Analogously, hð1Þα ~ψkl is antisymmetric in (α; ~ψÞ and in
ðk; lÞ by definition. We do an identical rewriting of the sixth and seventh terms of T ð1Þ

4 and T ð2Þ
4 too. That is, we rewrite the

mentioned terms [whose original form can be directly read from (5.5) and (5.6) or even simply inferred from the subsequent
equation] in the more convenient form

X2
α;β¼1

�
… − i

X3
k¼1

gð2Þαβk
ffiffiffiffiffiffi
crk

p ½Ar;φk� − i
X3
k¼1

gð3Þαβk
ffiffiffiffiffiffiffiffi
cϕ1k

p ½Aϕ1
;φk� þ…

�
2

þ
X2
α¼1

�
… − i

X3
k¼1

hð2Þα ~ψk
ffiffiffiffiffiffi
crk

p ½Ar;φk� − i
X3
k¼1

hð3Þα ~ψk
ffiffiffiffiffiffiffiffi
cϕ1k

p ½Aϕ1
;φk� þ…

�
2

þ
X3
k¼1

qð2Þk crk½Ar;φk�2 þ
X3
k¼1

qð3Þk cϕ1k½Aϕ1
;φk�2 þ χ2 þ χ3: ð5:23Þ

We also demand the following constraints:

2ðgðiÞ12kÞ2 þ
X2
α¼1

ðhðiÞα ~ψkÞ2 − qðiÞk ¼ 1; ∀ i ¼ 1; 2; ∀ k ¼ 1; 2; 3: ð5:24Þ

Here, gðiÞαβk has been defined to be antisymmetric in ðα; βÞ and hðiÞα ~ψk in (α; ~ψÞ, for both i ¼ 2, 3.
The only two terms left, fourth terms of T ð1Þ

4 and T ð2Þ
4 in (5.5), will be rewritten in a slightly trickier way. Essentially, we

will first “mix” them and then multiply those mixed terms with new coefficients. Again, we will make sure that the squared
terms are not affected in the rewriting by subjecting the coefficients introduced to constraint equations. For the time being,
we will not determine the additional crossed terms thus produced. To make the idea more precise, let us first consider a toy
model to illustrate how we will proceed. Consider the Hamiltonian

Hð2Þ ¼ 1

2
ðÂþ B̂Þ2 þ 1

2
ðĈþ D̂Þ2 ¼ 1

2
ðÂ2 þ B̂2 þ Ĉ2 þ D̂2Þ þ crossed terms: ð5:25Þ

We will “mix” the terms ðB̂; D̂Þ in the above. To this aim, we define Ê≡ B̂þ D̂. Next, we insert inside the squares the
factors of ð1=2Þ and introduce the arbitrary coefficients (û; v̂). All these changes allow us to rewrite the toy Hamiltonian as

Hð2Þ ¼
�

Âffiffiffi
2

p þ û Ê

�
2

þ
�

Ĉffiffiffi
2

p þ v̂ Ê

�
2

¼ 1

2
ðÂ2 þ ĈÞ2 þ ðû2 þ v̂2ÞðB̂2 þ D̂2Þ þ crossed terms: ð5:26Þ

If we demand that the squared terms in (5.25) and (5.26) match, then it is clear that ðû; v̂Þ must satisfy the following
constraint:

û2 þ v̂2 ¼ 1

2
: ð5:27Þ
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Coming back to the fourth terms in T ð1Þ
4 and T ð2Þ

4 that motivated the just explained toy model, these are given by

1

2

X2
α;β¼1

�
… −

X3
k¼1

ffiffiffiffiffiffiffi
b ~ψk

q
ϵαβ ~ψkD ~ψφk þ…

�2

þ 1

2

X2
α¼1

�
… −

X3
k¼1

ffiffiffiffiffiffiffi
bβk

q
ϵα ~ψβkDβφk þ…

�2

: ð5:28Þ

Following the logic above exposed, we introduce δ≡ ðα; ~ψÞ and rewrite (5.28) as

X2
α;β¼1

�
…þ

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵαβ ·m

ð1Þ
δk Dδφk þ…

�
2

þ
X2
α¼1

�
…þ

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵα ~ψ ·mð2Þ

δk Dδφk þ…

�
2

; ð5:29Þ

plus some extra crossed terms which we shall refer to symbolically as χm. The dot products appearing above will be made
precise soon enough, in Sec. VA 1. The new coefficients above must satisfy

X2
i¼1

ðmðiÞ
δk Þ2 ¼

1

2
; ∀ δ; k ¼ 1; 2; 3; ð5:30Þ

which makes sure the quadratic terms have not been changed during the rewriting. Note that there is no antisymmetry
relating the indices of these coefficients, unlike in previous cases.
We are now ready to collect results and present the Hamiltonian following from the action (4.146) (with c2 ¼ 0) in the

most convenient form for our subsequent investigations. Appropriately summing (5.12), (5.15), (5.18), (5.21), (5.23) and
(5.29) we obtain the desired rewriting of T 4 in (5.5). Further adding ðT 1; T 2; T 3Þ as given in (5.4), the Hamiltonian in (5.7)
can be rewritten as in (3.158) in [13]:

H ¼
Z

d4xTr

	
C1

V3

�X2
α¼1

ð ffiffiffiffiffiffi
c11

p
F α0 −

ffiffiffiffiffiffiffi
cα~3

p
DαA~3Þ2 þ ð ffiffiffiffiffiffi

c12
p

F ~ψ0 −
ffiffiffiffiffiffiffiffi
c ~ψ ~3

p
D ~ψA~3Þ2

þ ð ffiffiffiffiffiffi
c0r

p
D0Ar − i

ffiffiffiffiffi
a2

p ½A~3;Ar�Þ2 þ
� ffiffiffiffiffiffiffiffi

~c0ϕ1

q
D0Aϕ1

− i
ffiffiffiffiffi
a4

p ½A~3;Aϕ1
�
�
2 þ c0~3ðD0A~3Þ2

�

þ
X3
k;l¼1

�
ð
ffiffiffiffiffiffiffi
b0k

p
D0φk − i

ffiffiffiffiffiffi
c~3k

p ½A~3;φk�Þ2 þ qð1Þkl dkl½φk;φl�2 þ
X3
γ¼2

qðγÞk cyγk½Ayγ ;φk�2
�

þ
X2
α;β¼1

 ffiffiffiffiffiffiffiffiffiffiffiffi
C1c11
2V3

s
F αβ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
C1c ~ψr

V3

s
sð1Þαβ ϵαβ ~ψrD ~ψAr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 ~c ~ψϕ1

V3

s
sð2Þαβ ϵαβ ~ψϕ1

D ~ψAϕ1

− igð4Þαβ

ffiffiffiffiffiffiffiffiffiffi
C1a1
V3

s
½Ar;Aϕ1

� − i
X3
k;l¼1

gð1Þαβkl

ffiffiffiffiffiffi
dkl

p
½φk;φl� − i

X3
k¼1

X3
γ¼2

gðγÞαβk
ffiffiffiffiffiffiffiffi
cyγk

p ½Ayγ ;φk�

þ
X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵαβ ·m

ð1Þ
δk Dδφk

!
2

þ
X2
α¼1

 ffiffiffiffiffiffiffiffiffiffiffiffi
C1c12
2V3

s
F α ~ψ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
C1cβr
V3

s
tð1Þα ϵα ~ψβrDβAr

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 ~cβϕ1

V3

s
tð2Þα ϵα ~ψβϕ1

DβAϕ1
− ihð4Þα ~ψ

ffiffiffiffiffiffiffiffiffiffi
C1a1
V3

s
½Ar;Aϕ1

� − i
X3
k;l¼1

hð1Þα ~ψkl

ffiffiffiffiffiffi
dkl

p
½φk;φl�

− i
X3
k¼1

X3
γ¼2

hðγÞα ~ψk
ffiffiffiffiffiffiffiffi
cyγk

p ½Ayγ ;φk� þ
X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵα ~ψ ·mð2Þ

δk Dδφk

!
2

þ C1

V3

½c ~ψrsð1ÞðD ~ψArÞ2

þ ~c ~ψϕ1
sð2ÞðD ~ψAϕ1

Þ2 þ cβrtð1ÞðDβArÞ2 þ ~cβϕ1
tð2ÞðDβAϕ1

Þ2 þ a1qð4Þ½Ar;Aϕ1
�2
�
þ χT



þQEM; ð5:31Þ

where we have defined ðy2; y3Þ≡ ðr;ϕ1Þ (as a shorthand notation) and
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χT ≡ χs þ χt þ χ4 þ χ1 þ χ2 þ χ3 þ χm: ð5:32Þ

That is, χT accounts for all crossed terms produced when
rewriting T 4 as just explained. χT will be the main object of
study of Sec. VA 2, but presently we shall not shed light
into it.
We remind the reader that most of the notation used

above was introduced in Sec. IV. In particular, table II
provides a quick guide to find the explicit form of the
prefactors that have a supergravity interpretation in
terms of the warp factors in (2.2) and (2.26), the
deformation parameter θnc in (2.24), and the leading
term of the dilaton in (4.5). For clarity and complete-
ness, we include Table III, which summarizes the form
and properties of the new coefficients introduced in
going form (4.146) to (5.31). Note that these coeffi-
cients do not have a supergravity interpretation. Instead,
the constraint relations we demanded in this section
that they should satisfy should be regarded as their
defining equations. These are (5.13), (5.16), (5.19),

(5.22), (5.24) and (5.30), which put together recover
(3.160) in [13].

1. Minimization of the Hamiltonian

Having written the Hamiltonian of our theory as (5.31),
we now make the following crucial observation: this is a
sum of squared terms, plus boundary terms QEM and
“crossed terms” χT . Ignoring momentarily ðQEM; χTÞ, it
is clear that in order to minimize the energy of the system
each such squared term must vanish separately. In this
section we enforce the just described minimization and thus
obtain the (bulk) equations of motion for the SUðNÞ gauge
theory in the four-dimensional space X4 parametrized
by ðt; x1; x2; ~ψÞ.
Let us start by setting to zero the first six squared

terms in (5.31). [These are the terms stemming from
ðT 1; T 2; T 3Þ in (5.4).] Since we wish our discussion to
be as general as possible, we assume that the coefficients
C1=V3 and c0~3 do not vanish. Then, we obtain the
following:

ð ffiffiffiffiffiffi
c11

p
F α0 −

ffiffiffiffiffiffiffi
cα~3

p
DαA~3Þ2 ¼ 0; ð ffiffiffiffiffiffi

c12
p

F ~ψ0 −
ffiffiffiffiffiffiffiffi
c ~ψ ~3

p
D ~ψA~3Þ2 ¼ 0;

ð ffiffiffiffiffiffi
c0r

p
D0Ar − i

ffiffiffiffiffi
a2

p ½A~3;Ar�Þ2 ¼ 0;
� ffiffiffiffiffiffiffiffi

~c0ϕ1

q
D0Aϕ1

− i
ffiffiffiffiffi
a4

p ½A~3;Aϕ1
�
�
2 ¼ 0;

ð
ffiffiffiffiffiffiffi
b0k

p
D0φk − i

ffiffiffiffiffiffi
c~3k

p ½A~3;φk�Þ2 ¼ 0; D0A~3 ¼ 0; ð5:33Þ
which should hold true ∀α ¼ 1, 2 and ∀k ¼ 1, 2, 3. Recall now that both the gauge fields ðAa;A ~ψ Þ (with a ¼ 0, 1, 2) and
the real scalars ðA~3;Aϕ1

;ArÞ [in the adjoint representation of SUðNÞ] depend only on the coordinates ðt; x1; x2; ~ψÞ. As we
pointed out in the beginning of Sec. V, not only are we interested in obtaining the minimum energy configuration for the
aforementioned fields, but we also want them to satisfy the BPS conditions. Hence, we search for static solutions to (5.33).
This implies we will consider in the ongoing that the fields only depend on ðx1; x2; ~ψÞ and thus, using (4.51), the above
reduces to

ð ffiffiffiffiffiffi
c11

p
DαA0 −

ffiffiffiffiffiffiffi
cα~3

p
DαA~3Þ2 ¼ 0; ð ffiffiffiffiffiffi

c12
p

D ~ψA0 −
ffiffiffiffiffiffiffiffi
c ~ψ ~3

p
D ~ψA~3Þ2 ¼ 0;

ð ffiffiffiffiffiffi
c0r

p ½A0;Ar� −
ffiffiffiffiffi
a2

p ½A~3;Ar�Þ2 ¼ 0;
� ffiffiffiffiffiffiffiffi

~c0ϕ1

q
½A0;Aϕ1

� − ffiffiffiffiffi
a4

p ½A~3;Aϕ1
�
�
2 ¼ 0;

ð
ffiffiffiffiffiffiffi
b0k

p
½A0;φk� − ffiffiffiffiffiffi

c~3k
p ½A~3;φk�Þ2 ¼ 0; ½A0;A~3� ¼ 0; ð5:34Þ

valid again ∀α ¼ 1, 2 and ∀k ¼ 1, 2, 3.

TABLE III. List of coefficients appearing in the Hamiltonian (5.31) that do not have a supergravity interpretation,
the equation numbers of their defining relations, and their antisymmetry properties. Note that mðiÞ

δk ’s are not
constrained by antisymmetry. These coefficients are introduced while rewriting the Hamiltonian (5.7) as (5.31).

Coefficient Given in

sðiÞαβ , s
ðiÞ (5.13)

with α, β, i ¼ 1, 2 and k, l, δ ¼ 1, 2, 3
tðiÞα , tðiÞ (5.16)

gð4Þαβ , h
ð4Þ
α ~ψ , q

ð4Þ (5.19) ðsðiÞαβ ; gð4Þαβ ; g
ð1Þ
αβkl; g

ðiÞ
αβkÞ antisymmetric in ðα; βÞ

gð1Þαβkl, h
ð1Þ
α ~ψkl, q

ð1Þ
kl

(5.22) ðhð4Þα ~ψ ; h
ð1Þ
α ~ψkl; h

ðiÞ
α ~ψkÞ antisymmetric in ðα; ~ψÞ

gðiÞαβk, h
ðiÞ
α ~ψk, q

ðiÞ
k

(5.24) ðgð1Þαβkl; h
ð1Þ
α ~ψkl; q

ð1Þ
kl Þ antisymmetric in ðk; lÞ

mðiÞ
δk

(5.30)
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To proceed further, we need to choose a gauge. We make
the gauge choice in (3.161) in [13]:

A0 ¼ A~3: ð5:35Þ

This follows from our earlier identifications in (5.2), where
the scalar fieldA~3 was singled out from the other two scalars

ðAϕ1
;ArÞ. One could certainly single out Aϕ1

orAr instead
and appropriately modify the above gauge choice. We will
not entertain these options in the present work, as they do not
lead to further physical insight. However, the interested
reader can find enough detail on the A0 ¼ Ar gauge choice
in (3.178)-(3.182) in [13]. With the choice (5.35), the set of
equations in (5.34) reduces to (3.162) in [13]:

ð ffiffiffiffiffiffi
c11

p
− ffiffiffiffiffiffiffi

cα~3
p Þ2ðDαA~3Þ2 ¼ 0; ð ffiffiffiffiffiffi

c12
p

−
ffiffiffiffiffiffiffiffi
c ~ψ ~3

p Þ2ðD ~ψA~3Þ2 ¼ 0;

ð ffiffiffiffiffiffi
c0r

p
−

ffiffiffiffiffi
a2

p Þ2½A~3;Ar�2 ¼ 0;
� ffiffiffiffiffiffiffiffi

~c0ϕ1

q
−

ffiffiffiffiffi
a4

p �
2½A~3;Aϕ1

�2 ¼ 0;

ð
ffiffiffiffiffiffiffi
b0k

p
− ffiffiffiffiffiffi

c~3k
p Þ2½A~3;φk�2 ¼ 0; ∀ α ¼ 1; 2; ∀ k ¼ 1; 2; 3: ð5:36Þ

Note that the last equation in (5.34) does not appear above,
since it is trivially satisfied by our gauge choice.
The above has the trivial solution A~3 ¼ 0. Another

possible solution would be to simultaneously satisfy

c11 ¼ cα~3; c12 ¼ c ~ψ ~3; c0r ¼ a2; ~c0ϕ1
¼ a4;

b0k ¼ c~3k; ∀ α ¼ 1; 2; ∀ k ¼ 1; 2; 3: ð5:37Þ

Let us explore this option by using the explicit form of the
above coefficients, summarized previously in Table II.
From (4.30), (4.69) and (4.78), we immediately see that
the first equation will be satisfied if and only if

cos2 θnc þ F2 sin2 θnc ¼ 1: ð5:38Þ

Similarly, using (4.31), (4.38), (4.83) and (4.91) in the
second equation, one can right away conclude (5.38) is
required so that c12 ¼ c ~ψ ~3. The same deduction follows
from introducing (4.68), (4.69) and (4.78) in c0r ¼ a2. On
the other hand, using these same results in ~c0ϕ1

¼ a4, one
finds that, besides (5.38), it is also necessary to impose

ð ~F2 tan θncÞ2
~F2 − F3

ð1þ F2tan2θncÞ ¼ 0: ð5:39Þ

Finally, from (4.125) and (4.91) it follows that b0k ¼ c~3k if
and only if we demand (5.38). Summing up, to ensure
(5.37) we must enforce both (5.38) and (5.39). But in doing
so, we do not wish to constraint our setup by choosing a
particular form for the warp factors. [We want to keep our
M-theory configuration (M, 1) of part I as general as
possible.] Hence, we conclude that the second possible
solution to (5.36) is given by θnc ¼ 0.
Between A~3 ¼ 0 and θnc ¼ 0, there is a preferred

solution to (5.36). Recall Sec. II A: θnc was introduced
as an alternative and computationally simpler way to
account for the axionic background of [10], which was
there shown to be an essential ingredient to study knots

using the D3-NS5 system. In our approach too [as we will
show in Sec. (VI C)], θnc shall play a key role and allow us
to construct a three-dimensional space capable of support-
ing knots. Accordingly, we set to zero the first six squared
terms in the Hamiltonian (5.31) via

A~3 ¼ 0; ð5:40Þ

along with the gauge choice in (5.35).20 Also, bear in mind
all fields are time independent now.
Let us next turn our attention to the final five terms, as

well as the last two terms in the third line of the
Hamiltonian (5.31). [These are the squared terms we
introduced to make sure that while rewriting the
Hamiltonian (5.7) as (5.31) all quadratic terms remain
unaffected.] Minimization of the energy requires them all to
vanish which, for ðC1=V3Þ ≠ 0, means that

sð1ÞðD ~ψArÞ2 ¼ 0; sð2ÞðD ~ψAϕ1
Þ2 ¼ 0;

tð1ÞðDβArÞ2 ¼ 0; tð2ÞðDβAϕ1
Þ2 ¼ 0;

a1qð4Þ½Ar;Aϕ1
�2 ¼ 0; qð1Þkl dkl½φk;φl�2 ¼ 0;

qðγÞk cyγk½Ayγ ;φk�2 ¼ 0; ð5:41Þ

for all β ¼ 1, 2, k, l ¼ 1, 2, 3 and γ ¼ 2, 3. If we consider
that, generically, all the coefficients ðsð1Þ; sð2Þ; tð1Þ; tð2Þ; a1;
qð4Þ; qðγÞk ; cyγkÞ are not zero, then satisfying (5.41) implies
(3.167) and (3.169) in [13]:

DηAr ¼ DηAϕ1
¼ ½Ar;Aϕ1

� ¼ ½Ar;φk� ¼ ½Aϕ1
;φk� ¼ 0;

∀ η ¼ 1; 2; ~ψ ; ∀ k ¼ 1; 2; 3: ð5:42Þ

On the other hand, if we do not wish to trivialize
the system, we cannot conclude that most generically all

20This impliesA0 ¼ 0, known as the Weyl gauge or also as the
axial gauge.
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qð1Þkl ’s are nonzero. [Note that this would imply
½φk;φl� ¼ 0 for all ðk; lÞ.] Hence, as the simplest nontrivial
case, we will consider only one such (independent)

coefficient vanishes. Following [13], we choose qð1Þ12 ¼ 0.
Then, to fulfill (5.41), we must impose (3.171) in
[13] too:

½φ1;φ2� ≠ 0; ½φ1;φ3� ¼ ½φ2;φ3� ¼ 0: ð5:43Þ

In this manner, we have enforced (5.41).
In our minimization of the Hamiltonian (5.31), we now

focus on the squared term between the fourth and sixth
lines and demand its vanishing:

ffiffiffiffiffiffi
C1

V3

s � ffiffiffiffiffiffi
c11
2

r
F αβ þ ffiffiffiffiffiffiffi

c ~ψr
p

sð1Þαβ ϵαβ ~ψrD ~ψAr þ
ffiffiffiffiffiffiffiffiffi
~c ~ψϕ1

q
sð2Þαβ ϵαβ ~ψϕ1

D ~ψAϕ1
− igð4Þαβ

ffiffiffiffiffi
a1

p ½Ar;Aϕ1
�
�

− i
X3

δ;k;l¼1

�
gð1Þαβkl

ffiffiffiffiffiffi
dkl

p
½φk;φl� þ

X3
γ¼2

gðγÞαβk
ffiffiffiffiffiffiffiffi
cyγk

p ½Ayγ ;φk� þ i
ffiffiffiffiffiffiffi
bδk

p
ϵαβ ·m

ð1Þ
δk Dδφk

�
¼ 0; ð5:44Þ

which should be true for all α, β ¼ 1, 2. Needless to say, minimization of the energy requires all squared terms to vanish
simultaneously. This implies the choices previously made to set to zero other squared terms must now be enforced as well.
Thus, inserting (5.42) and (5.43) in the above, our equations reduce toffiffiffiffiffiffiffiffiffiffiffiffi

C1c11
2V3

s
F αβ − 2igð1Þαβ12

ffiffiffiffiffiffiffi
d12

p
½φ1;φ2� þ

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵαβ ·m

ð1Þ
δk Dδφk ¼ 0; ∀ α; β ¼ 1; 2; ð5:45Þ

where we have used the fact that gð1Þαβ12 ¼ −gð1Þαβ21 by definition and d12 ¼ d21, as can be seen from (4.131). Since (5.45) is
antisymmetric in ðα; βÞ, we can focus on the case α ¼ 1 and β ¼ 2. With the convention that ϵ12 ¼ 1, noting that (4.125)
tells us that b12 ¼ b21 and choosing coefficients as in (3.173) in [13]; namely

gð1Þ1212 ¼ mð1Þ
~ψ3 ¼ mð1Þ

12 ¼ −mð1Þ
21 ¼ 1ffiffiffi

2
p ; mð1Þ

11 ¼ mð1Þ
22 ¼ mð1Þ

13 ¼ mð1Þ
23 ¼ mð1Þ

~ψ1 ¼ mð1Þ
~ψ2 ¼ 0; ð5:46Þ

it is a matter of minor algebra to obtain (3.172) in [13]:

F 12 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
V3

C1c11

s
½−2i

ffiffiffiffiffiffiffi
d12

p
½φ1;φ2� þ

ffiffiffiffiffiffiffi
b12

p
ðD1φ2 −D2φ1Þ þ

ffiffiffiffiffiffiffi
b ~ψ3

q
D ~ψφ3� ¼ 0: ð5:47Þ

Note that the dot product in (5.45) has been interpreted as a usual scalar product in this case.
This is the first nontrivial equation of motion following from the minimization of the energy of the Hamiltonian (5.31).

Further, since all fields appearing in it are static, the above is a BPS condition. Notice now that, schematically, our BPS
condition is of the form

F þDφþ ½φ;φ� ¼ 0: ð5:48Þ

The well-versed reader will of course be familiar with the Bogomolny, Hitchin, and Nahm equations, which we can sketch
as follows:

Bogomolny∶ F þDφ ¼ 0; Hitchin∶ F þ ½φ;φ� ¼ 0; Nahm∶ Dφþ ½φ;φ� ¼ 0: ð5:49Þ

Written in this manner, it is evident that our BPS condition is just a combination of all these Bogomolny, Hitchin, and Nahm
equations. We will thus refer to (5.47) as the first BHN equation.
Before proceeding further, let us pause for a moment and study what are the consequences of the choices of

coefficients made so far. These choices are qð1Þ12 ¼ 0 and (5.46). As can be checked in Table III, these coefficients are
required to satisfy the constraint equations (5.22) and (5.30). So, combining our choices and the constraints, we are led to
conclude that
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2ðgð1Þ12klÞ2 þ
X2
α¼1

ðhð1Þα ~ψklÞ2 − qð1Þkl ¼ 1 ∀ k; l ¼ 2; 3; hð1Þα ~ψ12 ¼ −hð1Þα ~ψ21 ¼ 0 ∀ α ¼ 1; 2;

mð2Þ
ψ3 ¼ mð2Þ

12 ¼ mð2Þ
21 ¼ 0; mð2Þ

11 ; m
ð2Þ
22 ; m

ð2Þ
13 ; m

ð2Þ
23 ; m

ð2Þ
~ψ1 ; m

ð2Þ
~ψ2 ¼ � 1ffiffiffi

2
p ð5:50Þ

must hold true in the following.
The last step in the minimization of the energy of our system with Hamiltonian (5.31) is to demand the vanishing of the

squared term between the sixth and the eighth lines in that same equation. This must be done in a consistent manner to all
previous choices made in this section. The necessary vanishing we just mentioned isffiffiffiffiffiffi

C1

V3

s  ffiffiffiffiffiffi
c12
2

r
F α ~ψ þ ffiffiffiffiffiffi

cβr
p

tð1Þα ϵα ~ψβrDβAr þ
ffiffiffiffiffiffiffiffi
~cβϕ1

q
tð2Þα ϵα ~ψβϕ1

DβAϕ1
− ihð4Þα ~ψ

ffiffiffiffiffi
a1

p ½Ar;Aϕ1
�
!

−i
X3

δ;k;l¼1

�
hð1Þα ~ψkl

ffiffiffiffiffiffi
dkl

p
½φk;φl� þ

X3
γ¼2

hðγÞα ~ψk
ffiffiffiffiffiffiffiffi
cyγk

p ½Ayγ ;φk� þ i
ffiffiffiffiffiffiffi
bδk

p
ϵα ~ψ ·mð2Þ

δk Dδφk

�
¼ 0; ð5:51Þ

for all α, β ¼ 1, 2. Using (5.42), (5.43) and (5.50) in the above, we have thatffiffiffiffiffiffiffiffiffiffiffiffi
C1c12
2V3

s
F α ~ψ þ

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵα ~ψ ·mð2Þ

δk Dδφk ¼ 0 ∀ α ¼ 1; 2: ð5:52Þ

Here, δ ¼ 3 should be understood as making reference to the ~ψ direction. Without loss of generality, we take the definition
of the dot product above to be

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵα ~ψ ·mð2Þ

δk Dδφk ≡ −6
X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵ½α ~ψm

ð2Þ
δk�Dδφk þ

ffiffiffiffiffiffiffi
b ~ψα

q
ϵα ~ψm

ð2Þ
~ψαD ~ψφα; ð5:53Þ

with the indices of the first term on the right-hand side necessarily different from each other. This seemingly involved term
is not so complicated and, upon using the antisymmetry of the epsilon tensors, is explicitly given by

−
1

2

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
½ϵα ~ψ ðmð2Þ

δk −mð2Þ
kδ Þ þ ϵδ ~ψðmð2Þ

αk −mð2Þ
kα Þ þ ϵδkðmð2Þ

α3 −mð2Þ
~ψαÞ

þϵαkðmð2Þ
δ3 −mð2Þ

~ψδ Þ þ ϵαδðmð2Þ
k3 −mð2Þ

~ψk Þ þ ϵk ~ψ ðmð2Þ
αδ −mð2Þ

δα Þ�Dδφk: ð5:54Þ

In good agreement with (5.50), we now implement the second line there, choosing the plus sign for all themð2Þ coefficients
in the last equality. In this manner, the above reduces considerably to

−
1

2

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
½ϵδkmð2Þ

~ψα þ ϵαkm
ð2Þ
~ψδ þ ϵαδm

ð2Þ
~ψk �Dδφk: ð5:55Þ

As we said, the dot product is taken by definition such that all indices in this term should be different from each other. In
other words, δ ¼ 1ð2Þ if α ¼ 2ð1Þ and k ¼ 3. This leads to, for α, β ¼ 1, 2 with α ≠ β,

−
1

2

ffiffiffiffiffiffiffi
bβ3

q
½ϵβ ~ψmð2Þ

~ψα þ ϵα ~ψm
ð2Þ
~ψβ þ ϵαβm

ð2Þ
~ψ3 �Dβφ3 ¼

8>><
>>:

ffiffiffiffiffi
b23
2

q
D2φ3 if α ¼ 1; β ¼ 2;ffiffiffiffiffi

b13
2

q
D1φ3 if α ¼ 2; β ¼ 1;

ð5:56Þ

where the normalization convention used is ϵ1 ~ψ ¼ ϵ2 ~ψ ¼ 1. Finally, using the above in (5.52) and with minor algebra, we
obtain the remaining two BHN equations, as in (3.177) in [13]:
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F 1 ~ψ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
V3

C1c12

s � ffiffiffiffiffiffiffi
b ~ψ1

q
D ~ψφ1 þ

ffiffiffiffiffiffiffi
b23

p
D2φ3

�
¼ 0;

F 2 ~ψ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
V3

C1c12

s � ffiffiffiffiffiffiffi
b ~ψ2

q
D ~ψφ2 þ

ffiffiffiffiffiffiffi
b13

p
D1φ3

�
¼ 0: ð5:57Þ

Collecting thoughts, in this section we have shown that
the vanishing of the different squared terms in the
Hamiltonian (5.31) for static configurations leads to the
BHN equations (5.47) and (5.57). The name BHN simply
denotes that these are a combination of the well-known
Bogomolny, Hitchin, and Nahm equations. In obtaining such
BHN equations, we chose the gauge (5.35) and further found
that the gauge and scalar fields in the bosonic sector of the
theory should also satisfy (5.40), (5.42) and (5.43).
Additionally, we made the coefficient choices qð1Þ12 ¼ 0,
(5.46) and (5.50), with the plus sign in all cases of the last
equality there. One can easily check that all our choices
respect the defining equations of the coefficients, summa-
rized previously in Table III. However, this analysis com-
pletely ignored the ðQEM; χTÞ terms in (5.31). In the next
section, we start to shed light in this direction by studying χT .

2. Consistency requirements and advantage
of rewriting (5.7) as (5.31)

We already pointed out the crucial fact that the electric
and magnetic charges QEM in the Hamiltonian (5.31)

are (not yet specified) boundary terms. That is, the
Hamiltonian as a whole is defined in the X4 space
(the bulk) but the terms QEM are defined solely in X3

(the boundary). [We remind the reader that the spaces X4

and X3 were defined in (4.1).] The goal in this section is
to ensure that χT in (5.31) does not contribute to the
boundary terms QEM. Further, we want to ensure that χT is
in good agreement with the bulk energy minimization
performed in the previous section. Anticipating events,
we will see that such consistency leads to new con-
straints on the scalar fields of our gauge theory. In this
manner, we shall be able to focus on the study of the
boundary theory only, since the bulk theory will by
then be set to zero by requiring that the fields satisfy
(5.40), (5.42) and (5.43), together with the BHN equa-
tions (5.47) and (5.57) and the new constraints we shall
presently find.
But let us take a step back first: what is χT to begin with?

In order to determine χT precisely we will compare the
Hamiltonians (5.7) and (5.31), i.e. the Hamiltonians before
and after the inclusion of the coefficients in Table III. By
definition, χT is simply the collection of all crossed terms
produced during this rewriting. To make our task computa-
tionally easier, we will make use of all the equations above
mentioned, which guarantee that the bulk theory is
minimized.
Explicitly, using (5.40), (5.42) and (5.43) in (5.7), the

Hamiltonian before the rewriting is given by

H ¼
Z

d4xTr

"
1

2

X2
α;β¼1

 ffiffiffiffiffiffiffiffiffiffiffiffi
C1c11
V3

s
F αβ −

X3
k¼1

ffiffiffiffiffiffiffi
b ~ψk

q
ϵαβ ~ψkD ~ψφk − i

X2
k;l¼1

ffiffiffiffiffiffi
dkl

p
½φk;φl�

!
2

þ 1

2

X2
α¼1

 ffiffiffiffiffiffiffiffiffiffiffiffi
C1c12
V3

s
F α ~ψ −

X3
k¼1

ffiffiffiffiffiffiffi
bβk

q
ϵα ~ψβkDβφk − i

X2
k;l¼1

ffiffiffiffiffiffi
dkl

p
½φk;φl�

!
2

þQEM

#
: ð5:58Þ

Let us for the time being ignoreQEM. We already said and it can be clearly seen from (4.131) too, that d12 ¼ d21. However,
½φ1;φ2� ¼ −½φ2;φ1�. Hence, when summing over k, l ¼ 1, 2 in the pertinent terms above, these will vanish unless they are
squared. In other words, the nonzero crossed terms in our Hamiltonian (5.58) are just two:

ζ1 ≡ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
C1c11
V3

s X2
α;β¼1

X3
k¼1

ffiffiffiffiffiffiffi
b ~ψk

q
ϵαβ ~ψkTrfF αβ;D ~ψφkg;

ζ2 ≡ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
C1c12
V3

s X2
α¼1

X3
k¼1

ffiffiffiffiffiffiffi
bβk

q
ϵα ~ψβkTrfF α ~ψ ;Dβφkg: ð5:59Þ

Simply carrying out the sums above and noting that (4.125) implies that b ~ψk and bak are the same for all values of a ¼ 1, 2
and k ¼ 1, 2, 3 (yet not equal to each other), we get

ζ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1c11b ~ψ3

V3

s
TrfF 12;D ~ψðφ1 þ φ2 þ φ3Þg;

ζ2 ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1c12b12

V3

s
Tr½fF 2 ~ψ ;D1ðφ1 þ φ2 þ φ3Þg − fF 1 ~ψ ;D2ðφ1 þ φ2 þ φ3Þg�; ð5:60Þ
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with the normalization convention ϵ12k ~ψ ¼ 1 for all k ¼ 1, 2, 3. On the other hand, using (5.40), (5.42), (5.43) and the

choices qð1Þ12 ; h
ð1Þ
α ~ψ12 ¼ 0 (for all α ¼ 1, 2) in (5.31), we obtain the Hamiltonian after the rewriting as

H ¼
Z

d4xTr

2
4X2
α;β¼1

0
@ ffiffiffiffiffiffiffiffiffiffiffiffi

C1c11
2V3

s
F αβ þ

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵαβ ·m

ð1Þ
δk Dδφk − i

X2
k;l¼1

gð1Þαβkl

ffiffiffiffiffiffi
dkl

p
½φk;φl�

1
A2

þ
X2
α¼1

0
@ ffiffiffiffiffiffiffiffiffiffiffiffi

C1c12
2V3

s
F α ~ψ þ

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵα ~ψ ·mð2Þ

δk Dδφk

1
A2

þ χT

3
5þQEM: ð5:61Þ

We know that the squared terms of this and the previous Hamiltonian are the same (provided the coefficients above satisfy
the constraints in Table III, as already discussed in the previous section). Hence, let us just focus on the crossed terms. There
are four of them:

ζ1
0 ≡ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C1c11d12

V3

s X2
α;β¼1

gð1Þαβ12TrfF αβ; ½φ1;φ2�g;

ζ2
0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffi
C1c11
2V3

s X2
α;β¼1

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵαβ ·m

ð1Þ
δk TrfF αβ;Dδφkg;

ζ3
0 ≡ −2i

ffiffiffiffiffiffiffi
d12

p X2
α;β¼1

X3
δ;m¼1

gð1Þαβ12

ffiffiffiffiffiffiffi
bδm

p
ϵαβ ·m

ð1Þ
δmTrf½φ1;φ2�;Dδφmg;

ζ4
0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffi
C1c12
2V3

s X2
α¼1

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵα ~ψ ·mð2Þ

δk TrfF α ~ψ ;Dδφkg; ð5:62Þ

where we have used the (anti)symmetry properties d12 ¼
d21 and g

ð1Þ
αβ12 ¼ −gð1Þαβ21 to carry out the sums over k, l in the

first and third terms. In this language, χT is

χT ¼
X2
i¼1

ζi −
X4
i¼1

ζ0i: ð5:63Þ

In our way to determine χT , let us first focus on ζ04. Using
the coefficient choices in (5.50) for the plus sign in all
cases, the dot product definition in (5.53) and the result
(5.56) and further summing over α, it is easy to see that

ζ04 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
C1c12
V3

s
TrðfF 1 ~ψ ;

ffiffiffiffiffiffiffi
b ~ψ1

q
D ~ψφ1 þ

ffiffiffiffiffiffiffi
b23

p
D2φ3g

þ fF 2 ~ψ ;
ffiffiffiffiffiffiffi
b ~ψ2

q
D ~ψφ2 þ

ffiffiffiffiffiffiffi
b13

p
D1φ3gÞ; ð5:64Þ

where the normalization convention employed is once
again ϵ13 ¼ ϵ23 ¼ 1. With the aid of the BHN equations
in (5.57), ζ04 is seen to be a squared (and not a crossed) term:

ζ04 ¼ −
C1c12
2V3

X2
α¼1

TrðF α ~ψ Þ2: ð5:65Þ

The conclusion that ζ04 is not a crossed term of course
implies that it does not contribute to QEM, as we wished in
the first place. Further, since ζ04 is a squared term, it can be
absorbed by an appropriate relabeling of the coefficients in
Table III, where the defining equations remain unaltered.
Consequently, ζ04 does not contribute to χT and we need not
worry over it in the ongoing.
We turn our attention to ζ01, ζ

0
2 and ζ

0
3 next. As before, we

interpret the dot product in ζ02 and ζ03 as a regular scalar
product, we use our coefficient choices in (5.46) and sum
over α, β in (5.62). In the process, one must not forget the
antisymmetric properties of the coefficients summarized in
Table III. The described computation is not difficult and
yields

ζ01¼2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1c11d12

V3

s
TrfF 12;½φ1;φ2�g;

ζ02¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C1c11
V3

s
Tr

	
F 12;

ffiffiffiffiffiffiffi
b12

p
ðD1φ2−D2φ1Þþ

ffiffiffiffiffiffiffi
b ~ψ3

q
D ~ψφ3



;

ζ03¼2i
ffiffiffiffiffiffiffi
d12

p
Tr

	
½φ1;φ2�;

ffiffiffiffiffiffiffi
b12

p
ðD1φ2−D2φ1Þ

þ
ffiffiffiffiffiffiffi
b ~ψ3

q
D ~ψφ3



: ð5:66Þ
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It can be easily checked that, further introducing the
first BHN equation (5.47) in the above, the following
is true:

ζ01þζ02 ¼−
2C1c11
V3

TrðF 12Þ2;

ζ03 ¼ 8d12Tr½φ1;φ2�2−2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1c11d12

V3

s
Trf½φ1;φ2�;F 12g:

ð5:67Þ

The same observation we made for ζ04 should be invoked
presently too: the squared terms can be absorbed by a
relabeling of the coefficients in Table III. They do not
contribute to QEM and do not affect the bulk minimiza-
tion of Sec. VA 1. In other words, we can consistently
conclude that they do not contribute to χT and simply
ignore them in the following. The only term which
contributes to χT from the above is

ζ03 ¼ −2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1c11d12

V3

s
Trf½φ1;φ2�;F 12g: ð5:68Þ

Putting everything together, we say that

χT ¼ ζ1 þ ζ2 − ζ03; ð5:69Þ

which must either be reduced to a sum of squared terms
(that would then be accounted for by an inconsequential
redefinition of the coefficients in Table III) or be set to zero.
In this manner, the Hamiltonian (5.31) will lead to a
boundary theory determined by QEM solely, while a
consistent bulk energy minimization is ensured via BHN
and other constraining equations on the gauge and scalar
fields. What is more, it is evident that ζ1 − ζ03 and ζ2 will
have to satisfy this condition separately, as the BHN
equations (5.47) and (5.57) do not mix F 12 with
ðF 1 ~ψ ;F 2 ~ψÞ. For this very same reason, we must demand
right away

D ~ψφ1 ¼ D ~ψφ2 ¼ D1φ3 ¼ D2φ3 ¼ 0: ð5:70Þ

We will refer to these as the first set of consistency
requirements we mentioned in the title of the present
section. Implementing the above and using (5.47), ζ1 in
(5.60) and ζ03 in (5.68) combine to give

ζ1 − ζ03 ¼ −
2C1c11
V3

TrðF 12Þ2

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1c11b12

V3

s
TrfF 12;D1φ2 −D2φ1g: ð5:71Þ

It goes without saying that the first term on the right-hand
side above is squared and thus does not contribute to χT .
That is not the case with the second term, though. To make
it vanish, we will demand

D1φ2 −D2φ1 ¼ 0; ð5:72Þ

another consistency requirement. The attentive reader will
not take long staring at ζ2 in (5.60) in combination with the
two relevant BHN equations in (5.57) to realize that yet
another (and last) consistency requirement is that in (3.174)
in [13]:

D1φ1 þD2φ2 ¼ 0: ð5:73Þ

Then, ζ2 simplifies to

ζ2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1c12b12

V3

s
Tr½fF 2 ~ψ ;D1ðφ1 þ φ2Þg

þ fF 1 ~ψ ;D1ðφ1 − φ2Þg�: ð5:74Þ

We cannot make squares of the above, so it better vanish.
Indeed it is zero, as can be seen from combining
the requirements (5.70) and the BHN equations (5.57),
leading to

F 1 ~ψ ¼ F 2 ~ψ ¼ 0: ð5:75Þ

The other BHN equation, namely (5.47), also reduces
in view of our consistency requirements and is now
given by

F 12 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
V3

C1c11

s �
2i

ffiffiffiffiffiffiffi
d12

p
½φ1;φ2� þ

ffiffiffiffiffiffiffi
b ~ψ3

q
D ~ψφ3

�
¼ 0:

ð5:76Þ

Finally, we note that χT has by now been converted to some
sum of squared terms which does not affect our analysis
and definitely does not contribute to QEM, as was our goal
in the beginning of this section.
In conclusion, for the gauge choice (5.35), the energy of

the Hamiltonian (5.31) is minimized when all (5.40),
(5.42), (5.43), (5.70), (5.72) and (5.73) are satisfied,
together with the BHN equations (5.75) and (5.76). In this
case, χT is zero (or, more precisely, is absorbed by an
immaterial redefinition of coefficients, as already
explained) and we are only left with the boundary terms
QEM to be considered.
To finish this section, let us clarify what is the advantage

of rewriting the Hamiltonian (5.7) as (5.31). The so-called
consistency requirements (5.70), (5.72) and (5.73) that we
obtained in this section to ensure no crossed terms were
produced in the aforementioned rewriting are actually vital
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results in our analysis. They simplify the BHN equations,
which are conjectured to be directly related to knot
invariants (for example, see Sec. 3.2 in [10]). But
their simplifying power goes well beyond the BHN
equations.
In [13], these consistency requirements are obtained in

an altogether different manner: after generalizing to the
c2 ≠ 0 case and by comparing our gauge theory to the
twisted gauge theory21 in [10,11]. More precisely, our
consistency requirements in (5.70) are equal to (3.218)
and (3.220) in [13], (5.72) is the same as (3.207) (albeit all
three equations are expressed in the twisted language
there) and (5.73) is exactly (3.174). Among all the
necessary constraints in our setup, (5.72) is particularly
useful. Unlike in the present work and in [13], in both
[10,11] this constraint is not a consistency requirement of
the twisted gauge theory. This term simply does not vanish
and hence is part of one of the twisted BHN equations.
However, this term greatly adds to the computational
difficulties. Hence, to keep things as simple as possible, in
[10] the prefactor for this term is made to vanish, via an
S-duality. Then, the quite involved generalization to the
case where the prefactor does not vanish is studied in [11].
The fact that (5.72) is true in our construction thus avoids
us the subtleties and struggles related to having to consider
the S-dual picture first and mimic the extension in [11]
afterwards.
Although the S-dual picture is not required in our

analysis, for completeness and to provide a transparent
comparison to the well-known analysis in [10], this has
been fully worked out around (3.252)-(3.275) in [13].
We thus refer the reader seeking an M-theory realization
of the S-dual picture, as well as quantitative details on
its relation to the configuration (M, 1) in Sec. II, to the
cited work. Here, we will take full advantage of having
(5.72) as part of our gauge theory and rid ourselves of
further complications along this direction. Instead, we
will now look at the generalization of all the results so
far in Sec. V to the case that really concerns us, where
c2 ≠ 0 in (4.146). This will in turn directly lead us to
the study of the corresponding boundary theory
in Sec. VI.

B. Generalization to the case
where c2 ≠ 0 in (4.146)

We have by now gained considerable insight into the
bulk physics of the theory with action (4.146) but with no
topological term (i.e. c2 ¼ 0 there). The inclusion of this
topological term is, however, far from trivial, both con-
ceptually and computationally. To relax a bit the computa-
tional difficulties, we will begin this section by doing

the following approximation: we will in the ongoing
consider that

c11 ¼ c12 ð5:77Þ

in (4.146). Looking at the definitions of these coefficients
in (4.23), we see that this amounts to requiring that
e2ϕ0H4 ¼ 1. Further using (2.53), our simplification
reduces to a constraint equation on the so far completely
arbitrary warp factors (2.2) and (2.26) and constant leading
value of the dilaton in (4.5)22:

e2ϕ0 ~F2F3 sec2 θnc sin2 θ1
~F2 cos2 θ1 þ F3 sin2 θ1

¼ 1: ð5:78Þ

Clearly, this is not too stringent a constraint, as there is
ample freedom of choice to satisfy it. For a physical
interpretation of our assumption, one should look at the
metric of the M-theory configuration (M, 1) in (2.56). We
then see that (5.77) implies that ðt; x1; x2; ~ψÞ are now
Lorentz invariant directions. In other words, our approxi-
mation leads to a restoration of the Lorentz symmetry along
~ψ in the subspace X4 that we defined in (4.1).
Having made this simplification, we proceed to show an

intermediate result, which will immediately prove useful in
deriving the Hamiltonian following from the action (4.146)
with c2 ≠ 0. This consists on working out a convenient
component form of the integrand of this topological term in
the action:

F ðX4Þ ∧ F ðX4Þ ≡X
μ<ν
ρ<λ

F μνF ρλdxμ ∧ dxν ∧ dxρ ∧ dxλ

¼ d4x
X
μ<ν

F μν � F μν; ð5:79Þ

where, as usual, the Hodge dual of the field strength is
defined as

�F μν ≡ 1

2

X
ρ;λ

ϵμνρλF ρλ; ð5:80Þ

d4x is the volume element of the now Minkowskian
spacetime X4 and xμ refers collectively to its coordi-
nates ðt; x1; x2; ~ψÞ.
Using the approximation (5.77), (5.79) and recalling

(4.113), we are ready to write the first line in the action
(4.146) of our theory (which we denote as SL1) in the
following suitable manner:

21The reader should not worry at this time over terminology.
We shall introduce the concept of topological twist and twist our
own theory in due time, in Sec. VI C.

22We remind the reader that any specific choice of these warp
factors and dilaton should be checked to preserve N ¼ 2
supersymmetry. This idea will be made precise in Sec. VI B.
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SL1 ¼
Z

d4xTr
X
μ<ν

�
C1c11
V3

F μνF μν

þ C1 sin θncqðθncÞF μν � F μν

�
: ð5:81Þ

The reader will of course right away notice that
SL1 is precisely Maxwell’s action with a Θ-term (see,
for example, in (2.1) in [41]). The correlation becomes
fully apparent once we identify our coefficients (which
only depend on supergravity variables) with the Yang-
Mills coupling and gauge theory Θ-parameter as

C1c11
V3

≡ 4π

g2YM
; C1 sin θncqðθncÞ≡ Θ

2π
: ð5:82Þ

The above makes concrete the long standing promise of
Sec. II A. There, we claimed that introducing the non-
commutative deformation labeled by the parameter θnc
would lead to a Θ-term in the four-dimensional gauge
theory associated to the M-theory configuration (M, 1).
From (5.82) it is clear that θnc ¼ 0 would lead to no
Θ-term in the gauge theory, so the deformation is indeed
successful in replacing the axionic background of [10]
to source this topological term. (Later on, in Sec. VI C,
we shall see that this topological term is a fundamental
ingredient to convert the boundary X3 of X4 into a
suitable space for the embedding of knots. This is
because such term allows us to define a topological
theory in X3.) It is standard to combine the Yang-Mills
coupling and the Θ-parameter into a single complex
coupling constant τ as

τ≡ Θ
2π

þ i
4π

g2YM
¼ C1

�
sin θncqðθncÞ þ i

c11
V3

�
; ð5:83Þ

where the last equality follows from our prior identi-
fication (5.82) and reproduces (3.183) in [13].
The Hamiltonian associated to SL1 can be directly read

from (2.2) in [41]. Note however that we must do an overall
sign change (we work in the opposite Minkowski signature
convention) and account for the different overall normali-
zation too. Explicitly, we obtain

HL1 ¼
Z

d4xTr

�
2i

τ− τ̄
ΠiΠi þ i

τþ τ̄

τ− τ̄
ΠiBi þ

i
2

ττ̄

τ− τ̄
BiBi

�

¼ 2i
τ− τ̄

Z
d4xTr

�
Πi þ τ

2
Bi

��
Πi þ

τ̄

2
Bi

�
; ð5:84Þ

where i ¼ ðx1; x2; ~ψÞ spans the spatial coordinates of X4

and the canonical momenta and magnetic field in our case
are given by

Πi ¼ C1c11
V3

F 0i; Bi ¼ 2ϵijkF jk: ð5:85Þ

This is the same Hamiltonian that appears in (3.187) in [13]
too:

HL1 ¼
2i

τ − τ̄

Z
d4xTr

�
C1c11
V3

F 0i þ τϵijkF jk

�

×

�
C1c11
V3

F 0i þ τ̄ϵilmF lm

�
; ð5:86Þ

where τ̄ denotes the complex conjugate of τ. An uncom-
plicated yet very useful rewriting of this Hamiltonian in
terms of only the complex coupling τ and the field strengths
is the following:

HL1¼
Z

d4xTr

�
τ− τ̄

2i

X3
i¼1

ðF 0iF 0iÞþ4ijτj2
τ− τ̄

X2
α;β¼1

ðF αβF αβÞ

þ8ijτj2
τ− τ̄

X2
α¼1

ðF α ~ψF α ~ψ Þ

þðτþ τ̄Þ
X3
i;j;k¼1

ϵ0ijkðF 0iF jkÞ
�
; ð5:87Þ

which the reader may verify quite effortlessly.
At this point, we are ready to write the full Hamiltonian

following from (4.146), topological piece included. All that
is left to do is couple the Hamiltonian (5.87) to the real
scalar fields Ar;Aϕ1

;A~3 and φk’s (with k ¼ 1, 2, 3). Our
prior meticulous analysis of the c2 ¼ 0 case makes this task
almost trivial. Keeping the last term in (5.87) separate, we
can couple the scalar fields as in (5.31). The only difference
is that, now, the prefactors for the terms involving field
strengths will be different, matching the ones in (5.87). Of
course, the coefficients that do not have a supergravity
interpretation remain constrained as summarized in
Table III. Explicitly, the full Hamiltonian is
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H ¼
Z

d4xTr

8<
:X

2

α¼1

0
@ ffiffiffiffiffiffiffiffiffiffi

τ − τ̄

2i

r
F α0 −

ffiffiffiffiffiffiffiffiffiffiffiffi
C1cα~3
V3

s
DαA~3

1
A2

þ
0
@ ffiffiffiffiffiffiffiffiffiffi

τ − τ̄

2i

r
F ~ψ0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C1c ~ψ ~3

V3

s
D ~ψA~3

1
A2

þ C1

V3

h
ð ffiffiffiffiffiffi

c0r
p

D0Ar − i
ffiffiffiffiffi
a2

p ½A~3;Ar�Þ2 þ
� ffiffiffiffiffiffiffiffi

~c0ϕ1

q
D0Aϕ1

− i
ffiffiffiffiffi
a4

p ½A~3;Aϕ1
�
�
2 þ c0~3ðD0A~3Þ2

i

þ
X3
k;l¼1

�
ð
ffiffiffiffiffiffiffi
b0k

p
D0φk − i

ffiffiffiffiffiffi
c~3k

p ½A~3;φk�Þ2 þ qð1Þkl dkl½φk;φl�2 þ
X3
γ¼2

qðγÞk cyγk½Ayγ ;φk�2
�

þ
X2
α;β¼1

0
@ ffiffiffiffiffiffiffiffiffiffiffi

2ijτj2
τ − τ̄

r
F αβ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
C1c ~ψr

V3

s
sð1Þαβ ϵαβ ~ψrD ~ψAr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 ~c ~ψϕ1

V3

s
sð2Þαβ ϵαβ ~ψϕ1

D ~ψAϕ1

− igð4Þαβ

ffiffiffiffiffiffiffiffiffiffi
C1a1
V3

s
½Ar;Aϕ1

� − i
X3
k;l¼1

gð1Þαβkl

ffiffiffiffiffiffi
dkl

p
½φk;φl� − i

X3
k¼1

X3
γ¼2

gðγÞαβk
ffiffiffiffiffiffiffiffi
cyγk

p ½Ayγ ;φk� þ
X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵαβ ·m

ð1Þ
δk Dδφk

1
A2

þ
X2
α¼1

0
@ ffiffiffiffiffiffiffiffiffiffiffi

4ijτj2
τ − τ̄

r
F α ~ψ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
C1cβr
V3

s
tð1Þα ϵα ~ψβrDβAr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 ~cβϕ1

V3

s
tð2Þα ϵα ~ψβϕ1

DβAϕ1
− ihð4Þα ~ψ

ffiffiffiffiffiffiffiffiffiffi
C1a1
V3

s
½Ar;Aϕ1

�

− i
X3
k;l¼1

hð1Þα ~ψkl

ffiffiffiffiffiffi
dkl

p
½φk;φl� − i

X3
k¼1

X3
γ¼2

hðγÞα ~ψk
ffiffiffiffiffiffiffiffi
cyγk

p ½Ayγ ;φk� þ
X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵα ~ψ ·mð2Þ

δk Dδφk

1
A2

þ C1

V3

½c ~ψrsð1ÞðD ~ψArÞ2 þ ~c ~ψϕ1
sð2ÞðD ~ψAϕ1

Þ2 þ cβrtð1ÞðDβArÞ2 þ ~cβϕ1
tð2ÞðDβAϕ1

Þ2 þ a1qð4Þ½Ar;Aϕ1
�2� þ ~χT

þ ðτ − τ̄Þ
X3
i;j;k¼1

ϵ0ijkF 0iF jk

9=
;þ ~QEM: ð5:88Þ

Note that the terms ð~χT; ~QEMÞ are now written with a tilde
to denote they are not the same as those appearing in (5.31),
although they still stand for the crossed terms related to the
coefficients of Table III and the electric and magnetic
charges in the theory, respectively. Note the close resem-
blance between the above and the Hamiltonian for the
c2 ¼ 0 case in (5.31). Essentially, they are the same up to
prefactors in the terms containing field strengths, but there
is an all important additional term now [appearing in the
last line in (5.88)].
This similarity between the c2 ¼ 0 Hamiltonian and the

c2 ≠ 0 one allows us to easily generalize the results in
Sec. VA to the present and relevant case. In particular, it is
remarkably simple to minimize the energy of (5.88) for
static configurations. That is, to find the BPS conditions for

our gauge and scalar fields. Let us nevertheless show a few
steps in the process in the following for clarity, since we
will not minimize the energy in exactly the same way.
As before, we choose to work in the gauge (5.35) and

demand that (5.40) and (5.42) hold true. This time, instead
of ensuring the vanishing of the seventh squared term via
(5.43), we will choose

qð1Þkl ¼ 0; ∀ k; l ¼ 1; 2; 3: ð5:89Þ
This choice leads to a more rich dynamics of the φk scalar
fields (than that we considered in the c2 ¼ 0 case), which,
as we shall see, will play a role in the study of the boundary
theory in Sec. (VI C) later on. For the time being, the men-
tioned choices reduce the Hamiltonian to (3.225) in [13]:

H¼
Z

d4xTr
	X2

α¼1

� ffiffiffiffiffiffiffiffiffiffiffi
4ijτj2
τ− τ̄

r
F α ~ψ − i

X3
k;l¼1

hð1Þα ~ψkl

ffiffiffiffiffiffi
dkl

p
½φk;φl�þ

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵα ~ψ ·m

ð2Þ
δk Dδφk

�
2

þ
X2
α;β¼1

� ffiffiffiffiffiffiffiffiffiffiffi
2ijτj2
τ− τ̄

r
F αβ− i

X3
k;l¼1

gð1Þαβkl

ffiffiffiffiffiffi
dkl

p
½φk;φl�þ

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵαβ ·m

ð1Þ
δk Dδφk

�
2

þðτþ τ̄Þ
X3
i;j;k¼1

ϵ0ijkF 0iF jkþ ~χT




þ ~QEM: ð5:90Þ
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In Sec. VA, we used many coefficient choices to
simplify the computation as much as possible. On this
occasion, we wish to keep our coefficients arbitrary for as
long as possible (this freedom of choice will be beneficial
once we look at the boundary theory). Consequently, we
will take as our BHN equations the following:

ffiffiffiffiffiffiffiffiffiffiffi
4ijτj2
τ − τ̄

r
F α ~ψ − i

X3
k;l¼1

hð1Þα ~ψkl

ffiffiffiffiffiffi
dkl

p
½φk;φl�

þ
X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵα ~ψ ·mð2Þ

δk Dδφk ¼ 0;

ffiffiffiffiffiffiffiffiffiffiffi
2ijτj2
τ − τ̄

r
F αβ − i

X3
k;l¼1

gð1Þαβkl

ffiffiffiffiffiffi
dkl

p
½φk;φl�

þ
X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵαβ ·m

ð1Þ
δk Dδφk ¼ 0; ð5:91Þ

for all α, β ¼ 1, 2. In view of the detailed computation in
Sec. VA 2, it is not hard to infer that on this occasion too we
will be able to absorb ~XT through a meaningless renaming
of coefficients by imposing certain consistency require-
ments to our scalar fields φk’s. The conditions there
derived, namely (5.70), (5.72) and (5.73), are completely
independent of the prefactors in the various terms of the
Hamiltonian. Hence, the only alteration needed in that
calculation consists of accommodating the choice (5.89)
instead of (5.43). The attentive reader will surely be easily
convinced that the consistency requirements generalize to

D1φ2 −D2φ1 ¼ D1φ3 −D ~ψφ1 ¼ D2φ3 −D ~ψφ2

¼ D1φ1 þD2φ2 þD ~ψφ3 ¼ 0 ð5:92Þ

in the present case. Once the energy has thus been
minimized, the Hamiltonian reduces to

H ¼ ðτ þ τ̄Þ
Z

d4x
X3
i;j;k¼1

ϵ0ijkTrðF 0iF jkÞ þ ~QEM: ð5:93Þ

In the following section, we will devote quite some effort to
the study of the above Hamiltonian. But before jumping
into the pertinent details, let us briefly review the main
contents of the present section.
We have shown that the action (4.146) is associated with

the Hamiltonian (5.88). Both of them are defined in the
space X4. A consistent minimization of the energy of (5.88)
for static configurations of the fields, working in the gauge
(5.35), is obtained by imposing the constraints (5.40),
(5.42) and (5.92). We also require that the BHN equations
in (5.91) be satisfied. In this energy minimization process,
the coefficients of Table III remain mostly arbitrary. The

only choice made is that in (5.89). The Hamiltonian then
reduces to (5.93).

VI. THE BOUNDARY THEORY

As we just mentioned, the minimization of the energy of
the Hamiltonian stemming from the M-theory configura-
tion (M, 1) presented in Sec. V B leads to (5.93). In the
present section, we will first show that (5.93) is defined
only in X3, the boundary of X4.
This realization then requires us to find suitable boun-

dary conditions for all the fields in the gauge theory. Of
course, we are referring to half-BPS boundary conditions:
ones that break the N ¼ 4 supersymmetry of the theory to
N ¼ 2. Although so far we have insisted that by con-
struction the configuration (M, 1) is N ¼ 2 supersymmet-
ric, it is only at this stage that we shall be able to make this
claim fully precise. Indeed, as we shall see, this desired
amount of supersymmetry requires of no constraint on the
parameters that characterize (M, 1) (those summarized in
Table II) and is enforced by appropriate boundary con-
ditions only.
Finally, we shall note that, if the configuration (M, 1) is

to be useful for the study of knots and their invariants, the
theory in X3 better be topological. In this manner, it will be
possible to embed the knots (which are topological objects)
in X3 consistently. To this aim, we will present the notion of
topological twist and show that, upon twisting, our gauge
theory indeed becomes a suitable framework for the
realization of knots.
A graphical summary of the main results of Sec. VI is as

shown in blue in Fig. 10. From this schematic point of view,
Sec. VI A can be understood as the derivation of (6.11).
Similarly, Sec. VI B contains the details on (6.19)–(6.22)
and Secs. VI C and VI C 1 deal with the technicalities
involved in topologically twisting all previously cited
results.

A. First steps towards determining the boundary theory

In this section, we have one very concrete goal: to rewrite
the Hamiltonian of our gauge theory after its energy has
been minimized [this is given by (5.93)] as an integral over
X3 instead of X4. [Once more, we remind the reader that
these spaces were defined and described around (4.1).] In
other words, we want to show that, for the gauge choice
(5.35) and after imposing the BPS conditions (5.40), (5.42),
(5.92) and (5.91), the total Hamiltonian (5.88) reduces to a
boundary Hamiltonian. As a matter of a fact, this does not
involve any conceptual hurdle, so let us jump into compu-
tation right away.
After having left the electric and magnetic charges ~QEM

unspecified for the whole of Sec. V, we finally take it upon
us to specify them. As we already hinted previously, we
will do so by comparing our Hamiltonian (5.88) to that in
(2.4) in [40] and then inferring ~QEM from (2.5) in that same
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reference. Obviously, one could do the computation
explicitly. However, this will not give us any further
insight into our theory and so we do not attempt such
an approach here. From our identifications in (5.2) and our
choice (5.40), it is clear that the electric charge vanishes in
our case:

~QEM ≡ ~QE þ ~QM; ~QE ¼ 0: ð6:1Þ

It is also easy to see that the magnetic charge is of the form

~QM ¼
Z

d4x∂ ~ψqM ¼
Z

d3xqM; d3x≡dtdx1dx2; ð6:2Þ

where we have ignored terms which are total derivatives
along the unbounded directions ðt; x1; x2Þ, since they do not
affect the physics of our theory and where we have
rewritten ~QM as a boundary term, defined in X3 instead
of the whole X4. Of course, this comes as no surprise: we
have long been anticipating that the electric and magnetic
charges would be restricted to X3 only. Further using (5.2)
and noting that (5.88) is exactly (2.4) in [40] up to
prefactors, it is clear that qM is given by

qM ¼
X3

k;l;m¼1

Tr

�X2
α;β¼1

d1ϵkαβφkF αβ

þ ϵklm

�
id2
3

φk½φl;φm� þ d3φkDlφm

��
; ð6:3Þ

where ðd1; d2; d3Þ are coefficients that account for the
difference of prefactors between our Hamiltonian and that
in [40]. Their determination is not straightforward, so let us
work them out in details.
Simply looking at our Hamiltonian (5.88), it is evident

that the field strength F αβ picks up the additional prefactorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ijτj2ðτ − τ̄Þ−1

p
for all α, β ¼ 1, 2, as compared to [40].

Similarly, for fixed values of ðl; mÞ, it follows that to Dlφm

we must associate the prefactor
ffiffiffiffiffiffiffi
blm

p
mð1Þ

lm .
23 Actually, the

only nontrivial prefactors are those that we should attach to
φk and ½φl;φm�. To establish what they are, we first note
that

X2
α;β¼1

X3
k;l¼1

gð1Þαβkl

ffiffiffiffiffiffi
dkl

p
½φk;φl�

¼ 4
ffiffiffiffiffiffiffi
d12

p
ðgð1Þ1212½φ1;φ2� þ gð1Þ1213½φ1;φ3� þ gð1Þ1223½φ2;φ3�Þ;

ð6:4Þ

where we have used the fact that gð1Þαβkl is antisymmetric in
ðα; βÞ and in ðk; lÞ by definition (see Table III) and dkl is
independent of ðk; lÞ [see (4.131)]. From the above it
follows that to the ½φl;φm� term we must associate the

factor 4
ffiffiffiffiffiffiffi
dlm

p
gð1Þ12lm. Let us denote as ðy1; y2; y3Þ the pre-

factors that we need to associate to ðφ1;φ2;φ3Þ, respec-
tively. From (6.4), we also have that

y1y2 ¼ 4
ffiffiffiffiffiffiffi
d12

p
gð1Þ1212; y1y3 ¼ 4

ffiffiffiffiffiffiffi
d12

p
gð1Þ1213;

y2y3 ¼ 4
ffiffiffiffiffiffiffi
d12

p
gð1Þ1223: ð6:5Þ

This can be easily solved to yield

y1 ¼ 2d1=412

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1Þ1212g

ð1Þ
1213

gð1Þ1223

vuut ; y2 ¼ 2d1=412

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1Þ1223g

ð1Þ
1212

gð1Þ1213

vuut ;

y3 ¼ 2d1=412

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1Þ1223g

ð1Þ
1213

gð1Þ1212

vuut : ð6:6Þ

Putting all our observations on the prefactors together, our
discussion implies

d1 ¼ yk

ffiffiffiffiffiffiffiffiffiffiffi
2ijτj2
τ − τ̄

r
; d2 ¼ 4yk

ffiffiffiffiffiffiffi
dlm

p
gð1Þ12lm;

d3 ¼ yk
ffiffiffiffiffiffiffi
blm

p
mð1Þ

lm ; ð6:7Þ

which fully specifies the magnetic charge in our theory.
Note that the indices of these coefficients are to be
contracted with the appropriate terms in (6.3). Note also
that (6.7) agrees with (3.233) in [13], after appropriately
summing over the free index k.
Once we have the explicit form of ~QEM in (5.93),

we can focus on the only other term in this
Hamiltonian, namely

Htop ≡ ðτ þ τ̄Þ
Z

d4x
X3
i;j;k¼1

ϵ0ijkTrðF 0iF jkÞ: ð6:8Þ

Recall that ði; j; kÞ stand for the spatial directions of X4:
ðx1; x2; ~ψÞ. Recall also that, after our simplifying
assumption in (5.77), X4 is now a Lorentz-invariant space.
A quick exercise of opening indices in both (5.79) and the
above allows us to rewrite Htop as

Htop ¼ ðτ þ τ̄Þ
Z
X4

TrðF ðX4Þ ∧ F ðX4ÞÞ: ð6:9Þ

It is well known that the above can be rewritten as a Chern-
Simons type of boundary integral,

23To fully understand this prefactor, the reader may find it
useful to recall that the dot product appearing in the relevant term
of the Hamiltonian was taken to be the usual scalar product
around (5.47).
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Stop¼ðτþ τ̄Þ
Z
X3

Tr

�
A∧ dAþ2i

3
A∧A∧A

�
; ð6:10Þ

which is gauge invariant if and only if ðτ þ τ̄Þ is an integer
multiple of 2π. We will discuss this subtlety shortly, in
Sec. VI C. For the time being, however, we will just collect
our results so far. Using (6.2) and Htop in (5.93), we can
indeed write the Hamiltonian of our theory, after its bulk
energy has been minimized, as a boundary action, the way
we wanted:

Sbnd ≡ ~QM þ Stop

¼
Z

d3xqM þ ðτ þ τ̄Þ

×
Z
X3

Tr

�
A ∧ dAþ 2i

3
A ∧ A ∧ A

�
; ð6:11Þ

with qM as in (6.3) and the gauge and scalar fields in the
theory satisfying the constraint and BHN equations men-
tioned at the end of the previous section.
At this stage, we have been able to minimize the energy

of the four-dimensional gauge theory defined in X4 that
follows from the M-theory configuration (M, 1) of part I.
By construction, this bulk theory has N ¼ 4 supersym-
metry. After such minimization, we have just found out that
we are left with a theory whose action is given by (6.11).
That is, we have a theory defined on the three-dimensional
boundary X3 of X4. All through parts I and II, we have
insisted that the presence of this boundary provides a half-
BPS condition to the full four-dimensional theory, thus
reducing the amount of supersymmetry to N ¼ 2. But, of
course, this does not happen naturally: in general, arbitrary
boundary conditions on the fields break all supersymmetry.
In the next section, we derive the constraints required to
ensure the desired maximally supersymmetric boundary
conditions. In this way, we will finally make precise what
we mean when we say that the warp factors in (2.2) and
(2.26) and the dilaton in (4.5) should be chosen such that
N ¼ 2 supersymmetry is ensured.24

B. Ensuring maximally supersymmetric
boundary conditions

Whether boundary conditions that preserve some
amount of supersymmetry are possible in a four-
dimensional, N ¼ 4 Yang-Mills theory coupled to matter
and, if so, what these look like are fundamental questions
that were answered in [42]. In this section, we review the
relevant results of this work and adapt them to our own
theory. As we shall see, ensuring that the boundary theory
(6.11) previously derived has N ¼ 2 supersymmetry is

indeed possible and only requires a mild constraint be
satisfied by our supergravity parameters.
As a first step towards obtaining the much desiredN ¼ 2

boundary conditions, we must first understand the sym-
metries of our M-theory configuration (M, 1). As was
explained in Sec. II and as sketched in Fig. 1, (M, 1) is
dual to the D3-NS5 system in type IIB. The non-Abelian
enhanced scenario amounts to considering N superposed
D3-branes, as argued in Sec. II A 1. In the following, wewill
use this duality to our advantage and discuss the spacetime
symmetries of (M, 1), in its non-Abelian version, in the
simpler scenario of the multiple D3’s ending on an NS5
system.We remind the reader that the underlying metric and
orientations of both the multiple D3-branes and the single
NS5-brane in this setup were introduced right at the
beginning of Sec. II and are graphically summarized in
Fig. 2(a). It is also worth bearing in mind that, upon
dimensional reduction, the four-dimensional gauge theory
on the world-volume of the D3-branes has SUðNÞ as its
gauge group andN ¼ 4 supersymmetry. Having refreshed a
bit our memory, it is easy enough to argue what symmetries
are present in the D3-NS5 system.
Consider the usual type IIB superstring theory. This is

defined in R1;9. We will label the corresponding coordi-
nates as xI , with I ¼ 0; 1;…; 9. The associated metric is
simply ηIJ ¼ diagð−1; 1;…; 1Þ. Hence, the spacetime sym-
metry group is SOð1; 9Þ. As is well known, SOð1; 9Þ is
generated by Gamma matrices ΓI , which satisfy the usual
Clifford algebra

fΓI;ΓJg ¼ 2ηIJ; ð6:12Þ

and has 16 as is its irrep. Here, we consider a ten-
dimensional gauge field and Majorana-Weyl fermion,
related to each other by their supersymmetry transforma-
tions. We denote as ε the supersymmetry generator, a
Majorana-Weyl spinor satisfying

Γ̄ε ¼ ε; Γ̄≡ Γ0Γ1…Γ9: ð6:13Þ

and thus transforming in the 16 of SOð1; 9Þ. Here,
Γ0Γ1…Γ9 stands for the antisymmetrized product of
ðΓ0;Γ1;…;Γ9Þ.
The inclusion of multiple, coincident D3-branes breaks

SOð1; 9Þ to SOð1; 3Þ × SOð6Þ, the SOð1; 3Þ oriented along
the same directions as the D3’s. The NS5-brane further
breaks the symmetry group to (3.243) in [13]:

U ≡ SOð1; 2Þ × SOð3Þ × SOð3Þ: ð6:14Þ

This is most easily understood in two steps. First, the NS5-
brane restricts one of the spatial coordinates of the D3-
branes to take only non-negative values. [In our notation,
ψ ≥ 0, as can be seen in Fig. 2(a).] Demanding that Lorentz
transformations leave the boundary (ψ ¼ 0) invariant,

24We remind the reader that, presently, the choice is con-
strained by (5.78), owing to our simplifying assumption in (5.77).
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SOð1; 3Þ breaks to SOð1; 2Þ. On the other hand, the
NS5-brane also breaks SOð6Þ to SOð3Þ × SOð3Þ. One of
these SOð3Þ’s acts on the three-dimensional subspace
spanned by the NS5-brane which is orthogonal to the
directions shared with the D3’s [in the language of Fig. 2(a),
along ðx3; x8; x9Þ]. The other SOð3Þ then acts on the
remaining spacetime directions. [These are ðθ1;ϕ1; rÞ, sup-
pressed in Fig. 2(a).] We denote as V8 the irrep of U: the
(2; 2; 2) tensor product.
Having established U in (6.14) as the symmetry group of

the D3-NS5 system, it follows that U is the symmetry of the
configuration (M, 1) too. However, caution is needed:
some of the dualities required to obtain (M, 1) from the D3-
NS5 system are nontrivial [for example, the T-duality in
Figs. 2(c) to 2(d)]. Consequently, for our coming analysis
to hold true, any specific choice of the warp factors (2.2)
and (2.26) and dilaton (4.5), with the constraint (5.78), that
one may wish to consider in the metric of (M, 1) (2.56)
should be checked to be U invariant.
Focusing on the case where (M, 1) is indeed U invariant,

we can precisely reproduce the results in [10]. Let us see
how. As we saw in Sec. IV, the scalar fields associated with
the directions on which the SOð3Þ’s of U act are
ðA~3;φ1;φ2Þ and ðφ3;Aϕ1

;ArÞ, respectively. In the lan-

guage of [10,42], these are collectively referred to as X⃗ and
Y⃗. This identification is the same as in (3.155) in [13]:

X⃗ ≡ ðA~3;φ1;φ2Þ; Y⃗ ≡ ðφ3;Aϕ1
;ArÞ ð6:15Þ

and will soon prove useful to us.
Let us make yet one more observation before we

determine the desired half-BPS boundary conditions. We
note that the 16 of SOð1; 9Þ decomposes as

16 ¼ V8 ⊗ V2; ð6:16Þ

where V2 is a two-dimensional real vector space. The
natural elements that act on V2 are the even elements of the
SOð1; 9Þ Clifford algebra that commute with U. It follows
then that the supersymmetry generator ε can be decom-
posed as

ε ¼ ε8 ⊗ ε2; ε8 ∈ V8; ε2 ∈ V2: ð6:17Þ

In order for ε to be U invariant, ε2 must be a nonzero, fixed
element of V2 (ε8 is just some arbitrary element of V8).
Again following [10,42], we choose

ε2 ¼
�−a

1

�
; ð6:18Þ

with a a real parameter. The above is precisely the last
ingredient we need to finally discuss half-BPS boundary
conditions in the four-dimensional gauge theory following
from (M, 1).

It is well established (for example, see [43]) that
boundary conditions preserve some degree of supersym-
metry if and only if they ensure that the normal (to the
boundary) component of the corresponding supercurrent
vanishes. This in turn constrains the associated supersym-
metry generator too. Thanks to the above discussion and, in
particular, to our identifications (6.15), we can directly read
off from [10,42] the boundary conditions and constraint on
ε2 thus obtained. We refer the interested reader to [42] for a
detailed derivation of the results we now quote. The
boundary conditions on the fields are as follows. The
scalar fields ðφ3;Aϕ1

;ArÞ must all vanish at ~ψ ¼ 0:

φ3 ¼ Aϕ1
¼ Ar ¼ 0: ð6:19Þ

The remaining scalar fields must satisfy

D ~ψA~3 −
2a

1þ a2
½φ1;φ2� ¼ 0;

D ~ψφ1 −
2a

1þ a2
½φ2;A~3� ¼ 0;

D ~ψφ2 −
2a

1þ a2
½A~3;φ1� ¼ 0 ð6:20Þ

at the boundary. Due to our choice (5.40), the above further
simplifies to

½φ1;φ2� ¼ D ~ψφ1 ¼ D ~ψφ2 ¼ 0; ð6:21Þ

for a general value of the parameter a. At ~ψ ¼ 0, the gauge
fields are required to obey

F ~ψμ þ
a

1 − a2
ϵμνλF νλ ¼ 0; ∀ μ; ð6:22Þ

where ðμ; ν; λÞ label the spacetime directions ðt; x1; x2; ~ψÞ.
As for the constraint on the supersymmetry generator, it
relates the parameter a in (6.18) to the Yang-Mills coupling
and gauge theory Θ-parameter as

Θ=ð2πÞ
4π=g2YM

¼ 2a
1 − a2

: ð6:23Þ

Owing to our prior identifications (5.82) of these two
parameters to coefficients in our four-dimensional gauge
theory, we can give a supergravity interpretation of a also:

V3 sinθncqðθncÞ
c11

¼ 2a
1−a2

→ a¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ
�

c11
V3 sinθncqðθncÞ

�
2

s

−
c11

V3 sinθncqðθncÞ
: ð6:24Þ

This is exactly what is suggested in (3.222) and (3.223) in
[13]. Yet another way to express the same relation follows
from using (4.113) and (5.82) in (6.23), which reproduces
(3.251) in [13]:
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c2 ¼
4π

g2YM

2a
1 − a2

: ð6:25Þ

Now that our boundary theory in (6.11) is N ¼ 2-
supersymmetric, we need to still overcome one more
difficulty. If our M-theory configuration (M, 1) and the
four-dimensional gauge theory stemming from it through
dimensional reduction are to be of use in the study of knots
and their invariants: what is the three-dimensional space
where knots should be realized? Undoubtedly, X3 spanned
by ðt; x2; x2Þ. Or more precisely, its Euclidean version.
Now, since knots are topological objects, it is clear that the
theory in X3 ought to be topological too. (At least, this
should be the case for our construction to be an appropriate
framework to support knots.) However, a quick look at our
action (6.11) immediately tells us that this is not the case in
our setup. The second, Chern-Simons term in the boundary
action is indeed topological, but the presence of the
magnetic charge adds a nontopological contribution that
naively seems undesirable from our point of view. The
resolution to this puzzle was first worked out in the well-
known work [44] and it consists on performing a so-called
topological twist to our four-dimensional gauge theory. In
the following, we summarize the basics of this technique
and apply it to our own theory.

C. Obtaining a Chern-Simons boundary action:
Topological twist

We begin this section by introducing the concept of
topological twist. Following which, we shall show that
topologically twisting our gauge theory, its corresponding
boundary action is Chern-Simons-like.
If we momentarily ignore the fact that ~ψ ≥ 0, then the

symmetry of our M-theory configuration (M, 1) is as in
(6.14), but with SOð1; 2Þ replaced by SOð1; 3Þ. In this case,
the topological twist consists on extending the Lorentz
symmetry SOð1; 3Þ acting along ðt; x1; x2; ~ψÞ to a new
symmetry S0. S0 rotates the ðt; x1; x2; ~ψÞ subspace and,
simultaneously, the ð~x3; θ1; x8; x9Þ subspace too. It is not
hard to see that this new symmetry necessarily leads to the
reinterpretation of the scalar fields ðA~3;φ1;φ2;φ3Þ asso-
ciated to the new rotation directions as a one-form:

Φ¼
X
μ

Φμdxμ; ðΦ0;Φ1;Φ2;Φ3Þ¼ iðφ3;φ1;φ2;A~3Þ:

ð6:26Þ
There should be no confusion regarding notation. As
introduced in (5.79) and used through all the previous
section, xμ refers to the spacetime coordinates ðt; x1; x2; ~ψÞ.
The precise identification between the components of this
one-form and our scalars suggested above is such that we
match the notation in [10]. It also matches (3.156) in [13].
However, other identifications could also be entertained. In
fact, we will do so later on, in Sec. VI C 1.

As a short aside, it will soon prove useful to introduce
some notation. Following both [10] and (3.157) in [13], we
combine the scalar fields ðAϕ1

;ArÞ associated with the
directions ðϕ1; rÞ not affected by S0 into a complex scalar
field:

σ ≡Ar þ iAϕ1
; σ̄ ¼ Ar − iAϕ1

: ð6:27Þ

In the same spirit of using the same notation as in [10], we
shall rescale our gauge fields as in (3.191) in [13]:

A ¼
X
μ

Aμdxμ; Aμ ¼ iAμ; ∀ μ: ð6:28Þ

The corresponding field strengths are then

F ¼ dAþ A ∧ A ¼
X
μ;ν

Fμνdxμ ∧ dxν;

Fμν ¼ ∂μAν − ∂νAμ þ ½Aμ; Aν�: ð6:29Þ

Clearly, this leads us to introduce new covariant derivatives,
which match the ones used so far [introduced earlier in
(4.51)]:

Dμ ≡ ∂μ þ ½Aμ; � ¼ ∂μ þ i½Aμ; �≡Dμ; ∀ μ: ð6:30Þ

Of course, the above topological twist must be made
compatible with the fact that ~ψ ≥ 0 in our setup, before we
can apply it to our four-dimensional gauge theory. What is
more, it must also be made compatible with having N ¼ 2
supersymmetric boundary conditions on the fields. In
other words, before proceeding further, all the results in
Sec. VI B must be extended to the case where the gauge
theory is twisted. Such generalization was first done in
[10,44], where the reader may find all the computational
details. In the following, we simply review the main
pertinent results in these works, while adapting them to
our present construction.
We begin by making the supersymmetry generator ε in

(6.13) compatible with the new symmetry S0. That is, we
demand

ðΓμν þ Γ ~μ ~νÞε ¼ 0; ∀ μ; ν ¼ t; x1; x2; ~ψ ;

∀ ~μ; ~ν ¼ ~x3; θ1; x8; x9; ð6:31Þ

so that ε is S0 invariant. This condition has a two-dimen-
sional space of solutions. If we denote as ðεl; εrÞ the basis
of solutions, then the supersymmetry generator can be
written as a linear combination of them both:

ε ¼ εl þ t̂εr; t̂ ∈ C; ð6:32Þ

where the hat on t̂ is meant to differentiate the above
complex variable from the time coordinate t. At this point,
one repeats the same procedure as in the previous section:
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one requires that the component of the supercurrent
associated to ε above that is normal to the ~ψ ¼ 0 boundary
vanishes. In this manner, we reproduce the same boundary
conditions as before [these are (6.19)–(6.22)], but in the
twisted case:

σ ¼ σ̄ ¼ Φ0 ¼ ½Φ1;Φ2� ¼ D ~ψΦ1 ¼ D ~ψΦ2

¼ F ~ψμ −
i
2

t̂2 þ 1

t̂2 − 1
ϵμνλFνλ ¼ 0; ∀ μ: ð6:33Þ

Comparing the last boundary condition above with its
untwisted counterpart in (6.22), it follows that the param-
eters a and t̂ are related to each other. Since a is additionally
related to the gauge theory parameters ðg2YM;ΘÞ, so must t̂
be. These relationships also follow from studying the
constraint imposed on the supersymmetry generator by
demanding the vanishing of the normal component of its
supercurrent. In this latter approach, as shown in [10], the
constraint that ε in (6.32) must satisfy turns out to be the
exact same constraint that ε2 in (6.18) has to satisfy in
the untwisted case, which then led us to (6.23). Either of the
two approaches yields (3.224) and (3.246) in [13]:

t̂ ¼ −i
1þ ia
1 − ia

: ð6:34Þ

The above can be rewritten in many interesting ways. For
example, using (6.23), we can write t̂ as a function of the
Yang-Mills coupling and Θ-parameter of our gauge theory:
t̂ ¼ t̂ðg2YM;ΘÞ. Further using (5.82), we can express t̂ in
terms of supergravity parameters of our M-theory configu-
ration (M, 1): t̂ ¼ t̂ðc11; V3; θncÞ. A particularly neat result
follows from considering (5.83) as well:

t̂ ¼ � jτj
τ
; ð6:35Þ

which the reader can verify without excessive algebraic
effort and which is (3.184) in [13]. This is interesting
because it is not obvious a priori that the two complex
parameters ðτ; t̂Þ that characterize the twisted gauge theory
should be related to one another. Additionally, it is
surprising that they should have such a mathematically
simple relation.
Having introduced the topological twist and verified its

consistency with all the (super)symmetries in our setup, we
can proceed to twist the boundary action (6.11). As
anticipated, this will give rise to a topological theory in
X3. Let us see how exactly.
Using (6.26)–(6.30) in (6.11), we see that the boundary

theory after twisting becomes

SðtÞbnd ¼ −
Z

d3xqðtÞM − ðτ þ τ̄Þ

×
Z
X3

Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
: ð6:36Þ

From (6.3), the twisted magnetic charge density qðtÞM can
easily be seen to be

qðtÞM ¼
X2

a;b;c¼0

Tr

�X2
α;β¼1

d1ϵaαβΦaFαβ

þ ϵabc

�
d2
3
Φa½Φb;Φc� þ d3ΦaDbΦc

��
; ð6:37Þ

with ðd1; d2; d3Þ as in (6.7), albeit the indices there need to
be appropriately reinterpreted. As we will soon open up all
indices and make explicit their meaning, the reader should
not worry too much over notation at this stage. It is perhaps
worth mentioning that, in the last term,D ~ψ does not appear,
unlike in the untwisted case (6.3). This is simply because
the boundary conditions (6.33) guarantee no such contri-
bution occurs. On the other hand, although (5.35) and
(5.40) also force D0Φ ¼ 0, we shall carry these vanishing
terms around because they will make the coming derivation
of the topological boundary action more transparent. It goes
without saying that one can do the same calculation without
them too.
It turns out, however, that (6.36) is not quite the correct

twisted boundary theory. One more term, proportional to
the Chern-Simons term in (6.36), must be added to the
above:

SðtÞbnd;tot ¼ SðtÞbnd þ b2

Z
X3

Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
;

b2 ∈ C: ð6:38Þ

This additional term is required to ensure that all observ-
ables and states on the twisted gauge theory are invariant
under the supersymmetry generated by ε in (6.32). Upon
including such term, one more striking observation can be
made: not only are τ and t̂ related to each other, but also all
physics of the twisted theory depends solely on a particular
combination of the two parameters:

Ψ≡ τ þ τ̄

2
þ τ − τ̄

2

t̂ − t̂−1

t̂þ t̂−1
: ð6:39Þ

Ψ is usually referred to as “canonical parameter” and it
appears in the correct boundary theory as

SðtÞbnd;tot ¼ −
Z

d3xqðtÞM

þ iΨ
Z
X3

Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
: ð6:40Þ

Note that this allows us to determine the value of b2, the
coefficient of the required extra piece in the boundary
action, since
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−ðτþ τ̄Þ þ b2 ¼ iΨ⇒ b2 ¼
τþ τ̄

2
ð2þ iÞ þ i

τ− τ̄

2

t̂− t̂−1

t̂þ t̂−1
:

ð6:41Þ

Of course, none of the statements in the above para-
graph are obvious. Their proofs were worked out in
exquisite detail in Secs. 3.4 and 3.5 in [44].
Unfortunately, a review of these derivations is beyond
the scope of the present work. Nonetheless, the reader
should find no difficulty going through the cited reference,
as we have carefully made our notation coincident with the
one there used.

Having established (6.40) as the twisted boundary
action, showing its topological nature amounts to appro-
priately rewriting it. We will do so in a few steps, the first
consisting on expressing the twisted magnetic charge

density qðtÞM in differential geometry language. To this
aim, let us first introduce the exterior covariant derivative
of the twisted scalar fields (6.26):

dAΦ≡ dΦþ ½A;Φ�: ð6:42Þ

If we restrict dAΦ to X3 (where ~ψ ¼ 0 and thus d ~ψ ¼ 0 too)
and sinceΦ3 ¼ 0 due to (5.40) and (6.26), the above can be
explicitly written as

dAΦ ¼
X2
a;b¼0

�∂Φb

∂xa dxa ∧ dxb þ ½Aadxa;Φbdxb�
�

¼ ðD0Φ1 −D1Φ0Þdt ∧ dx1 þ ðD0Φ2 −D2Φ0Þdt ∧ dx2 þ ðD1Φ2 −D2Φ1Þdx1 ∧ dx2: ð6:43Þ

Then, we can use (6.43) to introduce three more quantities, defined in X3, that will soon become relevant to us:

Φ ∧ F ¼
�X2

a¼0

Φadxa
�

∧
�X2

α;β¼1

Fαβdxα ∧ dxβ
�

¼ 2Φ0F12d3x;

Φ ∧ Φ ∧ Φ ¼ ðΦ0½Φ1;Φ2� −Φ1½Φ0;Φ2� þΦ2½Φ0;Φ1�Þd3x;
Φ ∧ dAΦ ¼ ½Φ0ðD1Φ2 −D2Φ1Þ −Φ1ðD0ϕ2 −D2Φ0Þ þΦ2ðD0Φ1 −D1Φ0Þ�d3x: ð6:44Þ

(We remind the reader that d3x ¼ dt ∧ dx1 ∧ dx2 is the normalized volume element of X3.) Note that, in the above, we did
not take into account the whole twisted field strength introduced in (6.29). The reasons are similar to those which led us to
(6.43). Specifically, F0μ ¼ 0 for all μ, due to the constraint (5.35) and our gauge choice (5.40). Also, ~ψ ¼ 0 at the three-
dimensional boundary X3 of our spacetime X4, implying d ~ψ ¼ 0 there and thus no field strength stretching along this
direction.
To appreciate the benefit of having calculated (6.44), let us now carry out the sums in (6.37). In doing so, we shall use

(6.7) and, through explicit computation, clear any doubt regarding index notation, as previously promised. The first sum can
be easily seen to yield

X2
a;b;c¼0

X2
α;β¼1

d1ϵaαβΦaFαβ ¼ 2y3

ffiffiffiffiffiffiffiffiffiffiffi
2ijτj2
τ − τ̄

r
Φ0F12; ð6:45Þ

with the normalization convention ϵ012 ¼ 1 and y3 given by (6.6). The second sum gives

X2
a;b;c¼0

d2ϵabcΦa½Φb;Φc� ¼ 8
ffiffiffiffiffiffiffi
d12

p
y3g

ð1Þ
1212ðΦ0½Φ1;Φ2� −Φ1½Φ0;Φ2� þΦ2½Φ0;Φ1�Þ; ð6:46Þ

where we have used the fact that dkl is independent of ðk; lÞ [see (4.131)] to take d12 as common factor and also the
equalities

y1g
ð1Þ
1232 ¼ y2g

ð1Þ
1231 ¼ y3g

ð1Þ
1212; ð6:47Þ

which follow readily from (6.6). The third and last sum appearing in the twisted magnetic charge density is
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X2
a;b;c¼0

ϵabcd3ΦaDbΦc ¼ y3Φ0ð
ffiffiffiffiffiffiffi
b12

p
mð1Þ

12 D1Φ2 −
ffiffiffiffiffiffiffi
b21

p
mð1Þ

21 D2Φ1Þ − y1Φ1

� ffiffiffiffiffiffiffi
b ~ψ2

q
mð1Þ

~ψ2D0Φ2

−
ffiffiffiffiffiffiffi
b23

p
mð1Þ

23 D2Φ0

�
þ y2Φ2

� ffiffiffiffiffiffiffi
b ~ψ1

q
mð1Þ

~ψ1D0Φ1 −
ffiffiffiffiffiffiffi
b13

p
mð1Þ

13 D1Φ0

�
: ð6:48Þ

Recall that, so far, we have only made the choice of coefficients in (5.89). We shall now make further choices. In particular,
we want to impose

y3
ffiffiffiffiffiffiffi
b12

p
mð1Þ

12 ¼ y3
ffiffiffiffiffiffiffi
b21

p
mð1Þ

21 ¼ y1
ffiffiffiffiffiffiffi
b ~ψ2

q
mð1Þ

~ψ2 ¼ y1
ffiffiffiffiffiffiffi
b23

p
mð1Þ

23 ¼ y2
ffiffiffiffiffiffiffi
b ~ψ1

q
mð1Þ

~ψ1 ¼ y2
ffiffiffiffiffiffiffi
b13

p
mð1Þ

13 : ð6:49Þ

Since b12 ¼ b21 ¼ b23 and b ~ψ1 ¼ b ~ψ2 from (4.125), the above [together with (6.6)] implies choosing our coefficients
ðmð1Þ; gð1ÞÞ such that

mð1Þ
12 ¼ �mð1Þ

21 ;
ffiffiffiffiffiffiffi
b ~ψ1

q
mð1Þ

~ψ2 ¼
ffiffiffiffiffiffiffi
b12

p
mð1Þ

23 ;ffiffiffiffiffiffiffi
b ~ψ1

q
mð1Þ

~ψ1 ¼
ffiffiffiffiffiffiffi
b12

p
mð1Þ

13 ; y3m
ð1Þ
12 ¼ y1m

ð1Þ
23 ¼ y2m

ð1Þ
13 : ð6:50Þ

A concrete such choice is to fix ðmð1Þ
13 ; m

ð1Þ
21 ; m

ð1Þ
23 ; m

ð1Þ
~ψ1 ; m

ð1Þ
~ψ2Þ to

gð1Þ1212

gð1Þ1213

mð1Þ
13 ¼ −mð1Þ

21 ¼ gð1Þ1212

gð1Þ1223

mð1Þ
23 ¼ −

�����
ffiffiffiffiffiffiffi
b ~ψ1

b12

s ����� g
ð1Þ
1212

gð1Þ1213

mð1Þ
~ψ1 ¼ −

�����
ffiffiffiffiffiffiffi
b ~ψ1

b12

s ����� g
ð1Þ
1212

gð1Þ1223

mð1Þ
~ψ2 ¼ mð1Þ

12 ; ð6:51Þ

with mð1Þ
12 not yet fixed to any particular value. It is important to note that our choices are in good agreement with the

defining relation (5.30), since we have the full spectrum ofmð2Þ ’s unfixed to satisfy those equalities. In this case, the sum in
(6.48) gives

y3
ffiffiffiffiffiffiffi
b12

p
mð1Þ

12 ½Φ0ðD1Φ2 −D2Φ1Þ −Φ1ðD0Φ2 −D2Φ0Þ þΦ2ðD0Φ1 −D1Φ0Þ�: ð6:52Þ

Now, comparing our prior auxiliary quantities in (6.44) with the sums (6.45), (6.46) and (6.52), it follows that qðtÞM in (6.37)
can be written in the very convenient form suggested in (3.232) in [13]:Z

d3xqðtÞM ¼ −
Z
X3

Tr

�
2D1Φ ∧ F þ 2

3
D2Φ ∧ Φ ∧ ΦþD3Φ ∧ dAΦ

�
; ð6:53Þ

where we have defined the coefficients ðD1; D2; D3Þ as

D1 ≡ −y3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ijτj2

2ðτ − τ̄Þ

s
; D2 ≡ −4y3

ffiffiffiffiffiffiffi
d12

p
gð1Þ1212; D3 ≡ −y3

ffiffiffiffiffiffiffi
b12

p
mð1Þ

12 : ð6:54Þ

Using the above in our boundary action (6.40), we obtain (3.236) in [13]:

SðtÞbnd;tot ¼
Z
X3

Tr

�
2D1Φ ∧ F þ 2

3
D2Φ ∧ Φ ∧ ΦþD3Φ ∧ dAΦ

�

þ iΨ
Z
X3

Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
: ð6:55Þ

The second step required to rewrite (6.55) as a topological action consists on suitably fixing ðD2; D3Þ. Specifically, we
require that (3.237) in [13] holds true:

D2 ¼
D3

1

ðiΨÞ2 ; D3 ¼
D2

1

iΨ
: ð6:56Þ
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From (6.6) and (6.54) it follows that, in terms of the coefficients of Tables II and III (the first ones having a supergravity
interpretation), the above constraints are given by

1 ¼ gð1Þ1213g
ð1Þ
1223

ðiΨÞ2ðgð1Þ1212Þ2
�

ijτj2
2ðτ − τ̄Þ

�
3=2

; 1 ¼ −2d1=412

ðiΨÞmð1Þ
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1Þ1213g

ð1Þ
1223

gð1Þ1212

vuut �
ijτj2

2ðτ − τ̄Þ
�
: ð6:57Þ

These constraints can be easily satisfied: the coefficients appearing here must fulfill (5.22) and (5.30), where we have
already chosen (5.89) and (5.46). Clearly, there is still ample freedom of choice left for us. Hence, we choose to fix

ðgð1Þ1213; g
ð1Þ
1223Þ such that the above holds true. Then, easy algebra yields

SðtÞbnd;tot ¼ iΨ
Z
X3

Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ Aþ 2 ~Φ ∧ dAþ 2 ~Φ ∧ A ∧ A

þ 2

3
~Φ ∧ ~Φ ∧ ~Φþ ~Φ ∧ d ~Φþ ~Φ ∧ ½A; ~Φ�

�
; ð6:58Þ

where we have used (6.29) and (6.42) and where ~Φ is just the one-form Φ in (6.26) rescaled in the following manner:

~Φ≡D1

iΨ
Φ: ð6:59Þ

A couple of trace identities allow us to further rewrite the boundary theory in what will soon become a particularly
enlightening form. The identities in question are

Trð ~Φ ∧ ½A; ~Φ�Þ ¼ 2Trð ~Φ ∧ A ∧ ~ΦÞ; TrðA ∧ d ~ΦÞ ¼ Trð ~Φ ∧ dAÞ; ð6:60Þ

which the reader may easily verify through explicit computation with the aid of (5.35), (5.40), (6.26), (6.28) and (6.29). The
second identity holds up to a total derivative only. However, since these terms are defined in X3, the three-dimensional space

labeled by the unbounded directions ðt; x1; x2Þ, the total derivative term does not affect the physics following from SðtÞbnd;tot
and so we ignore it in the ongoing. Combining (6.58) and (6.60), we obtain

SðtÞbnd;tot ¼ iΨ
Z
X3

Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ Aþ 2A ∧ d ~Φþ 2 ~Φ ∧ A ∧ A

þ 2

3
~Φ ∧ ~Φ ∧ ~Φþ ~Φ ∧ d ~Φþ 2 ~Φ ∧ A ∧ ~Φ

�
: ð6:61Þ

The third and last step on our way to a topological boundary theory consists on defining a modified gauge field,
analogous to that in (3.240) in [13], which is a linear combination of the twisted gauge and scalar fields (6.26) and (6.28):

AD ≡ Aþ ~Φ: ð6:62Þ

It is a matter of simple algebra to check that

AD ∧ dAD ¼ A ∧ dAþ ~Φ ∧ dAþ A ∧ d ~Φþ ~Φ ∧ d ~Φ;

AD ∧ AD ∧ AD ¼ A ∧ A ∧ Aþ A ∧ ~Φ ∧ ~Φþ ~Φ ∧ A ∧ Aþ ~Φ ∧ ~Φ ∧ ~Φ

þ A ∧ A ∧ ~Φþ A ∧ ~Φ ∧ Aþ ~Φ ∧ A ∧ ~Φþ ~Φ ∧ ~Φ ∧ A: ð6:63Þ

Since the trace of a product is invariant under cyclic permutations of the terms in that product and also due to (6.60), it is
easy to see that, as promised, indeed (6.61) defines a topological field theory in X3, albeit in terms of the just introduced
modified gauge field AD:
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SðtÞbnd;tot ¼ iΨ
Z
X3

Tr

�
AD ∧ dAD þ 2

3
AD ∧ AD ∧ AD

�
:

ð6:64Þ

The above Chern-Simons action is that in (3.241) in [13] as
well. Needless to say, this satisfies the goal stated at the
beginning of the present section. Yet, before proceeding
ahead, there are a couple of issues worth mentioning.
First, we note that in (6.64) there is still one free

parameter: D1. Recall that Ψ is given by (6.39). Hence,
it depends only on ðτ; t̂Þ. These two parameters have an
interpretation in terms of our supergravity parameters [the
warp factors and dilaton of the M-theory configuration (M,
1)]. As such, they are fixed when a specific model (M, 1) is
considered. It turns out D1 can also be fixed. As argued in
[10], supersymmetric Wilson loop operators can be asso-
ciated with the boundary theory with action (6.64) if and
only if the Chern-Simons gauge field AD is invariant under
the supersymmetry generated by ε in (6.32). Schematically,
we can express this as (3.242) in [13]:

δAD ¼ δðAþ ~ΦÞ ¼ δ

�
AþD1

iΨ
Φ
�

¼ 0; ð6:65Þ

where we have made use of (6.59) and (6.62). As our
notation is now such that it precisely matches the one used
in [10], the interested reader should have no difficulty in
following the discussion in Sec. 2.2.4 of that same
reference. In it, the reader shall find the proof that the
above constraint sets the value of D1 to

D1 ¼ iΨ
t − t−1

2
¼ i

4
ðt − t−1Þ

�
τ þ τ̄ þ ðτ − τ̄Þ t̂ − t̂−1

t̂þ t̂−1

�
;

ð6:66Þ

where the second equality follows from (6.39). As we
just said, ðτ; t̂Þ are fixed for a given model (M, 1).
However, from (6.6) and (6.54), we see that D1 depends

on various coefficients: ðd12; b12; mð1Þ
12 ; g

ð1Þ
1212; g

ð1Þ
1213; g

ð1Þ
1223Þ.

As given by (4.125) and (4.131), ðd12; b12Þ are also
fixed once a particular model (M, 1) is chosen via warp
factors and constant dilaton. We remind the reader that

ðgð1Þ1213; g
ð1Þ
1223Þ were already fixed in demanding that (6.57)

be satisfied. Consequently, on this occasion we choose

gð1Þ1212 such that the above holds true and keep mð1Þ
12

arbitrary. Of course, this new choice is still in good
agreement with the constraints summarized in Table III:
the still unspecified coefficients ðmð2Þ; hð1ÞÞ allow us to
enforce all required equalities. Specifically, (5.22) may be

satisfied by appropriately fixing hð1Þ1 ~ψkl for all ðk; l ¼ 1; 2; 3Þ,
while maintaining hð1Þ2 ~ψkl arbitrary. Similarly, enforcing

(5.30) implies all ðmð2Þ
13 ; m

ð2Þ
21 ; m

ð2Þ
23 ; m

ð2Þ
~ψ1 ; m

ð2Þ
~ψ2Þ are already

determined.
Second, we must refer to the point already mentioned in

passing in Sec. VI A. Namely, the fact that the non-Abelian
Chern-Simons theory (6.64) is gauge invariant if and only if
ðiΨÞ is an integer multiple of 2π25 In other words, a path
integral formalism associated to the action (6.64) is only
well defined for

iΨ
2π

∈ Z: ð6:67Þ

From its very definition in (6.39), we see that Ψ does not
necessarily satisfy such a property. Perhaps this observation
is even more evident from (5.83) and (6.35), expressing Ψ
only in terms of coefficients with a supergravity interpre-
tation, which depend only on the specific choice of
M-theory model (M, 1):

Ψ ¼ C1 sin θncqðθncÞ

−
C1c211

V3 sin θncqðθncÞ
V3 sin θncqðθncÞ − ic11
V3 sin θncqðθncÞ þ ic11

: ð6:68Þ

The conclusion from both perspectives is one and the same:
we must impose some constraints on the warp factors (2.2)
and (2.26) dilaton in (4.5) if our topological boundary is to
have a path integral representation. [See Table II for a guide
to the equations linking the coefficients in (6.68) and the
just mentioned warp factors and dilaton.] Given that in the
present work we wish not study a concrete model (M, 1),
we will not elaborate on the required constraints here.
However, our analysis is only valid for the subset of
M-theory configurations (M, 1) that satisfy (6.67).

1. Twisting the bulk

Let us briefly refresh our memory. In Secs. II and III, we
constructed the M-theory model (M, 1). In Secs. 4–6, we
derived the Hamiltonian (5.88), defined in X4 (the bulk)
and associated to (M, 1). Then, a consistent minimization
of its energy, for static configurations of the fields, led to
the Hamiltonian (5.93). We further rewrote this as the
action (6.11), which is defined in X3: the boundary of X4.
Upon topologically twisting (6.11), we obtained the Chern-
Simons action (6.64): a suitable framework for the reali-
zation of knots in our setup. Quite evidently, our analysis
shall be consistent only when we also topologically twist

25As the lucid work [45] shows, an appropriate analytical
continuation of (6.64) would allow for a path integral formalism
in case that such requirement is not met. This is hard to realize
in our M-theory construction of model (M, 1), since it would
require a (to date) nonexistent formalism: topological M-theory.
Needless to say, a careful study of such scenario is beyond
the scope of the present work and we shall not proceed in this
direction. The interested reader can gain more insight on this
topic from the discussion between (3.346) and (3.350) in [13].
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the bulk energy minimization equations that allowed us to
obtain (6.11) to begin with. Doing so is the aim of the
present section.
The set of energy minimization equations we must twist

are, as already pointed out at the very end of Sec. V B:
(5.40), (5.42), (5.91) and (5.92). Before twisting, however,
we make the following observation: the various coefficient
choices made so far in order to obtain a topological

boundary theory considerably simplify the BHN
equations (5.91).
To be precise, consider the third term in the second BHN

equation for α ¼ 1 and β ¼ 2 and interpret the dot product
there appearing as a usual scalar product, in the same spirit
as we did earlier in (5.45). Once more, we work with the
normalization convention that ϵ12 ¼ 1. Then, this term can
be written as

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
mð1Þ

δk Dδφk ¼
ffiffiffiffiffiffiffi
b12

p �X2
α¼1

X3
k¼1

mð1Þ
αk Dαφk

�
þ

ffiffiffiffiffiffiffi
b ~ψ1

q �X3
k¼1

mð1Þ
~ψkD ~ψφk

�
; ð6:69Þ

where we have used the fact that b1k ¼ b2k for all k ¼ 1, 2, 3 and the same is true for b ~ψk, as can be seen from (4.125). If we

now insert in the above our coefficient choices in (6.51) and further set the till now arbitrary parameters ðmð1Þ
11 ; m

ð1Þ
22 ; m

ð1Þ
~ψ3Þ to

mð1Þ
11 ¼ mð1Þ

22 ¼ mð1Þ
~ψ3

ffiffiffiffiffiffiffi
b ~ψ1

b12

s
¼ mð1Þ

12 ; ð6:70Þ

then we obtain

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
mð1Þ

δk Dδφk ¼
ffiffiffiffiffiffiffi
b12

p
mð1Þ

12

"
ðD1φ1 þD2φ2 þD ~ψφ3Þ þ ðD1φ2 −D2φ1Þ

þ gð1Þ1213

gð1Þ1212

ðD1φ3 −D ~ψφ1Þ þ
gð1Þ1223

gð1Þ1212

ðD2φ3 −D ~ψφ2Þ
#
: ð6:71Þ

Written in this manner, it is straightforward to see that the
consistency requirements (5.92) set to zero each term
between brackets on the right-hand side above. Further,
since the BHN equation of which this term is part
of is antisymmetric under the exchange of ðα; βÞ, the above
holds true for all allowed values of these indices. That is,

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵαβ ·m

ð1Þ
δk Dδφk ¼ 0; ∀ α; β ¼ 1; 2: ð6:72Þ

In much the same way, one can show that the third term
in the first BHN equation (5.91) also vanishes:

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵα ~ψ ·mð2Þ

δk Dδφk ¼ 0; ∀ α ¼ 1; 2: ð6:73Þ

If one interprets the dot product above as the usual scalar
product, the proof is exactly as before. In more details,
one must obtain the values of the mð2Þ coefficients from
(5.30), (6.51) and (6.70). Also, one must realize that b12 ¼
b ~ψ1 owing to our approximation (5.77), which implies
e2ϕ0H4 ¼ 1 in (4.118). However, if one would like to
consider the more general scenario where (5.77) is not
imposed, (6.73) can still be enforced by simply entertaining

more elaborated interpretations of the dot product, in the
vein of (5.53) earlier on.
All in all, the conclusion is that our choices of the co-

efficients in Table III reduce the BHN equations in (5.91) to

ffiffiffiffiffiffiffiffiffiffiffi
4ijτj2
τ − τ̄

r
F α ~ψ − i

X3
k;l¼1

hð1Þα ~ψkl

ffiffiffiffiffiffi
dkl

p
½φk;φl� ¼ 0;

ffiffiffiffiffiffiffiffiffiffiffi
2ijτj2
τ − τ̄

r
F αβ − i

X3
k;l¼1

gð1Þαβkl

ffiffiffiffiffiffi
dkl

p
½φk;φl� ¼ 0; ð6:74Þ

for all α, β ¼ 1, 2. As explained around (5.49), these are
just Hitchin equations! This is a remarkable result: in our
setup, the BHN equations naturally decouple to Hitchin
equations and a set of constraint equations on the scalar
fields there appearing. Such result becomes even more
relevant in view that Hitchin equations are precisely the
starting point in the study of knots and their invariants in
[9]. The very same Hitchin equations are also related to a
number of other interesting topics, such as the Geometric
Langlands Program [46].
However exciting these directions may be, let us

get back on track: currently, our aim is to twist all
energy minimization equations. To this aim and as already
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anticipated in Sec. VI C, it is convenient to consider a
different mapping between our scalar fields and their
twisted one-form counterpart. In particular, instead of
(6.26), we would like to consider the identification in
(3.282) in [13]:

Λ ¼
X
μ

Λμdxμ; ðΛ0;Λ1;Λ2;Λ ~ψ Þ ¼ iðA~3;φ1;φ2;φ3Þ:

ð6:75Þ
All other twisted fields remain as previously explained in
(6.27)–(6.30). In this manner, the twisted version of (5.40)
and (5.42) is

Λ0 ¼ Dησ ¼ Dησ̄ ¼ ½σ; σ̄� ¼ ½σ;Λk� ¼ ½σ̄;Λk� ¼ 0;

∀ η ¼ x1; x2; ~ψ ; ∀ k ¼ 1; 2; 3: ð6:76Þ

Similarly, the twisted version of the Hitchin equations in
(6.74) is given by

Fα ~ψ −
ℵffiffiffi
2

p
X3
k;l¼1

hð1Þα ~ψkl½Λk;Λl� ¼ 0;

Fαβ − ℵ
X3
k;l¼1

gð1Þαβkl½φk;φl� ¼ 0; ∀ α; β ¼ 1; 2: ð6:77Þ

where we have defined ℵ as the following constant:

ℵ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d12ðτ − τ̄Þ
2ijτj2

s
: ð6:78Þ

The above definition uses the fact that, as can be seen from
(4.131), all dkl coefficients have the same value. Note that,
from (5.83) and the equations mentioned in Table II, it
follows that ℵ depends entirely on supergravity parameters
only. That is, parameters that characterize the M-theory
model (M, 1).
At this stage, the only equations left to be twisted are

those in (5.92). These become

D1Λ2 −D2Λ1 ¼ D1Λ ~ψ −D ~ψΛ1 ¼ D2Λ ~ψ −D ~ψΛ2

¼ D1Λ1 þD2Λ2 þD ~ψΛ ~ψ ¼ 0: ð6:79Þ

Our identifications (6.75) allow us to further rewrite the
above in a very concise manner in a differential geometry
language. To do so, we first compute a few auxiliary
quantities. We begin with the Hodge dual ofΛ. Since (6.76)
sets the time component of this one-form to zero, we can
carry out this computation in the three-dimensional sub-
space spanned by ðx1; x2; ~ψÞ. As we already explained, the
simplifying assumption (5.77) converts this to a Euclidean
space. Consequently, the calculation is trivial and yields

�Λ¼Λ1dx2 ∧ d ~ψ −Λ2dx1 ∧ d ~ψþΛ ~ψdx1 ∧ dx2: ð6:80Þ

Making use of the exterior covariant derivative introduced
in (6.42) and in much the same way as earlier in (6.43), it is
easy to see that

dAΛ ¼ ðD1Λ2 −D2Λ1Þdx1 ∧ dx2

þ
X2
α¼1

ðDαΛ ~ψ −D ~ψΛαÞdxα ∧ d ~ψ ;

dA � Λ ¼ ðD1Λ1 þD2Λ2 þD ~ψΛ ~ψ Þdx1 ∧ dx2 ∧ d ~ψ :

ð6:81Þ

Upon comparing the above with (6.79), it is clear that this
last set of constraint equations can be written as in (3.287)
in [13]:

dAΛ ¼ 0 ¼ dA � Λ; ð6:82Þ

which completes the twisting of all energy minimization
equations in X4.
Hereupon, we have gathered a good amount of knowl-

edge about the four-dimensional gauge theory following
from the M-theory configuration (M, 1), dual to the model
in [10]. In the following, we rephrase our findings in such a
way that their merit is made most visible.
Appropriately compactifying (M, 1), we have obtained

its associated four-dimensional action (4.146), defined in
the space X4. Then, we have derived the corresponding
Hamiltonian and written it in the particularly convenient
form (5.31). Clearly, the coefficients appearing in the
Hamiltonian are expressed only in terms of supergravity
parameters of (M, 1), by construction. Minimization of the
energy of this Hamiltonian for static configurations of the
fields led to a series of constraint equations (BPS con-
ditions) on these gauge and scalar fields. For the gauge
choice (5.35), they are given by (5.40), (5.42), (5.91) and
(5.92). It turns out that all these are the same equations
mentioned in [10] and derived using localization techniques
for path integrals in [44]. Consequently, we have repro-
duced the results of [10], but we have done so in the
well-known, conceptually simple classical Hamiltonian
formalism. In the process, we have established a precise
mapping between the usual gauge theory parameters
ðgYM;Θ; τÞ and the parameters that characterize model
(M, 1): (5.82) and (5.83). In other words, we have given a
concrete, simple procedure to reproduce [10] and simulta-
neously provided a supergravity interpretation for it.
After the minimization process above described, the

nonvanishing part of the Hamiltonian was rewritten as the
action in (6.11). This is defined in the three-dimensional
space X3, the boundary of X4. Of course, if our construction
is to be a suitable framework for the study of knot
invariants, knots should be embedded in X3. Hence, the
boundary action should be topological for our goals. Upon
a topological twist, this was proven to be indeed the case:
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(6.11) converts to the Chern-Simons action (6.64). Note
that the Chern-Simons gauge field is a linear combination
of the twisted gauge and scalar fields, as given by (6.62).
Further, N ¼ 2 supersymmetry was made compatible with
this construction, requiring only appropriate boundary
conditions for the twisted fields, stated in (6.33).
The careful analysis of the theory in X3 showed that it

indeed has all required features to host knots. What is more,
additional support to this claim followed from this very
same analysis in the following manner. Overall coherence
required us to twist the energy minimization conditions in
the bulk if we were to focus on the twisted boundary theory.
We then noted that, in obtaining (6.64), we were forced to
make certain choices for the coefficients summarized in
Table III. Aptly translating such choices to our BPS
conditions revealed that these were simplified to precisely
the set of equations that are the starting point for the study
of knots and their invariants in [9]! For completeness, we
remind the reader that the twisted BPS equations are those
in (6.76)–(6.79).

VII. SUMMARY, CONCLUSIONS,
AND OUTLOOK

In the first part of this work (Secs. II and III), we have
constructed two M-theory configurations: (M, 1) and
(M, 5). They have both been obtained from the type IIB
D3-NS5 system of [10] by means of a well-defined series of
dualities and modifications. As depicted in Fig. 1, (M, 1)
has been proven to be dual to the aforementioned model in
[10], while (M, 5) has been argued to be dual to the
resolved conifold with fluxes in [8]. An apparent indication
of the seeming unrelatedness between (M, 1) and (M, 5)
(and hence between the models in [8,10]) is their super-
symmetry: N ¼ 2 and N ¼ 1, respectively. However, we
have been able to trace their dissimilarities to a difference in
the orientation of branes in a dual type IIB picture: compare
Figs. 2(b) and 3(b). We have thus showed that, although
distinct, [8,10] are intimately related. So much so, that they
constitute one and the same physics approach to the study
of knots, albeit in different frameworks, each suitable to
address specific knots invariants.
In the second part, we have derived and studied in depth

the four-dimensional gauge theory following from the
configuration (M, 1). This gauge theory is defined in a
space that we have named X4. In Secs. IV and V, we have
obtained its action and written the associated Hamiltonian
in a particularly enlightening form: a sum of squared terms,
plus contributions from the three-dimensional boundary X3

of X4. Energy minimization then sets each such squared
term to zero independently and, for static configurations of
the fields, leads to various BPS conditions. These are
precisely the “localization equations” of [10,11,44],
obtained via elaborate techniques of localization of certain
path integrals. This correspondence implies that our
approach reproduces all the results in [10], but in a much

simpler formalism. Further, due to our careful deduction of
the Hamiltonian of the gauge theory directly from (M, 1),
we have been able to map all parameters in [10] to variables
of the M-theory model (M, 1). In this manner, we have been
able to give a precise supergravity interpretation to all the
findings in [10].
Finally, in Sec. VI, we have focused on the boundary

theory. We have shown that, upon a topological twist, a
Chern-Simons action captures the physics in X3.
Remarkably, the Chern-Simons gauge field is a particular
linear combination of the twisted gauge and scalar fields of
the gauge theory in X4, exactly as in [10]. Additionally, we
have obtained the appropriate half-BPS boundary condi-
tions for all the fields, which ensure that the theory in X4 is
indeedN ¼ 2 supersymmetric. It follows that the space X3

has all required features to host knots. In other words, after
Euclideanization, knots can consistently be embedded in
X3 and studied in the framework of the previously
described four-dimensional gauge theory.
The details regarding such embedding of knots, as well

as the study of their linking number, can be found in
Sec. 3.3 of [13]. In fact, this is a coherent and natural follow
up to the present paper. Let us briefly summarize its
contents. The key observation there is as follows: the
inclusion of certain M2-branes in the model (M, 1) can
simultaneously account for the correct insertion of knots in
X3 and source related changes in the BPS conditions in X4.
Such M2-branes make it intuitive and natural to explain
why four-dimensional techniques may be useful for the
study of knots and their invariants. What is more, the
modifications thus sourced to the BPS conditions are
accurately those identified as surface operators in [9–
11,14,47]. And so, [13] is able to give a supergravity
interpretation to these operators as M2-brane states. Finally,
restriction to the Abelian case, along with the implemen-
tation of Heegard splitting, monodromy identification and
the two strands braid group action in terms of 2 × 2
matrices whose components are evolution operators, allow
for the computation of the linking number for any arbi-
trary knot.
There are many interesting future directions. In fact, both

the present paper and [13] form the first volume in a series
of papers to appear that will attempt to cover a good deal of
them. On the one hand, we have not yet exploited most of
the immense potential of model (M, 1) and its four-
dimensional gauge theory. For example, a non-Abelian
extension of the construction in Sec. 3.3 of [13] should
readily reproduce the all-famous Jones polynomial and its
generalizations, as suggested by [10]. Another exciting
connection is to Khovanov homology: finite-dimensional
vector spaces associated to knots. Khovanov homology
arises naturally from a four-dimensional gauge theory in
the presence of surface operators, just like ours. The puzzle
of why the coefficients of the Jones and related polynomials
should be integers was resolved in [48], in terms of
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Khovanov homology. What is more, Khovanov’s invariants
are stronger than those of Jones (for instance, see [49]).
On the other hand, turning our attention to model (M, 5),

we see that most of the analysis is pending—most
notoriously, the details on its connection to [8] through
a flop transition, the derivation of its pertinent four-
dimensional gauge theory, and the suitable embedding
of knots in it. Once this is done, a wide range of
possibilities unfolds. Two such are the computation of
HOMFLY-PT polynomials, along the lines of [50] and the
study of A-polynomials, as in [12].
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