PHYSICAL REVIEW D 97, 026001 (2018)
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We construct two distinct yet related M-theory models that provide suitable frameworks for the study of
knot invariants. We then focus on the four-dimensional gauge theory that follows from appropriately
compactifying one of these M-theory models. We show that this theory has indeed all required properties to
host knots. Our analysis provides a unifying picture of the various recent works that attempt an
understanding of knot invariants using techniques of four-dimensional physics. This is a companion paper
to K. Dasgupta, V. Errasti Diez, P. Ramadevi, and R. Tatar, Phys. Rev. D 95, 026010 (2017), covering all
but Sec. IIT C. It presents a detailed mathematical derivation of the main results there, as well as additional
material. Among the new insights, those related to supersymmetry and the topological twist are
highlighted. This paper offers an alternative, complementary formulation of the contents in the first
paper, but is self-contained and can be read independently.
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I. INTRODUCTION

Knot theory is the branch of topology that studies knots.
In this context, a knot is an embedding of a circle in three-
dimensional Euclidean space or its compact analog: the
three-sphere. Two such knots are said to be equivalent if
and only if there exists an ambient isotopy transforming
one to the other. This formal definition of equivalent knots
is, unfortunately, insufficient in practice—to such a great
degree that one of the main unresolved problems in knot
theory consists on distinguishing knots. That is, determin-
ing when two knots are (or are not) equivalent. This is
known as the “classification problem of knots.” Very
elaborate algorithms exist to this end, yet the problem
persists.

Another approach to the knot differentiation puzzle
involves knot invariants: numbers, polynomials, or homol-
ogies defined for each knot which remain unchanged
for equivalent knots. Interestingly, invariants such as
Khovanov and Floer homologies are capable of telling
apart the unknot from any other nonequivalent knot.
Although this is a phenomenal achievement, there is still
much to be accomplished. So much so that, at present, it is
not known whether a knot invariant exists which is capable
of distinguishing all inequivalent knots.
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There are various ways to compute knot invariants.
Mathematicians use recursive relations, known as skein
relations, to compute the Conway [1,2], Alexander [3], and
Jones [4] polynomials, among others. The first physics
understanding of knot invariants appeared much later, in
the groundbreaking work [5]. In it, knot polynomials are
obtained as expectation values of the holonomy of a Chern-
Simons gauge field around a knot carrying a representation
of the underlying (compact) gauge group. In particular, the
Jones and HOMFLY-PT [2,6] polynomials follow from
considering the defining representations of SU(2) and
SU(N), respectively.

Starting roughly at the same time and up to now, there
have been a number of works that address the study of knot
invariants from the point of view of four-dimensional
physics: [7-12], to mention a few. It is within this context
that the present work attempts to provide a unifying and
neat scheme of the results obtained so far and contribute
new insights. Specifically, we will first establish a precise
connection between the models in [8,10]. Then, we will
reproduce the conclusions of [10] in the low energy
supergravity description of a given M-theory model. As
we shall see, our approach leads to a strikingly simple
analysis in the context of the usual classical Hamiltonian
formalism.

This paper and [13] constitute the first step in the path of
computing knot invariants from M-theory, compactified
down to four dimensions. We here lay the (fertile) ground
for embedding knots in our setting. The simplest knot
invariant, the so-called linking number, is computed in
[13]. We leave the realization of more challenging invar-
iants to the sequel.
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TABLE L

List of equations in [13] for which a detailed derivation can be found in the present work and the section where this is done.

The listed equations are the main results in [13] and they cover all but Sec. III C there.

Present work

Equations in [13]

Part I Section II Section IT A
Section ITA 1
Section 11 B
Section III A
Section 111 B
Section III B 1
Section III B 2
Section III C
Section IVA
Section IVA'1
Section IVA 2
Section IV B
Section IV C
Section VA
Section VA 1
Section VA 2
Section VB
Section VI A
Section VIB
Section VIC

Section III

Part 11 Section 1V

Section V

Section VI

Section VIC 1

(3.4), (3.5), (3.19)-(3.25), (3.33)-(3.39), (3.41)-(3.44),

(3.46), (3.47), (3.49), (3.53)-(3.55)
(3.85), (3.86), (3.89), (3.90)
(3.26), (3.29)-(3.32), (3.56)-(3.58)
@.1), (4.20), (4.23)

4.2), 4.3)

(4.9), (4.10), (4.13), (4.16), (4.17), (4.24)-(4.26), (4.30)

4.8)

(4.39), (4.40), (4.48), (4.51), (4.52)
(3.52), (3.91)-(3.98)
(3.76), (3.78)-(3.81)

(3.101), (3.102), (3.105)-(3.111), (3.114)-(3.119), (3.121), (3.124)-(3.128)

(3.63), (3.67), (3.68)
(3.136)-(3.139), (3.142)-(3.148), (3.153)
(3.158), (3.160)

(3.161), (3.162), (3.167), (3.169), (3.171)-(3.173), (3.177)-(3.182)

(3.174), (3.207), (3.218), (3.220), (3.252)-(3.275)
(3.183), (3.187), (3.225)
(3.233)
(3.155), (3.222), (3.223), (3.243), (3.251)

(3.156), (3.157), (3.184), (3.191), (3.224), (3.232), (3.236), (3.237),

(3.240)-(3.242), (3.246), (3.346)-(3.350)
(3.282), (3.287)

A. Organization of the paper

The paper is arranged as follows. In Secs. II and III,
we construct two distinct M-theory configurations that have
all necessary features to harbor knots. We refer to these as
M, 1) and (M, 5). Specifically, Sec. II is devoted to the
construction of (M, 1), starting from the well-known
D3-NS5 system in type IIB superstring theory considered
in [10]. The very same D3-NS5 system is also the basis for
the construction of (M, 5), presented in Sec. IIL. It is worth
pointing out that (M, 5) is dual to the resolved conifold in
the presence of fluxes considered in [8].

Sections IV-VI focus on the study of the four-dimen-
sional gauge theory that follows from appropriately com-
pactifying model (M, 1). In particular, Sec. IV deals with
the derivation of its action. The corresponding Hamiltonian
is obtained in Sec. V, where we also minimize its energy for
static configurations of the fields. We thus find the BPS
conditions for the gauge theory. After the energy mini-
mization process, the Hamiltonian reduces to an action in a
three-dimensional subspace, as proved in Sec. VI. Further,
a careful analysis of the symmetries and physics of this
three-dimensional space shows that knots can be consis-
tently embedded in its Euclidean version.

Due to the considerable length of the computational
details and arguments presented, we have included a
graphical summary of the paper. It works in the following
manner. By looking at the 12 figures (and their captions)
here shown, the reader can quickly grasp the fundamental

logic articulating each part and section. Additionally, most
of the figures refer to equations in the text: these constitute
our main results. Hence, the figures can be used to
efficiently localize any particular information of interest
within the text.

B. Relation between the present work and [13]

This is a companion paper to [13]. As such, it aims to
clarify the main results stated there, providing precise
mathematical computations to endorse them. The complete
list of equations in [13] that are here proven is shown in
Table I. Broadly speaking, the following are the key points
we address exhaustively:

(1) The details of the construction of the M-theory
configurations (M, 1) and (M, 5). In [13], these
are called Model A and Model B, respectively, and
are, to a large extent, simply stated rather than
derived. Part I is devoted to rectifying this situation.
Specifically, a special effort is made to quantify all
the intermediate geometries and fluxes that one
encounters in constructing (M, 1) and (M, 5) from
the D3-NS5 system of [10]. Additionally, we em-
phasize how all considered configurations are ex-
actly related to each other. It should be noted that the
figures in part I are conceived to help in this respect.

(2) A meticulous explanation (missing in [13]) on what is
the four-dimensional gauge theory action associated
with (M, 1). Ultimately, the action is given by (4.146),
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TABLE II.

List of coefficients appearing in the bosonic action (4.146) and the equation numbers where they are expressed in terms of

only the warp factors in (2.2) and (2.26), the deformation parameter in (2.24), and the leading constant term of the dilaton in (4.5). [Top
five coefficients depend on 75 in (4.29).] Note that we do not compute (C, /V3) explicitly. However, its Abelian version (¢, /v3) is given
by (4.10). Note also that the top five coefficients require F , > F; to be finite. The first five coefficients stem from S(!) discussed in
Sec. IV A, the sixth coefficient is related to S@ in Sec. IV B, and the last three coefficients of S@) in Sec. IV C.

Coefficient Given in

Cl1 (430)

cpo (4.38) Depends on (b, by, b3) in (4.31) and J, in (4.37).

ay, ay, a 4.68) . e ey

Ci} C%ar’ 456:451 24.78) Depend on (@, a,, d,) in (4.6~9).

¢33 Cjrs Cyg,  (491)  Depend on all the above via (g, bor, 1) in (4.92), as well as b, in (4.83) and (1), f@)) in (4.93).
cy (4.113)

bak> by (4.125) Depend on b in (4.31) and (©,,, ©34) in (4.124).

dy (4.131) Depends on Bs¢ in (4.130).

Cipr Cris Copyk (4.137) Depend on (©,, 1) in (4.124) and (4.142).

or by (3.153) in the language of [13]. It depends on
various coefficients, summarized in Table II, that can
be traced to the supergravity parameters in (M, 1). An
important side result is the derivation of these
coefficients, which were merely asserted in [13].

(3) The ins and outs involved in rewriting the action
(4.146) as a Hamiltonian that consists on a sum of
squared terms, plus contributions from a three-
dimensional boundary. The Hamiltonian in question
is first obtained as (5.31), for a particularly simple
limiting case of the gauge theory. This corresponds
to (3.158) in [13]. Right afterwards, it is generalized
to (5.88), a novel result from the perspective of [13].

(4) The present work includes a comprehensive study of
the supersymmetry of the gauge theory following
from (M, 1). In particular, it obtains the boundary
conditions that the fields must obey so that the
theory is ' = 2 supersymmetric. Such discussion
and results are not part of [13].

(5) A basic review of the technique of topological twist
and a careful investigation of its compatibility with
the desired amount of supersymmetry is another
relevant addendum to [13] that we elaborate on. The
main advantage of doing so results into further
insight into the origin and relevance of the all-
important parameter 7 (or simply ¢ in [10,13])
defined in (6.32).

In spite of its companion paper nature, the present work
is self-contained and coherent by itself. Consequently, it
may be read independently of [13]. Nonetheless, an attempt
is made to present all results in a different manner from
[13], so that both works are mutually enriching. In this way,
it should be fruitful to check [13] at times and so comple-
ment the present reading.

It is worth mentioning that the mathematical notation,
albeit mostly coincident with the one used in [13], at

times differs from it. The reason is simple: to avoid
repetition of characters and thus prevent possible confusion
that may arise while reading through [13]. Nevertheless,
since a one-to-one mapping of equations is done, the reader
should have no difficulty in going from one work to
the other.

There is a part of [13] which is not touched upon: it is
Sec. III C. No complementary material to Sec. III C applies;
it is detailed enough in its own right. In it, knots are
embedded in the aforementioned gauge theory. This is
achieved by introducing M2-branes along some particular
directions in the M-theory configuration (M, 1). From the
four-dimensional point of view, such M2-branes are surface
operators, extensively studied co-dimension two objects
(for example, see [14]). Further, the M2-brane surface
operators are used to obtain the linking numbers of any
arbitrary knot. The present paper is written so as to allow
the interested reader to directly jump from the end of Sec. 6
to Sec. 33 in [13] without any hurdle.

II. THE D3-NS5 SYSTEM MODIFIED

Sections II and III make up the first part of the paper:
Two M-theory constructions to study knot invariants:
M, 1) and (M, 5). In these sections, we will construct
two different M-theory configurations that provide an
appropriate framework for the study of knots and their
invariants. We will refer to these configurations as (M, 1)
and (M, 5). Both of them will be directly obtained from the
well-known type 1IB system of a D3-brane ending on an
NS5-brane considered in [10]. Section II contains the
construction of (M, 1) from the D3-NS5 system, while
Sec. [l derives (M, 5). As will be argued towards the end of
this first part, in Sec. III B 2, (M, 5) is intimately related to
the model in [8]. Consequently, this part lays the ground for
an explicit connection between the two seemingly different
approaches to study knot invariants of [8,10].
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Graphical summary of Secs. I and III. Starting from the type IIB D3-NS5 system of [10], we construct two different M-theory

configurations where knots and their invariants can be studied. We refer to these as (M, 1) (and its non-Abelian enhancement) and
(M, 5). [The configuration (M, 2) is equivalent to (M, 1) for the purposes of our work, yet computationally tougher to handle. We will
thus focus our efforts in the study of (M, 1) only.] Note that (M, 1) is dual to [10]. Similarly, (M, 5) is dual to the resolved conifold in the
presence of fluxes considered in [8]. The right-hand side of the figure, colored green, schematizes the contents of Sec. II. The left-hand

side, in blue, depicts the discussion in Sec. III.

Before proceeding to the details, a word of warning: we
will consider multiple type IIA, IIB, and M-theory configu-
rations. Figure 1 provides a visual sketch of the overall logic
in this part. Hence, the reader may find it clarifying to come
back to this image while reading through Secs. II and III.

As we just mentioned, the starting point of our analysis is
the well-known type IIB superstring theory configuration of
a D3-brane ending on an NS5-brane. In more detail, we
consider Minkowski spacetime R!, with mostly positive
metric signature. We denote the coordinates as (7, xy, x,, X3,
01, ¢1,w,r,xg,x9). [The identifications (x, = 0, x5 = ¢y,
Xe =y, x7 = r) will shortly become sensible.] We take the
D3-brane to stretch along (7, xy, x,,y) and the NS5-brane
along (2, x1, x5, X3, Xg, X9). The U(1) gauge theory on the
D3-brane has N = 4 supersymmetry and the intersecting
NS5-brane provides a half-BPS boundary condition. The
world-volume gauge theory thus has A = 2 supersymmetry.
This is, essentially, the starting point of [10] as well. (The
only difference is that, in [10], an axionic background Cy is
switched on. We will elaborate on this point in Sec. I B.)

Next, we make three modifications to the above setup.
These are depicted schematically in Fig. 2 and discussed in
the following.

(1) First, we introduce a second NS5-brane, parallel to

the first one and which also intersects the D3-brane.

This means that the orthogonal direction to the NS5-
branes of the D3-brane, namely v, is now a finite
interval. The inclusion of the second NS5-brane
halves the amount of supersymmetry of the gauge
theory on the D3-brane. However, we consider the
case when the y interval is very large (that is, the two
NS5-branes are far from each other). Then, near the
original NS5-brane, effectively no supersymmetry is
lost in this step.

(2) Second, we make a T-duality to type IIA superstring
theory along x;. As a result, we now have a
D4-brane (instead of a D3-brane) between the same
two NS5-branes of before.

(3) Third,wemakeaT-dualitybacktotypellBalongy.The
NS5-branes thus disappear and give rise to a warped
Taub-NUT spaceinthe (6, ¢, w, r) directions. (This
justifies the coordinaterelabeling above.) Asarguedin
[15], because v is a finite interval and because our
construction leads to an N =2 supersymmetric
world-volume gauge theory, the D4-brane converts to
aD5 /D5 pairwhichwrapsthey directionandstretches
alongr.

The geometry corresponding to this last configuration is

well known (in fact, the three modifications above were
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P >>1
@) v (b)
NS5 —> NS5 NS5
(XS’ X Xg) Convert y to a large —_ (X3’ Xes X9)
but finite interval )
/It' X1 %) /zt X, X,)
T-duality along x,
>>1
(d) — (©) )
NS5 D4 NS5
vy
5 : (X1 %)
D5/D5 T-duality along v E—
(6 X, X, Xo) v

/zt' TR Xs)

FIG. 2. Illustration of the modifications to the D3-NS5 system described in Sec. II. This chain of dualities is done so that the
corresponding metric can be written: the geometry of (d) is well known. (a) The well-known type IIB D3-NS5 system. The
corresponding world-volume gauge theory has N = 2 supersymmetry. The D3-brane spans the (z, x|, x,,y) directions and the NS5-
brane the (7, x;, X5, X3, X3, X9) directions. The (0, ¢, r) directions are suppressed. (b) Introducing a second NS5-brane, parallel to the
first one, converts the y direction into an interval. We take this interval to be large (but finite) in order to effectively retain the same
amount of supersymmetry. (c) A T-duality along x; does not affect the parallel NS5-branes, but converts the D3-brane into a D4-brane.
(d) A T-duality along y converts the parallel NS5-branes to a warped Taub-NUT space along (6, ¢y, y, r). The D4-brane converts to a
D5/D5 pair that wraps the y direction and stretches along 7. The (6, ¢;, x5, x9) directions are suppressed.

made only to be able to write the corresponding metric) and F; = F(r), Fy = F4(r, xg,x9),
is given by (3.4) and (3.5) in [13]: b = P60, o x, xo), i=1.2.3. (2.2)
ds%B,l) = e (—dt* + dx% + dx% + dx%) The warped Taub-NUT space metric is, quite obviously, the

4 5 N second line in (2.1).
+ e Fy(dxg + dx;) Let us move the D5-brane far away along the (xg,xo)
+ e¢[F1dr2 + Fy(dy + cos 91d¢1)2 directions (the Coulomb branch) and consider only the
. D5-brane. This will simplify the flux discussion in the
+ Fs (d&% +sin’0; dﬁ)]’ (2.1) construction of the M-theory configurations (M, 1) (and its
non-Abelian enhanced version) and (M, 2) that concern us
in the present Sec. II (see Fig. 1). Nonetheless, in Sec. [V B,
we will “move back” this D5-brane and appropriately
account for its effects. We will then see that the D5-brane
plays an important, nontrivial role in our investigations.
It has been known for quite some time now that D-branes
carry Ramond-Ramond (RR) charges [16]. In this case that
concerns us, the D5-brane sources an RR three-form flux

where e~ is the usual type IIB dilaton. (Since we will
consider many metrics in the following, we adopt the
notation ds%X.n)' Here X = A, B, M stands for type IIA,

type 1IB, and M-theory, respectively and n € N is an index
to label the different metrics that will occur.) We consider,
for simplicity, the following dependence of the warp factors
and dilaton.":

— F gB'l) that can be computed as’
As will be made more precise in Sec. III A, a definite choice

of the warp factors and dilaton will in general not preserve (B.1) 2

the N =2 supersymmetry of the world-volume gauge theory. Fy =e?xdJ (B.1)» (2.3)

Consequently, any concrete choice one may wish to consider

must be checked to indeed preserve the desired amount of _

supersymmetry. *For a review on how fluxes can be determined, see [17].
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where J (5 1) stands for the fundamental form of the metric e“”ds(zB!l) along the directions (6, ¢y, w, r, xg, X9 ), Which we
call ds?
(1)

ds?, = Fdr* + Fy(dy + cos 0,d¢p,)? + F3(d6? + sin? 0,d¢p?) + F4(dxi + dx3). (2.4)

2
(1)

Let us calculate F gB’l) in details next.
We take the vielbeins of (2.4) to be

EélBl) F3€9 \/F3d6’1, Egl;l) F3€ \/F3 sin @ d¢1,
EPY = ergy U = \/Fy(dy + cos 0,de,), E(B‘l) = BY = \/F,dr,
Ez(gB 1) F4eg \/ F4dx85 En(gB 1) F4€ = v/ F4d)€9 (25)

These vielbeins can be used to compute the fundamental form 7 g ;). The result is (3.19) in [13]:

T 1) = ng’” A E[(/f’l) + Ef,,B’l) ANEPY 1 EgB’l) A EéB’l)
= F3 Sin9|d91 AN d¢1 + \/ F]Fz(dll/"‘ C0891d¢1) A dr+ F4dxg AN d.XQ. (26)
The exterior derivative of 7 1) is given by
dj(&]) = F3,r Sin(91dr AN dGl AN d¢] — \/F]Fz sin91d91 A\ d¢| A\ dr+ F4.,dr A\ de A d.Xg
= (F3.r — v/ F1F2) sin@ldr VAN d91 AN d¢] 4+ F4’rd}’ AN d)CS AN dX9, (27)

where (F3 ,, Fy4,) stand for the derivatives of (F3, F,) with respect to r. In order to take the Hodge dual of d7 (51, we start
by showing a few intermediate steps. First, we write the metric (2.4) in matrix form:

Fs 0 0 0 0 O
O F2COS201 + F3Si1’1261 F2 COS 61 0 0 O
0 F>cos0 F 0 0 O
0 0 0 Fp 0 O
0 0 0 0 F, O
0 0 0 0 0 Fu
We denote as M the square root of the determinant of this matrix:
MEVdetM:\/F1F2F3F4Sin91. (29)
The inverse of M is
F% 0 0 0 0 O
0 cs;:éf)l _ cotﬂlesc 0, 0 0 0
cotd, cscf 1 cot?’d
- |0 R mRtRE 000 (2.10)
0 0 0 Fi] 0 0
1
0 0 0 0 7 O
0 0 0 0 0 F%
The above three equations allow us to compute the Hodge dual of the wedge products in (2.7). We obtain
*(dr A d91 AN d¢1> = MM:,IMEIIHI (M(;,I(/z,erélcﬁlu/xmdw + Mlellllerglll"ﬁlxstdgbl) N dXS VAN dXQ
F,F,
= HF 7, (CSCG dy + cot@,deg) A dxg A dxg, (2.11)
1

026001-6
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x (dr A dxg A dxg)

- MMr_rl M;glxxM;gleerxigxt}y/(il(ﬁl dy A dby N de,

FF
= [=22sin0,dy A dO, A dg,.

- 2.12
F.F, (2.12)

Consequently, the Hodge dual of dJ (3, is

*dj(Bl) = €_2¢[k2(dl// + cos 91d¢1) AN dxg A d)C9

+ ky sin6,dy A d, A de]., (2.13)

where we have defined, following (3.21) in [13],

ky = e =7 Fu,

F,F,
|Fy F
k=X F—TF—;‘ (V/F\Fy—F3,). (2.14)

Further using the vielbeins (2.5), we obtain the desired

result, the RR three-form flux F gB‘l), which precisely
matches (3.20) in [13]:

ng']) = el(,,B’l) A (kleélf’l) A e(l?'l) —|—kze§B’]) A egB’l)).

?
(2.15)

It is important to note that this three-form is not closed:

dF gB‘l) # 0. This reflects the presence of the D5-brane in
this configuration.

Summing up, the type IIB configuration shown in
Fig. 2(d) can be obtained directly from the well-known
D3-NS5 system. It has the metric (2.1), dilaton ™%, and an
RR three-form flux (2.15).

An essential ingredient that makes the study of knots
using the D3-NS5 system possible is the presence of a
®-term in the D3-brane gauge theory. In the case of [10],
this term is sourced by an axionic background C. In the
following (Sec. I A), we will present an alternative (and
computationally simpler) way to source the required
O-term: by further modifying the above setup switching
on a noncommutative deformation. The fact that we do not
need to (though, of course, we can) switch on C in order to
have an M-theory construction on which knot invariants
can be studied will be the focus of Sec. II B.

A. Sourcing the @-term: A noncommutative
deformation

The starting point in this section is, of course, the just
discussed type IIB geometry in (2.1). We will first T-dualize
this to type IIA along y. [This means we will move from
(d) to (c¢) in Fig. 2.] Here, we will use the noncommutative
deformation, which will only affect the (x3,y) directions:

(x3,¥) = (X3,9). This will be followed by another
T-duality along y. At this point, we will have a type IIB
configuration capable of sourcing the required ®-term in
the U(1) world-volume gauge theory. Then, we will
T-dualize along ¢; to type IIA. Finally, we will lift the
resulting configuration to M-theory. Along the way, we will
also study the NS B-field, dilaton, and fluxes associated
with each geometry considered, which will in turn shed
some light onto the connection between the noncommu-
tative deformation and the ®-term. [The precise connection
between these two will be shown early in Sec. V B, see
(5.82).] Figure 3 summarizes this chain of modifications
and points out what the most relevant equations in this
section are.

Let us go ahead and show in details the above outlined
M-theory construction. We start by rewriting the metric
(2.1) in a more convenient way for our present purposes3 :

ds%BJ> = ds%z) + edx3 + e?Fy(dy + cos 0,depy)?,

(2.16)
with ds%z) defined as
ds%z) = e/ (—d? + dx? + dx3)
+ e‘/’[Fldr2 + F3 (dg% + Sin291d¢%)
+ Fy(dx3 + dx3))]. (2.17)
We recall that the dilaton here is
efsn = e~ (2.18)

and the RR three-form flux was given in (2.15).
T-dualizing along y, we get the metric

-9
e
ds%A,” = ds%z) + ePdx3 + F—zdl,uz, (2.19)

with associated Neveu-Schwarz (NS) B-field and dilaton

ebun = (63¢F2)_1/2.
(2.20)

B(A,l) = COS eldl// VAN d¢1,

We take the relevant vielbeins associated with ds% A1) to be

et =do,, eV =sind,dg,,

e.Sf"l) = dy + cos0,d¢,

(A1) (A1)

e =dr, eéA’l) = dxg, eg = dxo. (2.21)

SAll through this paper, we will use the formulas in Sec. 6.5 of
[18] to perform T- and S-dualities and to go from (to) type IIA to
(from) M-theory. Accordingly, we will always write the relevant
metrics in the form that makes it straightforward to apply those
formulas.
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Type IIB configuration (B,1)

Metric: (2.1)
Dilaton: (2.18)

T-duality
along y

)

Type IIA configuration (A,1)

Metric: (2.19)
Dilaton: (2.20)

RR 3-form flux: (2.15)

Type IIB configuration (B,2)

Metric: (2.29)
Dilaton: (2.31)
RR 3-form flux: (2.33)
NS 3-form flux: (2.37)

T-duality
along ¢,

Type IIA configuration (A,3)

Metric: (2.41)
Dilaton: (2.43)
RR 2-form flux: (2.44)
NS 3-form flux: (2.51)

FIG. 3.

T-duality
along y

<

Uplift

—

RR 2-form flux: (2.22)
NS 3-form flux: (2.23)

NC deformation
(2.24)

Type lIA configuration (A,2)

Metric: (2.25)
Dilaton: (2.20)
RR 2-form flux: (2.22)
NS 3-form flux: (2.28)

M-theory configuration (M,1)

Metric: (2.56)
G 4-form flux: (2.61)

Graphical summary of Sec. II A. To the type IIB configuration of Fig. 2(d) we make a series of modifications in order to source

a O-term in the U(1) world-volume gauge theory. This is achieved in going from the configuration (B,1) to (B,2). The presence of a
®-term is essential to, later on, construct a three-dimensional space with the required features to allow for the realization of knots. The
(B,2) configuration is then lifted to M-theory. The configuration (M, 1) (and its non-Abelian enhanced version, studied in Sec. Il A 1) is

the first M-theory construction where knots can be studied.

As for the fluxes, the Ramond-Ramond (RR) three-form
flux in (2.15) now gives rise to the following RR two-form
flux:

ng’l) = kle(g?’l) A eg?’l) + kzegA'l) A eéA’l). (2.22)

Note that, for an arbitrary value of the warp factors and ¢,

the above flux is not closed: dF EA’I) # 0. This is consistent
with having a D4-brane as a source [see Fig. 2(c)]. The NS
three-form flux is given by

HM = dBy1) = —sin6,d6; A dy A ddpy.  (2.23)

We will now deform the above type IIA configuration.
The noncommutative deformation (x3,w) — (X3,y) that
we will consider is

W = cos O, , x3 =secO,.x3 +sinb, .y, (2.24)

where 0, € [0, 27) is the deformation parameter. Note that

the (x3,y) directions in ds%A 0 form a square torus; that is,

a geometry which is isometric to a square with opposite
sides identified. Hence, the noncommutative deformation
simply inclines the torus. This same deformation was
considered in [19], albeit in a different context. Under this
deformation, the above type IIA metric changes to

ds, 5y = dspy + e~ (sec@,.dx; +sind,.diy)?

2
+ e’ c0s%0,,.dy?
F2 nc ll/
F
= ds%z) +e? F—iseczﬁncdfc%
29 N
CO; " (dip+ Fpsec?6,, tand,.d%;)? |, (2.25)
2
where we have defined
~ F
F, 2 (2.26)

T 1+ F,tan%6,,’

asin (3.35) in [13] and the last rewriting of ds%A’z) was done
in anticipation to the T-duality along w that will soon
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follow. The NS B-field is also affected by the deformation
and now takes the form

B(az) = c086,,cos 0 dy A dep;. (2.27)
On the other hand, due to our simplifying choices in (2.2),
the dilaton remains unchanged: e?“42 = e?«1. The RR
two-form flux (2.22) is also not affected by this deforma-

tion, F EAZ) =F gA'l), but the NS three-form flux in (2.23)
changes to

HgA’Z) = dB(A,Z) = —cos enc sin gldel A dli/ A d¢l
(2.28)

T-dualizing the metric (2.25) along v, one obtains the
type 1IB metric given in (3.22) in [13]:

F
ds%sz) = dsé) +e? F_j sec?0,.dx3

. dv
+€¢F2< v
cos@

2
+ cos Hld¢1> . (229)

nc

The NS B-field associated with ds?

(5.2) is

B(pa) = Fysec?0,, tan 0, (di + cos 0, cos 0,dp;) A dis

(2.30)
and the dilaton is that suggested in (3.25) in [13]:
|F
e = | Zsec,.e?. (2.31)
Fy

To the dS%B.Z) metric, we associate the following relevant

vielbeins:

€(§B.2) = dXx3, 650?’2) = do,, e((;]?,Z) = sin60,d¢,
el(pB'z) = dy + cos 0, cos 01dg, eéB’z) = dxg,

P = dx,. (2.32)

In terms of these, it is not hard to see that the RR three-form
flux ]—'gB’z) dual to .7-"(2A’2) can be written as in (3.23) in [13]:

ng,Z) _ e(B,Z) A (kle((fl) A e((/)B,Q) + k2€§gB,2) A 653'2)).

| (2.33)

Once again, it is important to note that the flux F gB,2) is not

closed: d}'gB'z) # 0. This implies that indeed there is
a D5-brane in this setup. For completeness, we give the

expression of dF 53’2). Rewriting (2.33) as

FED =k, sin0,dip A dO, A dip,
+ ko (dy + cos 0, cos01dp,) A dxg A dxo,
(2.34)

it is easy to see that its exterior derivative is that in (3.38) in
[13]:

dF P =k sin6da A dip A dO, A dip, + ks da
A (dy + cos 0, cos0,dp,) A dxg A dxg
— k2 COS@,,C Sin6'1d91 A\ d¢l A\ de AN d.X9,
(2.35)
where we have defined a = (0, r, xg, x9) since, due to our

choices (2.2), (ky,k,) only depend on these coordinates
(and on the deformation parameter 6,.). Determining

H;B’Z) is also not difficult. Taking the exterior derivative
of B(py), we obtain

H§3’2> = sec B, tan 8, [F, , sec O, dr
A (dy + cos 8, cos 6,d¢p,)

— Fysin0,d6, A d,]| A dis, (2.36)

which is a closed form by definition. From (2.26) it can be
easily checked that F,, = (F,/F;)*F,,. Also using the
vielbeins in (2.32), we can rewrite the NS flux as in (3.24)
in [13]:

i:‘ZFZ,r

Hgﬂz) =F, secO,, tan,, < 7 sec HnCe(rB’z)

B2 B2 B2 B2
A el(,-, ) — eél ' A e;)l )> NG (2.37)

So far, all we have done in this section boils down to
introducing an NS B-field to the type IIB configuration that
was our starting point [described in Sec. II and depicted in
Fig. 2(d)]. This NS B-field, in turn, sources the NS three-
form flux we just determined. In Sec. VII, we will see how
this NS flux sources the desired ®-term in the U(1) world-
volume gauge theory. For the time being, however, let us
focus on the construction of the M-theory configuration
associated with this setup.

The following step in the duality chain outlined at the
beginning of this section is to take the T-dual along ¢, of
(2.29). In order to make this step easy, we rewrite the
aforementioned metric as

= ds<23) + ¢?(F,c0s%0, + Fsin®6),)

X <d¢l +

ds(Zqu)

Fz cosf, secl,,
F,c0s20; + Fsin®6),

dl,?)z, (2.38)
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where we have defined

ds?

F
5y = e <—dt2 +dx? + dx3 + F—zseczencdicg>

2
F,F3sec?, sin%0,
F,c0s20, 4 F3sin%0,
+ e?[F1dr? + F3d0? + Fu(dx} + dx3)).

_|_e¢ d’“’z

(2.39)

Similarly, a rewriting of its associated NS B-field will make
the next duality straightforward:

By = Fz secH, tand,,

Fsin?0, + F,cos20
X secem,(fsm s ZC, )
F,c0s%0; + F5sin®0,

dl/~/+00891d¢1

A dis. (2.40)

T-dualizing along ¢, we obtain the type IIA geometry of
(3.33) in [13]:

_p(dey + F, secf,. tan @, cos 6, di;)?

ds = -
F,c08?0, + F3sin®0,

(g = dsty +e
(2.41)

The NS B-field associated with the ds?

(A3) metric is that in
(3.34) in [13]:

F, secd,,

Biss) = = F sec@,, tan @, sin’0, diy
(43) F,c0s26, +F3sin201( ’ i
A dxz + cos 0,dp, A dyr). (2.42)

The corresponding dilaton is (3.36) in [13]:
(2.43)

e¢(A.3) = % see enc e_3¢/2_
V72 \/F2C08291 + F5sin6,

Coming to the fluxes, the type IIA two-form flux F gAS)
dual to F gB,z) in (2.34) can be easily seen to be

ng,3) = kl sin 91dl/7 A\ d91 + k2 cos 9"0 cos gldXS A ng.
(2.44)

It is again important to note that, of course, this two-form

flux is not closed: dF gAﬁ) # 0, which reflects the presence
of a D6-brane (dual to the D5-brane in the previous type IIB
configuration). Thus, if we denote as A the type IIA gauge

field for this configuration, then it follows that F gAS) can be
written as in (3.53) in [13]:

]_—gAﬁ) = dA, + A, dA = sources.  (2.45)

The explicit expression of the dA = dF gAB) sources is that
in (3.39) in [13]:

dF$Y =k, sin6,da A dip A do,
+ (k4 cos8,.cos6da — k, cos b, sinh,db,)

VAN ng VAN dXQ. (246)
We define A as
Al = Algldel + AIde8 + A19d~x9’ (247)

with (Ajp, A, A}g) depending only on the (6, xg,X9)
coordinates. We further define

o = 0A g _ OA 3 o0 = 0A _ O0A 3
b= 8x8 8)69 ’ 2= 8)(,'8 89] ’
OAyp,  0Ayg
= L— . 2.4
= x| 00, (248)

Using the above quantities, the exterior derivative of A, is

(3.42) in [13]:

dAl = aldxg AN dXQ + azdxg AN del + a3d.X9 A d91
(2.49)

Since d(dA ) = 0, the a’s just introduced are subject to the
constraint

oy _ Oy
891 8X9

Oas
Oxs 0, (2.50)
mentioned in (3.43) in [13]. The definition (2.47) will
become sensible in the M-theory uplift that follows. But
first let us finish the flux discussion for this type IIA
configuration. We note that the corresponding NS three-
form flux is given by the exterior derivative of B, 3).
This is

HIY = ab A (kyydip A dFs + ks pdpy A i), (2.51)
where we have defined
P = lejgseczenc tan @,,.sin’6,
F,co0s?0, + F5sin’6,
P = F2F3 secd,. cos (2.52)

7 Fyc08%0, + Fysin0),

and b = (0, r) are the only coordinates on which the above
two functions depend [recall our choices in (2.2)].
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Finally, we will uplift the above type ITA configuration to
M-theory. To this aim, we rewrite the metric a’szA.3 in
(2.41) in a more convenient way. We first introduce the
quantities of (3.41) in [13]:

Hl = <H2H3)_1/3’ H2 = (Coszgnc + F2Sin29nc)_1,
H; = (Fyco820, + F3sin6,)7",
H, = HyF,F;sec?0,,sin%0;,
f3 =F, sech,,. tan 6, cos 6;. (2.53)

In terms of these, the metric dsf“) can be written as

-

2 o e
ds(A’S) =
+ Hy(dg, + f3dX3)?] + > H,[F\dr? + F3d&?

+ Fu(dx2 + dx3) + Hydi?)}. (2.54)

{H,[-dr* + dx} + dx3 + H,dx3

It is essential to note that the M-theory uplift will only be
able to capture the dynamics of the type IIA theory in the
strong coupling limit of the latter. For us, that means that
we can only rely on the M-theory description when e? is
of order one or bigger. However, we will be interested in
having a finite radius for the eleventh direction after we
uplift. Therefore, we will be careful to avoid the infinite
coupling limit where

e?43) - 0.

(2.55)

From (2.43) it follows that the above is true when e — oo,
for an arbitrary choice of (F,, F3). Additionally, the infinite
coupling limit also applies at two isolated points (py, p,)
givenby py = (0, =0,r=ry) and p, = (6, = n/2,r =
ry) (for any value of the remaining coordinates), where
(ry,ry) are the values of the radial coordinate for which
F,(r;) =0 and F5(r,) = 0, respectively. (These are the
same two points in (3.37) in [13].)
The M-theory metric corresponding to (2.54) is

ds?

Gn) = Hil=df® + dxi + dx} + H,d33

+ Hy(d) + f3dx3)? + 2 (F1dr? + Hydy?))
+ €2 H | [F3d0% + F4(dx3 + dx3))

+ e 2 H (dxy; + A2, 2.56
1

where A is the type IIA gauge field defined in (2.47). We
note that, due to (2.2) and (2.47), for a fixed value of the
radial coordinate, r = r, the second line above describes a
warped Taub-NUT space in the (6, xg, x9, x;;) directions.
[Indeed, this is what motivated the definition (2.47).]
This is most easily seen by introducing the quantities in
(3.45) in [13],

Gl = 62¢H1F3|r=r0’
Gy = e H7?|

GZ: G3 = 62¢H1F4‘r=r09
(2.57)

r=ro

and writing the warped Taub-NUT metric as in (3.44)
in [13]:

ds%N] = G1d0? + Godx} + Gsdx3 + Gy(dx;; + Ap)%

(2.58)
Note that, as we just explained,
G; = G;(6,,xg,x9), i=1,2,3,4. (2.59)
We take the vielbeins of (2.58) as
eglw’l) = \/G>1d¢9,, eéM’l) = \/G>2dx8,
M) =\ /Gadxy, WV = \/Gy(dx +A)).  (2.60)

To better understand this Taub-NUT space, recall that,
before the M-theory uplift, we had a D6-brane in our type
ITA configuration. The M-theory uplift then converts this
D6-brane to geometry. In particular, we obtain the metric
(2.56), where (2.58) is a single-centered (warped) Taub-
NUT space. In other words, in (2.58), GZI = 0 occurs once
and the coordinate singularity at this point is the location of
the D6-brane in the dual type IIA picture. This is an
important observation and essential to the G-flux compu-
tation that follows.

As we just hinted, the remaining of this section will be
devoted to the determination of the G-flux corresponding to
this M-theory configuration. As is well known, there exists
a unique, normalizable (anti-)self-dual harmonic two-form
 associated with a single-centered (warped) Taub-NUT
space [20]. Using which, the G-flux* for our M-theory
configuration is given by (3.55) in [13]:

where (QELM’I)> = HgAs) A dx;; is the background G-flux

[H_%A’” was determined in (2.51)] and F = d.A is the field
strength of the U(1) world-volume gauge theory (A is the
corresponding gauge field). Thus, in order to obtain the

explicit form of QgM’1>, we have one task left: @ must be
computed. We do so in the following.
We start by making the ansatz in (3.46) in [13] for @

w =d¢, §=g(0). x5, %) (dxyy +Ay)  (2.62)
and proceed to determine its precise value from the (anti-)
self-duality requirement: @ = =+ * @, where the Hodge dual
is taken with respect to the metric (2.58). Let us see this in
details. Using (2.49) and (2.60), @ can be written as

*We remind the reader that the computation of fluxes is nicely
summarized in [17].
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w =

1<1ag(M1) 1
VGy \V/G, 00,

a (M.1) (M.1) (25
AN
+ g( GG eg eq +

Quite obviously,

*(e( DA eﬂ“)) = eéMl) A eéMU,

* A egy A ey

and so, the Hodge dual of o is

0 = +g ay (Ml) asz e(M.l)_
VGG, GG
1 < 1 @ (M.1)

+——|—= e ( 1) !
VG, \W/G, 00, 8

N e

99 o)
\/ G2 axg 8

ei(;M.l)/\eé}]VI.l)_’_ az egM.l)/\eézltLl))

VGG,

(e (M.1) (Ml)) _ (M 1) (M.1)

VGG, °

dg (M,l)
—_— A
+ —8x9 ey,

1 0g

(M,1) (M.1)
= VAN
/G3 a)C9 €y ) €y

(2.63)

(2.64)

e<M'])> A eﬂ“)

(M.1) 1 09 e(M.l))

T e (2.65)

Imposing (anti-)self-duality of @ leads to three partial differential equations (PDEs):

199
9391

G,G,
G,G5’

199
g Oxg

G,G,
G,G;

199
g 3969

G;G,
GG,

(2.66)

Using (2.53) and (2.57) in the above, we can rewrite these equations in terms of the warp factors and ¢, as in (3.47) in [13]:

1 89 F2F3
= 4oL L[ sec,.(Fyc0s?0, + Fysin?0,)~1/2
9891 e T sec 0,,.(F,cos*0 + F3sin”6;)~ |r:r0
10 F - 10
“ 99 +e a, 2_sec B, (F,cos20, + Fssin20,)~1/2| _BL9 (2.67)
gaxg F2F3 25 gaX9

Solving the above set of PDEs generically is not easy.
Consequently, we will make some more simplifying
assumptions. To begin with, let us take, as in (3.49)
in [13],

a; =0, = Pa(x9)f (01, 7, X3, X9)| ,—,

a3 = P3(x3)f (0,7, %8, %0)|,—p, (2.68)

where we have defined

f = f(91, r, .X'g,_)Cg) = €2¢\/F200S291 + F3Sin201. (269)
If we now choose ¢ as in (3.54) in [13],

o2 — > Q(r, xg, x9)

\/I:"z cos? 0 + F3sin® 0,

, (2.70)

with ¢, some constant, then (a,, @3) become independent
of 6, [that is, functions of the coordinates (xg,x9) only].

r=ry

Recall that the a’s were subject to the constraint (2.50).
Hence, O = Q(r, xg, x9) above must satisfy

dps dp, 00 20
- = =0. 2.71
Q<dx8 dxy 5 s Oxg Py 0xgl,_,, (271
Additionally, we define
F
co= F2;73 sect,, r:ro, (2.72)

which is a constant that only depends on the deformation
parameter 6,,.. Inserting all our choices and definitions in
(2.67), these PDEs reduce to

1 dg

99y
v coBs(xs), 0%,

1 9g

=F cofalx9), (2.73)

where g is now independent of 8, and thus g = g(xg, x9). It
is finally easy to use separation of variables to solve the
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above. Assuming g = §;(xg)g>(x9), we obtain two ordi-
nary differential equations,

dg dg
—— = cof(xg)dxg, ~
91 92

= F cofr(x9)dxo,
(2.74)

which can readily be solved to yield

0= gexp [ico ( [ piapaz- [ ﬂ2<x;>dxs)] ,

(2.75)

with g, some integration constant. This completes the
computation of @ in (2.62), which in turn gives us the
explicit form of the G-flux in (2.61).

1. Enhancing the symmetry of the world-volume
gauge theory: Tensionless M2-branes

It is an intrinsically interesting question to ask whether
our first M-theory construction above can be generalized to
account for non-Abelian world-volume gauge theories [and
not just the particularly simple U(1) case discussed so far].
The answer is yes and the way to do so is discussed in [21].
Consequently, in this section we review and adapt the
arguments in [21] to our case.

But before we jump into the details of non-Abelian
enhancement in M-theory, it is instructive to recall the well-
known equivalent discussion in type IIA superstring theory
[22]. Consider N parallel D6-branes (N =2,3,4,...).
Consider there are open strings stretched between these
D6-branes. In this case, the symmetry group of the
corresponding world-volume gauge theory is

U(l)xU(1) x ... x U(1).

N times

(2.76)

In the limit when the open strings become tensionless,
the D6-branes come on top of each other (we thus
have N coincident D6-branes). Then, the symmetry group
of the corresponding world-volume gauge theory
becomes SU(N).

If we lift the above type IIA configuration to M-theory,
then the D6-branes convert to geometry and we obtain
the metric (2.56),5 with (2.58) a multi-centered (warped)
Taub-NUT space. Indeed, G;l = 0 now occurs N times in
(2.58), the coordinate singularities at these points denoting
the location of the D6-branes in the dual type IIA picture.
As for the open strings, they convert to M2-branes wrap-
ping the two-cycles in the Taub-NUT space (2.58). In the

>Since we never determined our warp factors and Q function in
(2.70), we can absorb the changes in the geometry due to the
inclusion of the D6-branes and open strings in these quantities.

limit of tensionless M2-branes, the two-cycles vanish
and the world-volume gauge theory symmetry group
becomes SU(N).

Let us see how the above discussion applies to our setup
in details. The first step will be to construct the independent
two-cycles in the space (2.58). In order to do so, let us start
by rewriting the metric (2.58) in a more convenient way.
Defining, as in (3.86) in [13],

U=,
dX* = H{'[F3d0} + F4(dxg + dxg)]|,—,,. (2.77)

we can rewrite (2.58) as in (3.85) in [13]:
dS%-Nl = Ud;(>2 + U_l(dxll + Al)z. (278)

Recall that now this warped Taub-NUT space is a multi-
centered one. Using (2.53) and (2.70), U above can be
written in terms of the warp factors and Q as

U = e*%0Q(cos?0,, + F,sin®0,,.)*/?

x (Fycos’0; + F3sin?0,)V/°|,_, . (2.79)
For simplicity, we will make two assumptions next: we will
take the deformation parameter to be sufficiently small (that
is, 6,. < 1) and we will consider

Fy|

= F;| (2.80)

r=ry r=rp*

Then, expanding to first order around #,. = 0 and using
(2.80), U becomes independent of 6;:

- . 1/6
U=U(xg,x9) = gllm U= e2¢°Q(r,x8,x9)F3/ lr—r, -

e =

(2.81)

U = 0 has N solutions, which we denote as Yi = (xgj, Xo;)
(i=1,2,...,N). Consider two such points Z and 7,» )]
and a geodesic C, in the (xg,Xx9) space joining them.
Attaching to each point in C, a circle labeled by x;;, we
obtain a minimal area two-cycle X;;. We take Xj
(k=1,2,...,N—1) as the (minimal area) independent
two-cycles.
It is well known that to each such two-cycle X ;. |, with
k fixed, we can associate a unique, normalizable, (anti-)
self-dual two-form w;. Obtaining the explicit form of wy, is
straightforward, in view of our earlier results. We only need
to modify (2.62) to
w = déy, S = g(xs, xo)(dxy; +Ay)  (2.82)
and restrict the integrals in (2.75) to the Xy,
two-cycle:
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) T -
9k = Go €Xp [ico/ (B3 = Ba)ldlc,

Iy

} . (2.83)

where g, is some integration constant and dqu denotes line

element along the geodesic C, joining 7k and 7k 11

Let us now compute the areas of the two-cycles X ;.
and derive their intersection matrix. It will soon be clear
why we do so. As measured in the Taub-NUT metric, the
area of X, ;. is given by

Sexn = / (T g, (0 Fy . dle, )
k.k+1

~ Ti —
:ﬁRII% V F4|r:r0|dlcy|’
k

(2.84)

with f3 a constant that avoids possible conical singularities
along C, and R, the physical radius of the x;; coordinate.
It is easy to see that the self-intersection number for each
Skt 1s two: the Sy 4,1 s self-intersect at 7k and 7k 11, with
geodesics transversed in the same direction. Sy ;. inter-
sects Sy_; 4 only at Tk, their geodesics being transversed in
opposite directions. No other two-cycles’ areas intersect.
Thus, the (N —1) x (N —1) intersection matrix of the
areas of the two-cycles X; ;.1 is

2 -1 0 0 0 0
-1 2 -1 0 0
o -1 2 -1 0 0
. (2.85)
0 0 0 0 2 -1
0 0 0 0 -1 2
Or, written more compactly, as in (3.89) in [13],
Converty to a large T-duality

but finite interval along x5

Thus, in our construction, switching on an axionic back-
ground in the usual type IIB D3-NS5 system of [10], shown
in Fig. 2(a), amounts to adding an RR B-field in the (x5, y)
directions to the type IIB configuration shown in Fig. 2(d).

In this section, however, we will see a different way in
which we can obtain such an RR B-field in the type 1IB
configuration before we uplift to M-theory. This will
involve another, distinct (although similar) chain of dual-
ities and modifications to the type IIB configuration of

C1 = (C1)3dxs———>C, = (Ca)5,dx3 A dy.

25](’1

SerlolSun] = { (2.86)

=01 -1

This is, of course, the Cartan matrix of the Ay_; algebra.

Recall that there are M2-branes in this configuration.
They wrap the X, ;. two-cycles and thus their intersection
matrix is (2.85). As previously explained, when the area of
all these two-cycles tends to zero, the limit of tensionless
M2-branes sets in. This corresponds to an Ay_; singularity,
which in turn is responsible for enhancing the world-
volume gauge symmetry to SU(N), as shown in [23].
Figure 4 schematically depicts the above discussion for
N = 3, both in the type IIA and M-theory pictures.

To finish this section, we use all the above results to write
the G-flux of this non-Abelian enhanced M-theory con-
figuration as in (3.90) in [13]:

N-1
QE‘M'U _ <g4(;M1)> + ka A wy. (287)
k=1

Here, F’s are the Cartan algebra values of the world-

volume field strength F, the background G-flux (QgM'l)) is
as earlier’ in (2.61), and the two-forms ;, were computed
in (2.82).

B. Accounting for an axionic background: An
additional RR B-field

Suppose we follow the prescription of [10] to source the
®-term in the world-volume gauge theory. That is, suppose
we consider the type IIB D3-NS5 system with an axionic
background Cy. How would that affect the results in the
previous section (Sec. II A), where Cy = 0?

Long story made short, we need to follow C, along the
modifications of Sec. II, depicted in Fig. 2. We note that C,
would not be affected while going from (a) to (b) in Fig. 2.
However, on going from (b) to (c), Cy would dualize to a
gauge field in the x5 direction. Finally, on going from (c) to
(d), the gauge field would lead to an RR B-field in the
(x3,y) directions. Schematically,

T-duality (288)

along y

|
Fig. 2(d) to that considered before, in Sec. II A. In the
following, we make precise this idea.

The starting point here is the starting point of Sec. Il A as
well: the last configuration of Sec. II, schematically

®Remember, however, that the warp factors and Q function
introduced in (2.70) are different from those in the Abelian case,
due to the inclusion of the D6-branes and open strings in the dual
type 1IA theory.
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D6-branes
@ oY \

( Open strings

(b) M2-branes

¥ L)

(XB’ Xg)

Limit of tensionless
open strings

Limit of tensionless
M2-branes

FIG. 4. Schematics of the non-Abelian enhancement of the world-volume gauge symmetry from U(1) x U(1) x U(1) to SU(3) in
type IIA (top) and in M-theory (bottom). (a) Three parallel D6-branes in type IIA, with open strings stretching between them. The D6-
branes span the (7, x;, x,, X3, ¢, , r) directions and the open strings are in the (xg, X9) plane. The 0, direction is suppressed. When the
open strings become tensionless, the D6-branes coincide. This produces the non-Abelian enhancement. (b) Uplift to M-theory of the
type ITA configurations in (a). The D6-branes convert to geometry, giving rise to a multicentered warped Taub-NUT space along
(01, xg,x9,x11), for a fixed value of the radial coordinate: r = ry. Ry, is the physical radius of the coordinate X1 The
(t,x1,x,,%3,01, 1,9, r) directions are suppressed in the figure. The singularities in the Taub-NUT space lie at (ll,lz, 13) the
position of the D6-branes in the dual type IIA configuration. The open strings become M2-branes wrapping the minimal area,
independent two-cycles (X, X»3) between the singularities. In the limit of tensionless M2-branes, these two-cycles vanish, leading to

the non-Abelian enhancement.

depicted in Fig. 2(d). To this configuration we will
associate an RR B-field. We will then use an S-duality.
The next step will be a T-duality along y to type IIA, where
we will use the same noncommutative deformation
(x3,9) — (X3,) that was considered in Sec. II A. Next,
we will consider a T-duality along y back to type IIB,
followed by an S-duality. At this point we will have a type
IIB configuration with an RR B-field along (X3, ). Thus,
effectively we will have accounted for the axionic back-
ground, as we wished to do. The last T-duality will be along
¢, to type ITA. The resulting configuration will be then
lifted to M-theory. As in Sec. IT A, the NS and RR B-fields,
dilaton, and fluxes of all the above geometries will be
determined. Figure 5 serves as a summary of the chain of
modifications just described and indicates the key equa-
tions in this section.

As just explained we start by considering the type IIB
geometry ds(Bl in (2.1), which has a dilaton e?®1 i

(2.18) and an RR three-form ﬂux ]—' 3 ) in (2.15). We will

associate an RR B-field C2 to this setup as in (3.29)
in [13]:

ng’l) = dCéB’l) +A, dA = sources. (2.89)

Note that the sources above are required to keep consistent
with the fact that 7 gB’l) is not closed. These sources, of
course, refer to the D5-brane present in this configuration.
For concreteness and as a particularly simple case, we will
assume that CgB’l) is of the form in (3.26) in [13]. That is,
we consider
B.1

CPY = by 4. dOy A dpy + bgodxg A dxg,  (2.90)
where (b, 4, . bsy) are functions of only (6, r,xg, x9), in
order to respect all isometries in (2.1). It follows then that
its exterior derivative is

dcPV = ag, A de,

/\ lld lld lld
( or T Tox, T oy, 40

ob ob
+ ( 39819 do, + (989 dr) A dxg A dxg.  (2.91)

Using (2.5), (2.15) and the above, Ain (2.89) can be easily
checked to be
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Type IIB configuration (B,1)
+ RR B-field (2.90)

Metric: (2.1)
Dilaton: (2.18)
RR 3-form flux: (2.15)

Type IIB configuration (B,3)
S-duality

‘ Metric: (2.93)
Dilaton: (2.93)

NS 3-form flux: (2.94)

Type lIA configuration (A,5)

Metric: (2.99)
Dilaton: (2.97)
NS 3-form flux: (2.102)

T-duality
along ¥

Type IIB configuration (B,4)

Metric: (2.103)
Dilaton: (2.104)
NS 3-form flux: (2.106)

T-duality
along y
NC : :
Type lIA conf A4
deformation | 1YPe 1A configuration (A4)
(2.24)
Metric: (2.96)
Dilaton: (2.97)
NS 3-form flux: (2.98)
Type IIB configuration (B,5)
S-duality

‘ Metric: (2.107)
Dilaton: (2.110)

RR 3-form flux: (2.112)+sources

T-duality
along ¢,

M-theory configuration (M,2)

Metric: (2.122)
G 4-form flux: (2.125)

Type IIA configuration (A,6)
Uplift
Metric: (2.113)
_ Dilaton: (2.114)
RR 2-form flux: (2.117)
NS 3-form flux: (2.116)

FIG. 5. Graphical summary of Sec. Il B. To the type IIB configuration of Fig. 2(d) we associate an RR B-field and then proceed to
make a series of modifications in order to account for the axionic background considered in [10]. This is achieved in going from the
configuration (B,1), with the mentioned RR B-field added, to (B,5). The (B,5) configuration is then lifted to M-theory. However, as
argued in the text, it will suffice to study the M-theory configuration (M,1) of Fig. 3.

A =doy ndiy dsy 5 = e¢ds%3,1)’ e = e~Pen, By = e,
0b 0b 0b
A Ky sinydy — =200 gy - 00 gy - 0 gy (2.93)
or aXS 6)69

abgg abgg . . .
+ | kody + ky cos 0ydep; — —2dO, ———dr respectively. The corresponding NS three-form flux is the
00, or exterior derivative of B 3), plus sources coming from the
A dxg A dxo. (2.92) NS5-brane (dual to the D5-brane before). Consequently,

S-dualizing the above, we obtain a type IIB configura-

tion with metric, dipole, and NS B-field given by

this is

HPY = acPV + A = 7PV, (2.94)
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not closed: ngBj) # 0. In other words, after the S-duality,
the RR three-form flux becomes an NS one. This is of
course very convenient (and the reason to take the S-dual to
begin with): NS B-fields and fluxes are easier to deal with
than RR ones. In preparation for the T-duality along y that
will follow, we rewrite this metric as

dsgm) = e’/’dsfz) +dx3 + 2P Fy(dy + cos 0,deh,)?,

(2.95)

where ds<22) was defined in (2.17).
A T-duality along y leads to the type IIA geometry

= e?ds?

2
ds 2

e~20
(A.4) + d.x% + F— dl[/z, (296)
2

with associated dilaton and NS B-field

s = (Fy)712 Biugy =PV 4 cosidy A dgp,.

(2.97)

The NS three-form flux is then given by

HM = dB ) = dCY) —sin6,d0, A dy A dep,.
(2.98)

Note that this NS three-form flux is closed: ngAA) =0.
This is because, under the T-duality, the NSS5-brane
sources turn to geometry, as is well known (see, for
example, [24]).

Under the noncommutative deformation in (2.24), the
type ITA metric changes to

ds%A.S) = e¢ds(22) + (sec 0,.dXs + sin 0,,.dyr)?
e~ F
. cos2 72— o2 12 an2 =2
+ F cos 0,.dy” =e ds(z) + F, sec™0,.dx3
e

+ - c0s?0,,.(dij + e*?F,sec?d,,. tan 0,,.dx3)?,
2

(2.99)
where we have defined
N F
F, 2 (2.100)

T 1+ e¥F,tan0,,

and the last rewriting of the metric was done in anticipation
to the T-duality along y that we will soon perform. Note the
resemblance between £, and F 5, defined in (2.26). Due to
our choices in (2.2), the dilaton is not affected by the
noncommutative deformation: e?«s = efus), Similarly,

our choice in (2.90) ensures that CéB'U remains unchanged
too. The NS B-field, however, does change to

Bus) = C" + cos 6, cos0ydip A dgpy,  (2.101)

which in turn induces the NS three-form flux to change
accordingly:

H™ = dBy5) = dCP") — cos 6, sin6,d0, A dip A deby.
(2.102)

Needless to say, this flux remains closed: ngA‘S) =0.
Upon a T-duality along w, we obtain the type I1IB
geometry

A

F -
| = elds?y + F—zsecz 0,,.d7>2

+ e F, sec? 0, (diy + cos 6, cos 0,dep,)?

ds(ZB!4

(2.103)
with dilaton
F
et = [—2secl, e’ (2.104)
Fy
The NS B-field B4 5) dualizes to
Biga = CEY 4 02 F sec?0,, tan @
(B4) 2 2 ne ne
X (dy + cos 0, cos 0,dp,) A dxz, (2.105)
which contributes to the NS three-form flux
tan 0 dy
M4 = E00ne [k3ada A ( Y+ cos 91d¢1)
cosO,. | cos 0,
— k3 sin0,d6; N dqbl] A dx; + sources,
(2.106)

where we have defined ky = e2/F, and we recall that
a = (0, r, xg,X9). These are the only coordinates on which
ks depends, as a consequence of our choices in (2.2). The
above flux is not closed, owing to the sources which denote
the presence of an NS5-brane. We do not determine the
precise form of the sources here, for reasons that will soon
become clear.

Next, we use an S-duality. This changes the metric to that
in (3.30) in [13]:

026001-17



VERONICA ERRASTI DIEZ

PHYS. REV. D 97, 026001 (2018)

—¢ F F
¢ 2 2 2 a2 )
= [e¢ds(2) + 7 sec”0,,.dx3

ds?, ., =
y secO,. \| I

(B.5)

+ ksysec?0,,.(diy + cos 0, cos 0,dep, )? | .
(2.107)

In preparation to the T-duality along ¢, that will follow, we
rewrite ds%B!S) in a more convenient way:

F "
= a’s(24> +e?, /F—zcos 0,0 (F3sin®0, + F,cos?6,)

dS%B.S)

F, sec@,,.cos 0,
F3sin®0; + F,cos20,

x <d(/)1 + d1/7>2, (2.108)

where we have defined

|F. F N
ds%4) =e? 715“2 cos0,, { —d? +dx? +dx3 + F—jseczencdxg
2

+ % {Fl dr? + F3d6% + F,(dx3 + dx3)

f’z?’ﬁsecz&,icsinzel dl/~/2:| } (2.109)
F3sin®0, + F,cos%0,
The corresponding dilaton is that in (3.31) in [13],
F
ebws) = [~ 2cos 0,.e7". (2.110)
\ £

The NS B-field now dualizes to an RR two-form flux given
by (3.32) in [13]:

CgB'S) = —Bps) = —CgB’D + ks sec? 0, tan 0,,.dx5

A (dy + cos0,.cos0,dgp). (2.111)

The above contributes to an RR three-form flux as
F gBj) = dC;B’S) -+ sources, where

tand,,.
dC, = —dc™V 4 = [k3 cos0,d0) A depy = k3 yda

nc

A ( dv —|—cos€1d¢]>] A di (2.112)
cos 8,

and the sources reflect the presence of a D5-brane (S-dual

to the previous NS5-brane), thus leading to dF <33’5> # 0.

All the modifications considered so far in this section
have at this stage satisfied the desired goal: to source an RR
2-form flux along (X3,%) in our type IIB configuration
before the uplift to M-theory. As we explained in the

beginning of the section, this is equivalent to switching on
an axionic background C, in the usual D3-NS5 system.
Having noted this important point, let us proceed with the
remaining dualities to obtain the M-theory uplift of the
above configuration.

Upon a T-duality along ¢, the type I1IB configuration
above leads to a type IIA geometry given by

F e ?secd
=ds} + /= e ag?. (2.113
“) F F5sin@, + F,cos?0, #r- )

The type IIA dilaton in this case is

1/4 =3¢ 1/2
= (B) (et Y2
Fz F3Si1'1291 =+ F2C05261

There is an NS B-field associated with this metric,

ds(zA’ﬁ)

_ F, sec@,,.cos 6,
= - ~ ,
F3Sll’l201 + F2C05261

(2.115)

Bae) = kadgpy A dys, ky

which gives rise to an NS three-form flux of the form

H = dBue) = kuqda A dpy A djr. (2.116)

Note that, as a consequence of our choices in (2.2) and
because F, depends on ¢ [see (2.100)], ks = k4(a) with

a=(0,,r,xg,%y). The RR three-form flux F gB’S) dualizes
to an RR two-form flux. Using (2.95), this can be written as

0b ob ob
FiNO = doy A < 69:/)] dr + ai‘(/” dxg + afc‘(l)‘ dx9>
8 9

tan @,

cosd (k3,a COS Hlda - k3 sin 91d01)

A dX3 + sources (2.117)

and, of course, is not closed: dF <2A‘6) # 0, denoting a D6-
brane source. This is dual to the D5-brane sourcing F gB’S)

before. Denoting as A, the type IIA gauge field for this
configuration, we can further rewrite the above as

ng’ﬁ) =dA; + A, dA" = sources, (2.118)
with A; as in (3.58) in [13]:
~ tand,, .
Al = bg]qr,]de] + k3 oS COS Hldx3. (2119)

At last, we will uplift the above type IIA configuration to
M-theory. Fo? this purpose, we start by rewriting ds% 46) ina
more convenient way. Defining
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H, = (F5sin0, + F,cos26,)\*H;',
H, = FyF5'sec?,,.
FI4 = F2F3Sin2911j11_3,

H3 = Hl_37
(2.120)

as in (3.57) in [13], we can rewrite (2.113) as

-

e

dS%A,é) =- -
H\/H,
+ Hydg?) + P H\[F\dr? + F3d6*
+ F4(dx§ + dx%) + I’:I4dl/~/2}}

{H,(=dP* + dx} + dx3 + H,d%3

(2.121)

Again it should be borne in mind that the following
M-theory only captures the dynamics of this type IIA
theory in the strong coupling limit where e?“9 is, at least,
of order one. Being once more interested in having a finite
radius for the eleventh direction, we shall be careful to
avoid the e?¢ — oo limit. This limit applies in the same
cases as discussed in (2.55) before.

The corresponding M-theory metric is thatin (3.56) in [13]:

dsé‘“)

= H,[—d?* + dx} + dx3 + H,d%3 + Hsddh}
+ €2¢(F] dr2 + I~{4dl/~/2)]
+ €2¢F11 [F3d9% + F4(dX§ + dxg)]
o2 3
—|—~2—~(d)61] +A])2.
HiH,

(2.122)

In analogy to (2.57) earlier, fixing r = r, and defining

Gl = 62¢I:11F3|r:r0v G27(~;3 = €2¢I:11F4‘

Gy = e H*H;

r=ry°’

(2.123)

'
r=ry’

the last line above can be easily seen to be a warped Taub-NUT
space with metric

dS%NZ = G]dG% + GQdX% + GSng + 64(61)611 +‘&1|r:r0)2'
(2.124)

The G-flux corresponding to this second M-theory construc-
tion is very similar to that in (2.61):

g‘(‘.M,Z) _ <g‘<‘M2)> +ﬁ’ A &')’ (2125)

where (QE‘M’”) = HgA'@ A dxy; is the background G-flux
[H<3A’6) is given by (2.116)] and @ is the unique, normalizable

(anti-)self-dual harmonic two-form associated with the single-

centered (warped) Taub-NUT space in (2.124). Here, F
stands for the field strength of the U(1) world-volume gauge
theory.

It would not be hard to adapt the computation of @ in
Sec. I A to the present case and obtain the explicit form of
. In fact, we could adapt the discussion of Sec. [IA1 to
the present case and obtain a non-Abelian enhancement of
the world-volume gauge theory in this setup too. However,
before doing any more computations, let us compare the
two M-theory metrics: (2.56) and (2.122). They are very
similar. In fact, they just differ in the warp factors. It is
important to note that both of them break the Lorentz
invariance along the (f,x;,x,) and the X3 directions.
Moreover, both M-theories capture the dynamics of their
dual type IIA configurations in the same limit, as we noted
a bit earlier. Since the supergravity analysis that we will
perform in Secs. IV-VI will only depend on the metric
deformations, the above noted similarities are enough to
consider that, for our purposes, both M-theory configura-
tions are equivalent. Nonetheless, it is clear from our
calculations so far that the first M-theory configuration
is computationally simpler to handle. Indeed, as we already
anticipated, the noncommutative deformation by itself
sources the required ®-term in the world-volume theory
and that is all we will really need. The present section
explicitly has shown that (2.56) captures all the information
needed from the type IIB configuration in [10] to embed
knots and study their invariants. Consequently, we will
drop any further study of the M-theory configuration in
(2.122) and instead carry all our investigations in the
configuration with metric (2.56). That is, the first M-theory
construction to study knot invariants is (M, 1) in Fig. 3 and
its non-Abelian enhancement in Sec. Il A 1.

It is important to bear in mind that the configuration (M,
1) has been obtained from the D3-NS5 system of [10] using
the well-defined chain of dualities depicted in Figs. 2 and 3
(along with Fig. 4, for the non-Abelian enhanced case).
Consequently, (M, 1) is dual to the model in [10], by
construction.

Sections IV-VI will be devoted to the study of the
physics following from (M, 1). A special emphasis will be
made on what this is and why it is a suitable framework for
the realization of knots. Before proceeding in this direction,
however, we shall first construct yet another M-theory
configuration, which we will refer to as (M, 5). The
configuration (M, 5) also follows from [10], but is not
dual to it, as we shall see. Instead, we will show that it is
dual to the model in [8] and thus provides a second,
independent natural framework for the realization of knots
and the computation of knot invariants.

ITI. A DIFFERENT MODIFICATION
TO THE D3-NS5 SYSTEM

As was the case in Sec. II and as schematically shown in
Fig. 1, the starting point of our analysis here too is the well-
known type IIB superstring theory configuration of a D3-
brane ending on an NS5-brane considered in [10]. For the
time being, we will not consider an axionic background:
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(a) (b)

NS5 — NS5 NS5

ﬁxsv e1' ¢1)

(%5 8, ¢Z)T Convert y to an interval —
% %, 6, ¢2>T g
(t, X, X,) (t X, X,)

l T-duality along x,

(d) ()
NSS N>>1 D4's NSS NS5 D4 NS5
4 |
i Add a large number ﬂel’ ¢1)
(el’ ¢]) of D4-branes v >

®, ¢2)T v / 0, 0, T /
(t, Xps Xy X3) (t' Xy Xo Xs)

l T-duality along y

© ; 0,.9,w) ® 0,9,w)
/ /

)

Blow up the two-cycle

0, 0,
T/' N>>1 D5's ©.¢) T/v N>>1 D5's ©. ¢

(1, X, X5 X;) (& Xy, Xo X,)

FIG. 6. [Illustration of the modifications to the D3-NS5 system described in Sec. III. The reason to consider this chain of dualities is
twofold: to be able to write the corresponding metric [the geometry of (f) is well known] and to ultimately connect [8,10]. (a) The well-
known type IIB D3-NS5 system. The D3-brane spans the (7, x;, x,, y) directions and the NS5-brane the (¢, x1, x5, X3, 8,, ¢, ) directions.
The (0, ¢, r) directions are suppressed. The gauge theory on the D3-brane has N/ = 2 supersymmetry. (b) Introducing a second NS5-
brane, oriented along (t, x;, x,, X3, 01, ¢h;) converts the y direction into an interval. This reduces the amount of supersymmetry of the
gauge theory on the D3-brane from A" = 2 to N = 1. The r direction is suppressed. (c) A T-duality along x; does not affect the NS5-
branes but converts the D3-brane into a D4-brane. (d) We add a large amount of coincident D4-branes to the previous configuration. The
aim of this step is to later on establish a precise connection with the configuration studied in [8]. (¢) A T-duality along y converts the
NS5-branes to a singular conifold along (0,, ¢y, w, r, 05, ¢h,). The D4-branes convert to as many D3-branes that wrap the vanishing two-
cycle of the conifold. (f) The blowing up of the two-cycle of the singular conifold leads to a resolved conifold. The D5-branes are not
affected.

Co = 0. The notation and orientation of the branes are the D3-brane, namely v, a finite interval. The y interval
exactly as before, but with the further identifications in this case is taken to be not too large. Consequently,
(xg = 6,5, x9 = ¢h,), which will soon become sensible. the U(1) gauge theory on the D3-brane has only
Next, we make five modifications to the above setup. N = 1 supersymmetry now.
Figure 6 schematically depicts them. The modifications (2) We use a T-duality to type IIA superstring theory
aim to ultimately make a precise connection between along x5, which results in the D3-brane converting to
[8,10]. We will discuss such connection later on. For the a D4-brane. The NS5-branes are not affected by this
time being, let us just discuss the modifications. T-duality. This same duality was discussed at length
(1) We introduce a second NSS5-brane, oriented along in [25,26].
(1, x1 x5, x3, 01, ¢1) and which intersects the D3-brane. (3) We introduce a large number of coincident D4-branes,
In analogy to the first modification in Sec. II, this so that we have astack of N (where N € Nand N <« 1)
makes the direction orthogonal to both NS5-branes of D4-branes between the two NS5-branes.
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(4) We use a T-duality back to type IIB along . As a world-volume gauge theory is an AV = 1 supersym-
result, the NS5-branes disappear and give rise to a metric one).
singular conifold in the (6, ¢,y r,0,,¢,) direc- (5) Finally, we blow up the two-cycle of the singular
tions, which explains the coordinate relabeling conifold and thus obtain a resolved conifold. The
above. The N D4-branes convert to N D5-branes metric on the resolved conifold is a non-Kdhler one,
which wrap the vanishing two-cycle of the conifold. as succinctly pointed out in [27] and as discussed in
This T-duality has been carefully discussed in details in [28].
[15,27]. Note that, unlike in Sec. II [see Fig. 2(d)], The geometry corresponding to this last configuration is

there are no D5-branes here. This is because there is known (which also explains why the above modifications
no Coulomb branch in this setup (the associated  were done) and is given by (4.1) in [13]:
|

ds(y 7 = e (—di? + dx? + dxk + dx2)

- 2 2 2
+e? [}'ldrz +F, <dl// + Z cos H,»d(ﬁ,») + Z Fayi(dO? + sin?0,d¢?) | . (3.1)
Py i=1

Here, ¢ is the usual type IIB dilaton:

etwn = =0, (3.2)
For simplicity, we assume that the warp factors and the dilaton only depend on the radial coordinate r:
Fi=Fir)., ¢=¢(r). i=12734 (3.3)

Under such assumption and for a fixed value of the radial coordinate, r = r, the second line in (3.1) is the resolved conifold

metric. As was the case in Sec. II, the D5-branes in this configuration source an RR three-form flux F gBJ) which can be

computed as
FED = 5dT 57, (3.4)

where J (3 7) is the fundamental two-form of the warped internal six-dimensional manifold [note the dilaton is taken care of
in (3.4) already] with metric

2 2 2
ds(27> = F,dr* + F, <dl// + Z cos Hid(b,») + Z Fayi(dO? + sin?0,d¢?). (3.5)
i=1 i=1

We determine F 53'7) in the following. [Note the coming calculation is very similar to that presented earlier, between (2.5)
and (2.15), so we will be more succinct now.]
We start by defining the vielbeins associated with ds%7> as

EE)I?J) =V f2+i€£)i8'7) =\ fZJridHiy E{(/fj) =\ f2+ie((/f.7) = \/feri sin 9,~d¢l~,

i

2
EPT = \/FrelP” = \/F, (dz// +) " cos 9,»d¢,-), EPT = \/F BT = \/F dr. (3.6)
i=1

where i = 1, 2. Using these vielbeins, it is easy to write down the fundamental two-form of our interest:

2
Ty =3 EBD A EBD 4 g87 5 7

2 2
= Fayisin0do; A dgy; + /F | F, (dy/ +) " cos Gidgbi) Adr. (3.7)

i=1
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The exterior derivative of the above is

2

AT 57y =Y _(Fariy =V F1F2)sinbdr A dO; A dgp;, (3.8)

i=1

where, quite obviously, F, . ; , stands for the derivative with respect to r of 7, ; (i = 1, 2). Next, we wish to take the Hodge
dual of the above. For this purpose, let us begin by writing (3.5) in matrix form:

F; 0 0 0 0 0
0 F,co8?0, + Fssin0, 0 Frcosf, O F,cos 6, cosb,
- 0 0 Fi 0 0 0
M = (3.9)
0 F,cosb, 0 Fs 0 Frcosb,
0 0 0 0 Fq4 0
0 F, cos B, cos 6, 0 F,cos0, 0 F,cos’0,+ F,sin’0,
The inverse of the above metric is
%3 0 0 0 0 0
csc? 6, cotd; csc b,
o TF 0 T 0 0
0 0 L 0 0 0
= 7 (3.10)
= 0 _c 9}: c;sc 0, 0 %2 + cojﬁ}&l + CO]t;HZ 0 —co 9;: isc 0, .
0 0 0 0 %4 0
cot 6, csc 6, csc2 6,
0 0 0 - % 0 Tz

and the square root of its determinant is

ME \/detM:\/f]f2f3f4Sin91 Sin6’2. (311)

All this information can now be used to compute the Hodge dual of the wedge products in (3.8). For a fixed value of i (i = 1
or i =2),

s(dr A dO; A de;) = MM Mty (M €00.40.9,89 + My €0,0,0.4,d0:) A dO; A d;

FHo:
_ | 2 esc 0; sin 0, (dy + cos 0;dep;) A dO; A dep, (3.12)
FrFogi

with j fixed and not equal to i. That is, either (i, j) = (1,2) or (i, j) = (2, 1). Putting everything together, the three-form
flux in (3.4) can be easily seen to be

2
; o
FED — i (T2 Tom L E T sing (dy + cos0.dp,) A dO; A dp, (3.13)
‘7:1 ij=1 f2+i ’

i#]

|

Note that, in good agreement with the previously pointed  (3.3). Accordingly, we note that not any such choice
out presence of D5-branes in this configuration, the above  will eventually lead to a world-volume gauge theory with
flux is not closed: dF gl”) #0. N =1 supersymmetry. The story is in fact a bit more
Later on, in Sec. III B 1, we will be interested in making involved: the warp factors and dilaton must satisfy a

a fully precise choice of the warp factors and dilaton in  particular constraint equation so that we indeed have
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N = 1 supersymmetry. In the following section, we derive
this constraint equation.

A. Demanding A =1 supersymmetry: Torsion classes

The aforementioned constraint equation relating the
warp factors and dilaton in (3.3) that ensures AN = 1
supersymmetry in the associated world-volume gauge
theory is most easily derived using the technique of torsion
classes. A detailed yet concise review of the technique and
its applications to string theory can be found in [29]. A
more mathematical approach to the same material is [30].
In this section, we review and adapt the results in these
references to the present case and thus obtain the desired
constraint equation. (This is, essentially, the content of
Sec. 3.1 in [31] too.)

We start by noting that the type IIB configuration
determined in the previous section has an internal six-
dimensional manifold, whose (Riemannian) metric was
given in (3.5). This manifold is equipped with a funda-
mental two-form, given in (3.7). In a more mathematical
language, we say that this is a six-dimensional manifold
with a U(3) structure J. An SU(3) structure is then
determined by a real three-form ., which we will soon
compute. There is an intrinsic torsion associated with each
of these structures. For our purposes, only the intrinsic
torsion 7; of the SU(3) structure will be relevant. 7,
belongs to a space which can be decomposed into five
classes:

TIEW W, ® W5 & W, D Ws, (314)

according to its decomposition into the irreps of SU(3)

(1+1)+(8+8) +(6+6)+(3+3)+(3+3).

(3.15)

We denote the component of z; in W; as W, (i =1, 2, 3,
4,5).

Before proceeding further, let us introduce the so-called
contraction operator ,, which will immediately become
useful to us. Let (ey, e, ..., ¢;) be an orthonormal basis of
the cotangent space 7*M of any i-dimensional manifold M.
Given a j-form ®; and a k-form w, in T*M (with
i>j>k20)

J k
oy = (01),.. H er wy = (02) 13, & H e
=1 I=1

the contraction operator _ is a map from the pair (@, ®,) to
a (j — k)-form given by

1/ . /
@201 =2 <k)(w1)12“"(0’2)12...k 1] e

I=k+1

(3.16)

(3.17)

with the convention that e; A e, | €] A ey A e3 = e3, etc.
Having introduced the contraction operator, we now have
all the ingredients required to derive the desired constraint
equation.

The necessary and sufficient conditions to ensure N = 1
supersymmetry in the world-volume gauge theory corre-
sponding to the geometry (3.1) have long been known
[32].7 These conditions were then reformulated in [29] in
terms of the torsion classes we just introduced in (3.14). For
the present case, they amount to demanding that (4.23) in
[13] should hold true:

with (W, W) defined as
1 1
W4E§JJdJ, WsE§Q+JdQ+. (319)

The remainder of this section is devoted to the calcu-
lation of (3.18) in terms of the warp factors and dilaton
in (3.3).

In order to match the conventions in [31], where the
interested reader can find an elaboration of the present
discussion, we take the complex vielbeins of the internal
six-manifold of (3.1) as in there:

B,7
‘7:2&(// ))’
:e$+iw/2\/j?2‘+’i(e(£,7)+i€$.7>),

where the vielbeins e(57) were defined in (3.6) and i = 1,
2. In terms of these vielbeins, the U(3) structure J of the
internal space is given by

SEB’” = ei( f1e£37

i 320)

J=EE nglBD +Z£1+, AEED

i=1
:2ie2$<\/.7:.7:e, /\el,, +Zf2+, /\ee >>,
(3.21)

where the bar denotes complex conjugation. We also define
the three-form Q as

Q=& A& NE =MW FF(VF e

Fael )/\H o7 el (3.22)

"The conditions in [32] are actually a bit too stringent. Later
on, examples of A/ = 1 supersymmetric theories which did not
satisfy all these conditions were found (see, for example [19]).
For our case, however, the list in [32] will suffice.
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The SU(3) structure Q_ of the internal space is just the real part of the above three-form: Q, = Re(Q). Using Euler’s
formula, it is not hard to show that

Q, = 3\ /T F4[(\/F, cosye’ \/Fzsmy/el,, ( /\e(em) efﬁl?j) /\e((ﬁm))
- (VF, sinpel™” + \/F coswey, ) A ( ((ﬁ ) + eqf DA e(gf’7))]. (3.23)

In order to obtain the exterior derivative of the two structures of our interest, (J, 2, ), it is necessary to use the explicit form
of the vielbeins in (3.6). Rather tedious algebra yields

o2
dJ = 2ie* Z (VFIFs = Foriy = 20,F2)e"7 A el ? el (3.24)

2
dQ, = k’lesB]) A eéfj) A e[(;jj) A Zcot Qieé?])

+Kydy A P A (D A el + 6P A el )

—|—kze<, )/\eé /\ea /\Zcotee

+ Kydy A eB A (eg‘;m) A eéB 7) e((;fj) A e((bB 7)), (3.25)

where the subscript r, as before, denotes derivation with respect to the radial coordinate and we have defined

j o [P N F
Ky =ée? j’-‘zf3]-'4cosy/<3¢,— ]_T;—l- 2 2]_;[

> , k) = —tanyk]. (3.26)
Using (3.17) and all the above in (3.19), it is a matter of care and patience to obtain the relevant components of the intrinsic
torsion of €, as in (4.20) in [13]:

4 4
y Fir=vF1F2\ 7 Fi Fir\ 7
W, = E ML A L P ,— — e, . 3.27

Finally, inserting these values of (W,, Ws) in (3.18), the desired constraint ensuring N' = 1 supersymmetry is

fl -7:2r 2 ir fIFZ
-2 - =0. 2
306, 1/ +§i: ( 6 7 0 (3.28)

At this point one may wonder if similar constraints should not have been worked out for our configuration (M, 1) with
metric (2.1) in Sec. II as well. Surely if N' = 1 supersymmetry constrains the choice of warp factors and dilaton in (3.3),
N = 2 supersymmetry will also constrain the choice in (2.2). The resolution to this issue is, unfortunately, beyond the scope
of this work, as the powerful technique of torsion classes has not yet been generalized to the case of NV = 2 supersymmetry.
Consequently, any specific choice for the warp factors in (2.2) and Q in (2.70) that one may want to consider will require an
explicit verification that it indeed preserves the desired amount of supersymmetry.

To sum things up, so far we have obtained from the well-known D3-NS5 system (with no axion) of [10] the type IIB
configuration with metric (3.1), dilaton ¢~?, and an RR three-form flux (3.13). In order for this configuration to lead to a
N = 1 supersymmetric world-volume gauge theory, the constraint (3.28) should be satisfied. However, we would like to
consider a type IIB configuration which, besides having an RR three-form flux, also has an NS three-form flux. This is, in
principle, not an easy task. However, the series of dualities first presented in [27] and later on further studied in [28,31],
when applied to our above configuration, precisely serves this purpose. In the following section, we explain these dualities
in details and obtain a type IIB configuration with both RR and NS fluxes. Such a generalization will then, in Sec. III B 2,
allow us to establish a direct connection with the model to study knots presented in [8].

¥We will discuss how this is achieved in the gauge theory following from (M, 1) in Sec. VIB later on.
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Type IIB configuration (B,7)

Metric: (3.1)
Dilaton: (3.2)
RR 3-form flux: (3.13)

M-theory configuration (M,4)

Metric: (3.38)
G 4-form flux: (3.39)

Dimensional
reduction

Type IIA configuration (A,8)

Metric: (3.40)
Dilaton: (3.41)
RR 2-form flux: (3.44)
RR 4-form flux: (3.42)
NS 3-form flux: (3.45)

Three
T-dualities

—

along
(Xy X, X,)

Boost
along x,,

(3.35)

Three
T-dualities

—

along
(X, X, X,)

Type IIA configuration (A,7)

Metric: (3.29)
Dilaton: (3.30)
RR 4-form flux: (3.33)

Uplift

M-theory configuration (M,3)

Metric: (3.34)
G 4-form flux: (3.34)

Type IIB configuration (B,8)

Metric: (3.46)
Dilaton: (3.2)
RR 3-form flux: (3.50)
RR 5-form flux: (3.51)
NS 3-form flux: (3.49)

FIG. 7.

Graphical summary of Sec. III B. To the type IIB configuration of Fig. 6(f) we make a series of modifications. In this manner,

we obtain a type IIB configuration that, besides RR fluxes, has NS fluxes as well.

B. Obtaining a type IIB configuration with RR and NS
fluxes: A boost in M-theory

We start this section considering the type IIB configu-
ration described in Sec. III and depicted in Fig. 6(f). We will
first perform three T-dualities, along (x;,x,, x3), to type
ITA. The resulting configuration will then be lifted to M-
theory, where we will perform a boost along the (7,x;;)
directions: (¢,x;,) — (z,%;;). This will be followed by a
dimensional reduction to type IIA. The last step will be to
T-dualize along (xy, x,, x3) back to type IIB. Of course, we
will work out the NS B-field, dilaton and RR and NS fluxes
associated with each geometry considered along this chain
of modifications. As we already pointed out, starting from a
type IIB configuration which only has RR fluxes, we will
thus obtain a type IIB configuration with RR and NS fluxes.
As already said and as we shall show, the additional NS
fluxes are required in order to precisely reproduce the
model in [8]. Figure 7 outlines the just described chain of
modifications and serves as a summary of the key results in
the present section.

As just mentioned, to the type IIB configuration
shown in Fig. 6(f) we use three T-dualities, along
(x1,X5,x3). It is rather straightforward to see that the
metric then becomes

dszAj) = —ePd* + e‘/’(dx% + dx% + dx% + ds<27>),

(A,
(3.29)

where ds%7) was defined in (3.5). Coming to the dilaton, its
changes can be summarized as follows:

7 < T-dualit ~ ~ T-dualit T-dualit; = g
e¢(B.7) — e_¢ — e_¢/2 N 1 — €¢/2 — e¢(A.7)'

along x| along x, along x3

(3.30)

This can be used to rewrite our type IIA metric in a form
that will soon make it straightforward to uplift it to M-
theory:

ds%Aj) = e?3[—e~49/3 41

+ 23(dx? + dx3 + dx? + ds27))]. (3.31)

(

Regarding the F 53,7) flux, we note that each T-duality will
add a leg to it along its corresponding Minkowskian
direction (xy, x5, x3). That is,
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B.7) T-duality B.7) T-duality B.7
FEDZax, n FP—Zdxy A dxy A FET
along x| N along x,
T-duality B.7 A7
——dxy A dx; Adxy A FED = FAD - (3.32)
along x3

We thus obtain an RR six-form flux. This flux is not closed

(dféAj) # 0), which is to be expected, since the three
T-dualities convert the N coincident D5-branes of the
previous type IIB configuration to N coincident D2-branes
that source F g”). The Hodge dual of this six-form flux
then gives us the more convenient (for the coming uplift)
RR four-form flux of this type IIA configuration:

FPD =+ F8D = F PV ndt=dT g7 At

2
= (Favip—\/F1F>)sin0;dr ndo; ndep; A dt,
i=1
(3.33)

where the first Hodge dual is with respect to the full ten-
dimensional metric (3.31), whereas the second one is with
respect to (3.5). The above result makes use of (3.4), (3.8)
and (3.39).

We wrote our type IIA configuration so that the uplift to
M-theory would be effortless. We get the following metric
and G-flux:

ds?Mﬁ) = —e 342 + 23 (dx3 + dd + dx3

+ ds%” +dx3,),
g = FD. (3.34)

Note that the D2-branes now convert to N coincident
M2-branes.

The key step in this chain of dualities comes next: we
perform a boost in the eleventh direction. Explicitly,

t = —sinh X, + cosh 37,
(3.35)

X1 = COShﬂ}C’“ - Sinhﬁ;,

with # the boost parameter. Following equation (4.3) in
[13], we define the quantity

T = sinh?B(e2/3 — e=40/3). (3.36)

Using the above two equations in ds%M 3)° it is a matter of

simple algebra to check that the boosted M-theory metric is
given by

dsiy ) = 3 (dn? + dod + dx3 + ds(;)
+ (T = e PR)dP + (T + e23)di,

=27 COthﬁd.%lld;. (337)

Note that the boost has now generated a gauge field in the
M-theory. This is most clearly seen upon rewriting the
above metric as

) -2¢/3
2 _ 20/3 2 2 2 2y_ ¢ @
dsiy gy =€ (dx7 + dx5 + dxj3 +ds(7>) T
; Ycothp _\2
+ (T + €2¢/3) (d;CH - Lﬁdt) .
T + /3
(3.38)

This rewriting is convenient for the coming dimensional
reduction too. Similarly, the boosted G-flux can be easily
seen to be

G = dJ 57 A (cosh pdi —sinh fd5y,),  (3.39)
with dJ g7y as in (3.8).

The next step in the chain of dualities outlined in the
beginning of the section is to dimensionally reduce the

above to type IIA. The metric corresponding to this
configuration is

e‘2$/3 -
ds?, o = —————dFf’

) VY + 2473

+ 2PN\ 4 203 (dn? + dx + dx} + ds(27))

(3.40)

and the corresponding dilaton is

ePus) = (T + &2/3)4, (3.41)
Coming now to the fluxes, we note that the M2-branes of
the previous M-theory setup now convert to D2-branes,
which source an RR four-form flux given by
f-(A,S) _ z

4 =coshpdT g A dt. (3.42)
The Hodge dual of the above will soon be useful. This is an
RR six-form flux of the form

féA'S) = *]—'&A’& = cosh fidx; A dxy A dx; A .7:;3’7),

(3.43)

which is clearly not closed, dféA’s) # 0, as expected.

[Recall F7 was given in (3.13).] Additionally, the M-
theory gauge field generated by the boost (3.35) effectively
converts to a “D0-charge.” This DO-charge sources a closed
RR two-form flux: the exterior derivative of the just
mentioned gauge field. Explicitly,
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T coth TN,
F = d(—co A ) = coth - <—) di
L T 4 o203

A dr, (3.44)
where we have used the fact that, as a consequence of our
choices in (3.3), the gauge field only depends on the radial
coordinate r (and the boost parameter /). To finish this flux
discussion, we note that the boost generates a closed NS
three-form flux, just as we wanted:

HgA,8> = — Sinhﬂdj(3,7)' (345)

along x|

Hence, the dilaton remains as in the beginning:

ePms) = e/’<37> — e ?.

e¢(AA8) T-duality e_(z/:;(,r 4 62&/3)1/2 T-duality e—2$/3(T 4 62‘;5/3)1/4 T-duality e_¢.

along x,

To finish this section, the only remaining task is to
perform three T-dualities, along (xy, x,,x3), back to type
IIB. From (3.40), it follows that the geometry correspond-
ing to our final configuration is

—24?)/2

VY 4 23
+ 2B\ T+ e2$/3ds%7)

The changes in the dilaton can be summarized as follows:

(=di* + dxi + dx3 + dx3)

(3.46)

(3.47)

along x3

(3.48)

It is rather obvious that, since the dualities are along diagonal directions of the metric, the NS three-form flux will not be

affected in this case:

HgB,s) _ HgAB) = —sinhfdJ 7).

Regarding the F é

(3.49)

flux, we note that each T-duality will remove a leg to it along its corresponding Minkowskian direction

(x1, X, x3). That is, we have the reverse process to that earlier in (3.39):

(B,7) T- duality
—>

osh fdxs A dxy A F &7

along x|

osh pFT = FIY. (3.50)

A8
FAY = cosh pdx, A dxy A dxy A FE
T-duality B.7)T- duality
— cosh fdx; A .7-" R
along x, along x5

We thus obtain a nonclosed RR three-form flux, an
indication of the N coincident D5-branes present in this
configuration. Finally, the DO-charge previously sourcing

F EA'S) now converts to a D3-charge. The D3-charge then
sources an RR ﬁve form flux which, in analogy to (3.32), is

given by ]-'2 A dxy A dx, A dxs, plus its Hodge dual
(since the D3-charge is self-dual, the corresponding RR
flux must be self-dual too). We thus obtain

FgB'S) = coth (1 + >d? A dr A dx

)E <T+e2‘7’/3

VAN d)C2 VAN d)C3, (351)

where the Hodge dual is, of course, with respect to the
metric (3.46). The geometry and fluxes of this final type IIB
configuration are precisely those in (4.2) in [13]. As a
consistency check, one may verify that setting f = 0 (no

boost), we recover the initial type IIB configuration with
only dilaton and RR three-form flux:

configuration (B, 8) ﬁ configuration (B,7). (3.52)

It is important to note that none of the modifications
performed in this section affects the supersymmetry of the
starting configuration [configuration (B, 7)]. In other
words, the previously derived constraint equation (3.28)
is enough to ensure that the end configuration [configura-
tion (B, 8)] is associated with an N = 1 supersymmetric
world-volume gauge theory too. We refer the interested
reader to Sec. 3.2 in [31] for an enlightening discussion on
the difficulties to derive this constraint equation in the
context of the configuration (B, 8), where the internal six-
dimensional manifold is not complex, unlike in the con-
figuration (B, 7).
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1. Exact results: A specific choice of the warp factors

At this stage, we would like to make our discussion fully
precise. Thus, following (4.9) in [13], we choose our warp
factors as

e~ ? rre ?F
f] Fa -7:2 2 5
et e~
f3 = 4 + 612, .F4 = 4 s (353)

where, in good agreement with our previous choices in
(3.3),
F=F(r),

a>=a}+a(r). (3.54)

The constant aj is to be interpreted as the resolution
parameter of the blown up two-cycle in the resolved
conifold. (This choice was already studied in [31,33].) In
this section, we work out three constraint equations that

ultimately allow us to compute (F,e? a) above and
thereby fully determine our type IIB configuration in this
case. We will do so for a particularly simple case, as the
most general scenario is computationally difficult to
handle.

The first constraint equation follows from demanding
that the choice (3.53) leads to a world-volume gauge theory
with V' = 1 supersymmetry. As we argued in Sec. III A,
this amounts to requiring that (3.28) holds true. Using
(3.53) in (3.28), it is quite straightforward to show that the
first constraint can be written as in (4.25) in [13]:

a’e?

. . 2
<1s+88 )¢,+56e¢%a,+;

7”2
4 1 2 4a2e?
T Fr 2 = )
+(r+F , rF)( + r2) 0, (3.55)

where (¢, a,, F,) stand for the derivatives with respect to
the radial coordinate r of (q?ﬁ a, F).

For the second constraint equation, we will demand
quantization of the magnetic charge of the D5-branes in our
configuration. Recall that, in spite of the duality chain of
Fig. 7, our D5-branes remain as in Fig. 6(f): oriented along
(t,x1, x5, x3) and wrapping the two-cycle parametrized by
(6. ¢,). As is well known,” the D5-branes’ charge stems
from the RR three-form flux F gB,g). Accordingly, let us
begin by giving the explicit form of this flux when the warp
factors are chosen as just mentioned. This amounts to
inserting (3.53) in (3.50) and further using (3.6) and (3.13).
Rather easy and quick algebra then gives

A succinct and clear review on charge quantization of
D-branes can be found in [17].

3 F -
ng’S) -7 coshﬁ(klegfj) A e{(ﬁ’n
+ Iéze((fj) A e((/fjj)) A e.S,Bj), (3.56)
where we have defined
- 42 . 20 —8 b
k15¢r<1+ a2e ) szw-
r r? + 4a%e?
(3.57)

This is (4.10) in [13]. Now, the magnetic charge of the
D5-branes in our setup can be calculated as the integral of
their RR three-form flux over the three cycle orthogonal to
them:

gn= | F&Y, (3.58)
S3

with $3 the three cycle labeled by (6, ¢, y) and depicted
in Fig. 6(f). It is easy to see that only the first term in (3.56)
will contribute to the magnetic charge. Normalizing the
three cycle volume as

Ve = / etV eV ney =1 (3.59)
S3 1 1

and demanding ¢,, € Z, we obtain the second constraint
equation:

$3F -
co="TF coshpez.

(3.60)

COZ

The third and last constraint follows from d?F (33'8) =0.
For simplicity, we will consider the limit when (a, a,) are
of the same order and sufficiently small, a ~ a, < 1. Under
this assumption, we can expand 122 around a®> =0 and
obtain

- - 4a*e?\  8aa,e?
k2 — ¢r<1 - > > - 7 +
r

0.  (3.61)

r

Further introducing the quantities in (4.13) and (4.17) in
[13],

B B7 B B7 B7
1135(6(91 )/\eg(ﬁl)—eéz)/\e((ﬁ2 ))/\el(,, ),
. -0,
G=e¥rF coshﬁ(Zaar - ; ¢r>, (3.62)

it is not hard to convince oneself that 7 gB’S) can be written
in the very suggestive way

(B.7) (B.7) (B.7)

]_.gB.S) =—Coms +Gey, " Ne, Ney, (3.63)
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where we have used our first constraint (3.60). Note that 75 is a closed form (dn; = 0). Consequently, the exterior derivative

of the above comes solely from the second term. Denoting as G, the derivative of G with respect to r, we obtain dF5

in (4.16) in [13]:

d]:gB'S) = Gre£3’7) A eéBj) A e((/)Bj> A el,,B’

= G,e£ DA e.(,,B A e‘(gB 7

/\e{/,

(B.8) as
7 + Gd(egfj) A e((/) DA e.S,B 7))
(B.7) Ge((f]) A e((lS A eéB DA e{(/fiﬂ, (3.64)

where in the last step we have made use of (3.6). Of course, the exterior derivative of the above must vanish and this leads to

our third constraint equation:

0=arP =

Having derived the three constraints of our interest,
(3.55), (3.60) and (3.65), we will now solve them under the
assumption a ~ a, < 1, keeping only terms up to order
O(a). (Other solutions to these equations are of course
possible, but we will not attempt them here.) In this case,
(3.55) reduces to (4.24) in [13],

~ r 2 2
r¢r+15—FFr—15—F+§+O<a)*O (366)
and (3.60) becomes
e¢ ’F
Co = gbr cosh 3 + O(a?), (3.67)

which immediately ensures that (3.65) is satisfied in the

limit here considered. Defining Z = % and ¢o = Cy/ coshp,
we can solve for F in the above

(3.68)
Substitution in (3.66) then yields (4.26) in [13]:

15 ”
12y =32, +r|=——— )22+ 0(®) =0, (3.69)
2¢0 Z

with Z,, = d*Z/dr*. One may easily verify that a solution
to (3.69) is given by Z = 24¢,r~2 Tt follows then that
(4.30) in [13],
240

=040, F=

5 +0(a?), (3.70)

1
fully determines our choices in (3.53), up to order O(a?).
The explicit form of the type IIB configuration (B, 8) in
Fig. 7 can then be obtained by simply using (3.53) and
(3.70) in (3.46) and in (3.48)—(3.51).

2. Connection to the model in [8]

The present section is devoted to sketching how the
configuration (B, 8) of Fig. 7 is related to the resolved

Geg >/\eé )/\e(/)

(B.7) (B.7) (B.7)

Neg " Ney = G, =0. (3.65)

|
conifold in the presence of fluxes considered by Ooguri and
Vafa in [8]. Here, we will clearly point out the modifica-
tions needed to obtain the model in [8] from (B, 8). These
are depicted in Fig. 8, which serves as a graphical summary
of the present section too. Nonetheless, unlike in previous
sections, we will not present a thorough derivation of the
geometries and fluxes for each intermediate configuration
considered in the process. Such exhaustive study is beyond
the scope of this work and is deferred to the sequel. In the
sequel, following [8], we also intend to explore knot
invariants in the configuration (M, 5), which follows from
(B, 8) and which is constructed in details in Sec. III C. For
the time being, we refer the interested reader to Sec. 4.4 in
[13] for a preliminary discussion of the physics stemming
from (M, 5) and the realization of knots in this setup.
As we just mentioned, our starting point in this section is
the configuration (B, 8) summarized in Fig. 7. Essentially,
this is the same configuration as that drawn in Fig. 6(f), but
in the presence of both RR and NS fluxes. In Fig. 8, this is
shown in the top, left corner. As can be seen, (B, 8) consists
on a large number N of D5-branes wrapping the two-cycle
$? of a non-Kihler resolved conifold. Let us start by
making an observation that will soon be relevant to us.
From the orientation of the D5-branes shown in Fig. 6(f) it
is clear that, upon a dimensional reduction, we expect
to obtain an SU(N) world-volume gauge theory along
(1, x1,%,,x3). Loosely speaking, the physics following
from (B, 8) are encoded in the directions (Z, x, x5, X3).
Next, recall that the metric corresponding to (B, 8) was
given in (3.46). Note in particular that the spacetime
directions (7,x;,x,) in this geometry parametrize a
three-dimensional Minkowski subspace. The first modifi-
cation to (B, 8) that one needs to consider in order to obtain
the model in [8] consists of Euclideanizing and compacti-
fying these directions, so that they parametrize a sphere:
(1, x1,%,) = S?E). Then, the corresponding physical theory

will lie in S?E) X R, where R stands for the line labeled by

the coordinate xj.
Secondly, we must perform a series of T- and SYZ-
dualities to the resulting configuration, which will take us
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; 6,0, ¥
/
fluxes
) -—
Geometric
transition + flop
T/’ N>>1 D5's ©,.9,)
(t, X, X, X)) — S¥ X R
l Mirror + flop l Mirror
S:xR
l\A N>>1 D6's
fluxes
' -
Geometric
transition

FIG. 8.

Depiction of the discussions in Sec. III B 2. To the configuration (B, 8) of Fig. 7 we make the following modifications:

Euclideanize and compactify the (z, x,, x,) directions, go to the mirror picture, perform a flop operation, and take the gravity dual. The
resulting configuration is that of a resolved conifold in the presence of fluxes studied in [8]. Our configuration (B, 8) is that on the top,
left corner, whereas the most well-known realization of the model in [8] is drawn on the bottom, right corner. It should be noted that, as
explained in the text, the mirror operations here shown are only valid in a certain energy range.

to the so-called mirror picture. The required dualities are far
from trivial, involving many subtleties. Nevertheless, the
works [34-37] deal with all difficulties exhaustively and
show that the mirror picture consists of N D6-branes
wrapping the three-cycle S® of a non-Kihler deformed
conifold. This is true only for energies higher than the
inverse size of the two-cycle S? of the dual resolved
conifold. As a consequence, we will restrict ourselves in
the following to this energy regime."

In the described mirror picture of our interest, the N D6-
branes are oriented along the seven-dimensional subspace
S?E) x 83 x R. The third and last modification required to
obtain the model in [8] is given by a flop operation, that
exchanges S(3E) and S? as described in (4.8) in [13]:

S?E) <> $3. Clearly, this does not affect the orientation of
the D6-branes, yet it transfers the physics from S?E> x R to

$3 x R, thus yielding the D6-brane realization of the model
in [8] depicted on the bottom, left corner of Fig. 8.

A more well-known realization of the setup in [8] is
obtained by simply taking the large N dual (in other words,

OAs argued around (2.5) in [13], for energies lower than the
size of §2, the mirror picture will lead to D4-branes instead of D6-
branes. Although such scenario may be interesting as well, it does
not relate to the model in [8] and thus we are presently not
concerned with it.

performing a geometric transition) of the above configu-
ration. In this case, the deformed conifold becomes a
resolved one. The D6-branes disappear in the dual picture,
giving rise to fluxes. This configuration is precisely that
shown on the bottom, right corner of Fig. 8.

Alternatively, one may take the large N dual of (B, 8)
first and consider the mirror picture afterwards. The result
is the same: we obtain the deformed conifold with fluxes of
[8]. This equivalent procedure is depicted on the top, right
corner of Fig. 8.

At this stage, we have argued that our configuration (B,
8) is related to the model in [8] by a simple chain of
dualities. That is, (B, 8) is dual to [8]. In the next section,
we will build an M-theory configuration (M, 5) from (B, 8).
As we shall see, (B, 8) is dual to (M, 5) and so this will
allow us to conclude that (M, 5) is dual to [8] too.

C. Noncommutative deformation and M-theory uplift

In this section we will obtain the second M-theory
construction where knot invariants can be studied: (M,
5). Clearly, the starting point will be the configuration (B,
8) in Fig. 7. We will first use a T-duality along y to type
IIA, where we will perform the same noncommutative
deformation we considered in Sec. IT A: (x3,y) = (X3, ).
As we argued in both Secs. IT A and II B, this deformation
sources the ®-term in the associated world-volume gauge
theory, which is crucial for allowing the embedding of
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Type IIB configuration (B,8)

Metric: (3.46)
Dilaton: (3.2)
RR 3-form flux: (3.50)
RR 5-form flux: (3.51)
NS 3-form flux: (3.49)

M-theory configuration (M,5)

Metric: (3.89)
G 4-form flux: (3.94)

T-duality
along y

—

Uplift

<

Type lIA configuration (A,9)

Metric: (3.75)
Dilaton: (3.77)
RR 2-form flux: (3.79)
RR 4-form flux: (3.83)
NS 3-form flux: (3.78)

NC deformation
(2.24)

Type IIA configuration (A,10)

Metric: (3.84)
Dilaton: (3.77)
RR 2-form flux: (3.79)
RR 4-form flux: (3.86)
NS 3-form flux: (3.86)

FIG. 9. Graphical summary of Sec. III C. To the configuration (B, 8) of Fig. 7 we make a series of modifications, so as to source a ®-
term in the corresponding world-volume gauge theory. The resulting configuration is then lifted to M-theory. The configuration (M, 5) is

the second M-theory construction where knots can be studied.

knots in our model. Finally, we will uplift the resulting
configuration to M-theory. As has been the case so far, the
dilaton and fluxes for each geometry considered will be
worked out here too. Figure 9 provides a graphical
summary of this chain of modifications and indicates what
the main results in this section are.

In order to obtain the T-dual of the (B, 8) configuration,
we first rewrite its geometry in (3.46) in a convenient form
for our present purposes:

1
dstys) = Vi (dsfi + dx3)
p 2
+Vh [72 <dy/ + Zl cos Gidqﬁi) + ds(zg)] ,

(3.71)
where we have defined
ds?, = —dr* + dx? + dx3,

2
ds’y = F1dr + Y Fyi(d6} +sin26,dd?)  (3.72)

i=1

and, following (4.40) in [13], we have also introduced

h=e¥3(T 4 ¢20/3). (3.73)
[We remind the reader that Y was defined in (3.36).] As can

be easily inferred from (3.49), the above geometry is
associated with an NS B-field

2
B(gs) =sinh Y (\/FF;cosb,dr
i=1

- F2+i sin 9,d91) VAN d¢1 (374)

It is now straightforward to T-dualize along y the metric
(3.71). We thus obtain the type IIA geometry in (4.39)
in [13]:

1 1
ds(zAwg) = ﬁ <ds1212 +dx3 + Edl/fz) + \/i_lds%g),

(3.75)

with associated NS B-field

2
B(A,Q) = B(B,S) + ZCOS gldl[/ VAN d¢l (376)

i=1

The dilaton for this type IIA configuration is, quite
obviously, that in (4.40) in [13]:

e‘;ﬁ(A.s») = h—1/4f;1/2e_‘7’, (3.77)

The NS three-form flux can be easily derived to be

2
H = aBgy = MY+ sin,d6; A dg; A dy,

i=1

(3.78)

with H\** as in (3.8) and (3.49). Coming to the RR fluxes
now, we note that the T-duality converts the D5-branes
which wrap the two-cycle of the resolved conifold in the
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configuration (B, 8) to N coincident D6-branes that wrap the two-sphere parametrized by (6, ¢;) in the dual type IIA

picture.ll Consequently, the RR three-form flux (3.50) [where F <33’7> was given in (3.13)] that was sourced by the D5-branes
now gives rise to the RR two-form flux

2
- Fo .
FE = & cosh ) /%Z—”’, (Farin = /F1F3) sin0,d0; A di;. (3.79)

as well as to the RR four-form flux

2
. Foo
F{ = e cosh /%Z#(ﬂm — \/F\F3)sin6;cos Ody A dp; A dO; A deb. (3.80)
1= v 2+i

Both are sourced by the dual D6-branes (and hence, d.F gA’g) +0#dF 511)). On the other hand, the D3-charge that sourced
the self-dual RR five-form flux in (3.51) converts to a D4-charge after the T-duality. They now source RR four- and six-form
fluxes, which are Hodge dual to each other [with respect to the metric (3.75)]. Starting from (3.51) and using (3.73), it is
clear that the RR six-form flux is

2

A9 d e
]—"(6 ) = coth/iE (

; )df Adx; Adx, A dxy A dy A dr. (3.81)

However, its Hodge-dual four-form will become more convenient once we perform the uplift to M-theory, with views to
computing the G-flux there. Since the metric (3.75) is diagonal, it is not hard to show that the flux of our interest is given by

2 A9 d (e Frr- :
FY =«F™ = _coth P (h h? ﬁgﬂﬂ- sin 0,d0; A dg;. (3.82)

The total RR four-form flux for this configuration is thus
FP =FD 4 FY. (3.83)

We will now apply the noncommutative deformation (x3,y) — (X3,%) in (2.24) to the above type ITA configuration. The
metric (3.75) then changes to

1 1 cos’6
ds? = ——ds?, + —(sec0,.dx; + sin0,.dip)* + —< dy* + v hds?
(4.10) \/E 12 \/E< 3 W) \/Efz v ®)
- Fre\ /3 dx 2 cos20
Da9 \2/3 2 2 3 : ~ ne g~2 2
= () < h > {dsm (COS One o H”de> VhF, W hdsgy | 089

where the last rewriting was done in preparation to the M-theory uplift that will follow. The dilaton and RR two-form flux
can be readily seen not to be affected by the deformation:

ebuo — e‘%(“’), ]—“gA']O) = ]—"gA’%‘ (3.85)
However, the RR four-form flux and the NS three-form flux do change to

" Actually, this T-duality is more subtle and can also lead to D4-branes. We discuss this important point in Sec. III B 2.
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~ Fy 2 2
FAO — 026 cosh fcos O, ?Zdw A (kidgpy A dOy A depy + krdy A depy A depy) + F,
1

2
HMY = 1Y 4 cos6,. Y sin6,d6; A dep; A dip, (3.86)
i=1
where we have defined

ky

i—j(ﬂr — VF ) sinbycos0,,  ky = %(ﬂr — /F,F,)sin6, cos b,. (3.87)

Once more, the RR two-form flux not being closed, we can rewrite it in a similar fashion to what we did earlier in (2.45)
and (2.118):

2
FgA’lO) =dA, + A, A= coshﬁz cos 0;dg;, dA = sources, (3.88)
i=1

with A, the type IIA gauge field for this configuration (A, 10). We will soon see that it is opportune to define A, as we just
did, which is (4.51) in [13]. Before we proceed, let us make one last observation: the subsequent M-theory uplift will only

capture the dynamics of this type IIA theory when P10 is of order one, or bigger.
The M-theory metric corresponding to (3.84) is (4.48) in [13]:

ds?

(M5) — <e$(A'9))_2/3dS%A,10) + (hF3e*) 13 (dxyy + A )2, (3.89)

We note that, due to (3.3) and (3.88), for a fixed value of the ¢, coordinate, ¢; = ¢}, the metric along the directions
(r,0,, ¢, x1;) describes a warped Taub-NUT space. Introducing the quantities

G = F(RRFe)'\3, G, = #‘Gl, Gy =5in20,G,, Gy = (hF3e*)153, (3.90)
1

which are only functions of the coordinates (r, 8,) (and the boost parameter /), we can write the metric for the Taub-NUT
space as

dsty, = Gidr? + G,d0} + Gydg} + Gu(dx,, + A2, (3.91)
where we have defined
A=A, |¢1=¢T = cosh cos O,dep,. (3.92)

To the metric (3.91), we associate the following vielbeins:

e&M'S) =1/ Gldr, 62.24'5) =\ sz@z, 85(;24’5) =1/ G3d¢2, eﬂl’s) =1/ G4(dX1] + AT) (393)

As was the case in Sec. I A 1, this is a multicentered (warped) Taub-NUT space. Recall that we had N D6-branes in the
configuration (A, 10) prior to the uplift. Hence, GZl = 0 happens N times, leading to coordinate singularities that denote the
location of the D6-branes in the dual type IIA picture. Further, the D6-branes in (A, 10) were coincident and consequently
we are, by construction, at the non-Abelian enhanced scenario discussed in IT A 1: the symmetry group of the associated
world-volume gauge theory is SU(N). It follows then that the G-flux for this M-theory configuration is of the same form as
that in (2.87):

N-1
g‘(‘M,S) _ <gA(‘M,5)> i chk N (3.94)
k=1
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where F s are the Cartan algebra values of the world-volume field strength ', the @&, s are the unique, normalizable, (anti-)
self-dual two-forms associated with the minimal area independent two-cycles in the space (3.91) and the background G-flux
is given by

<g§M’5)> = ng’lo) —|— HgA’lo) A dxll. (395)
Writing it explicitly, we obtain (4.52) in [13]'%:
(MS)\ _ 25 Fr . A 2
(G, ) = e*?cosh fcos b, ]_Tdy/ A (kydpy A dOy A dpy + kodOy A depy N depy)
1
thpd el 12 [ P2 T] 7, sin0,d6 A dgp
—cothff— | — — ; $1n 0,d0; i
dr h Jf:'l 11 2+4i i“Yi i
2
+ Y sin0,d; A dgp; A dxyy A [sinh B(F i, — \/F Fa)dr — cos 0,,.dip). (3.96)
i=1

It can be readily seen that the only quantities left to be computed are the @;’s. We do so in the following. The discussion is
analogous to that in Sec. Il A 1, so we will be brief.

We begin the computation of the @;’s by constructing the minimal area independent two-cycles of (3.91) to which they
are associated. Note that G4 = 6}4(r). Thus, we can call the N solutions to CA}ZI =0as T(i)s wherei = 1,2, ..., N. Consider
two such solutions, r(;y and r(;) (where i # j) and the straight line in the r direction connecting them, C,.. Attaching to each
point in C, a circle labeled by x;;, we obtain the corresponding minimal area two-cycle X;;. We take X; ;; (with
k=1,2,....,N — 1) as the independent minimal area two-cycles where the @®,’s are defined and consider the following

ansatze for them:

dy = diy. 8 = Gildxyy + AJ). (3.97)
Easy algebra then yields
oy = gAk"A eﬁM’S) A (1];/1’5) S cosh fsin 926((7‘12\4,5) A ef/i/l’5>,
Gl G4 2G3 h
*Qp = gAk”A eéM’S) N e((gl 5) “k__ cosh sin QzegM’S) A egﬁ/l’S), (3.98)
GGy 263

where, obviously, the Hodge dual is with respect to the
metric (3.91) and §, , stands for the derivative of g; with
respect to the radial coordinate r. Using (3.90) and
demanding (anti-)self-duality of @; we obtain the ordinary
differential equation

1 dg, e | F
— Tk h il
Godr M ENE,

"Note that the contribution to the G-flux stemming from the
RR five-form flux F 23’8) [this is the second line in (3.96)] is
written in a different yet equivalent manner in [13]. In this
reference, the relationship dF gB’g) 3 HgB’S) ANF gB’& x db, N
dpy N dy A dr A d6, N dgs is used. Then, ]-'gB‘g) is expressed
as a sum of two contributions, obtained by integration over #; and

6,, respectively. In this language, our approach consists of
integrating over r instead.

(3.99)

which can be readily solved to give

r - | F

R R (k+1) € 1
=goexp | F — | —dr |, 3.100
9k = Go €Xp ( ~/r(k) F N\ nr, ) ( )

with g, some integration constant where we have absorbed
the contribution of cosh . The above fully determines the
G-flux in (3.94).

We remind the reader that all the discussion in this
section (so far) is subject to the constraint (3.28) so as to
ensure N' = 1 supersymmetry in the corresponding world-
volume gauge theory.

The configuration (M, 5) is the second and last theory we
construct for the study of knots and their invariants. [The
first one is (M, 1) and its non-Abelian enhancement,
discussed earlier in Secs. I A and IT A 1, respectively.]
In the remainder of this work, we will only study the
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configuration (M, 1). Indeed, in part I, we will understand
in details the four-dimensional gauge theory stemming
from (M, 1). In doing so, we will argue how and why (M, 1)
provides a natural framework to realize knots. All inves-
tigation of the embedding of knots in (M, 5) is deferred to
the sequel.

Before proceeding further, it is important to emphasize
that, in constructing (M, 1) and (M, 5), we have already

SU(N) gauge theory action
in 4d, with A=4 SUSY

-

achieved a very major result in this work. Note that, as
depicted in Fig. 1, the configuration (M, 1) is dual to the
D3-NS5 system of [10]. On the other hand, the configu-
ration (M, 5) follows from the very same D3-NS5 system
and is dual to the resolved conifold in the presence of fluxes
considered in [8]. Hence, we have made explicit the
modifications that directly connect the seemingly very
distinct models in [8,10]. In plain English, we have

Non-Abelian enhanced
M-theory configuration (M, 1)

%

(4.146)

Legendre
transform

Y

Hamiltonian

(5.88)

Energy

Compactification

Metric: (2.56)
G-flux: (2.87)

Time-independent fields |
Requires of Gauge (5.35) |

minimization

\ 4

Hamiltonian

(5.93)

Rewritten as

Y

Constraints (5.40), (5.42), (5.92) |
BHN equations (5.91) |

Boundary action in 3d . —
Subject to | Half-BPS boundary conditions
(6.12) (6.19)-(6.22)
Topological Topological Topological
twist twist twist
Y

Topological boundary action

(6.64)

Y
| Constraints (6.76), (6.82) |

A

Half-BPS BCs (6.33) |

| Hitchin equations (6.74) |

FIG. 10. Graphical summary of Secs. [IV-VL. In orange, the starting point: the non-Abelian enhanced M-theory configuration (M, 1) of
Sec. II. In purple, the contents of Sec. IV: the derivation of the four-dimensional gauge theory stemming from (M, 1). Colored green, the
obtention and minimization of the corresponding Hamiltonian, presented in Sec. V. Blue is associated with Sec. VI, which focuses on the
study of the three-dimensional subspace where knots can be embedded.
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provided a unifying picture between the two existing
approaches to computing knot invariants in string theory.

IV. BOSONIC ACTION FOR THE FOUR-
DIMENSIONAL SU(N) GAUGE THEORY

We now turn to the second part of the paper which
includes Secs. IV-VII: Study of the four-dimensional
gauge theory following from the configuration (M, 1).

This second part focuses on the (non-Abelian enhanced)
M-theory configuration (M, 1) constructed in Sec. II. The
fundamental purpose here will be to show that indeed (M,
1) provides a suitable framework for the realization of
knots. To this aim, we shall derive and investigate the four-
dimensional, N' = 2 supersymmetric, SU(N) gauge theory
associated to (M, 1). Such study is presented in three main
steps. In Sec. IV, we obtain the action of the aforemen-
tioned gauge theory. Section V is devoted to the associated
Hamiltonian and the minimization of its energy, which
yields the BPS conditions for the theory. This analysis
naturally leads to a three-dimensional subspace, which we
denote as X3 and which is the main object of interest in
Sec. VI. As we shall see, the physics in X5 are governed by
a Chern-Simons action. Consequently, X5 (or, more pre-
cisely, its Euclideanization) constitutes a suitable space
where knots can be embedded.

Figure 10 provides a visual sketch of the overall logic and
key results in this part. Given the considerable length of the
calculations involved, the reader may find it useful to keep an
eye in this image while reading through the following three
sections. In this way, the underlying principal flow of ideas
shall hopefully not be lost during the presentation of the
corresponding computational details.

In accordance to the plan above outlined, in this section
we argue that the bosonic action is for the SU(N) world-
volume gauge theory along (¢, x;, x,,y) that follows from
the non-Abelian enhanced M-theory configuration (M, 1).
This gauge theory has NV = 2 supersymmetry by construc-
tion. (We will not be interested in doing so here, but
supersymmetry could be used to obtain the fermionic sector
of the theory.) In principle, one could explicitly write the
eleven-dimensional M-theory action and then work out the
desired four-dimensional reduction.'? However, this is more
easily said than done. We will thus follow a different
approach here: we will obtain the total action as the sum
of three distinct contributions, providing ample motivation
for each term.

The first two of these three terms directly stem from our
construction of (M, 1) in Sec. II and are indeed initially
written in terms of only quantities there defined. Writing
these terms as functions of the vector multiplet of the N' = 4

13Compactiﬁcation is done via the G-flux (2.87) and metric
(2.56) reduced over the normalizable internal harmonic forms.
The Taub-NUT subspace has normalizable harmonic two-forms
(2.82). For our case, compactification can thus be defined.

supersymmetric (with half-BPS boundary conditions)
SU(N) world-volume gauge theory is, however, far from
trivial. In achieving this task, we further split the two terms in
many parts.

The third and last term is, unluckily, difficult to present
in such a manner. Consequently, we start by directly writing
it in terms of the aforementioned vector multiplet.
Nonetheless, the length and complexity of the term lead
us to further divide it into smaller pieces too.

To help the reader make sense of the very many terms
that follow, we include Fig. 11. This figure provides a
graphical summary of this Sec. IV, pointing out all the
different contributions to the total action and their origin.

A last important remark before jumping into computa-
tion. To avoid as much as possible dragging long pre-
factors, we set the Planck length to one right from the
onset: [, = 1.

A. Kinetic term of the G-flux

The first contribution to the aforementioned bosonic
action we will consider is the kinetic term of the G-flux
(2.87). Our approach will be to work out in details this term
for the Abelian configuration (M, 1) of Sec. Il A and then
generalize the result to the non-Abelian scenario of Sec. II
A 1. With this aim in mind, let us first recall the main
features of both the Abelian and non-Abelian configura-
tions (M, 1).

The geometry of the configuration (M, 1) was given
in (2.56), be it for the Abelian or non-Abelian case. By
simple inspection, it can be readily seen that the eleven-
dimensional manifold X;; on which this metric is defined
naturally decomposes into three subspaces:

Xi1=X4QZ;®TN, X;=X; QR  (4.1)
Here, X, is the four-dimensional subspace where we will
define our gauge theory. This further decomposes into X3
[the Minkowski-type three-dimensional subspace along
(t,x1,x,)] and R™ (the half real line labeled by ). This
second decomposition clearly denotes that there is no
Lorentz invariance along y. On the other hand, %5 is the
three-cycle parametrized by (X3, ¢;, r) and TN stands for
the warped Taub NUT space spanning (6, xg, xg, x1; ). For
the Abelian (M, 1), this is a single-centered Taub NUT,
whereas for the non-Abelian (M, 1) it is an N-centered one.

After the non-Abelian enhancement, there are N coinci-
dent M2-branes oriented along (xg, X, x;;) in the configu-
ration (M, 1), as depicted in Fig. 4(b). Following the
notation of Sec. Il A 1, we denote as 71 the location of these

M2-branes in the (xg,xo) plane. It is around this point 7,
that we shall determine the action of the non-Abelian
world-volume gauge theory.

Coming to the fluxes, the G-flux for the non-Abelian
enhanced (M, 1) was given in (2.87). This G-flux consists
of two pieces: the delocalized background flux <Q‘<‘M’1)> and
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Action S for the N=2,d=4
gauge theory along (t, x,, X,, )

SWin (4.2)

sum of
S® splits into three,
as indicated in
S@in (4.107) (4.115) , (4.116)

rewritten as

(4.11)

splits into two,
as indicated in

(4.14), (4.15)

three, as indicated in

(4.56), (4.57)

first term

rewritien as each term given by

(4.22) (4.65) (4.76) (4.86)

putting everything together

S@in (4.100)

second term splits into

each term given by

rewritten as

(4.117) (4.126) (4.143)

putting everything together

S@in (4.109)

S®in (4.145)

FIG. 11.

putting everything together

Sin (4.146)

Graphical summary of Sec. IV, where we obtain the bosonic action for the four-dimensional SU(N) gauge theory following

from the non-Abelian M-theory configuration (M, 1) of part I. This figure sketches the connection between the very many terms whose
addition gives the aforementioned action. The colors correspond to the subsections where the mentioned equations can be found: in blue
results derived in Sec. IVA, in green those explained in Sec. IV B, and in yellow the terms worked out in Sec. IV C.

the localized contribution of Y V=! Fi A @y, sharply

peaked around 71 . As it is common practice in the literature,
we will assume the delocalized piece is such that its

contribution around 71 is negligible.

In the Abelian case, the situation is essentially the same.
The only difference being that the G-flux is now given by
(2.61). The Taub-NUT space has a unique singularity,
whose location we can denote as /; as well. The G-flux
again splits into delocalized and localized parts. We assume
the delocalized part’s contribution is inconsequential
around 71.

We will now use all the above remarks to obtain the first
term for the U(1) world-volume gauge theory action:

SO = / Tr(GM"" A +GMD), (4.2)
Xu

where the Hodge dual is with respect to the eleven-
dimensional metric (2.56). Using (2.61) and because we

are interested in the gauge theory around 71, where <g§"“>>
is negligible, the above reduces to

s = / THF A @) A H(F Aw),  (43)

with F the seven-dimensional Abelian field strength. By
definition, @ is (anti-)self-dual and is restricted to the
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subspace T'N. For concreteness, we take it to be self-dual in
the ongoing. On the other hand, F spans X, ® X;. Then,
we can rewrite S(!) as

S(l):/ a)/\a)/ F AN *F,
TN X, ®%;

where the Hodge duals are taken with respect to the
subspaces of (2.56) indicated by the corresponding inte-
grals. This drastic simplification where the Taub-NUT
completely decouples is not as trivial as we just made it
sound. Hence, before proceeding further, let us carefully
show how this can be made to happen consistently.

Naively, the decoupling happens if the following two
conditions are satisfied:

(1) The integral over TN above only depends on the

(6, xg, x9,x11) coordinates.

(2) The integral over X, ® X3 is

of (91?x8’x9’x11)‘
The first condition can easily be seen to hold true. The two-
form o was defined in (2.62), with the gauge field A given
by (2.47). It is clear from these expressions that the
integrand @ A @ only depends on the Taub-NUT coordi-
nates, as desired. The metric for the space TN was given
in (2.58) and, as pointed out there, only depends on
(61, xg,x9,x11). This implies the measure for the integral
over TN will have the same coordinate dependence. The
second condition, however, does not hold true. An inspec-
tion of the metric (2.56) along the directions of X, and X
leads us to conclude that the measure of the second integral
in (4.4) will depend on (6, xg, x9). [Recall our choices for
the warp factors in (2.2) and for the dilaton in (2.70) to
understand this last statement.] Nevertheless, this desired
decoupling can be effectively made to happen. Let us
see how.

A careful inspection of (2.56) restricted to X, ® 25
shows that the dependence of the second integral in (4.4) on
(xg,x9) comes solely from the dilaton (2.70). We can
therefore remove this (xg, x9) dependence by assuming that
the dilaton is given, to leading order, by its constant piece:

(4.4)

independent

e*? ~ e, (4.5)
[Note that the above assumption is in excellent agreement
to the strong coupling limit discussed around (2.55),
required for our M-theory configuration to be valid, if
we consider e?% to be of order one.] The 8, dependence of
the second integral in (4.4) is, however, not “removable.”
Let us thus turn to the #; dependence of the first integral
in (4.4).

To match the notation in [13], we will call the first

integral in (4.4) as
- / ® A . (4.6)
U3 TN

Using (2.47), (2.60), the first equation in (2.68) and (2.75)
in (2.63), it is a matter of easy algebra to obtain the two-
form w as

9
® =Y ==dx; A (dxy; + A, db))

*( > oy

8
Ay
+ g((ldeg + a3dx9) A do.

99
ax,-
@ A18> dXS AN dXQ

axg

(4.7)

Then, (g, @, a3) being all functions of only (xg,xg), it
follows that (4.6) is actually independent of 6;:

0 0
g — 8—g> dgl VAN d)CS A dXQ A\ dx11

a)/\a)—2g<ag8 .
X8 9

(4.8)

[The above is (3.52) in [13].] Consequently, choosing (4.5)
and transferring the 6, integral to the second integral in
(4.4) as an average, we can consistently decouple the
contribution to this term of the action of the Taub-NUT

space:
do
/ ! / F A *F,
X4Q®%3

where this prefactor should be understood, in this Abelian
case, as

R R R
Cl / gd.Xg/ ngQ/ : dx112g(a3 aag azaag>
X8 X9

(4.10)

(4.9)

with R; denoting the radius of the x; direction (for i = 8, 9,
11). Note that (xg, x9) are noncompact directions, while x;;
is compact.

At this point, it is easy to infer what the generalization of
(4.9) is to the non-Abelian case:

s = C0 / d91/
V3 X,®%,

where F is now the non-Abelian seven-dimensional field
strength and the trace is taken in the adjoint representation
of SU(N). There are just two subtleties in going from (4.9)
to (4.11) that we better discuss.

The first one is regarding the prefactor (C;/V3). This
prefactor is, of course, no longer given by (4.10). Instead, it
depends on the two-forms @, in (2.82). Its explicit form is
rather tedious to work out and we will not attempt to
compute it here. For our purposes, it suffices to note that, by

F N *F),

(4.11)
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construction (see the details in Sec. IIA1), we are
guaranteed its independence on the #; coordinate. So we
can transfer the @, integral to the subspace orthogonal to
TN as an average and indeed obtain (4.11).

The second subtlety is regarding the appearance of the
trace. [Note that the non-Abelian G-flux in (2.87) only
involves the Cartan algebra values of F.] Let us try to shed
some light to this point by first recalling how the non-
Abelian enhancement was achieved in Sec. I1 A 1 [perhaps
it suffices to take a second look at Fig. 4(b)]. There, we
wrapped M2-branes around the (minimal area, indepen-
dent) two-cycles of the N-centered Taub-NUT space (2.58).
The two-cycles were then shrunk to zero size, making the
M2-branes tensionless. From this point of view, internal
fluctuations of the Taub-NUT space are supposed to
provide the Cartan values of the field strength.
Fluctuations of the M2-branes along the Taub-NUT direc-
tions would then contribute the remaining roots and
weights, thus leading to the full trace in (4.11). A more
detailed version of this argument may be found in [21-23]
and references therein. However, no rigorous proof of this
conjecture exists. The argument between (3.91) and (3.98)
in [13] in terms of a sigma model may well be the most
solid evidence for this claim.

The fact that the trace should be in the adjoint repre-
sentation has a simple enough heuristic explanation.
Additionally, this very argument settles what the bosonic
matter content is in our non-Abelian world-volume gauge
theory. Recall Fig. 2(b). There, to the usual type IIB D3-
NS5 system we added a second, parallel NS5-brane. The
distance between the two NS5-branes being large enough
then allows for effectively retaining N = 2 supersymmetry
in the whole of the system. By the same logic, deep in the
bulk of the D3-brane, far away from both the NS5-branes,
we expect N = 4 supersymmetry effectively. As is well
known, any N = 4 supersymmetric gauge theory has a
vector multiplet consisting on four gauge fields and six real
scalars, all of them in the adjoint representation. Certainly,
this is the matter content we expect in the bosonic sector for
our D3-brane gauge theory too, far from the NS5-branes.
On the other hand, the bosonic matter content of any N =
2 supersymmetric gauge theory is arranged in a vector
multiplet of four gauge fields and two real scalars in the
adjoint representation and a chiral multiplet containing four
real scalars in any representation. Needless to say, this is the
matter content we expect in the bosonic sector of our gauge
theory nearby the NS5-branes. It then stands to reason that,
if we are to reconcile these two limits in our setup, we
require the four scalars of the N/ = 2 chiral multiplet to be
in the adjoint representation. Therefore, the bosonic matter
content of our SU(N) gauge theory is settled to that of the
N =4 vector multiplet: four gauge fields and six real
scalars, all of them in the adjoint representation.

Subtleties aside, we take (4.11) as our starting point and
devote the remaining of this section to writing I(!) in terms

of the just discussed N = 4 vector multiplet, which spans
the directions (7, x{, x5, ). To begin with, we assume that
the seven-dimensional non-Abelian field strength F only
depends on these coordinates:

]::f(t,xl,xz,l]/). (412)
Secondly, and owing to the decomposition (4.1), we make a
distinction between the seven-dimensional field strengths
along X, and %5:

F =FX) 4 F&), (4.13)

Using such distinction in (4.11), we naturally split the first
contribution to the non-Abelian action into two pieces:

G

SM = 2 (JLh 4 (1.2)), (4.14)
Vi
with
7LD = /”M/ Tr(f<X4) A *]:'(th)),
0 27 Jx,ex,
1(12) = / gl / Tr(F&) A xF &), (4.15)
0 27 Jx,es,

Rather obviously, the Hodge dual in both I('') and 1(1?) is
(still) with respect to the seven-dimensional metric
of X 4 ® 23.

Note that the crossed terms (FX) A xF(3s)) and
(F&) A +FX4) are zero and thus have not been included
in (4.14). The argument for the vanishing of the first such
term is as follows. Each component of F3) spans two
directions of X;. Consequently, the corresponding term of
«F () is oriented along all four directions of %, and the
remaining direction of X5. As the components of F*+) span
two directions of X, the term (FX4) A F (%)) necessarily
contains the wedge product of two same X, directions and
thus yields zero. The argument for the vanishing of the
second crossed term is similar.

At this stage, the only quantities left to be determined to
explicitly write S() are I('1) and 1(1?), defined in (4.15).
Their computation is quite long and involved. Con-
sequently, we will do so in separate sections. In the end,
we will put together in (4.14) the (") and 12 we shall
obtain, thereby expressing the first term for the gauge
theory action in terms of the A/ =4 vector multiplet’s
matter content.

1. Determining I'V): The contribution
of gauge field strengths

As the title suggests, this section is devoted to the
computation of /(') in (4.15) in terms of the field strengths
associated to the A = 4 vector multiplet’s gauge fields. But
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before jumping into the details of the calculation, let us
introduce some quantities that will soon be useful.

We begin by taking a closer look at the seven-
dimensional space X, ® %3, where I(""!) is defined. Its
metric can be directly read from (2.56) to be

d5§4®23 = H,[—df* + dx? + dx3 + H,dx3
+ Hs(dy + f3d%3)* + e (F dr? + H,dp?)],
(4.16)

where we have made use of our assumption (4.5).
Following the spirit of the language in [13], we denote
as g; the determinant of the above metric:

g = det(ds§(4®23) = e*"F\H{HyH3H, = ¢*"F H{H,,

(4.17)

where in the last step we have used the fact that
H?H2H3 = 1, which follows from (2.53). It will also come
in handy to write the metric along the subspace X, albeit in
matrix form:

Jap = Hidiag(-1,1,1), gpiy = €"HH,.  (4.18)
Here, the subscripts (a, b) take values (0,1,2) and stand for
the Lorentz-invariant directions (7, x{, x,). Being diagonal,
it is straightforward to see that the inverse of the X, metric,
in matrix form, is given by

e—2%o

T H\H,

'Sz

1
gab = H—dlag(—l, 1, 1), g (419)
1

Calling g, the (absolute value of the) determinant of the X,
metric, this is

g1 = | det(ds},)| = M HAH,. (4.20)

Having introduced our notation, we may now proceed to

the determination of 7"V, First of all, we explicitly write
the wedge product of its integrand as

]:’(XO A *f(XA.)

2
Z gab<ng-7:aC]:bd+gww-7:ay~/]:blfl)
a,b,c,d=0

\/7< 2hH, ;}“abJrZ}“ >

a<b

(4.21)

Using the above in (4.15), we have that

(11 /d4xZTr

a,b=0
a<b

2
+ 012/d4xZTr(f2~
a=0
(4.22)

where the integration is with respect to the world-volume
coordinates (,x,x,,) and where we have defined the
coefficients ¢, and ¢y, as

- ~ |F
11532{/}0/0144'\/1:1}14, 0125/d4§HHL~

(4.23)

As a shorthand notation that will keep appearing, we have
introduced

[at=[Tan [Tap [Tar [T

above, with R; the radius of the noncompact direction xs.
Note that these coefficients have been taken out of the
integral over the world-volume coordinates in (4.22)
because F; and H, are only functions of the radial
coordinate and 0, [recall our choice in (2.2) and the
definitions in (2.26) and (2.53)]. For this same reason, we
can right away perform the (X3, ¢ ) integrals above. Further
using (2.53), we can express ¢;; and ¢, as

C11 :2R3€2{‘b0 Secé’m/ dr\/F1ﬁ2F3I(l>,
0

Cip = 2R3 COSQnC Amd

(4.24)

. 4.25
AL, (4.25)

where we have defined

sin 91 dgl

/ \/cmos291 + F5sin®0,

/2
70 = / do, csc b, \/cmos 0, + F3sin0,. (4.26)
0

Since they will keep showing up, it is useful to introduce
the functions

x(0)) = \/F2+F3 + (F, — F3) cos 20,

7(01) = 2(F, — F3)cos ;.

Using these, the first of these integrals can be readily
performed to yield

(4.27)
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—r J
Iny(0)) +7(0))]15 =% = ——=—.

Fy—F, 2

70 — —

where we have defined

i

a quantity which will appear in the present analysis very
often. It is clear that the above will be real if and only if we
require that F, > F5, for all values of (r,0,.). Thus, we
will demand this holds true in the ongoing. Using the above
in (4.25), we obtain ¢;; as in (3.76) in [13]:

00 F,F,F
c11 = Rye™sech),, / drJs | =—2=.  (4.30)
0 F,—F;

It is important to note that the above coefficient is just a
number. The numerical value of ¢;; depends only on the
choice of warp factors one would like to consider in (2.2).

(4.29)

This choice is subject to the constraint F » > F5 and should
be checked to preserve the desired N = 4 supersymmetry
in the world-volume (later on reduced to N = 2 super-
symmetry via half-BPS boundary conditions).

Coming now to Z(?), we start by defining the soon-to-be
useful three quantities in (3.79) in [13]:

1
F2 F3 b2=5 F,Fs
Fy+ b*(F, — F3)
by = . be(RT={1}). (431
; b\/ — (R* - {1}). (431

We can use b; to rewrite the integral of our interest in the
more convenient form

= /2 b? + cos? 6,
=\/F,-F doj|-———. (432
2 A "V 1 —cos?6, (4.32)
Under the change of variables
dz
cosf, = z, do, = — , 4.33
1 v

the above can be further rewritten as

F,—F 1 /b2 2
2):7%3/ dzbzli—'—zz, (4.34)
—1 —Z

where b as defined in (4.31) is a regularization factor that
we have introduced by hand in order to avoid the
singularities of Z(?) at z = +1. In the same spirit of
(x(61),x(6,)) before, let us introduce two more functions
that will come in handy repeatedly:

[b} + b*
1(z) = arctanh (b R )
Eln‘z—&— \/ b? —|—z2‘.

Finally, all the above can be used to integrate over z in
(4.34) and obtain

(4.35)

270 Vbi + b INES
= = lb n(z) —i(z) Z__l =b3Js+ T35
\VF2—F;3 -
(4.36)

where we have defined the many times to occur quantity

J4 as

2(F, —
J 4 = arctanh (é \/F3 b EFZ F3)> : (4.37)

F,

Plugging our result in (4.23), the coefficient ¢, may be
expressed as in (3.78) in [13]:

¢1r = 2R3 cos0,, /°° drby(by T4+ T3, (4.38)
0

As was the case for ¢ before, we want ¢, to be a well-
defined number for all choices of warp factors in (2.2)
satisfying the constraint F , > F3 (and preserving N' =2
supersymmetry). It is not clear from our above result that
this should be the case in the following two cases:
(1) F3—0. This limit also includes the case (Fz,F3) -0
since, in order to be consistent with the constraint
F » > F3, we must demand that F'; approaches zero

faster than F ». Hence, the case (I:" », F3) = 0 should
be studied by first demanding F; — 0 and after-
wards considering the F 5 — 0 limit of the resulting
expression.
(2) Fy = F3»0.
Let us thus study such subtle scenarios in details and show
that ¢y, in (4.38) is indeed a finite number even then.
To consider the first case, namely F3 — 0, we start by
rewriting the argument of the inverse hyperbolic tangent in
(4.37) as

R = [ayTEY
b F, v )F,
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Next, we note that in the logarithmic term of (4.38), namely 73 in (4.29), only the numerator diverges as F3 — 0, while the
denominator is well defined in this limit. Hence, retaining only the divergent terms in the integrand of (4.38) and using
(4.39), we focus on the study of

: . 1-b*\ F . =
I};llloclz ~ }11_1)10 [b2b3arctanh<\/l + (T) i’_z> + by In ’\/ Fy—\/Fy— F3’ . (4.40)
From our definitions in (4.31) it follows that
Fy
lim b, = lim 4 |1 = lim b, b, (4.41)
F3—0 F3=0 \| F3  F3;-0
which, used in (4.40), gives
11m lim dl arctanh ( 4 /1 + L= b7\ Fs —HH‘\/F \/F,—F ‘ (4.42)
Clp ~ — = - — . .
S0 27 oo\ F 3 b ) F, 2 2 3

Applying L’Hopital’s rule to the two terms above, it is easy to see that

. |F 1-b*\ F . |F . .
};210 F—;arctanh<\/1+< 0 )i):—}g}o F—iln’\/Fz—\/FQ—F3‘. (4.43)

That is, the divergent contribution to (limg,_cy,) is zero, ~ which can be very large, yet is finite (as the regularization
as pointed out in (3.80) in [13] too. This implies c;, takes  factor satisfies b # 1 by definition). This proves that ¢, is
some finite numerical value when F3~—> 0. just some number as FZ — F3'

If we now turn our attention to the (F,, F3) — 0 case, the Summing up, /("D is given by (4.22), with ¢;, given by

above still holds true. However, the denominator the of  (4.30) and ¢, by (4.38). Both of the coefficients are well-
logarithmic term of (4.38) is no longer well defined and  defined numbers for any choice of the warp factors one may
consequently, we must study it. As already argued, we first  \ant to consider, as long as the constraint F, > Fj is
should consider the F3 — 0 limit of this term and then  regpecied.

impose F, — Othere. Using (4.41) and applying L"Hopital’s

rule, this additional divergent term can also be seen to vanish: 2. Determining 1?: The contribution
32 of three scalar fields
lim ¢;p~ lim —ln ‘21 /132‘ = lim - FNL —0. In this section we compute /("% in (4.15) in terms of the

I~72.F3—>0 F2 F3—0 \/

F =0 Fy N = 4 vector multiplet’s matter content. As in the previous
(4.44) Sec. IVA 1, it is convenient to first introduce certain
quantities, which will be necessary in the subsequent

Thus, ¢;; = 0 when (F,, F3) — 0. calculation. .
Finally, we study the limit F, — F3-0. From (4.31), it Let us begin by looking at the three-cycle Zj, para-
is not hard to work out the following two limits: metrized by (X3,¢;, 7). Its metric can be easily inferred
from (4.16) to be
1 |F
111’1'1 bz = 0, hm bzbg = — —1 (445) dS% = Hled.;C% + H1H3(d¢1 + f3d)~C3)2 —|— 32¢0H1F1dr2.
i72—>F3 i72—>F3 b F3 3

(4.47)

Inserting the above in (4.38), we obtain (3.81) in [13]:
We take the vielbeins associated with the above metric as in

(3.102) in [13]:
lim ¢, = 2R3 cos an/ dr— arctanh
F2—>F;
ézs H H2dX3, eﬁEB) == e¢0\/H1F1dr,
~ arctanh (b) (446) e((f)zf _ H1H3(d¢1 +f3dX3). (448)
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It is not hard to see that these vielbeins satisfy

(Z3)

(Z3)
A €¢ s

et (%)

_ (Z3)
=y,

Ney™,
(4.49)

where the Hodge duals are with respect to the metric (4.47).

Let us now focus on F ) in (4.15). This field strength is
related to the corresponding three-dimensional non-
Abelian gauge field .A®) in the usual manner

F&) = DA 4 AE) A AR, (4.50)

where the covariant derivative is given by (3.116) in [13]:

D,=0,+i[A, |, Dv758,,~,+i[.,4y7, |, (4.51)
with a = (0, 1, 2) standing for the Lorentz-invariant direc-
tions (7,x;,x,) and (A,, A;) the world-volume gauge
fields associated with the field strengths in (4.22).

Following (3.101) in [13], we define AZ) a5

A = Asdiy + Ay dpy + Adr = &yl

+ &2e$ ) + a3 e,

3¢l (4.52)

In the last step above we have used (4.48) and the
one-forms

o =251 = A A
JVH H, HF, 3= VH H,
(4.53)

Because of (4.12), (Ajz. Ay, . A,) are functions of only
(,x1, %2, ). [Note that this also explains our definitions in
(4.51).] On the other hand, from (2.2), (2.26) and (2.53), it
is clear that the &;’s (with i = 1, 2, 3) additionally depend
on (6, r). A vital remark follows: from the point of view of
the four-dimensional gauge theory, (Aj. A, ..A,) should
be understood as three real scalar fields in the adjoint
representation.

Our above discussion settles the ground to determine
102 in (4.15) in terms of the real scalar fields
(A5, Ay, . A,). The integrand there is of the form

FE) A xFE) = DAE) A *(DA(Za))
4+ AE) A AE) A *<A(E3) A _,4(23))
+ A®) A A A *<DA(>:3))

+ DA A x(AF) A AR)), (4.54)

where all the Hodge duals are with respect to the seven-
dimensional metric (4.16) and we have made use of

(4.50). Owing to the decomposition (4.1), it is easy to see
that the last line above vanishes. [The reason is analogous
to that given around (4.15) for the vanishing of the there-
called “crossed terms.”] Consider the first such term. The
two-form DA®s) spans one direction in X, and another
one in X3;. Consequently, its corresponding Hodge dual
five-form is defined along the remaining three directions
of X, and two directions of X;. But, since A®) A A3
stretches along two directions of X5, the wedge product
of these two last forms will necessarily contain the wedge
product of one of the directions of X; with itself. Anti-
symmetry of the wedge product then implies zero value
for this first term. A similar argument applies to the
second term too. The decomposition (4.1) also allows for
a drastic simplification of the two terms in the first line
above. Indeed, we can decouple X, and X; completely
and write

FE) A xF®) = Jfgrd*x {22: D, A®) A x(D,AX))
a=0
+ Dy A®) A x(Dy A))
+ AE) A AE) A x(AZ) A A
(4.55)

where the Hodge dual on the left-hand side is with
respect to the seven-dimensional metric (4.16), whereas
the Hodge duals on the right-hand side are with res-
pect to the three-dimensional metric (4.47). We remind
the reader that g, was defined in (4.20) and that
(d*x = dtdx,dx,dyr), as in (4.22). Inserting the above
in (4.15), we can split the computation of /(1) into
three as

(12 — /d4xTr( 12'1>+I(1’2’2)+1<1'2’3>), (456)

where we have defined
Ja.2.1) /dgl/ \/EJZAZ3 A AZs) /\*(AZz /\A23)
(122) — d91 (Z5) (Z3)
I @ZDA3A*(DA3)
0

1023) = / 0, / V3aDg A A x(Dy A)). (4.57)
0

Clearly, the Hodge duals here are with respect to (4.47).
In the following, we determine all these three terms
separately.

Computation of 11->V) in (4.57).—To begin with, we
focus on 721 in (4.57). Using (4.49) and (4.52), it is a
matter of quick and easy algebra to obtain
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AE) A AG) = [&1,&2]eg23) Aet™ 4 [&1,&3]6(523) A 65/)213) + [&2,&3]6523) A 6{(/)213),

*(_A(Z3) A A(23)) = [&. f%]efff) _ [&1’&3]6523) + [&2’&3]6?3)' (4.58)

The wedge product of the above two quantities is then

AN A A (AF) A AB)) = ([, & + [, @] + [, 252)el™ A e A el (4.59)

From the above, as well as our definitions in (4.20), (4.48) and (4.53), it follows (without much algebraic effort) that / (121
in (4.57) can be rewritten as in (3.105) in [13]:

2
daya; — a3

[As, A ? + as[As, Ay 12, (4.60)
401

as 2
1(1’2‘1) = da; |:~Ar’ A¢1 - 2_611A§:|

where we have defined, using (4.24),

- Hy (1 f3 ~ [Hy 1
_ 4% (A4l 2 J3 = 4y |24 7
al_/dé’ Fy <H3+H2>’ az_/dij FiH,’

a352/d4c_,~" ﬂ& a4Eez‘/’°/d4g~"ﬂ. (4.61)
Fy H,

These coefficients can be easily written in terms of the warp factors using (2.53). Further, remember our warp factor choices
in (2.2), the definition of F, in (2.26) and our assumption of constant dilaton in (4.5). Then, it is clear that the a;’s (with

i =1,2,3,4)only depend on the (r, 8;) coordinates and so the (X3, ¢;) integrals in (4.24) are trivial and can be carried out
right away. Altogether, we have that

o |F,F .
a; = Ry sec an/o dr ;1 3(Z0) + Fitan20,.(1 + Fytan?0,.)I"),

0 F,F
ar = 2Rs secO,, | dry|—227(), a; x I,
0 F,

a, = MR, secH,, / ” dr\/ FF,F5(c0s20,, + F,sin%0,.)I?), (4.62)
0

where Z(1) was defined in (4.26) and where we have further defined

™ ~ ™ in 0,cos’6,d0
70) = / df, sin 6, \/cm05291 + F3sin®0,, 7@ E/ \/ SIS 1% |
0 0

F,cos26, + Fsin20,

70) = / - sin 0, cos 6, . (4.63)
0 \/F2c0s291 + F5sin%0,

It is most interesting to note that a3 vanishes, since

0,=n
=0, (4.64)
0,=0

706) 1 — F2+F3 +~(F2—F3)COSZ6'1
F2+F3

as noted in (3.108) in [13] too. This greatly simplifies / (12.D) in (4.60). Specifically, (4.64) implies that there are no crossed
terms for the interactions among the real scalars (Az, Ay . A,):
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102D = q [A,, Ay 1> + as[ A5, AP + ag[ Az, Ay 2

(4.65)

in good agreement with (3.114) in [13]. In the ongoing, we shall focus on the determination of the remaining coefficients in
(4.62) and show that they are well-defined numbers for any choice of the warp factors one may wish to consider.
With this aim in mind, we start by performing the integrals in (4.63). Using our definitions in (4.27), we obtain for Z(3)

X 2F
= - (ﬁ cos O (61) + ——

\/Fz—Fs

where 75 was defined in (4.29). Similarly, Z") = (F, — F3)Z" gives

=y 1

2F
AR 2 (—\/icosel)((ﬁl) + >

\/Fz—F3

0,=n
. ~ F3J
In [y (6;) + (9)|> =\ F+—22 (4.66)
1) T X\ . ﬁ 5 ,—Fz—F3
0,=r
In[£(0,) +;z<el>|> /N . (4.67)

) 24/ F, — Fs

We remind the reader that Z(!) was determined in (4.28) already. Then, substitution of these results in (4.62) immediately

gives us the coefficients (a,, a,, a4) in the desired form:

o [P Fy(. [&
a; = R secanc/ dry| =223 a\/Fy,+
0 Fy
a, = R3 Secenc/ erlzj:;, a, = R3 SeCan/ erl4<\/F2 +
0 0

which are (3.106), (3.109) and (3.110) in [13], respectively.
Following (3.107) and (3.111) in [13], the (@, a,,ay)
coefficients appearing above are defined as

. (Fytan0,,)2 5
a,=1+—=——""(1+4 Fytan-0,,),
+ F2 _ F3 ( 2 nc)
FyF
a, = (cos?6,,. + F,sin’0 N R
2 ( nc 2 nc) F] (F2 _ F3)

a4 = €0(c0s20,, + F,sin0,.)\/ F\F,F5. (4.69)
Upon a careful inspection of the coefficients in (4.68), it is
not hard to convince oneself that these all are just numbers
for any choice of the warp factors in (2.2). The only
|

a_F3J; )

2¢/F, — F,4

(4.68)

F3J;3 )

constraint is that F' » > F5 should hold true, as was the case
for the other coefficients as well.

In short, /(-2 is given by (4.65), with (a,, a,,as) in
(4.68) well-defined numbers for any choice of warp factors
satisfying F > F.

Computation of 1'"*2) in (4.57).—We now turn our
attention to /(1) in (4.57). From (4.52), it is easy to obtain

122

D,A®) = (Daal)e§23> + (D)™ + (Da&3)€§(ﬁ213)'

(4.70)

The Hodge dual of the above with respect to the metric
(4.47) is straightforward, in view of (4.49) and is given by

D, AZ) = (Dyin)ef™ A e — (Duiy)el™ A e +(Diy)el™ A el™), (4.71)
The wedge product of the above two quantities is
(DAY A (DA = [(Dy))? + (Daita)? + (Dits)?el™ A ef™) A el (4.72)

Feeding the above to (4.57) and further using (4.20), (4.48) and (4.53), I('2?) can be written as
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2
1(1’2'2) = Z |:Ca§(Da~A§ - %Da/l(/,] )2 + Car(DaAr)z + Cal/n (DaAff’] )2 ’ (473)
a3

a=0

where, making use of (4.24), we have further defined the coefficients

VHF
ciz=eh / P i = e?h / d4§\/H4F1 f3

Car = / d“:ﬁ Capy = / #EVTL (4.74)

These coefficients can be written in terms of the warp factors using (2.53). Exactly as was the case before with the
coefficients in (4.61), the (X3, ¢;) integrals are trivial here too. Thus, we have that

¢.5 = 2R, secl, / “dra, IV, p«IO),

F>F oo -
= 2R; sec,, / 23T, ey, = MRy secl,, / dry/ F\F,F,T0), (4.75)
0

where (Z(), (), 70) a,) were defined in (4.26), (4.63) and (4.69), respectively.

In a similar fashion to what happened in the determination of /(1) the result in (4.64) makes u vanish. This implies that
there are no crossed terms for the kinetic terms of (A3, Ay, , A,) we presently study. In other words, (4.73) reduces to the
second line of (3.115) in [13]:

2

1029 =3 [eg 2+ Car(DeAr)? + Cag, (DaAy, ). (4.76)
a=0
with ¢, defined as
2 2 © ~
anﬁl = Cacﬁl + : ’ ; = R3sec30nctan29nc/ ert4FZI<4). (477)
a3 a3l 0

In writing the second equality above, we have made use of all (2.53), (4.24), (4.63), (4.69) and (4.74). At this point, we are
left with only the task of computing (c 3. ¢4 Cyp,) and showing they are all some real number.
The computation part is straightforward, in view of our earlier results in (4.28), (4.66) and (4.67). We thus obtain (3.117)—

(3.119) in [13]:
o0 a o F F
c,;5 = Rz sec an/ dri147j3, Car = R3 secénc/ drjﬂ /ﬁ,
0 \/ F2 - F3 0 1( 2 3)
Cap, = €*PR; sec@,w/ dry/ F\F,F; (a+ F, —I— -F375 ) (4.78)

Fy—Fy

where (73, a., a,) were defined in (4.29) and (4.69), respectively. On the other hand, the issue of proving that all three
coefficients above are numbers is also simple enough. Once again, one must demand that F,>F 3 to prevent the “blowing
up” of these quantities. However, any value of the warp factors in (2.2) satisfying this constraint can be readily seen to yield
a finite, real result when used in (4.78).

Consequently, we conclude that 1(122) is given by (4.76), with (c €3 Cars Cap, ) there appearing given by (4.78). These are
well-defined numbers as long as the warp factors are chosen such that F h > Fj.

Computation of I'V*3) in (4.57).—At last, we consider /(1>3) in (4.57). Its computation is very similar to that of 7(1:22),
albeit algebraically more involved. In the following, we show all the relevant details. With the aid of (4.49) and (4.52), it is
easy to see that
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Dy A®) A «(DyA®)) = [(Dyin)* + (Dyita)? + (Dys el A e A €. (4.79)

Using the above and the definitions in (4.20), (4.48) and (4.53) in (4.57), one can rewrite /(123 as
v 2
[(23) — Ci3 (D@Ag - Z,Dv}/lqﬁl) + Cli/r(,Dl/?“Ar)2 + Cig, (le/'Aiﬁl )2’ (480)
v

where, making use of (4.24), we have defined

Hy H, \H,
d“C F
cyr = €20 , cr, ! 4.81
v G H \[Hy sy

These coefficients can be expressed in terms of the warp factors in (2.2) by inserting (2.53) in the above. It is again the case
that the (X3, ¢;) integrals are trivial and so we obtain

/oo bhI®

0 / F';
b,7? oo

= 4¢P R4 cos Hm/ L A i, = R3cos HM./ dr|=
/I;'2 F3 0 F2F3

Here, we have defined 132 as a slight variant of b, in (4.31):

= 2R5c080,, v IO,

i3

AUN (4.82)

b, = (cos?0,, + F,sin20,,) % (4.83)
7@ is as in (4.26), and the remaining integrals there appearing are defined as
AQE L” d0; cot 0, (F,cos?0, + Fsin?0;)'/2,
70 = A " d0; csc 0, (F,cos20, + F5sin26,)3/2. (4.84)

In view of our earlier results for (a3, #) in (4.62) and (4.75), respectively, it will come as no surprise that v above vanishes.
To see this, we simply need to use b, in (4.31) and the change of variables in (4.33). Then, after regularization, Z®) vanishes
by symmetry:

L z(b? 4 22)1/?
I<6)o</_ldzl;27_zzzo, be (Rt —{1}). (4.85)

Therefore, (4.80) simplifies considerably, leading to no crossed terms between the kinetic terms of (Ajz, A, . A,) here
considered:

1029 = ¢ 5(DyA3)* + ¢, (DyA,)* + Egg, (D Ay, ). (4.86)

This is the first line of (3.115) in [13], with ¢, defined as
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) -

~ v v o /s F\F

Cigpy = Cipy +— — = R;5 sec Hmtanzé’m./ dra,\/ F, — F3 122 7(8)
c Cy 0 F3

In order to obtain the second equality above, the definitions in (2.53), (4.24), (4.69) and (4.81) have been used and we have
further introduced

(4.87)

F 4 20
Z®) E/ do, oS \/cmos 0, + F3sin®0),. (4.88)
0 sin 0,

Hence, we are only left with the task of computing (c; 3. ¢j. Cg, )-
To do so, we first recall Z(>) was already determined in (4.36) and so we still need to perform the integrals (Z(7), Z(®)). For
7, it is convenient to use the same set of transformations that we considered for Z(®) between (4.32) and (4.36) earlier on.

N amely,

70 1 b? + 2232 (b +b?)32 3b% 4+ 2b7 . Z —1
F_pon 322/ Lt G i(z) =5\ /bt + 22|
(Fz—F3)/ 1 b —Z b 2 2 7=—1
b? 3b% + 2b? F
_ —b3j4 1 5 j3 _ F 2F (489)
3

where b € (R* — {1}) is a regularization factor, (7(z),7(z)) were defined in (4.35) and in the last step we have used (4.29),
(4.31) and (4.37). In fact, we can do essentially the same for Z (8) and obtain

2 2 2
/d VAT R ST S Hb i) - b+ 2

b? + 212 Fy
L T — = )
2 Fy—F;

=1

z=-1

- b2b3j4 - (490)

With all these results at hand, it is now a matter of substitution and easy algebra to obtain the desired coefficients as in
(3.121) and (3.124) in [13]:

;3 = Rscos gnc/ drby(b3 T4+ J5). Copy = A dr(ag T4+ by T3" — cor)

0

b,
Cjr = 2¢7200R; 08 0,,, A dr—(bgj4 +TJ7). (4.91)

Recall that (1~72, b,, bs, l~)2) were defined in (2.26), (4.31) and (4.83), respectively. Following (3.125)-(3.128) in [13], the
other factors in ¢y, are defined as

ay, = Rib2bs3(F, — F3) | cos @, b2 = a
01 3b°b3(F, 3)( ne?3 4F,F, > cos6,, F,

R'; Fl Fz—Fg .~ tan29 F]
boy = —  [=L 6. f) - F. £ ne 2,
0=\ 7, (COS e 7 +aFof cos0,. \| Fs

FI(FZ _F3) - tan29nc F1ﬁ2>

-, tan0,, [F,(F, —F3)> (4.92)

=Ry (F, - F cos @ F =
Co1 3(F, — F3) Fs < he + @25 o an ok,

with (f(1), £?)) given by
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fO =3F; +20%(F, — F3),  f® =750 _2F;.

(4.93)

In exactly the same way shown in the end of Sec. IVA 1
for ¢y, it follows that (¢ 3, ¢;,) are - just numbers for any
choice of the warp factors satlsfylng F 5 > F5. The scenario
is more subtle in the case of ¢, . It is not clear at all that
this coefficient is finite when

(1) F3 — 0. [As discussed after (4.38), this limit also

includes the case (F,, F3) — 0.]

(2) Fy > F3»0.

However, it turns out that

=0, (4.94)

11m | Cippy =

the mathematical details precisely as in between (4.40) and
(4.44) for c,, before. Consequently, we will just show that

Cygp, 18 well defined when F » — F3. To do this, we call
€2 = F, — F and take the € — 0 limit. Used in (b3, @) in
(4.31) and (4.69), we get

1
hnéb3 ~ ll_l’)l’olg ~ lgr&az (4.95)
Then, feeding the above to (4.92), we obtain
lim 1 hmb lim ! limcg; =0. (4.96)
6—>0a01 ’ ot e—0 € e—>OCO1 o )

We consider this very same limit for (73, J4) in (4.29) and
(4.37):

1+e€
1—-¢

1
li = liml ) li = arctanh—,  (4.97
s = g s = aretanh. - (457)

which is finite, as b # 1 by definition. All the above can be
used in ¢4, in (4.91). Retaining only the divergent part, we

have that
1 1
= lim + =2,
e—=0\1+¢ 1—¢

(4.98)

1
~lim—In
e=0¢€

1+e€
—€

limc;,
=0 o

where in the last step we have applied L’Hopital’s rule. In
other words, the seemingly divergent part of ¢;4, is actually
finite. Thus, ¢, is a well-defined number for any warp

factors one may wish to consider, as long as F, > Fj.

Quickly summing up, /(123) is given by (4.86) and the
coefficients (c 3, ¢, Cjg,) there appearing are all well-
defined numbers if F, > F 3. Their explicit form is that
in (4.91).

We can finally collect all our results so far into a quite
simple form. First, we use (4.65), (4.76) and (4.86) in (4.56)
and write /12 as

142 —/d4xTr{al (A, Ay [P +ax[As, A +ag[As, Ay |

2
+ Z [Cag (DaA§)2 +car(DaAr)2 +5a¢| (DaA¢| )2]

a=0
+¢3(DpA3)* + ¢r (DA + Cg, (D Ay, )2}'
(4.99)
Now, inserting (4.22) and the above in (4.14), the first term

of the bosonic action for the SU(N) world-volume gauge
theory along (7, x, x,, ) can be readily seen to be

Cic 2 Cic 2
st —<Lu / dixy T+ / 2 T

a.b=0
C
+—1/d4xTr a[A, Ay 2
Vs !

+02[A§,A ]2+a4[A§,A(/,]}2
+Z

+%®Mﬁﬂﬂ%&W%M%Mf}

+Car(D 'A ) +Ea¢1(DaA¢1>2]

(4.100)

It is important to bear in mind that all the coefficients
appearing in this first term of the action have been shown to
be real numbers for any choice of the warp factors
satisfying F » > F3. We remind the reader that any specific
choice of warp factors must additionally ensure N =2
supersymmetry. We will dwell into such considerations in
Sec. VI B. Presently and without further delay, let us turn to
the second term of this bosonic action.

B. Mass term of the G-flux

In order to obtain the second term for the bosonic action
of the N =2 supersymmetric gauge theory along
(1,x1, x5, ), we first need to brush up a bit the construction
of the Abelian M-theory configuration (M, 1) of Sec. II. In
particular, we need to recall how we moved far away along
the Coulomb branch the D5-brane of Fig. 2(d). [Bear in
mind that, as depicted, these branes stretch along the
directions (¢, x;, x5, X3, ¥, r).] In this manner, we managed
to effectively ignore the presence of this D5-brane in the
configuration (B, 1) of Fig. 3, thereby simplifying the
starting point of our quantitative derivation of (M, 1). It is
now time to study the essential effects that the presence of
this D5-brane has for the gauge theory.

Let us begin by bringing back to its original position the
D5-brane. In other words, let us consider that the D5-brane
in the configuration (B, 1) has right next to it a parallel
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D5-brane. To prevent the D5/D5 pair from collapsing
(thus giving rise to tachyons), we switch on a small NS
B-field Ig’gB’l) along the directions (x3,r) in both the
D5- and D5-branes. As carefully explained in [15], the
D5/D5 pair with such an NS B-field on it can alter-
natively be interpreted as two fractional D3-branes
spanning (7,x;,x,,y). (Note that our choice of orienta-
tion of the NS B-field leads to the stretching of the
fractional D3-branes along precisely the directions of the
gauge theory.) From this point of view, it is easy to
infer that we must also switch on a small RR B-field

égB'l) along the same directions (x3,r), so as to ensure
the tadpole cancellation condition is satisfied.'"* As a
particularly simple and consistent choice, we will con-
sider both these fields to only depend on the (0;,r)
coordinates:

By = Fdxs A dr, PV = F@dxy A dr,
(4.101)

With the goal of understanding how these new B-fields
will affect the configuration (M, 1), in the following
we will subject them to the chain of modifications
in Fig. 3.

For our present purposes, it turns out we need not do the
whole analysis in details, as in Secs. [I-III before. Further,
we need not worry about the NS B-field either. Rather, it
suffices to note that, in going from (B, 1) to (B, 2), the
above RR B-field will be affected by the noncommutative
deformation in (2.24) and will also receive additional
contributions along other directions. We shall not be
interested in such additional terms, so we will consider
simply that

égBQ) = sec8,.F®dx;y A dr + other terms.

(4.102)
(The reader should not be worried about the drastic
simplification in the analysis at this point, since it will
shortly become clear why one can consistently do so.)
Then, in T-dualizing along ¢, to the configuration (A, 3),
we obtain an RR three-form potential of the form

é<3A~,3) =sech,.F®dp, A diy A dr + other terms.
(4.103)

Without loss of generality, the relevant part of égA’3) will be
assumed to be of the form suggested in (3.67) in [13]:

“The tadpole condition is, essentially, the statement that the
charge of the fractional D3-branes should be conserved. It follows
directly from the Bianchi identity and equations of motion of the
corresponding fluxes. A neat derivation of the tadpole condition
can be found in Sec. 4.2 of [38].

é(A,3) _ N, sin 26nc cos encp(gl )Q(enc)
3 2(cos?0,, + Nsin?0,,.)?

dr A d%s A d,
(4.104)

with (p,q) periodic functions of (6,,0,.) with period
(7, 2r), respectively, and N = N(r,8,,) sufficiently small
for all values of the radial coordinate and such that

limN = 0, limN = 1.

r—0 r— oo

(4.105)

Quite obviously, N, stands for the derivative of N with
respect to r. Finally, in the uplift from (A, 3) to (M, 1),
(4.104) will lead to the background G-flux of (2.61)
receiving the additional contribution given by

s(g{"Y) = ac. (4.106)

[For completeness, let us just mention that the NS B-field

B’EB’I) will also add to the background G-flux of (M, 1), as

roughly dBéB’l) A dxyy.]

Summing up, the inclusion of the D5-brane in such a
way that tachyons are avoided affects only the background
G-flux of the Abelian configuration (M, 1). As already
argued in Sec. IVA, the background G-flux does not
contribute at all to the first term of the action (4.107).
Consequently, the D5-brane does not affect our results so
far (and hence there is no need to make more precise the
above analysis).

However, the particular contribution (4.104) to the RR
three-form potential of the configuration (A, 3) does play a
key role. It sources a new term" for the gauge theory
action, which we can interpret as a mass term for the G-flux
of (M, 1):

S@) = égAﬁ) A ggM’” N g‘(‘M,l)’
XII

(4.107)

with giM’l) given by (2.61) in this Abelian scenario
and the eleven-dimensional manifold X;; as described
around (4.1).

Moving on to the non-Abelian enhanced case (con-
structed in Sec. II A1), our entire discussion hitherto
straightforwardly goes through. The only two differences
are that we have N number of D5/D35 pairs instead of just

one and that gf(”” in (4.107) is now the non-Abelian
G-flux in (2.87). Since the background G-flux in (2.87) is
negligible and using the non-Abelian generalization of
(4.6), the second term of the action reduces to

15Ac‘[ually, this second term for our bosonic action is well
known and usually referred to as “anomalous interaction term” in
the literature. The interested reader can find a lucid review of its
main features in Sec. 4 of [39] (and references therein).
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"AFAF),  (4.108)

5@ / do, /
X,®3,

with F the non-Abelian seven-dimensional field strength.
As was the case with the first term S(!) of the bosonic
action, the trace is taken in the adjoint representation of the
gauge group, in this case SU(N). Also, note that we have
transferred the 0, integral (as an average) to the X, ® 25
subspace of X, to consistently decouple the contribution
of the Taub-NUT space to S?). Relevant comments
regarding the appearance of this trace and the decoupling
of the Taub-NUT subspace are as discussed before,
between equations (4.4) and (4.12).

The S term in (4.108) is actually very simple. Note that

C(3A’3) spans all three directions of the three-cycle X5. Recall
also the decomposition of F in (4.13). It is clear that F (Z5)
cannot contribute to S<2>, as it would then lead to a
(vanishing) wedge product between two same directions
of Z;. On the other hand, F (X4) does contribute, but is
restricted to X, and does not depend on the 6, coordinate,
both properties following by definition. Thus, the integral
over X, ® X; naturally decomposes into independent
integrals in X, and X; and (4.108) is in reality just
given by

|

SO — @ [0 = / Te(F ) A FED),

IR

For the moment, the above form of 12 will suffice. We will
work on further rewritings of this integral in due time, when
the need arises. Consequently, let us focus on the only task
left: the determination of the coefficient c,.

This too turns out to be quite easy. Using (4.24) and
(4.104), we can rewrite ¢, as

(4.109)

Cl C N sin Zenc cos encp(g )Q(enc)
Cy=—
27y, 2(cos? 0, + N sin?0,,.)?

(4.110)

Once more, the integrals over (X3, ¢, ) here are trivial. To
simplify the notation a bit, we absorb the contribution of the
0, integral in the radius of the X3 noncompact direction as

R n
R; 5—3/ do,p(6,).
2 Jo

Then, ¢, can be seen to be exactly as suggested in (3.63)
and (3.68) in [13]:

(4.111)

N,dr

C . (5]
Ccy = V—iR3 sin 29,,5 cos 6110‘](0716) [) (

where in the last step we have used the boundary values in
(4.105). Our final expression for ¢, leaves no room for
doubt: this coefficient is just some well-defined number. To
match the notation in [13] and without loss of generality,

one may set 2R3 = V5 and thus simply consider ¢, as

¢, = C;sinb,,.q(0,.). (4.113)
Written in this manner, C; accounts for the dependence
of the ¢, coefficient on the non-Abelian version of the
M-theory configuration (M, 1) of Sec. II. The factor sin6,,.
ensures that 6,. = 0 implies ¢, = 0 (recall that 8,. was
introduced to this aim precisely). Finally, ¢(6,.) allows
us to have as complex a dependence on 6, of ¢, as one
may wish.

C. Completing the four-dimensional vector multiplet:
Third term for the action

In this section, we compute the third and last term S©)
that contributes to the bosonic action of the N' = 2 four-
dimensional gauge theory. As we already pointed out in the
beginning of Sec. IV, this third term is not easily derivable
from the non-Abelian M-theory configuration (M, 1). (In

c0s?0,. + Nsin?0,.)> =~ V,

C\R
=2"4in0,.q(6,.). (4.112)

|

fact, there is no rigorous derivation of this type of term in
the literature.) Nonetheless, all the knowledge we have
gathered while deriving the first two terms, S(') and S,
will now pay off and allow us to obtain the remaining
third term.

Let us begin by recalling that in the end of Sec. [V A we
argued that the bosonic matter content in the gauge theory
must be exactly that in the N = 4 vector multiplet. That is,
in our action we must have four gauge fields and six real
scalars, all of them in the adjoint representation of SU(N).
However, upon inspection of the already derived first two
terms in the gauge theory action [given by (4.100) and
(4.109)], we note that so far only the gauge fields
(A Ay, Ay, A ) and three real scalars (Ajz, A, . A,) have
appeared in our analysis. Hence, we are missing the
contribution of the other three real scalars. Following the
notation of [13], we will refer to these as (@1, @,, @3).
Accordingly, S®) will capture the dynamics of these scalar
fields.

Let us next note that the terms S() and S originate
from the G-flux of the non-Abelian configuration (M, 1),
which is given by (2.87). Further, these two terms exhaust
all possible contributions of the G-flux to the action. [This
is most clearly seen by looking at the initial form of S") and
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2) in (4.2) and (4.107), respectively.] As a consequence,
SG) must emerge purely from the geometry of (M, 1). In
other words, we expect the scalar fields ¢, (with k =1, 2,
3) to stem from fluctuations of the eleven-dimensional
supergravity Einstein term of (M, 1). In terms of our non-
Abelian scenario of Fig. 4(b), this means that the Taub-
NUT space TN and the M2 branes wrapping its two-cycles
fluctuate along X, ® 25." 6 We will right away simplify the
scenario and assume the fluctuations are restricted to X,
only, so that

or = @t x1,x,) YV k=1,2,3.

(4.114)
We will further suppose that, in fluctuating along
orthogonal directions of X;;, TN itself does not get
backreacted. Or, more accurately, that the backreac-
tion of TN is negligible compared to the change that the
|

metric of X, ® X5 experiences. This last key assumption
allows us to write S®) as an integral over X, ® Z; only. In
the same vein as for the previous two terms of the action,
we will also average over the contribution of the 6,
coordinate.

Having shed sufficient qualitative light onto the nature
and content of @), we are now ready to make this term in
the action fully precise. Naturally, S&) must contain the
kinetic terms and the self-interaction terms of (¢, @,, @3),
as well as their interaction terms with (Az, A, . A,):

74 500 g sl

n nt int

SO = sl (4.115)

This just mimics the well-known N = 4 vector multiplet’s
action for the ¢ scalar fields. In the same spirit of (4.57), we
can write the above as

do .
S\ = / — / { 9“(Dapi)* + 6" (Dypr)* |-
X4®%3  j—1 La=0

d@l
mt
X4®23 k=1
mt / / Z
X4®Z;3 k—1

wH

(/’k @),

*[AZ) p,]), (4.116)

where (g, g‘7“7’) are given by (4.19), the covariant derivatives were defined in (4.51), A (%5) stands for (4.52) and the Hodge
dual is with respect to the three-dimensional metric of X5 in (4.47). In the following, we work out these terms separately.
Computation of Skm) in (4.116).—This kinetic piece is rather unchallenging to work out. Simply writing out explicitly the

integral over X, ® X3 there appearing and using (4.17), (4.19) and (4.24), Skin can be written as in (3.139) in [13]:

Sl(qn> - /d4XTI'Z |:Z bak a(pk) +by/k(Dy/(pk) :| (4117)

k=1

a=0

where, once more, d*x = dtdx,dx,diy and the coefficients (b, byy) are defined as

5 - |F
by = X / d*CH\\/F\H;, by = / d*CH, Fl
4

(4.118)

Further introducing (2.53) in the above and noting that the integrands are independent of (X3, ¢),), these coefficients

considerably simplify:

by = €27 R sec 9,,0/ dr(cos26,. + F,sin20,.) A Fy3\/ F\ F,70),
0

w0 IF
b = Ry sec,, A dr(cos?6,, + F,sin20,.)'/*F/> F—II(IOL
2

(4.119)

'®We remind the reader that the subspaces (TN, X4, £3) of the full eleven-dimensional manifold X, were introduced and described

around (4.1).
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with the integrals there appearing defined as

T in @ T )?5/6 FZ_F3
I<9)E/ do, 2201 I<10>E/ o 5 =5(0,) =1+ "2""3c0s20,. 4.120
, Yo . “sing, »=x001) + 7. cos“0, ( )

These integrals are most easily performed after making the by now a familiar change of variables in (4.33). For Z(®) we

obtain
1 F,—F -1/6 113 F,—F
I(9):/d I+ =57 =,F(7,5.5;2"22
LUt TR T “"\6 22 B ©

Similarly, using (4.33), introducing the regularization factor b € (R* — {1}) in the same way as in (4.34) previously and
further changing variables as

z=1
=20, (4.121)

7=-1

2=23  dz= (4.122)

the integral Z(0) yields

o 5/6 A mo 5/6
7(10) :2/1 dz <1+F2 Fs z2> _[fE ] <1+F2 F32>
0

b -2 F; “Jo VEP -2 Fy
2VE (1 5 3 F,—F, 2\|7' 2
:—F _a__sla_; - A;_ :_® . 4.123
b2 1(2 62 Fy, )|, B (4.123)

Following the notation in (3.136) and (3.138) in [13], (©,,, ®34) above stands for the following hypergeometric functions:

113 Fy-F, 1 5 3 Fy—-F, 1
Op=,F{=-.2,5; , Ou=Frl-.—-.1,5; 3= |- 4.124
e=ohi(py 3 i) ew=r (3l (4.124)

Putting everything together, we obtain the coefficients (b, byy) exactly as in (3.135) and (3.137) in [13]:

b = 2€*P R sec an/) dr(cos20,, + Fysin20,.) 3 FY>\/F\F,0,,,
R © 2 ) 1/351/3 F
by = 2ﬁCOS 0, | dr(cos®0,,. + Fysin“0,.)' /" F, F—®34. (4.125)
2

Recalling the constraint F, > F of Sec. IV A, the reader will not have a hard time of convincing himself that the above two
coefficients are well-defined numbers for any choice of warp factors in (2.2).

Computation of Si(:ﬁ"’) in (4.116).—The determination of this self-interaction term is a simplified version of the
computation we just presented for the kinetic term. As in there, all boils down to explicitly writing the integral over X; ® X3

in (4.116) with the aid of (4.17) and (4.24):
3 ~
Si(:ftw) = /d“xTr Z dulowe i) dy = €2¢°/d4CH%\/ Fi\Hy Y k1=1,2,3, (4.126)
k=1

with d*x = dtdx,dx,dy. For the determination of the d,, coefficients, the first step is to use (2.53) and carry out the trivial
(X3, ¢ ) integrals. We thus find that

dy = > R; sec,, / dr(cos0,,. + Fysin20,, )3\ F{F,F3T0Y) Y k1 =1,2,3, (4.127)
0

where we have defined, using ¥ in (4.120),
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700 = FY/ /” do, sin0,3'/°. (4.128)
0

Given the similarity between the above and (Z(), Z(19)) before, the attentive reader will already have guessed that the
easiest way to perform the above integral is by making the change of variables in (4.33):

1 Fy—Fy )\ 3z Fy—F; \/6 ¢ 153 Fy-F = e
F—l/ﬁzuwz/d TR Sl VR S S Sl 2p(l33.F-F, _ G5
(4.129)
where Os¢ is as in (3.143) in [13]:
- 153 F3—F
Ose =35,/ + FYO,F (-,2,2; 2 22). 4.130
% > TR T, (4.130)
As a result, we can write the dy; coefficients as suggested by (3.142) in [13]:
624){] (o) ~
dy = 5 R; secf,, / dry\/ F\FyF5(cos0,, + F,sin%0,,.)?*@ss ¥ k,1=1,2,3, (4.131)
0

which are just some number whatever choice of warp factors one may wish to consider in (2.2).

Computation of S i(::(”) in (4.116).—The final term to be computed, namely the interaction term between the two sets of

three real scalars A®s) and ¢, (k = 1, 2, 3), is mathematically more involved than its previous two counterparts. Hence, let
us first take a few preparatory baby steps. From (4.49) and (4.52) it follows that

N z N p
Ut o g™ + [(13,(/%]‘3((;513)’

(%3)

HA®), 0] = @y, gle™ A e = [, gulel™ A e + [, il

(23)
3 oNeT (4.132)
the Hodge dual having been taken with respect to (4.47). The wedge product between the above two quantities is then

(A, ] A AP, ] = ([, i + [0 9] + a3, iP)eS) A e el (4.133)
Since H%HZH 3 = 1, as a direct consequence of our definitions in (2.53), and reversing (4.48) and (4.52), the above can be

rewritten in the more convenient form

VF| (e 2 1
[AE) ] A %[ A®), ] = eo 1 {e (A @] +— [As, o)
H, Fy H,

iR 2 23, -
+ <H2 + i [Ap, . @i i, [As, @il[ Ay, 1] pdXs A dr A depy. (4.134)

This is nothing but the integrand of S (A9) in (4.116). There, after expanding the integral over X, ® 23 and using (4.20) and

int
(4.24), we get the interaction term as

3
S = / AT (el A il + 5[5, 0P + eyl Ay, kP = cxal s o] [y, o)), (4.135)
k=1
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The four coefficients above (and these are the very last ones) are defined as

- |H ~H
Cop = / d4CH1 F—4, C3 = €2¢0 / d42_,’H—1 1/ F1H4,
1 2
o =X / d*CH,\/F\H, <£3 +F>’ Cup = 262 / d4§ f >\ /F H,. (4.136)
2 3

Introducing (2.53) and carrying out the trivial (X3, ¢b;) integrals, these coefficients simplify to (3.144)-(3.146) in [13]:

|F,
¢ = 2R3 sec GnCA drFy? F —2(c05%0,,. + F,5in%0,,)'/*0,5,

3 = 2*PRy sec an/ drFy>\/ F F,(cos?6,, + F,sin26,,.)*/30),,
0
[s0] ~
cpx = PRy sec Gnc/ dry\/ F1F,F3(cos?0,,. + F,sin’0,,.) /Tl (4.137)
0

and ¢;; « Z©®), with Z() defined in (4.63). Note that in the case of (¢k» ¢3;,) we have also integrated over 6, using to this
aim (4.120), (4.121) and (4.124). Also, we have defined I1;g as in (3.147) in [13]:

Mg =I5 4+ 3 sec? 6, tan® 6, F3(cos? 0, + F, sin® 0, )1, (4.138)

with (Il5, I1,5) depending on the § function in (4.120) as

. 7 - 1 7 sin@,cos’0
1 EF5/6/ dé, sin0,7%6, 11 E—/ do,———" "1 4.139
78 3 0 1 1 78 3F;/6 0 1 )?1/6 ( )

Once more, these integrals are most easily carried out after making the change of variables in (4.33). For IT;5 we get

_ 1 F,—F; ,\°
F3/%Ml = /dz 1+ 222
. F,
_3Z 1+F2—F3 > 5/6+5Z F 11 3'F3—I~'72 2
B - g2 "\6 22 F, °©

where in the last step we have made use of (4.124). Similarly, IT;¢ gives

) 1/6 F _F 5/6
F_5/6H78 = —/ dZZ ( 322) = % |:<1 +g22)
8(F, — F3) F

z=1

113 Fy—F =L (Fy/F)Y% -0
_2F <_’_,_; 3 2Z2>:| :( 2/ ~3> 12. (4141)
6'2°2" 1 A - Fy)
The above two results recover (3.148) in [13] and, used in (4.138), allow us to write 1,5 as
3 5 3 /tan@,,.\? i F3
H78 = ZFS/() —|— 4F5/6®12 + Z (m) (COSZHnC + F2S1n29nc)(F5/6 F5/6® ) _2F3 . (4142)

As we saw in (4.64), Z) = 0 and so the coefficient ¢ vanishes. This reduces our interaction term in (4.135) to its final
form:

Ap)
St = /d4Xsz el Ar 0?4 5[ Az, ol + i Ag, i) (4.143)
k=1

026001-55



VERONICA ERRASTI DIEZ PHYS. REV. D 97, 026001 (2018)

For the very last time, we observe that the coefficients appearing above are, as a simple inspection of their form in (4.137)
suggests, well-defined numbers for any choice of the warp factors one may wish to consider in (2.2). Just to make the entire

analysis transparent, we show that the only seemingly divergent term is actually finite. Defining ¢ = (13’ , — F3), we have
that

Fs +€)3/6 — FY/° 5
3 3

~ 1/6°
24F}

lim H78 = hm (4.144)

FomFy -0 4e

a finite result as predicted. [Recall that F3 — 0 cannot be considered in this case, as we explained after (4.38) earlier on.]
It is now the time to collect all our results in this section. First, we introduce all (4.117), (4.126) and (4.143) in (4.115).

We then have that the third and last term for our gauge theory action is

3
S(3) — /duTr{Z |:Z bak a(pk) +bl//k l//(pk

k=1 La=0

3
+
k=1

At last, adding all three contributions SM in (4.100), S@

(el Ar @i + 3l o + coil Ay ¢k12>}.

3
}+del¢k @)

1

(4.145)

in (4.109) and S©) right above, we obtain the total bosonic action

for the four-dimensional gauge theory to be that in (3.153) in [13]:

S [ S

a.b=0
a<b

C/ d'x Zn (F2,) + e / Tr(F0 A FU)

Xy

C 2
+5 / d‘*xTr{al[Ar,A,,),} + a5 AP + A3 Ay P+ le5(DoAs)?
3 a=0

+ Car(DaAr)2 + anﬁl (DaA¢1 )2]

k=1 0

w

k=1

To finish this section, we include Table II. This is a quick
guide to finding the explicit form [in terms of the warp
factors in (2.2), the deformation parameter ,,. in (2.24),
and the constant dilaton in (4.5)] of the abundant coef-
ficients on which our above action depends. These will
keep appearing all through the remainder of Secs. I[IV-VI.
Recall that we have explicitly shown that all these coef-
ficients are well-defined numbers for any choice of the
warp factors, as long as the constraint Fy>F 3 is satisfied,
with F, as in (2.26).

Before proceeding ahead in our analysis, it is worth
noting that in the present work we do not study the four-
dimensional bosonic action stemming from the configura-
tion (M, 2) of Sec. II B. This is because (M, 2) was shown
to be equivalent to the configuration (M, 1) of Secs. Il A
and ITA1 (see Fig. 1), the latter being computationally
easier to handle. However, this action is discussed in [13]

(DyAs)* +

1// 3

3
+/d4xTr{Z[Zbak Dapi)* + b (Dypi)

¢ir(DyAr)? + g, (DyAg, )2}

3
} Z llows i)

+ > (ol An ol + ex[As il + gl Ay, €0k]2)}- (4.146)

|

and argued to be of the form (4.146), the only difference
being that the coefficients of Table II would in that case
change. We refer the interested reader to [13] for the
pertinent details.

V. THE BULK THEORY: THE HAMILTONIAN
AND ITS MINIMIZATION

This section is devoted to the derivation of the BPS
conditions for the A/ = 2 four-dimensional gauge theory
along (7,x;,x,,%), whose action we just obtained in
(4.146). It goes without saying that the BPS conditions
follow from minimizing the energy of the system with
action (4.146), considering static configurations of the
fields there. Hence, it is quite clear that the first step
towards achieving our aim in this section will be to obtain
the Hamiltonian associated with (4.146). The second and
last step will be to minimize this Hamiltonian, under the
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(@)

Action
(4.146), with c,=0

associated to

Hamiltonian
(5.7)

rewritten as

H Time independent fields ‘

choose \_‘

minimization of the
energy requires

Hamiltonian
(5.31)

Gauge (5.35) ‘

Constraints

Consistency egs.

BHN egs.

(5.40), (5.42), (5.43)

(5.70), (5.72), (5.73)

(5.75), (5.76)

Action

Approximation

(4.146), with c 0

along with

(5.77)

associated to

Hamiltonian

’—‘ Time independent fields ‘

(5.88)

choose \_‘

Gauge (5.35) ‘

minimization of the
energy requires

Constraints

Consistency egs. BHN eqs.

(5.40), (5.42)

(5.92) (5.91)

FIG. 12. Sketch of the main results in Sec. V, where we obtain the Hamiltonian following from the gauge theory action (4.146) and
minimize its energy. As a result, we obtain a set of equations the gauge and scalar fields in the theory must obey. The so-called BHN
equations are particularly important, as they are related to knot invariants. (a) Since the computation is a bit involved, in Sec. V A this is
done in a particularly simple limit: setting ¢, = 0 in (4.146). (b) The generalization to the case of interest, ¢, # 0 in (4.146), is done in
Sec. VB and follows without much effort from the previous analysis.

assumption that the gauge and scalar fields are time-
independent.

Yet once more, this is more easily said than done.
Consequently, we will do the following. First, we shall
determine and minimize the Hamiltonian following from
(4.146) in a particularly simple limit: we will set ¢, =0
there. That is to say, we will begin by performing the
analysis when there is no topological term in the action.
Then, we will use the insights thus gathered to generalize
the results to the ¢, # 0 case we are really interested in.

This procedure is depicted in Fig. 12, where we also
make reference to the main results in the present section. As
such, the reader may find it useful to look at Fig. 12 as a

guiding map for Sec. V: it captures the main logic behind
the computational details shown in the following.

A. Analysis for the case ¢, =0 in (4.146)

Obtaining the Hamiltonian associated with a given
action is a well-defined problem in classical mechanics,
which our readers surely know by heart. As such, after
setting ¢, = 0 in (4.146), one could go ahead with the
standard procedure: infer the conjugate momenta and write
the Hamiltonian as the Legendre transformation of the
Lagrangian. However, in view of the length and complexity
of the action (4.146), this procedure would be quite a long
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and tiresome mathematical exercise for us. Therefore, we
will use a different approach to obtain the Hamiltonian: we
will map our action to that in (2.1) in [40] and directly read
off our Hamiltonian from (2.4) in the same reference.
The Lagrangian density £ of our theory can be directly
inferred from the action (4.146), since
|

Xy = ([7 X1, X2, IZ/)’

¢A d (./45, A¢)11 Ara (,01%02’(/’3)’

s— /d“xﬁ. (5.1)
With ¢, =0, £ in (4.146) is precisely of the form of the

Lagrangian (2.1) in [40], up to relative factors, under the
following identifications'’:

bs = As. (5.2)

Note that our definitions for the covariant derivatives in (4.51) differ from the covariant derivatives in [40]. This mismatch is

accounted for by replacing factors of (i) there by (—

i) in our case. Properly accounting for the additional prefactors in our

theory as well, it is rather simple to see that the different terms that compose the Hamiltonian (2.4) in [40] are, in the

language of the present paper, given by

Z( a0 —
_Z ab

a#b

a¢5) - Tlﬁ

a

where we have defined (7,7,,73) as

2
| 2 (Ve Fun = egDuAs) +

<|Q <’Q

Z \/E Doy —

and where 7 4 naturally splits into two, 7 4

()

with (z1), 7(?), 7)) standing for

Clal &
iT? = Ar’ A¢1 Z

> (Do + ils. da])? = T (Dohs)?

€apeaDeta + ilas Pp))* = T4,

-A3 (ﬂk]) >

(\/c_OrDOA—z\/_[Ay.A +_(\/?¢1D0A¢l_l\/—["43’“4¢1]>

2
<ZDu¢a> -0, (5.3)
\/ C12 '7:1//0 7/ € IZDL//“4
_G 2
7-3 = V—CO3 (D0A3) (54)
3

= Tgl) + ’Tf), due to the decomposition of the subspace X, explained in (4.1):

2
2 — li Ci 4+ (5.5)
2 a=1 V3 ’
Vig
V= e\ Fap = Corapir DpAr = \| C €apipn, DipAp, = az \/ Dirk €apipk Py
k=1
VA @] + /ol Apy s o] + V dulox @il
(5.6)

. Vi
YV = VenF ay = \/Cprain DpAr = \) Epi, Caiipp DpAp — | az \/ Lok aipe DpPic-
k=1

Putting everything together as in (2.4) in [40], we obtain the Hamiltonian associated with the action (4.146) (with ¢, = 0) to

be given by

"In all the identifications of our present work to other references we will show the quantities of the cited source (our theory) on the

left-hand (right-hand) side.
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H= /d4xTr{ZT+ a;1 <\/€;< + 1l ) + Z<\/7 (2)>2}+QEM,

where Qgy; denotes the sum of electric and magnetic
charges in the theory. As is well known (see (2.5) in
[40]), these charges are boundary terms. We will study
these boundary terms in exquisite detail in Sec. VI A [for
the case where ¢, # 0 in (4.146) only]. Hence, for the time
being, we shall not make them precise and focus instead on
the bulk terms. Also, this Hamiltonian incorporates the
Gauss law in it, as explained in [40]. Consequently, there
are no constraints on the gauge and scalar fields of our
theory imposed by the Gauss law.'®

According to the plan of action described in the begin-
ning of this section, having obtained the Hamiltonian for
our gauge theory, we should now proceed to minimize it. It
turns out, however, that the minimization process simplifies
considerably if we first rewrite (5.7) in a certain manner.
(Further, in Sec. VA2 we shall obtain important results
from this rewriting.) Thus, we will now simply rewrite the
Hamiltonian (5.7) in a more convenient form and postpone
the minimization problem to Sec. VA 1.

The rewriting we will carry out consists on introducing
new, arbitrary coefficients in some of the terms inside the
sums of squares of (5.7) and, at the same time, summing
new terms to the Hamiltonian so that there is no change in
its quadratic components. We shall not yet make precise the
additional crossed terms produced in this manner. But the

|

1< Cicny Cicyr Ciéyy 2
3 Z (\/—V—:Faﬁ - v, €aﬂl7/rD17/-'4r - v, leaﬂv7¢1pl/7“4¢1 T
a,p=1

(5.7)

|
reader should not worry, the crossed terms will be deter-
mined meticulously in Sec. V A 2. (In fact, their study leads
to the important results we were anticipating a little before.)
Perhaps a toy model will make the rewriting we intend to
perform most transparent. Consider the Hamiltonian

HY = (A +B)?+C. (5.8)
Introducing the arbitrary parameters (&, ), the above can
be rewritten as

HY = (A + B)? + 9B + C, (5.9)
as long as the constraints
249=1, C=C+2AB(1-4%), (5.10)

are enforced. Written in this language, our earlier statement
of ignoring the ‘“additional crossed terms” simply means
that the second constraint above shall not be studied
presently, but rather in Sec. VA 2.

Actually, we shall only rewrite the term 7, and leave
(T,,7,,73) as they are. We do so piecewise and first

focus on the first three terms of Tftl) in (5.5):

(5.11)

In the above, we introduce arbitrary coefficients in the second and third terms, which depend on (a, ). Clearly, these must
be antisymmetric in the mentioned indices, so as not to yield zero due to the present epsilon tensors. We absorb the minus
signs in the coefficients and also transfer the factor of (1/2) inside the square. All in all, we rewrite the above as

Cl Cll C] r Cl Cl/(/)
(“ aﬁ C (1/} a/iy/rD A + : - (l[)’ Capijep, Dy A‘/’ o
ap=1

c
D ] V/¢1
V3 ( A+ Vs

where y, contains the additional crossed terms created by the inclusion of the (s

constraints

2s9)? + 5 =

(DL/IA(/) ) + X5

(5.12)

( ﬁ> , 2/; ) coefficients and we demand the

Vi=1.2 (5.13)

hold true, so as to ensure the quadratic pieces remain the same. In exactly the same way, the first three terms of 7 512)

in (5.5), namely

" The skeptical reader can alternatively be convinced of this last statement by the combination of (5.2) and our later choice (5.40).
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1 2 C Clo C1C r C15 2
SO\ F - P eappDpAr — e agpp, DpAg, + - | - (5.14)
—1 V3 V3 Vs
2
C1C12 Clcﬂr C1Cﬂ¢
Z( y V ta WﬂrDﬂA + ]ta Wﬂ¢1Dﬂ‘A¢1
a=1
1 ﬂr

(DyA,)? ;T‘ (DpAs ) + 11 (5.15)

can be rewritten as

3

where y, takes into account the additional crossed terms created by the inclusion of (t((ll), tf,z)) and we impose the constraints

2
S+ =1, vi=1.2, (5.16)
a=1

which guarantee the squared terms are not affected in the rewriting.
With the very same idea in mind, we look at the fifth terms in both 7 4(1 and 7 5‘2) next:

2;( \/Clal[Ar,Azjz,]—f—...) +% 21 <_ ,/Clal[A,,A@] ) : (5.17)

We introduce antisymmetric (in their indices) coefficients in both the two terms, add squared terms that make sure we do not
alter that part and encompass the new crossed terms in y,, which we do not presently determine. We also pull in the factor of
(1/2), as before. Explicitly, the above becomes

: (4) Clal 2 Clal 2
S —igy [Ar, Apl+ .| + Z n [Ar, Ay ]+
a,fp=1 =1

DA, A+ 7 (5.18)

where we require that the following must be satisfied':
4 4
200972 + > (W) — g = 1. (5.19)

Similarly, the last terms in Tgl) and Tf),

|2 3 , 2 X 2
22T 2 Vulow S =i Vidli ol ) 5.20
2a;1< Z wlo (.01]> +ZZ< Z ki [Pk qol]) (5.20)

k=1 a=1 k=1

are rewritten in the form

PNote that the relative difference in signs between (5.19) and the previous constraints (5.13) and (5.16) is a consequence of the
overall factors of (—i) in the terms of the action being considered.
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2

3 2 2 3 2
> ( —iy 95,}3)1{1\/ dk1[€0k»€0z]) +> < —iy hf,iﬁk, dit|@x 601]>
ki1 .

ap=1 a=1 k=1

3
+ Z qudki[ﬁ”k#ﬂl]z +x (5.21)
k=1

with the constraint

ﬂmm+zjwﬂ—@ﬁﬂ Vki1=1.2.3, (5.22)

a=

where gsﬁ?k, has been defined to be antisymmetric in (e, f#) and in (k, /). Analogously, h( L ki 18 antlsymmetnc in (@, %) and in

(k, 1) by definition. We do an identical rewriting of the sixth and seventh terms of T 4 and T4 too. That is, we rewrite the
mentioned terms [whose original form can be directly read from (5.5) and (5.6) or even simply inferred from the subsequent
equation] in the more convenient form

2

3 3 2
Z < - izggﬂ)k\/ crk[Ar’ (Pk] - izgl(;;)k\/ C¢]k[“4(/)|’(pk] + )
k=1 k=1

af=1

2 3 3 2
. 2 . 3
+ E_l < —1 kil hiygk\/crk[Arv(pk] —1 kil hgg.;kw/cd)]k[At/w(/’k] + >

3 3
+ 3 qPcal Ao+ a0 ol g i + 22 + 25 (5.23)
k=1 k=1

We also demand the following constraints:

2
Z Wr-q)=1. Vi=12 Yk=123. (5.24)

Here, gf,}k has been defined to be antlsymmetrlc in (a p) and hay/k in (a,y), for both i = 2, 3.

The only two terms left, fourth terms of ’T4 Y and ’T4 in (5.5), will be rewritten in a slightly trickier way. Essentially, we
will first “mix” them and then multiply those mixed terms with new coefficients. Again, we will make sure that the squared
terms are not affected in the rewriting by subjecting the coefficients introduced to constraint equations. For the time being,
we will not determine the additional crossed terms thus produced. To make the idea more precise, let us first consider a toy
model to illustrate how we will proceed. Consider the Hamiltonian

1~ 4
= B
S(A+ By +

H? — + - (C+ D)2 == (A% + B? + C? + D?) + crossed terms. (5.25)

m|~
m|~

We will “mix” the terms (B, D) in the above. To this aim, we define £ = B + D. Next, we insert inside the squares the
factors of (1/2) and introduce the arbitrary coefficients (i, 9). All these changes allow us to rewrite the toy Hamiltonian as

A A

A 2\ 2 C A\2 1. ~ « «
H® = <+it[E> + <—|— @[E) =— (A2 + C)2 + (&2 + ) (B? + D?) + crossed terms. 5.26
7 7 2( )?+( )( ) (5.26)

If we demand that the squared terms in (5.25) and (5.26) match, then it is clear that (&, ») must satisfy the following
constraint:

02+ 2 = (5.27)

1
7
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Coming back to the fourth terms in ’Ti and 7, ) that motivated the just explained toy model, these are given by

3 2 2 3 2
5 Z ( Z,/bg,keaﬁli,kl)y;gak—i—...) +%Z(...—Z\/b7keawkpﬁ¢k+...> . (5.28)
=l a—=1 k=1

a,p=1

Following the logic above exposed, we introduce 6 = (a, ) and rewrite (5.28) as

2 3 2 2 3 2
( + b&k €aﬂ . mg}{)pﬁ(pk + ) + ( + b&k 6“‘7/ . mék)D(g(pk + ) N (529)
8,k=1

a,f=1 5,k=1

plus some extra crossed terms which we shall refer to symbolically as y,,. The dot products appearing above will be made
precise soon enough, in Sec. VA 1. The new coefficients above must satisfy

b 1
S mi)? = 5 Vek=123 (5.30)

which makes sure the quadratic terms have not been changed during the rewriting. Note that there is no antisymmetry
relating the indices of these coefficients, unlike in previous cases.

We are now ready to collect results and present the Hamiltonian following from the action (4.146) (with ¢, = 0) in the
most convenient form for our subsequent investigations. Appropriately summing (5.12), (5.15), (5.18), (5.21), (5.23) and
(5.29) we obtain the desired rewriting of 7 4 in (5.5). Further adding (7 |, 7 ,, 7 3) as given in (5.4), the Hamiltonian in (5.7)
can be rewritten as in (3.158) in [13]:

C. 2
H= /d4xTr{V—; {Z(,/c“}"ao - ,/ca§Da.A§) (VenFu—\/c D,/,A

a=1

(VDo = A5 AR + (oo Dody, = 1G5 Ag]) + cs(Dos )

3
+ Z{ VboDopi = i/5[As, ui]) +Clk1 Jdylpr. o) +qu ¢y, kA, Jﬂk]z}

k=1
/C 1C11 Cic Cic )
( (1/1 l// a/)’ (lﬂVIVD A+ ll/ ks aﬂ Capipep, DV/ 'Al/’

3 33
— igaﬂ V’; [Arv A¢1] —i Z gaﬂ)kl dk P (pl i Z Zgaﬂk V, Ayy ggk}
- k=1 y—2

J=1

k
3 > o
1 Cic Cicsr 1
+ Y Vbseo- m§k>D§¢k> + (\/ 21v12 aj V—ﬂtg)emﬁﬂrDﬂAr
6.k=1 a=1 3 3
3

C,¢ 5 Cia
+ Vf¢1ffz>€au7ﬁ¢lpﬂv4¢l —lhéw)\/ 1 lAr’Aqsl —i Y hig a0l

k=1

3 3 3 2
C
. 2
—1 Z Z hg,”zk\ / cyyk[Ay,’ (pk} + Z bék €apy * m((Sk)D(S(pk> + V_; [Cx/?rs<1) (IZDIINI-Ar)2

=1 y=— Sh=1
+ CU,¢] (D A¢]) + Cﬁrt(l)(D/;A ) + Cﬂ¢ t (DﬁA¢l) + alq [.Ar, .A(/,]] :| +){T}
+ Orm; (5.31)

where we have defined (y,,y3) = (r,¢;) (as a shorthand notation) and
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TABLE III.

List of coefficients appearing in the Hamiltonian (5.31) that do not have a supergravity interpretation,

the equation numbers of their defining relations, and their antisymmetry properties. Note that m(s'k ’s are not
constrained by antisymmetry. These coefficients are introduced while rewriting the Hamiltonian (5.7) as (5.31).

Coefficient Given in

s 5 G139 witha, f,i=1,2and k, I, 6 =1, 2, 3
(D40 (5.16) P ’ » b s

gff};) LB g (5.19) (s i,ﬁ,gi/ﬁ,gf,}sz,gfﬁ)ﬁk) antisymmetric in (a, )

g&};kl, hggkl, q,((}) (5.22) (hg;/) hfl;-/)kl, y/k) antisymmetric in (o, @)

gfzﬂ)k’ hf;;;k, ‘11@ (5.24) (g&},)kl,hg;,)k,,q,g)) antisymmetric in (k, /)
(0) (5.30)

M

Xr=xstataatnto -ttt (532)
That is, y7 accounts for all crossed terms produced when
rewriting 7 4 as just explained. y; will be the main object of
study of Sec. VA 2, but presently we shall not shed light
into it.

We remind the reader that most of the notation used
above was introduced in Sec. IV. In particular, table II
provides a quick guide to find the explicit form of the
prefactors that have a supergravity interpretation in
terms of the warp factors in (2.2) and (2.26), the
deformation parameter 6,,. in (2.24), and the leading
term of the dilaton in (4.5). For clarity and complete-
ness, we include Table III, which summarizes the form
and properties of the new coefficients introduced in
going form (4.146) to (5.31). Note that these coeffi-
cients do not have a supergravity interpretation. Instead,
the constraint relations we demanded in this section
that they should satisfy should be regarded as their
defining equations. These are (5.13), (5.16), (5.19),

|

(\/Cllj:ao - \/CagpaAé)z =0,
(Ve DA, = iv/ay[ Az A])? =0
\/ bo Doy — A3 f/’k]) =0,

(5.22), (5.24) and (5.30), which put together recover
(3.160) in [13].

1. Minimization of the Hamiltonian

Having written the Hamiltonian of our theory as (5.31),
we now make the following crucial observation: this is a
sum of squared terms, plus boundary terms Qg and
“crossed terms” y7. Ignoring momentarily (Qgwm,x7)s it
is clear that in order to minimize the energy of the system
each such squared term must vanish separately. In this
section we enforce the just described minimization and thus
obtain the (bulk) equations of motion for the SU(N) gauge
theory in the four-dimensional space X, parametrized
by (t’ X1, X2, 1/7)

Let us start by setting to zero the first six squared
terms in (5.31). [These are the terms stemming from
(7,,7,,73) in (5.4).] Since we wish our discussion to
be as general as possible, we assume that the coefficients
Cy/V3 and cy; do not vanish. Then, we obtain the
following:

wao \/€ D A
(1 / CO¢|DOA¢ [.A3, ‘A¢1]) = 0,
DyA; =0, (5.33)

which should hold true Va = 1, 2 and Vk = 1, 2, 3. Recall now that both the gauge fields (A,, A,;,) (witha =0, 1, 2) and
the real scalars (A3, Ay, . .A,) [in the adjoint representation of SU(N)] depend only on the coordinates (7, x1, x,,¥). As we
pointed out in the beginning of Sec. V, not only are we interested in obtaining the minimum energy configuration for the
aforementioned fields, but we also want them to satisfy the BPS conditions. Hence, we search for static solutions to (5.33).
This implies we will consider in the ongoing that the fields only depend on (xy, x,,¥) and thus, using (4.51), the above
reduces to

VeaDaA3)’ =
(Veor[Ao. Ay = V[ Az A])* = 0

(Vo[ Ao 0] = /S5l As. 4])* = 0,
valid again Ya =1, 2 and Yk =1, 2, 3.

(\/CIIDaAO - (\/CIZD:]/-AO - \/Cl;,gDy‘/Ai)z =

(/om0 4] = Vsl s, 4,)° = 0.

[Ao. As] = 0, (5.34)
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To proceed further, we need to choose a gauge. We make
the gauge choice in (3.161) in [13]:

Ay = As.
This follows from our earlier identifications in (5.2), where

the scalar field .45 was singled out from the other two scalars
|

(5.35)

(Vi1 = v/€3)*(DoAs)* = 0.
(Veor = Vaz) [ Az, A* = 0,
(Vbor = /302 [ A5, ]2 = 0.

Note that the last equation in (5.34) does not appear above,
since it is trivially satisfied by our gauge choice.

The above has the trivial solution .45 = 0. Another
possible solution would be to simultaneously satisfy

Cop, — A4

(5.37)

Cor = a2,
Vik=1,273.

Ci1 = Cy3» Ci2 = Cy 3
bOkzcﬁk’ Va:l,Z,
Let us explore this option by using the explicit form of the
above coefficients, summarized previously in Table II.
From (4.30), (4.69) and (4.78), we immediately see that
the first equation will be satisfied if and only if
cos’,, + F,sin’6,, = 1. (5.38)
Similarly, using (4.31), (4.38), (4.83) and (4.91) in the
second equation, one can right away conclude (5.38) is
required so that ¢y, = i3 The same deduction follows
from introducing (4.68), (4.69) and (4.78) in ¢y, = a,. On
the other hand, using these same results in oy, = a4, One
finds that, besides (5.38), it is also necessary to impose

(ﬁ2 tan 9110)2

1 + Fytan®9,,.) = 0.
20k (14 Pt

(5.39)

Finally, from (4.125) and (4.91) it follows that by, = c3, if
and only if we demand (5.38). Summing up, to ensure
(5.37) we must enforce both (5.38) and (5.39). But in doing
so, we do not wish to constraint our setup by choosing a
particular form for the warp factors. [We want to keep our
M-theory configuration (M, 1) of part I as general as
possible.] Hence, we conclude that the second possible
solution to (5.36) is given by ,. = 0.

Between A; =0 and 6, =0, there is a preferred
solution to (5.36). Recall Sec. I A: 0,. was introduced
as an alternative and computationally simpler way to
account for the axionic background of [10], which was
there shown to be an essential ingredient to study knots

(Ayp, . A,). One could certainly single out A, or A, instead
and appropriately modify the above gauge choice. We will
not entertain these options in the present work, as they do not
lead to further physical insight. However, the interested
reader can find enough detail on the A, = A, gauge choice
in (3.178)-(3.182) in [13]. With the choice (5.35), the set of
equations in (5.34) reduces to (3.162) in [13]:

(VT = /2Dy Ay =0,
( Copy ~ @)2[«45’«4@]2 =0,

Va=1,2,

Vk=1,2.3. (5.36)

|
using the D3-NS5 system. In our approach too [as we will
show in Sec. (VIC)], 6,,. shall play a key role and allow us
to construct a three-dimensional space capable of support-
ing knots. Accordingly, we set to zero the first six squared
terms in the Hamiltonian (5.31) via
A; =0, (5.40)
along with the gauge choice in (5.35).2° Also, bear in mind
all fields are time independent now.

Let us next turn our attention to the final five terms, as
well as the last two terms in the third line of the
Hamiltonian (5.31). [These are the squared terms we
introduced to make sure that while rewriting the
Hamiltonian (5.7) as (5.31) all quadratic terms remain

unaffected.] Minimization of the energy requires them all to
vanish which, for (C;/V3) # 0, means that

sW(DyA)? =0, sB(DyAy)* =0.
(DyA,)? =0,  (P(DyA, ) =0,
aiqW[A,. A =0, ‘I;E;)dkl[w,(ﬂl]z =0,
a e, i [A, 02 =0, (5.41)

forall p=1,2,k [ =1,2,3 and y = 2, 3. If we consider
that, generically, all the coefficients (s(1), s, 1) ¢2) g,
g, q]((”), ¢y, x) are not zero, then satisfying (5.41) implies

(3.167) and (3.169) in [13]:

DﬂAr = D’7A¢1 = [‘Ar"Af/’]] = [.Ar,(ﬂk] = ['A‘/’l’(pk] =0,
Vy=12,w, VYk=12,3. (5.42)

On the other hand, if we do not wish to trivialize
the system, we cannot conclude that most generically all

“This implies Ay = 0, known as the Weyl gauge or also as the
axial gauge.
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qg)’s are nonzero. [Note that this would imply

[, @;] = 0 for all (k,).] Hence, as the simplest nontrivial
case, we will consider only one such (independent)

coefficient vanishes. Following [13], we choose q(112) =0.
Then, to fulfill (5.41), we must impose (3.171) in
[13] too:

[@1.02] # 0. (5.43)

(@1, @3] = @2, 93] = 0.

In this manner, we have enforced (5.41).

In our minimization of the Hamiltonian (5.31), we now
focus on the squared term between the fourth and sixth
lines and demand its vanishing:

C C11 1 ~ 2 . (4
V3< St CorSe €apin Dy Ar + 1/, €apig DA, = 19 /a1l A Ay
~ (0 = ) (1)
—i ) <gaﬂklv Al @)+ 9 /o kA 0] + iy Dsieap - myy Da(ﬂk> =0, (5.44)
8.k, 1=1 y=2

which should be true for all @, f = 1, 2. Needless to say, minimization of the energy requires all squared terms to vanish
simultaneously. This implies the choices previously made to set to zero other squared terms must now be enforced as well.
Thus, inserting (5.42) and (5.43) in the above, our equations reduce to

C]C

3
v Jap— 21'9,(,1;;)12\/ diple1. @2] + Z V Dok €qp - m((sz)Dafﬂk =0, Vap=12,

11
5.45
2V3 S.k=1 ( )

where we have used the fact that 9((;,}3)12 = —92}3)21 by definition and d,, = d,;, as can be seen from (4.131). Since (5.45) is

antisymmetric in (a, ), we can focus on the case @ = 1 and § = 2. With the convention that €, = 1, noting that (4.125)
tells us that b, = b,; and choosing coefficients as in (3.173) in [13]; namely

(1) (1) (1) (1) 1 (1) (1) (1) (1) (1) 1

G212 = My =My =~y = Vo My =My =Mz = My =My = m.(,,z) =0, (5.46)
it is a matter of minor algebra to obtain (3.172) in [13]:
V3 .
Fi+ Clc“[—Zl dp|@r. 2] + V/bia(Digr — Dopy) + 1/ bjzDyps] = 0. (5.47)

Note that the dot product in (5.45) has been interpreted as a usual scalar product in this case.

This is the first nontrivial equation of motion following from the minimization of the energy of the Hamiltonian (5.31).
Further, since all fields appearing in it are static, the above is a BPS condition. Notice now that, schematically, our BPS
condition is of the form

F+ Do+ [p.9] =0, (5.48)

The well-versed reader will of course be familiar with the Bogomolny, Hitchin, and Nahm equations, which we can sketch
as follows:

Bogomolny: F + Dgp =0, Hitchin: F + [p, 9] =0, Nahm: D¢ + [@, ¢] = 0. (5.49)

Written in this manner, it is evident that our BPS condition is just a combination of all these Bogomolny, Hitchin, and Nahm
equations. We will thus refer to (5.47) as the first BHN equation.

Before proceeding further, let us pause for a moment and study what are the consequences of the choices of
coefficients made so far. These choices are qﬁlj = 0 and (5.46). As can be checked in Table III, these coefficients are
required to satisfy the constraint equations (5.22) and (5.30). So, combining our choices and the constraints, we are led to
conclude that
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P
1) 2 ) \2 1 1 1
2(9<12)kz) + Z (hﬁqﬁu) - qu) =1 VikliI=2.3, hizl,71>12 = _h((ll/~221 =0 Va=12,

1
@ 2 2 2 2 2 2 2
l(ll3> 2) = mgl) =0, m(“), m(zz)’ m§3), mg3), méjl), mslz) = :I:—\/E (5.50)

must hold true in the following.
The last step in the minimization of the energy of our system with Hamiltonian (5.31) is to demand the vanishing of the

squared term between the sixth and the eighth lines in that same equation. This must be done in a consistent manner to all
previous choices made in this section. The necessary vanishing we just mentioned is

C,
\/Vj( BF i + Vit €app DpA, + \/ o () €apps, DpAg, — ihJar MW%J)

3 3
=i Z < dulew @i +Zh€k Cy kA o] + iy b5k€a.,7'mg{>D§<ﬂk> =0, (5.51)
y=2

o.k,I=1

for all a, p =1, 2. Using (5.42), (5.43) and (5.50) in the above, we have that

Cic
\/ 21Vi2fw + Z Vbor €ay - MG D =0 ¥V a=1,2. (5.52)

Here, 6 = 3 should be understood as making reference to the y direction. Without loss of generality, we take the definition
of the dot product above to be

3
Z b&k e(ll// mﬁk)Dﬁq)k =-6 Z V b&k (;' [y 5k D(%”k + bz//(lem//m( )Dl//(oll’ (553)
8,k=1 8,k=1

with the indices of the first term on the right-hand side necessarily different from each other. This seemingly involved term
is not so complicated and, upon using the antisymmetry of the epsilon tensors, is explicitly given by

1 2 2 2 2 2 2
5 Z V bsi [emil(mz(Sk> - ml(<§)) + 6517/(’"2:/3 - ml(m)) + eék(m((za) - msﬂb
+€ak(m((5:25) - m(~2)) + Emg(m,%) - mglg) + €ky~,(m%> - mga))]D(;(pk (5.54)

In good agreement with (5.50), we now implement the second line there, choosing the plus sign for all the m(?) coefficients
in the last equality. In this manner, the above reduces considerably to

3
Z bﬁ eﬁkm(' ) + eakmf,,é) + eaﬁml(,;k)]pﬁq)k (555)
8,k=1

l\.)l>—‘

As we said, the dot product is taken by definition such that all indices in this term should be different from each other. In
other words, § = 1(2) if « = 2(1) and k = 3. This leads to, for a, f = 1, 2 with a # 3,

YDy ifa=1,p=2,

1
—5\/br [egm Emi + Eqin fyﬂ) + €aﬁmw)]17ﬁco3 (5.56)
WD ips ifa=2,p=1,

where the normalization convention used is €;; = €,; = 1. Finally, using the above in (5.52) and with minor algebra, we
obtain the remaining two BHN equations, as in (3.177) in [13]:
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Vv
Fiy + —3( by D1 + v/ b23pzfﬂ3) =0,
Cicn
Vv
Foy + —3< by Dypr + b13D1</’3) =0. (5.57)
Cicn

Collecting thoughts, in this section we have shown that
the vanishing of the different squared terms in the
Hamiltonian (5.31) for static configurations leads to the
BHN equations (5.47) and (5.57). The name BHN simply
denotes that these are a combination of the well-known
Bogomolny, Hitchin, and Nahm equations. In obtaining such
BHN equations, we chose the gauge (5.35) and further found
that the gauge and scalar fields in the bosonic sector of the
theory should also satisfy (5.40), (5.42) and 85.43).
Additionally, we made the coefficient choices g, =0,
(5.46) and (5.50), with the plus sign in all cases of the last
equality there. One can easily check that all our choices
respect the defining equations of the coefficients, summa-
rized previously in Table III. However, this analysis com-
pletely ignored the (Qgy,x7) terms in (5.31). In the next
section, we start to shed light in this direction by studying y7.

2. Consistency requirements and advantage
of rewriting (5.7) as (5.31)

We already pointed out the crucial fact that the electric
and magnetic charges Qpy in the Hamiltonian (5.31)
|

are (not yet specified) boundary terms. That is, the
Hamiltonian as a whole is defined in the X, space
(the bulk) but the terms Qg are defined solely in X;
(the boundary). [We remind the reader that the spaces X,
and X3 were defined in (4.1).] The goal in this section is
to ensure that y; in (5.31) does not contribute to the
boundary terms Qgy. Further, we want to ensure that y; is
in good agreement with the bulk energy minimization
performed in the previous section. Anticipating events,
we will see that such consistency leads to new con-
straints on the scalar fields of our gauge theory. In this
manner, we shall be able to focus on the study of the
boundary theory only, since the bulk theory will by
then be set to zero by requiring that the fields satisfy
(5.40), (5.42) and (5.43), together with the BHN equa-
tions (5.47) and (5.57) and the new constraints we shall
presently find.

But let us take a step back first: what is y; to begin with?
In order to determine y; precisely we will compare the
Hamiltonians (5.7) and (5.31), i.e. the Hamiltonians before
and after the inclusion of the coefficients in Table III. By
definition, y; is simply the collection of all crossed terms
produced during this rewriting. To make our task computa-
tionally easier, we will make use of all the equations above
mentioned, which guarantee that the bulk theory is
minimized.

Explicitly, using (5.40), (5.42) and (5.43) in (5.7), the
Hamiltonian before the rewriting is given by

1 & ( [cie : e ’
H= /d“xTr [5 > ( ;/311-7:aﬁ = bk eapixDai =1 Y v/ dulow i)
ap=l fas

1 ( [Ce 3 e ’
+ EZ ( ;/;zfm,? - Z \/ Dk €aippe Dppr — i Z Vdulee o] | + Orm
a1 =1 k=1

. (5.58)

Let us for the time being ignore Qgy;. We already said and it can be clearly seen from (4.131) too, that dy, = d,;. However,
[@1, @2] = =[@1, 1]. Hence, when summing over k, [ = 1, 2 in the pertinent terms above, these will vanish unless they are
squared. In other words, the nonzero crossed terms in our Hamiltonian (5.58) are just two:

\/ Dk €apprk THF ap Dy @i}

1 C1012 z 3
=50\ 2o 2y B TP Dy}

(5.59)

Simply carrying out the sums above and noting that (4.125) implies that by and b, are the same for all values of a = 1, 2

and k =1, 2, 3 (yet not equal to each other), we get

Cicnbys
(1= \/TV/TY{}_Q»D&(% + @2+ @3)},

1 |Cichb
(= —5\/%“[{}-2&’771(% + @2+ @3)} = {F15- Dal@1 + 02 + @3)}],

(5.60)
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with the normalization convention €;y; = 1 for all kK =1, 2, 3. On the other hand, using (5.40), (5.42), (5.43) and the

() O

choices ¢q,5 . wpl2 = 0 (for all @ =1, 2) in (5.31), we obtain the Hamiltonian after the rewriting as

H—/d4xTr i

a,p=1

Cicip

P 3
2
+ Z 2V, F oy + z V Dk €qj - m,(sk)D{s(ﬂk +xr| + Qpm-

6.k=1

C1611 3 1 . 2 .
\/;fa/} + 6;1 \/ b&k €ap m((Sk)Dfswk - 11; g((lﬁ)k11 /dkl{(plw (pl]

2

2
(5.61)

We know that the squared terms of this and the previous Hamiltonian are the same (provided the coefficients above satisfy
the constraints in Table III, as already discussed in the previous section). Hence, let us just focus on the crossed terms. There

are four of them:

¢ = 2Ccydy
[
V3 a,f=1
;) Clcll
&=
afp=168k=
{'=
3 =
a.p=106m=1
3
{4 =
4 =

a=1 6,k=1

where we have used the (anti)symmetry properties d;, =

dy; and g&%z = - g&lﬂ)ﬂ to carry out the sums over k, [ in the
first and third terms. In this language, y; is

2 4
Ar = Zé’i - Zq
i=1 i=1

In our way to determine y7, let us first focus on ;. Using
the coefficient choices in (5.50) for the plus sign in all
cases, the dot product definition in (5.53) and the result
(5.56) and further summing over «, it is easy to see that

Cic
(4= 1/ gy Tr({F 15, \/bj1 Dye1 + /D23 Drgp3}

by Dypr +\/b13D1¢3})

(5.63)

+ {F2 (5.64)

where the normalization convention employed is once
again €13 = €53 = 1. With the aid of the BHN equations
in (5.57), £, is seen to be a squared (and not a crossed) term:

C1C12
E Tr( 5.65
2‘/3 (zy/ ( )

a=1

Cicir o
21v;2 > > Voseas my TH{F 4. Do}

2
Z g((II/J)]ZTr{faﬂ’ @1, @]},
2V; Z Z V by €ap - mak Tr{}—aﬂvpéfpk}

—2iy/dyy Z Z 9((,}212\/ bsm€ap - mynTr{ (1. @3], Dy}

(5.62)

|
The conclusion that ) is not a crossed term of course
implies that it does not contribute to Qgy, as we wished in
the first place. Further, since ¢ g is a squared term, it can be
absorbed by an appropriate relabeling of the coefficients in
Table III, where the defining equations remain unaltered.
Consequently, ¢y does not contribute to y7 and we need not
worry over it in the ongoing.

We turn our attention to (', £ and ¢ next. As before, we
interpret the dot product in ¢} and (4 as a regular scalar
product, we use our coefficient choices in (5.46) and sum
over a, f in (5.62). In the process, one must not forget the
antisymmetric properties of the coefficients summarized in
Table III. The described computation is not difficult and
yields

. |Ciepd
&=2i %Tr{flz’[fﬂlvfﬂz]}’
\/ 3
Cic
C’zzw ;/HTY{flz,\/blz(leﬂz—szﬂ1)+ bv”/3Dv7(/’3}’
3

h=2i dlZTr{ [@1,02). 7/ b12(D12 =Dy

+ bli/3lel(p3}‘ (566)
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It can be easily checked that, further introducing the
first BHN equation (5.47) in the above, the following
is true:

2C;c
C/1+Cl2:_ 1¢11
3

- Cici1d
s =8d 1, Tr[py, o) —21\ / %Tr{ [@1.02]. F 12}

(5.67)

Tr(}_lz)z,

The same observation we made for ) should be invoked
presently too: the squared terms can be absorbed by a
relabeling of the coefficients in Table IIl. They do not
contribute to Qpy and do not affect the bulk minimiza-
tion of Sec. VA 1. In other words, we can consistently
conclude that they do not contribute to y; and simply
ignore them in the following. The only term which
contributes to yr from the above is

. |Cicnd
gg — —21\/?'11%[601,402],7:12}- (5-68)
3

Putting everything together, we say that

xr=80+8 -0, (5.69)
which must either be reduced to a sum of squared terms
(that would then be accounted for by an inconsequential
redefinition of the coefficients in Table III) or be set to zero.
In this manner, the Hamiltonian (5.31) will lead to a
boundary theory determined by Qgy solely, while a
consistent bulk energy minimization is ensured via BHN
and other constraining equations on the gauge and scalar
fields. What is more, it is evident that {; — ¢4 and ¢, will
have to satisfy this condition separately, as the BHN
equations (5.47) and (5.57) do not mix F, with
(F 1 T 2y7). For this very same reason, we must demand
right away

Dy}% = Dy‘/% =Dip3 =Dp3; =0. (5-70)

We will refer to these as the first set of consistency
requirements we mentioned in the title of the present
section. Implementing the above and using (5.47), {; in
(5.60) and % in (5.68) combine to give

gl_gg:_m
i 3

C b
- \/%Tr{ﬁmaplfﬂz—pzfﬂl}- (5.71)

Tr(]'—m)z

It goes without saying that the first term on the right-hand
side above is squared and thus does not contribute to y;.
That is not the case with the second term, though. To make
it vanish, we will demand

D¢y — Dy =0, (5.72)
another consistency requirement. The attentive reader will
not take long staring at {; in (5.60) in combination with the
two relevant BHN equations in (5.57) to realize that yet

another (and last) consistency requirement is that in (3.174)
in [13]:

D¢y + Dypy = 0. (5.73)
Then, {, simplifies to
1 [Cicppb
Ly =54 | 22 Tr[{ F25. D1 (@1 + 92)}
2\ v,
+{F15-Di(@1 — ¢2)}]. (5.74)

We cannot make squares of the above, so it better vanish.
Indeed it is zero, as can be seen from combining
the requirements (5.70) and the BHN equations (5.57),
leading to

Fig =Fay =0. (5.75)
The other BHN equation, namely (5.47), also reduces

in view of our consistency requirements and is now
given by

Vv .
> (21\/ diler. @a] + \/ bv73Dv7(/’3) =0.

1€11

(5.76)

Finally, we note that y; has by now been converted to some
sum of squared terms which does not affect our analysis
and definitely does not contribute to Qgy, as was our goal
in the beginning of this section.

In conclusion, for the gauge choice (5.35), the energy of
the Hamiltonian (5.31) is minimized when all (5.40),
(5.42), (5.43), (5.70), (5.72) and (5.73) are satisfied,
together with the BHN equations (5.75) and (5.76). In this
case, yr is zero (or, more precisely, is absorbed by an
immaterial redefinition of coefficients, as already
explained) and we are only left with the boundary terms
OgMm to be considered.

To finish this section, let us clarify what is the advantage
of rewriting the Hamiltonian (5.7) as (5.31). The so-called
consistency requirements (5.70), (5.72) and (5.73) that we
obtained in this section to ensure no crossed terms were
produced in the aforementioned rewriting are actually vital
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results in our analysis. They simplify the BHN equations,
which are conjectured to be directly related to knot
invariants (for example, see Sec. 3.2 in [10]). But
their simplifying power goes well beyond the BHN
equations.

In [13], these consistency requirements are obtained in
an altogether different manner: after generalizing to the
¢y # 0 case and by comparing our gauge theory to the
twisted gauge theory®' in [10,11]. More precisely, our
consistency requirements in (5.70) are equal to (3.218)
and (3.220) in [13], (5.72) is the same as (3.207) (albeit all
three equations are expressed in the twisted language
there) and (5.73) is exactly (3.174). Among all the
necessary constraints in our setup, (5.72) is particularly
useful. Unlike in the present work and in [13], in both
[10,11] this constraint is not a consistency requirement of
the twisted gauge theory. This term simply does not vanish
and hence is part of one of the twisted BHN equations.
However, this term greatly adds to the computational
difficulties. Hence, to keep things as simple as possible, in
[10] the prefactor for this term is made to vanish, via an
S-duality. Then, the quite involved generalization to the
case where the prefactor does not vanish is studied in [11].
The fact that (5.72) is true in our construction thus avoids
us the subtleties and struggles related to having to consider
the S-dual picture first and mimic the extension in [11]
afterwards.

Although the S-dual picture is not required in our
analysis, for completeness and to provide a transparent
comparison to the well-known analysis in [10], this has
been fully worked out around (3.252)-(3.275) in [13].
We thus refer the reader seeking an M-theory realization
of the S-dual picture, as well as quantitative details on
its relation to the configuration (M, 1) in Sec. II, to the
cited work. Here, we will take full advantage of having
(5.72) as part of our gauge theory and rid ourselves of
further complications along this direction. Instead, we
will now look at the generalization of all the results so
far in Sec. V to the case that really concerns us, where
¢y #0 in (4.146). This will in turn directly lead us to
the study of the corresponding boundary theory
in Sec. VL

B. Generalization to the case
where ¢, # 0 in (4.146)

We have by now gained considerable insight into the
bulk physics of the theory with action (4.146) but with no
topological term (i.e. ¢, = 0 there). The inclusion of this
topological term is, however, far from trivial, both con-
ceptually and computationally. To relax a bit the computa-
tional difficulties, we will begin this section by doing

*'The reader should not worry at this time over terminology.
We shall introduce the concept of topological twist and twist our
own theory in due time, in Sec. VIC.

the following approximation: we will in the ongoing
consider that

Ci1 = C12 (577)
in (4.146). Looking at the definitions of these coefficients
in (4.23), we see that this amounts to requiring that
e H, = 1. Further using (2.53), our simplification
reduces to a constraint equation on the so far completely
arbitrary warp factors (2.2) and (2.26) and constant leading
value of the dilaton in (4.5)™:

N F,Fysec? @, sin” 0,

F,cos? 0, + Fsin? 6,

=1 (5.78)

Clearly, this is not too stringent a constraint, as there is
ample freedom of choice to satisfy it. For a physical
interpretation of our assumption, one should look at the
metric of the M-theory configuration (M, 1) in (2.56). We
then see that (5.77) implies that (z,x;,x,,{) are now
Lorentz invariant directions. In other words, our approxi-
mation leads to a restoration of the Lorentz symmetry along
y in the subspace X, that we defined in (4.1).

Having made this simplification, we proceed to show an
intermediate result, which will immediately prove useful in
deriving the Hamiltonian following from the action (4.146)
with ¢, # 0. This consists on working out a convenient
component form of the integrand of this topological term in
the action:

FX) A FXa) = Zfﬂyf,,ﬂdxﬂ Adx, A dx, A dx;

p<v
p<i

= &%y Fu o+ F",

u<v

(5.79)

where, as usual, the Hodge dual of the field strength is
defined as

(5.80)

1
= 5 Zeﬂuﬂfﬂ’
p.A

d*x is the volume element of the now Minkowskian
spacetime X4 and x, refers collectively to its coordi-
nates (, Xy, X, ).

Using the approximation (5.77), (5.79) and recalling
(4.113), we are ready to write the first line in the action
(4.146) of our theory (which we denote as S;;) in the
following suitable manner:

We remind the reader that any specific choice of these warp
factors and dilaton should be checked to preserve N =2
supersymmetry. This idea will be made precise in Sec. VIB.
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SL] = /d‘lerZ(C%/CH f’ﬂyj—‘/“’
3

u<v

+ Cy 80 6,,q(6,c) Fy * ]—"””). (5.81)

The reader will of course right away notice that
Sp1 is precisely Maxwell’s action with a ©-term (see,
for example, in (2.1) in [41]). The correlation becomes
fully apparent once we identify our coefficients (which
only depend on supergravity variables) with the Yang-
Mills coupling and gauge theory ®-parameter as

G sing(0,) = . (582)

Vi g 2m
The above makes concrete the long standing promise of
Sec. II A. There, we claimed that introducing the non-
commutative deformation labeled by the parameter 6,,.
would lead to a ®-term in the four-dimensional gauge
theory associated to the M-theory configuration (M, 1).
From (5.82) it is clear that 6,. =0 would lead to no
®-term in the gauge theory, so the deformation is indeed
successful in replacing the axionic background of [10]
to source this topological term. (Later on, in Sec. VIC,
we shall see that this topological term is a fundamental
ingredient to convert the boundary X; of X, into a
suitable space for the embedding of knots. This is
because such term allows us to define a topological
theory in X3.) It is standard to combine the Yang-Mills
coupling and the ®-parameter into a single complex
coupling constant 7 as

® 47 . .C
T= Z + lz - Cl (Sln gnch(gnc) + l%) ’ (583)

where the last equality follows from our prior identi-
fication (5.82) and reproduces (3.183) in [13].

The Hamiltonian associated to S;; can be directly read
from (2.2) in [41]. Note however that we must do an overall
sign change (we work in the opposite Minkowski signature
convention) and account for the different overall normali-
zation too. Explicitly, we obtain

2i
Hy = /d“xTr( I, +zT+TH’B iz BB)
-7 T— T—7T
_ d4xTr< +%B’>( > (5.84)

where i = (x,x,,{) spans the spatial coordinates of X,
and the canonical momenta and magnetic field in our case
are given by

Cicyy
Vs

M — FOi B =26F,.  (585)

This is the same Hamiltonian that appears in (3.187) in [13]

too:
2i_/d4xT (Cl 1 oi + re* F >
T—7T Vs

C
X < 16117:054'%51‘1"1]:["1),
V3

HLl =

(5.86)

where 7 denotes the complex conjugate of z. An uncom-
plicated yet very useful rewriting of this Hamiltonian in
terms of only the complex coupling 7 and the field strengths
is the following:

- 3
Hle/d4XTI'|:T !
21

i=1

8ilz|2 &
l|T| Z(]: ]:'al//)

=1

dilt
) + 2L S (7,7
a/} 1

T—7T

3
+(t+7) Z eoijk(fOif-fk)] , (5.87)

i.j.k=1

which the reader may verify quite effortlessly.

At this point, we are ready to write the full Hamiltonian
following from (4.146), topological piece included. All that
is left to do is couple the Hamiltonian (5.87) to the real
scalar fields A,, A, . A; and @;’s (with k =1, 2, 3). Our
prior meticulous analysis of the ¢, = 0 case makes this task
almost trivial. Keeping the last term in (5.87) separate, we
can couple the scalar fields as in (5.31). The only difference
is that, now, the prefactors for the terms involving field
strengths will be different, matching the ones in (5.87). Of
course, the coefficients that do not have a supergravity
interpretation remain constrained as summarized in
Table III. Explicitly, the full Hamiltonian is
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ijk=1

Note that the terms (77, Opy) are now written with a tilde
to denote they are not the same as those appearing in (5.31),
although they still stand for the crossed terms related to the
coefficients of Table IIl and the electric and magnetic
charges in the theory, respectively. Note the close resem-
blance between the above and the Hamiltonian for the
¢y = 0 case in (5.31). Essentially, they are the same up to
prefactors in the terms containing field strengths, but there
is an all important additional term now [appearing in the
last line in (5.88)].

This similarity between the ¢, = 0 Hamiltonian and the
¢y # 0 one allows us to easily generalize the results in
Sec. VA to the present and relevant case. In particular, it is
remarkably simple to minimize the energy of (5.88) for
static configurations. That is, to find the BPS conditions for
|

4iz|? 3. 4
H= / d4xTr{ ( fm;,—thfW)kl
a=1

k=1

ap=1
+ Qgu-

|
our gauge and scalar fields. Let us nevertheless show a few
steps in the process in the following for clarity, since we
will not minimize the energy in exactly the same way.
As before, we choose to work in the gauge (5.35) and
demand that (5.40) and (5.42) hold true. This time, instead
of ensuring the vanishing of the seventh squared term via
(5.43), we will choose
gy =0, Vki=123. (5.89)
This choice leads to a more rich dynamics of the ¢, scalar
fields (than that we considered in the ¢, = 0 case), which,
as we shall see, will play a role in the study of the boundary
theory in Sec. (VI C) later on. For the time being, the men-
tioned choices reduce the Hamiltonian to (3.225) in [13]:

@) )2
8,k=1

dulpr. i) + Z bsk €y - Mg Dspy

2i|z|? e ik~
+ Z < i fa/f—l Zgaﬂkl duler @] + Z Vboi€ap” mak D5§0k> +(r+7) Z eoijuF O F, +)(T}

ijk=1

(5.90)
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In Sec. VA, we used many coefficient choices to
simplify the computation as much as possible. On this
occasion, we wish to keep our coefficients arbitrary for as
long as possible (this freedom of choice will be beneficial
once we look at the boundary theory). Consequently, we
will take as our BHN equations the following:

/4i|1| 3
r—7 (ll]l -1 Z hal//kl dk [(pk ¢l]

=1

3
2
+ Z \/ bék €m,~, . m((sk)D(;q)k = 0,
8,k=1

/21|T

+Z

Z ga/;kz\/a Pr. @1

sy €qp - m5k)D5(ﬂk =0, (5.91)

for all a, p =1, 2. In view of the detailed computation in
Sec. VA 2, it is not hard to infer that on this occasion too we

will be able to absorb X r through a meaningless renaming
of coefficients by imposing certain consistency require-
ments to our scalar fields ¢;’s. The conditions there
derived, namely (5.70), (5.72) and (5.73), are completely
independent of the prefactors in the various terms of the
Hamiltonian. Hence, the only alteration needed in that
calculation consists of accommodating the choice (5.89)
instead of (5.43). The attentive reader will surely be easily
convinced that the consistency requirements generalize to

Di¢py — Dy = D3 — Dxi/(/)l = Dyp3 — Dlpfﬂz

=Di¢1 +Dypr + Dyp3 =0 (5.92)
in the present case. Once the energy has thus been
minimized, the Hamiltonian reduces to

H:(r+%)/d4x

In the following section, we will devote quite some effort to
the study of the above Hamiltonian. But before jumping
into the pertinent details, let us briefly review the main
contents of the present section.

We have shown that the action (4.146) is associated with
the Hamiltonian (5.88). Both of them are defined in the
space X,. A consistent minimization of the energy of (5.88)
for static configurations of the fields, working in the gauge
(5.35), is obtained by imposing the constraints (5.40),
(5.42) and (5.92). We also require that the BHN equations
in (5.91) be satisfied. In this energy minimization process,
the coefficients of Table III remain mostly arbitrary. The

3
> o Tr(FOUF*) + Opy.  (5.93)

irj k=1

only choice made is that in (5.89). The Hamiltonian then
reduces to (5.93).

VI. THE BOUNDARY THEORY

As we just mentioned, the minimization of the energy of
the Hamiltonian stemming from the M-theory configura-
tion (M, 1) presented in Sec. V B leads to (5.93). In the
present section, we will first show that (5.93) is defined
only in X3, the boundary of X,.

This realization then requires us to find suitable boun-
dary conditions for all the fields in the gauge theory. Of
course, we are referring to half-BPS boundary conditions:
ones that break the N/ = 4 supersymmetry of the theory to
N = 2. Although so far we have insisted that by con-
struction the configuration (M, 1) is N' = 2 supersymmet-
ric, it is only at this stage that we shall be able to make this
claim fully precise. Indeed, as we shall see, this desired
amount of supersymmetry requires of no constraint on the
parameters that characterize (M, 1) (those summarized in
Table II) and is enforced by appropriate boundary con-
ditions only.

Finally, we shall note that, if the configuration (M, 1) is
to be useful for the study of knots and their invariants, the
theory in X5 better be topological. In this manner, it will be
possible to embed the knots (which are topological objects)
in X5 consistently. To this aim, we will present the notion of
topological twist and show that, upon twisting, our gauge
theory indeed becomes a suitable framework for the
realization of knots.

A graphical summary of the main results of Sec. VI is as
shown in blue in Fig. 10. From this schematic point of view,
Sec. VI A can be understood as the derivation of (6.11).
Similarly, Sec. VI B contains the details on (6.19)—(6.22)
and Secs. VIC and VIC 1 deal with the technicalities
involved in topologically twisting all previously cited
results.

A. First steps towards determining the boundary theory

In this section, we have one very concrete goal: to rewrite
the Hamiltonian of our gauge theory after its energy has
been minimized [this is given by (5.93)] as an integral over
X5 instead of X,. [Once more, we remind the reader that
these spaces were defined and described around (4.1).] In
other words, we want to show that, for the gauge choice
(5.35) and after imposing the BPS conditions (5.40), (5.42),
(5.92) and (5.91), the total Hamiltonian (5.88) reduces to a
boundary Hamiltonian. As a matter of a fact, this does not
involve any conceptual hurdle, so let us jump into compu-
tation right away. B

After having left the electric and magnetic charges Qpy
unspecified for the whole of Sec. V, we finally take it upon
us to specify them. As we already hinted previously, we
will do so by comparing our Hamiltonian (5.88) to that in

(2.4) in [40] and then inferring QEM from (2.5) in that same
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reference. Obviously, one could do the computation
explicitly. However, this will not give us any further
insight into our theory and so we do not attempt such
an approach here. From our identifications in (5.2) and our
choice (5.40), it is clear that the electric charge vanishes in
our case:

Qp=0.

Opm = O + O, (6.1)

It is also easy to see that the magnetic charge is of the form

QM:/d4xaxp(]M:/d3x‘1M,

where we have ignored terms which are total derivatives
along the unbounded directions (7, x1, X ), since they do not
affect the physics of our theory and where we have
rewritten ), as a boundary term, defined in X; instead
of the whole X,. Of course, this comes as no surprise: we
have long been anticipating that the electric and magnetic
charges would be restricted to X5 only. Further using (5.2)
and noting that (5.88) is exactly (2.4) in [40] up to
prefactors, it is clear that g,, is given by

3 2
dm = Z TT[Z dy€xapPi ap

k,,m=1 a,f=1

dPx=dtdx,dx,, (6.2)

+ €xim (% Prler ol + d3(kal§0m>:| . (63)
where (d,,d,,d3) are coefficients that account for the
difference of prefactors between our Hamiltonian and that
in [40]. Their determination is not straightforward, so let us
work them out in details.

Simply looking at our Hamiltonian (5.88), it is evident
that the field strength F 5 picks up the additional prefactor

2i|z|*(z —7)~! for all a, p = 1, 2, as compared to [40].
Similarly, for fixed values of (I, m), it follows that to D,¢,,
we must associate the prefactor \/Emg).ﬂ Actually, the
only nontrivial prefactors are those that we should attach to
¢ and [¢;, @,,]. To establish what they are, we first note
that

3
Z ga/}kl dii [P @1
k=1

1 !
4/ d12(952>12[(/’1 L] + 952)13[% 3] + 9(12)23 (02, 93]).
(6.4)

MN

a,

T

“To fully understand this prefactor, the reader may find it
useful to recall that the dot product appearing in the relevant term
of the Hamiltonian was taken to be the usual scalar product
around (5.47).

where we have used the fact that gfx}f)kl is antisymmetric in

(a, B) and in (k, 1) by definition (see Table III) and dj; is
independent of (k,I) [see (4.131)]. From the above it
follows that to the [@;, ¢,,] term we must associate the

factor 4\/d1m9$12)1m- Let us denote as (y;,y,,y3) the pre-
factors that we need to associate to (¢, ¢,, @3), respec-
tively. From (6.4), we also have that

1 1
Yiys =4y d12g§2)12’ yiy3 =4y d129(12>13’

1
Ya2y3 =4/ d129(12)23-

This can be easily solved to yield

1/4 9(112)12951;13 1/4 9(112)23951;12
Vi = 2d \ T, Yo = 2d T,
91223 91213
(n (1)
1/4 | 912239
vy =2dyy! | |FEERE, (6.6)
91212

Putting all our observations on the prefactors together, our
discussion implies

2i|7|?
dl = Yk —>

T—7

ds =y V bzmmﬁ,l,,),

which fully specifies the magnetic charge in our theory.
Note that the indices of these coefficients are to be
contracted with the appropriate terms in (6.3). Note also
that (6.7) agrees with (3.233) in [13], after appropriately
summing over the free index k. _

Once we have the explicit form of Qgy in (5.93),
we can focus on the only other term in this
Hamiltonian, namely

1
= 4yk V dlm.g(]z)[mv

(6.7)

3
Hy,, = (r—l—%)/d“x Z e Tr(FOFIF).
ijk=1

Recall that (i, j, k) stand for the spatial directions of X,:
(x1,%2,%). Recall also that, after our simplifying
assumption in (5.77), X, is now a Lorentz-invariant space.
A quick exercise of opening indices in both (5.79) and the
above allows us to rewrite H

(6.8)

top &

Hyp = (z 4 7) / Te(FX) A FED). (6.9)
Xy

It is well known that the above can be rewritten as a Chern-
Simons type of boundary integral,

026001-74



KNOT INVARIANTS AND M-THEORY: PROOFS AND ...

PHYS. REV. D 97, 026001 (2018)

smp_m%)/ Tr<A/\dA+%A/\A/\A>, (6.10)
X3

which is gauge invariant if and only if (z + 7) is an integer
multiple of 2z. We will discuss this subtlety shortly, in
Sec. VI C. For the time being, however, we will just collect
our results so far. Using (6.2) and H,, in (5.93), we can
indeed write the Hamiltonian of our theory, after its bulk
energy has been minimized, as a boundary action, the way
we wanted:

Sbnd = QM + Stop

:/d3qu—|—(T+%)
x/ Tr(.A/\d.A—F%.A/\A/\A), 6.11)
X3

with g, as in (6.3) and the gauge and scalar fields in the
theory satisfying the constraint and BHN equations men-
tioned at the end of the previous section.

At this stage, we have been able to minimize the energy
of the four-dimensional gauge theory defined in X, that
follows from the M-theory configuration (M, 1) of part L.
By construction, this bulk theory has A/ =4 supersym-
metry. After such minimization, we have just found out that
we are left with a theory whose action is given by (6.11).
That is, we have a theory defined on the three-dimensional
boundary X5 of X,. All through parts I and II, we have
insisted that the presence of this boundary provides a half-
BPS condition to the full four-dimensional theory, thus
reducing the amount of supersymmetry to A/ = 2. But, of
course, this does not happen naturally: in general, arbitrary
boundary conditions on the fields break all supersymmetry.
In the next section, we derive the constraints required to
ensure the desired maximally supersymmetric boundary
conditions. In this way, we will finally make precise what
we mean when we say that the warp factors in (2.2) and
(2.26) and the dilaton in (4.5) should be chosen such that
N =2 supersymmetry is ensured.”*

B. Ensuring maximally supersymmetric
boundary conditions

Whether boundary conditions that preserve some
amount of supersymmetry are possible in a four-
dimensional, N' = 4 Yang-Mills theory coupled to matter
and, if so, what these look like are fundamental questions
that were answered in [42]. In this section, we review the
relevant results of this work and adapt them to our own
theory. As we shall see, ensuring that the boundary theory
(6.11) previously derived has A =2 supersymmetry is

2We remind the reader that, presently, the choice is con-
strained by (5.78), owing to our simplifying assumption in (5.77).

indeed possible and only requires a mild constraint be
satisfied by our supergravity parameters.

As a first step towards obtaining the much desired NV = 2
boundary conditions, we must first understand the sym-
metries of our M-theory configuration (M, 1). As was
explained in Sec. II and as sketched in Fig. 1, (M, 1) is
dual to the D3-NS5 system in type 1IB. The non-Abelian
enhanced scenario amounts to considering N superposed
D3-branes, as argued in Sec. II A 1. In the following, we will
use this duality to our advantage and discuss the spacetime
symmetries of (M, 1), in its non-Abelian version, in the
simpler scenario of the multiple D3’s ending on an NS5
system. We remind the reader that the underlying metric and
orientations of both the multiple D3-branes and the single
NS5-brane in this setup were introduced right at the
beginning of Sec. II and are graphically summarized in
Fig. 2(a). It is also worth bearing in mind that, upon
dimensional reduction, the four-dimensional gauge theory
on the world-volume of the D3-branes has SU(N) as its
gauge group and N = 4 supersymmetry. Having refreshed a
bit our memory, it is easy enough to argue what symmetries
are present in the D3-NS5 system.

Consider the usual type IIB superstring theory. This is
defined in R'?. We will label the corresponding coordi-
nates as x;, with 7 =0,1,...,9. The associated metric is
simply #;; = diag(—1, 1, ..., 1). Hence, the spacetime sym-
metry group is SO(1,9). As is well known, SO(1,9) is
generated by Gamma matrices I';, which satisfy the usual
Clifford algebra

{T0.T} =2y, (6.12)
and has 16 as is its irrep. Here, we consider a ten-
dimensional gauge field and Majorana-Weyl fermion,
related to each other by their supersymmetry transforma-
tions. We denote as e the supersymmetry generator, a
Majorana-Weyl spinor satisfying

F&':S, Fzrorl...rg. (613)
and thus transforming in the 16 of SO(1,9). Here,
[)[...I'y stands for the antisymmetrized product of
(F(),Fl, ...,Fg).

The inclusion of multiple, coincident D3-branes breaks
SO(1,9) to SO(1,3) x SO(6), the SO(1, 3) oriented along
the same directions as the D3’s. The NS5-brane further
breaks the symmetry group to (3.243) in [13]:

U=S0(1,2) x SO(3) x SO(3). (6.14)
This is most easily understood in two steps. First, the NS5-
brane restricts one of the spatial coordinates of the D3-
branes to take only non-negative values. [In our notation,
w > 0, as can be seen in Fig. 2(a).] Demanding that Lorentz
transformations leave the boundary (y = 0) invariant,
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SO(1,3) breaks to SO(1,2). On the other hand, the
NS5-brane also breaks SO(6) to SO(3) x SO(3). One of
these SO(3)’s acts on the three-dimensional subspace
spanned by the NSS5-brane which is orthogonal to the
directions shared with the D3’s [in the language of Fig. 2(a),
along (x3,xg,X9)]. The other SO(3) then acts on the
remaining spacetime directions. [These are (0, ¢, r), sup-
pressed in Fig. 2(a).] We denote as Vg the irrep of U: the
(2,2,2) tensor product.

Having established ¢/ in (6.14) as the symmetry group of
the D3-NSS5 system, it follows that ¢/ is the symmetry of the
configuration (M, 1) too. However, caution is needed:
some of the dualities required to obtain (M, 1) from the D3-
NS5 system are nontrivial [for example, the T-duality in
Figs. 2(c) to 2(d)]. Consequently, for our coming analysis
to hold true, any specific choice of the warp factors (2.2)
and (2.26) and dilaton (4.5), with the constraint (5.78), that
one may wish to consider in the metric of (M, 1) (2.56)
should be checked to be ¢/ invariant.

Focusing on the case where (M, 1) is indeed ¢/ invariant,
we can precisely reproduce the results in [10]. Let us see
how. As we saw in Sec. 1V, the scalar fields associated with
the directions on which the SO(3)’s of U act are
(As, 91, 9,) and (@3, Ay, A,), respectively. In the lan-

guage of [10,42], these are collectively referred to as X and
Y. This identification is the same as in (3.155) in [13]:

Y=(ps. Ay, A)  (6.15)

X= (A§7 §01,(P2),
and will soon prove useful to us.

Let us make yet one more observation before we
determine the desired half-BPS boundary conditions. We
note that the 16 of SO(1,9) decomposes as
where V, is a two-dimensional real vector space. The
natural elements that act on V, are the even elements of the
SO(1,9) Clifford algebra that commute with /. It follows
then that the supersymmetry generator ¢ can be decom-
posed as

e=¢e3 ® &, &g € Vg, & €V,. (6.17)
In order for € to be U/ invariant, £, must be a nonzero, fixed
element of V, (eg is just some arbitrary element of V).
Again following [10,42], we choose

(V)
& = ,
: 1

with a a real parameter. The above is precisely the last
ingredient we need to finally discuss half-BPS boundary

conditions in the four-dimensional gauge theory following
from (M, 1).

(6.18)

It is well established (for example, see [43]) that
boundary conditions preserve some degree of supersym-
metry if and only if they ensure that the normal (to the
boundary) component of the corresponding supercurrent
vanishes. This in turn constrains the associated supersym-
metry generator too. Thanks to the above discussion and, in
particular, to our identifications (6.15), we can directly read
off from [10,42] the boundary conditions and constraint on
&, thus obtained. We refer the interested reader to [42] for a
detailed derivation of the results we now quote. The
boundary conditions on the fields are as follows. The
scalar fields (g3, Ay .A,) must all vanish at 3 = 0:

p3=Ay = A, =0. (6.19)
The remaining scalar fields must satisfy
Dgﬂ“ﬁ - % [(01»%] =0,

Dy?¢2 - % [Aiv (ﬂl] =0 (6-20)

at the boundary. Due to our choice (5.40), the above further
simplifies to

(@1, 92] = Dyp1 =Dy, =0, (6.21)
for a general value of the parameter a. Aty = 0, the gauge
fields are required to obey

a

VA
- a2 e/,wlf = 0,

Fou+ Vou, (6.22)
where (u, v, 1) label the spacetime directions (¢, x;, x,, ).
As for the constraint on the supersymmetry generator, it
relates the parameter a in (6.18) to the Yang-Mills coupling

and gauge theory ®-parameter as

©/(27)  2a
dr/Gyy 1—a

. (6.23)

Owing to our prior identifications (5.82) of these two
parameters to coefficients in our four-dimensional gauge
theory, we can give a supergravity interpretation of a also:

V;5sind,,.q(60 2 2
3 S ncq( nc) — _a 2_)a: 1+ : 11
C11 l—a V3 sin anq(enc)

S | S
v3 sin encq (enc) .

(6.24)

This is exactly what is suggested in (3.222) and (3.223) in
[13]. Yet another way to express the same relation follows
from using (4.113) and (5.82) in (6.23), which reproduces
(3.251) in [13]:
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dr  2a
5 -

Q%Ml_a

) = (6.25)

Now that our boundary theory in (6.11) is N = 2-
supersymmetric, we need to still overcome one more
difficulty. If our M-theory configuration (M, 1) and the
four-dimensional gauge theory stemming from it through
dimensional reduction are to be of use in the study of knots
and their invariants: what is the three-dimensional space
where knots should be realized? Undoubtedly, X3 spanned
by (#,x5,x,). Or more precisely, its Euclidean version.
Now, since knots are topological objects, it is clear that the
theory in X3 ought to be topological too. (At least, this
should be the case for our construction to be an appropriate
framework to support knots.) However, a quick look at our
action (6.11) immediately tells us that this is not the case in
our setup. The second, Chern-Simons term in the boundary
action is indeed topological, but the presence of the
magnetic charge adds a nontopological contribution that
naively seems undesirable from our point of view. The
resolution to this puzzle was first worked out in the well-
known work [44] and it consists on performing a so-called
topological twist to our four-dimensional gauge theory. In
the following, we summarize the basics of this technique
and apply it to our own theory.

C. Obtaining a Chern-Simons boundary action:
Topological twist

We begin this section by introducing the concept of
topological twist. Following which, we shall show that
topologically twisting our gauge theory, its corresponding
boundary action is Chern-Simons-like.

If we momentarily ignore the fact that y > 0, then the
symmetry of our M-theory configuration (M, 1) is as in
(6.14), but with SO(1, 2) replaced by SO(1, 3). In this case,
the topological twist consists on extending the Lorentz
symmetry SO(1,3) acting along (z,x;,x,,%) to a new
symmetry S'. S’ rotates the (7,x;,x,,%) subspace and,
simultaneously, the (X3, 6, x3, x9) subspace too. It is not
hard to see that this new symmetry necessarily leads to the
reinterpretation of the scalar fields (Ajz, ¢y, .. @3) asso-
ciated to the new rotation directions as a one-form:

©= Z‘Dﬂdx”’ (Do, @y D, D3) = i(@3.01. 902, As3).
u

(6.26)

There should be no confusion regarding notation. As
introduced in (5.79) and used through all the previous
section, X, refers to the spacetime coordinates (t, X15 X0, ).
The precise identification between the components of this
one-form and our scalars suggested above is such that we
match the notation in [10]. It also matches (3.156) in [13].
However, other identifications could also be entertained. In
fact, we will do so later on, in Sec. VIC 1.

As a short aside, it will soon prove useful to introduce
some notation. Following both [10] and (3.157) in [13], we
combine the scalar fields (Ay ,.A,) associated with the
directions (¢, r) not affected by ' into a complex scalar
field:

c=A, + 1A¢1 s c=A, - l.A¢,l . (627)
In the same spirit of using the same notation as in [10], we
shall rescale our gauge fields as in (3.191) in [13]:

A=) Adr, A ,=iA, Ypu (6.28)
i
The corresponding field strengths are then
F=dA+ANA=Y F,ddAdx,
787
F,=0A-0A,+A,A) (6.29)

Clearly, this leads us to introduce new covariant derivatives,
which match the ones used so far [introduced earlier in
4.51)]:
D,=0,+A, |=0,+iA,. |=D, Vupu (6.30)

Of course, the above topological twist must be made
compatible with the fact that y > 0 in our setup, before we
can apply it to our four-dimensional gauge theory. What is
more, it must also be made compatible with having NV = 2
supersymmetric boundary conditions on the fields. In
other words, before proceeding further, all the results in
Sec. VIB must be extended to the case where the gauge
theory is twisted. Such generalization was first done in
[10,44], where the reader may find all the computational
details. In the following, we simply review the main
pertinent results in these works, while adapting them to
our present construction.

We begin by making the supersymmetry generator ¢ in
(6.13) compatible with the new symmetry §'. That is, we
demand

(F/w + Fﬁ,;)e = 0,

v /},I; :i3,91,X8,XQ,

Y ou,v=1t,x1,%,,
(6.31)

so that € is ' invariant. This condition has a two-dimen-
sional space of solutions. If we denote as (&, €,) the basis
of solutions, then the supersymmetry generator can be
written as a linear combination of them both:

e =g +1e,, e C, (6.32)
where the hat on 7 is meant to differentiate the above
complex variable from the time coordinate ¢. At this point,
one repeats the same procedure as in the previous section:
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one requires that the component of the supercurrent
associated to € above that is normal to the i = 0 boundary
vanishes. In this manner, we reproduce the same boundary
conditions as before [these are (6.19)—(6.22)], but in the
twisted case:

c=0= (I)O = [q)l,q)z] = Dv7q)1 = D.]/(I)z

i +1
= Fyy —Qm%ﬂ’” =0, Vu (6.33)

Comparing the last boundary condition above with its
untwisted counterpart in (6.22), it follows that the param-
eters a and 7 are related to each other. Since a is additionally
related to the gauge theory parameters (g3, ©), so must 7
be. These relationships also follow from studying the
constraint imposed on the supersymmetry generator by
demanding the vanishing of the normal component of its
supercurrent. In this latter approach, as shown in [10], the
constraint that € in (6.32) must satisfy turns out to be the
exact same constraint that &, in (6.18) has to satisfy in
the untwisted case, which then led us to (6.23). Either of the
two approaches yields (3.224) and (3.246) in [13]:

A A +ia
P=—i

. 6.34
1 —ia ( )

The above can be rewritten in many interesting ways. For
example, using (6.23), we can write 7 as a function of the
Yang-Mills coupling and ®-parameter of our gauge theory:
7 = 1(g%\, ©). Further using (5.82), we can express 7 in
terms of supergravity parameters of our M-theory configu-
ration (M, 1): 7 =#(cy, V3, 0,.). A particularly neat result
follows from considering (5.83) as well:

7l

iI=+4—,
T

(6.35)

which the reader can verify without excessive algebraic
effort and which is (3.184) in [13]. This is interesting
because it is not obvious a priori that the two complex
parameters (7, 7) that characterize the twisted gauge theory
should be related to one another. Additionally, it is
surprising that they should have such a mathematically
simple relation.

Having introduced the topological twist and verified its
consistency with all the (super)symmetries in our setup, we
can proceed to twist the boundary action (6.11). As
anticipated, this will give rise to a topological theory in
X3. Let us see how exactly.

Using (6.26)—(6.30) in (6.11), we see that the boundary
theory after twisting becomes

s, = - / Prgl) - (47)

2
x/ Tr(A/\dA+§A/\A/\A>. (6.36)
X3

From (6.3), the twisted magnetic charge density qfé) can

easily be seen to be

2

ql(ltl) = Z Tr[i dleaaﬁq)aFaﬁ
0

a,b,c= a,f=1

d
+ €abe (;2 D, (D), D] + dﬂ’an(Dc)] ., (6.37)

with (dy, d,, d3) as in (6.7), albeit the indices there need to
be appropriately reinterpreted. As we will soon open up all
indices and make explicit their meaning, the reader should
not worry too much over notation at this stage. It is perhaps
worth mentioning that, in the last term, Dy, does not appear,
unlike in the untwisted case (6.3). This is simply because
the boundary conditions (6.33) guarantee no such contri-
bution occurs. On the other hand, although (5.35) and
(5.40) also force Dy® = 0, we shall carry these vanishing
terms around because they will make the coming derivation
of the topological boundary action more transparent. It goes
without saying that one can do the same calculation without
them too.

It turns out, however, that (6.36) is not quite the correct
twisted boundary theory. One more term, proportional to
the Chern-Simons term in (6.36), must be added to the
above:

2
Sttt = St + sz Tr(A NAA+ZANAN A),
3

b, € C. (6.38)
This additional term is required to ensure that all observ-
ables and states on the twisted gauge theory are invariant
under the supersymmetry generated by ¢ in (6.32). Upon
including such term, one more striking observation can be
made: not only are 7 and 7 related to each other, but also all
physics of the twisted theory depends solely on a particular
combination of the two parameters:

T—7

b d

(6.39)

Il
[\
+
[\
~>| ~>

¥ is usually referred to as “canonical parameter” and it
appears in the correct boundary theory as

Sétrzd,tot = _/d3qul)

+i‘I‘/ Tr<A/\dA+§A/\A/\A>. (6.40)
X3

Note that this allows us to determine the value of b,, the
coefficient of the required extra piece in the boundary
action, since
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i _ t+7, . 1—7i-1"
~E+ D)t by =¥ S by =—— 2+ i)+ iy
(6.41)

Of course, none of the statements in the above para-
graph are obvious. Their proofs were worked out in
exquisite detail in Secs. 3.4 and 3.5 in [44].
Unfortunately, a review of these derivations is beyond
the scope of the present work. Nonetheless, the reader
should find no difficulty going through the cited reference,
as we have carefully made our notation coincident with the

Having established (6.40) as the twisted boundary
action, showing its topological nature amounts to appro-
priately rewriting it. We will do so in a few steps, the first
consisting on expressing the twisted magnetic charge
density qgfl) in differential geometry language. To this
aim, let us first introduce the exterior covariant derivative
of the twisted scalar fields (6.26):

dy,® = do + (A, D). (6.42)
If we restrict d,® to X5 (where ¢ = 0 and thus dyy = 0 too)
and since ®; = 0 due to (5.40) and (6.26), the above can be

one there used. explicitly written as

2
0P
d,® = Z ( b dxa A dxb + [Aadx“,d),,dxho

=N
= (DOCI)I - qu)o)dt AN dx1 + (Doq)z - qu)o)dt A de + (D1®2 - D2<I>1)dx1 AN dxz. (643)
Then, we can use (6.43) to introduce three more quantities, defined in X5, that will soon become relevant to us:
2 2
OAF = (Z d>adx“> A (Z Fopdx® A dxﬂ) = 2D F,d°x,
a=0 a,f=1
DODANDAD= ((Do{q)],q)z] - CD] [(I)(), ¢2] + @2[@0,(13]})613)(:,
@ A dy® = [©)(D @y — Dy @) — Dy (Do, — Dy @) + Do (Dy®@; — D1 Dy)|dx. (6.44)

(We remind the reader that d*x = dt A dx; A dx, is the normalized volume element of X5.) Note that, in the above, we did
not take into account the whole twisted field strength introduced in (6.29). The reasons are similar to those which led us to
(6.43). Specifically, F, = 0 for all x, due to the constraint (5.35) and our gauge choice (5.40). Also, y = 0 at the three-
dimensional boundary X3 of our spacetime X,, implying dyy = O there and thus no field strength stretching along this
direction.

To appreciate the benefit of having calculated (6.44), let us now carry out the sums in (6.37). In doing so, we shall use
(6.7) and, through explicit computation, clear any doubt regarding index notation, as previously promised. The first sum can
be easily seen to yield

SHg— 2i|z[?
z d1€4ap @ Fop = 2y3 — Qo Fs, (6.45)
abo—=0ap=1 -t
with the normalization convention €5, = 1 and y; given by (6.6). The second sum gives
- /7y
Z d€apc @y [Py, @] = 8+/d 12391515 (Po[@1. P2] — @1 [@g, Dy + D[P, Dy]), (6.46)

a,b,c=0

where we have used the fact that d; is independent of (k, /) [see (4.131)] to take d;, as common factor and also the
equalities

1 1 1
)719(12)32 = }’2g<12)31 = )’3952)123 (6.47)

which follow readily from (6.6). The third and last sum appearing in the twisted magnetic charge density is
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2
Z €ubcd3q)an<I)c = y3<I)O(\/ b]2m512>D]q)2 — 1/ b21mg11>D2CD1) - qu)l ( bv,zm( )DO(I)Z
a,b,c=0

-V b23m<213)D2<D0) +Y2‘D2< bq/lm D@, - Vbis m13D <I>0) (6.48)

Recall that, so far, we have only made the choice of coefficients in (5.89). We shall now make further choices. In particular,
we want to impose

1
y3v b12m(112) =3V b21m£1> =N ,,,2 =y1Vbx ng =) ,,,1 = Vb m13 (6.49)

Since by, = by = byz and by = by, from (4.125), the above [together with (6.6)] implies choosing our coefficients
(mM), gt")) such that

miy) = %m}), \/ byimys = /bramiy,
\/brf/lml(,}l]) =V b12m§13), )’3’”512) = )’1’”(2;) = )’2’"(1;)- (6.50)

A concrete such choice is to fix (m%), m(zll) m%), ml(I)]), m“)) to

(1)
12 1) _ _ ) — Szt 1) |v b o \\/,;“ Aezmg) = iy, (©51)
91213 91223 12 9121% 12 91223

(1)

with m;, not yet fixed to any particular value. It is important to note that our choices are in good agreement with the
defining relation (5.30), since we have the full spectrum of m(?)’s unfixed to satisfy those equalities. In this case, the sum in
(6.48) gives
Vb1m'Y [@(D,®, — D,®@,) — B, (Dy®, — D,®) + By (Dy®, — D, ®y)] (6.52)
y3 12y [@(D @, 2 @) 1(Do®, 2 @) + (D@, 1%0)]- .

Now, comparing our prior auxiliary quantities in (6.44) with the sums (6.45), (6.46) and (6.52), it follows that qﬁf} in (6.37)
can be written in the very convenient form suggested in (3.232) in [13]:

2
/d3xq§(} - —[{ Tr<2D1<I> NF+3D® AP A D+ Dy® A dAdD), (6.53)

where we have defined the coefficients (D, D,, D) as

2
it
Dy = —y; 2(r| _| 7 Dy=—4y3\/dugly,,  Dy=-vsv/bimiy. (6.54)
Using the above in our boundary action (6.40), we obtain (3.236) in [13]:
2
S o = / Tr<2D OAF+ID,0 A DA D+ D0 A dy® >
X3

2
+ilI’/ Tr(AAdA-l-gAAA/\A). (6.55)
X3

The second step required to rewrite (6.55) as a topological action consists on suitably fixing (D,, D). Specifically, we
require that (3.237) in [13] holds true:

(6.56)
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From (6.6) and (6.54) it follows that, in terms of the coefficients of Tables II and III (the first ones having a supergravity
interpretation), the above constraints are given by

1y , 1/4
_ 9(12)139(12)23 < ijz|? >3/2 | = _2dlé
(1) (g15))” \2( =)

1 1 .
952)139(12)23 I‘T|2
. m . (6.57)
(i¥)mi,

9(112)12 2(r-17)

These constraints can be easily satisfied: the coefficients appearing here must fulfill (5.22) and (5.30), where we have
already chosen (5.89) and (5.46). Clearly, there is still ample freedom of choice left for us. Hence, we choose to fix

(g(llz)m, 95223) such that the above holds true. Then, easy algebra yields

2 3 N
sgfgm:iw/ Tr(A/\dA+§A/\A/\A+2<I>/\dA—|—2CD/\A/\A
, .

/\&)/\Ci)+<i>/\dci)+<i>/\[A,<I>]), (6.58)

S

L 2
3
where we have used (6.29) and (6.42) and where @ is just the one-form @ in (6.26) rescaled in the following manner:

- D,
O=—0>. 6.59
v (6:59)
A couple of trace identities allow us to further rewrite the boundary theory in what will soon become a particularly
enlightening form. The identities in question are

Tr(® A [A,®]) =2Tr(® AAA D),  Tr(A A d®) = Tr(d A dA), (6.60)

which the reader may easily verify through explicit computation with the aid of (5.35), (5.40), (6.26), (6.28) and (6.29). The

second identity holds up to a total derivative only. However, since these terms are defined in X3, the three-dimensional space

labeled by the unbounded directions (¢, x;, x,), the total derivative term does not affect the physics following from S *

bnd, tot
and so we ignore it in the ongoing. Combining (6.58) and (6.60), we obtain
2 - ~
S o = i‘l’/ Tr(A/\dA+§A/\A ANA+2ANdD +2DAANA
X3
2+ -~ - = - - ~
+§CD/\CI)/\CD+®/\d(D+2CD/\A/\q)). (6.61)

The third and last step on our way to a topological boundary theory consists on defining a modified gauge field,
analogous to that in (3.240) in [13], which is a linear combination of the twisted gauge and scalar fields (6.26) and (6.28):

Ap=A+ . (6.62)
It is a matter of simple algebra to check that

ApAdAp =ANdA+DPANdA+A N dD + D A dD,
Ap AAp AAp =AANANA+AANDAD+PAANA+DPADAD
FAANANDPHAADAAFDAAND+DADAA. (6.63)

Since the trace of a product is invariant under cyclic permutations of the terms in that product and also due to (6.60), it is
easy to see that, as promised, indeed (6.61) defines a topological field theory in X3, albeit in terms of the just introduced
modified gauge field Ap:
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2
Sf;r?d,tot = i‘P[( Tr<AD N dAp + §AD NAp A AD>.

(6.64)

The above Chern-Simons action is that in (3.241) in [13] as
well. Needless to say, this satisfies the goal stated at the
beginning of the present section. Yet, before proceeding
ahead, there are a couple of issues worth mentioning.

First, we note that in (6.64) there is still one free
parameter: D;. Recall that ¥ is given by (6.39). Hence,
it depends only on (z,7). These two parameters have an
interpretation in terms of our supergravity parameters [the
warp factors and dilaton of the M-theory configuration (M,
1)]. As such, they are fixed when a specific model (M, 1) is
considered. It turns out Dy can also be fixed. As argued in
[10], supersymmetric Wilson loop operators can be asso-
ciated with the boundary theory with action (6.64) if and
only if the Chern-Simons gauge field A, is invariant under
the supersymmetry generated by ¢ in (6.32). Schematically,
we can express this as (3.242) in [13]:

SAp = 8(A+ @) = 5(A + %Cb) =0, (6.65)
where we have made use of (6.59) and (6.62). As our
notation is now such that it precisely matches the one used
in [10], the interested reader should have no difficulty in
following the discussion in Sec. 2.2.4 of that same
reference. In it, the reader shall find the proof that the
above constraint sets the value of D; to

t—tt
D, = i zé—l‘(t—t‘l)f—i—%—k(r—%)

where the second equality follows from (6.39). As we
just said, (z,7) are fixed for a given model (M, 1).
However, from (6.6) and (6.54), we see that D; depends
. - (1 1 1
on various coefficients: (dlz,blz,m(12>,952)12,9(12)13,%2)23).
As given by (4.125) and (4.131), (dy,by») are also
fixed once a particular model (M, 1) is chosen via warp
factors and constant dilaton. We remind the reader that
(9512)13, ggl;zg) were already fixed in demanding that (6.57)

be satisfied. Consequently, on this occasion we choose
9512)12 such that the above holds true and keep mglz)
arbitrary. Of course, this new choice is still in good
agreement with the constraints summarized in Table III:
the still unspecified coefficients (m®, h(1) allow us to

enforce all required equalities. Specifically, (5.22) may be

satisfied by appropriately fixing hg},‘/)kl forall (k,1=1,2,3),
)

while maintaining h2|i/kl arbitrary. Similarly, enforcing

(5.30) implies all (m%),mg), m<223>,ml(l~/21),ml(l~/22>) are already
determined.

Second, we must refer to the point already mentioned in
passing in Sec. VI A. Namely, the fact that the non-Abelian
Chern-Simons theory (6.64) is gauge invariant if and only if
(%) is an integer multiple of 27> In other words, a path
integral formalism associated to the action (6.64) is only

well defined for
Y
— e Z. 6.67
> (6.67)

From its very definition in (6.39), we see that ¥ does not
necessarily satisfy such a property. Perhaps this observation
is even more evident from (5.83) and (6.35), expressing ¥
only in terms of coefficients with a supergravity interpre-
tation, which depend only on the specific choice of
M-theory model (M, 1):

¥ =C,sind,.q(0,.)
Clc%l V3 sin enc(’I(anc) —icy
V3sin0,.q(0,.) V3sinb,.q(0,.) + icy;

(6.68)

The conclusion from both perspectives is one and the same:
we must impose some constraints on the warp factors (2.2)
and (2.26) dilaton in (4.5) if our topological boundary is to
have a path integral representation. [See Table II for a guide
to the equations linking the coefficients in (6.68) and the
just mentioned warp factors and dilaton.] Given that in the
present work we wish not study a concrete model (M, 1),
we will not elaborate on the required constraints here.
However, our analysis is only valid for the subset of
M-theory configurations (M, 1) that satisty (6.67).

1. Twisting the bulk

Let us briefly refresh our memory. In Secs. II and III, we
constructed the M-theory model (M, 1). In Secs. 4-6, we
derived the Hamiltonian (5.88), defined in X, (the bulk)
and associated to (M, 1). Then, a consistent minimization
of its energy, for static configurations of the fields, led to
the Hamiltonian (5.93). We further rewrote this as the
action (6.11), which is defined in X3: the boundary of X,.
Upon topologically twisting (6.11), we obtained the Chern-
Simons action (6.64): a suitable framework for the reali-
zation of knots in our setup. Quite evidently, our analysis
shall be consistent only when we also topologically twist

P As the lucid work [45] shows, an appropriate analytical
continuation of (6.64) would allow for a path integral formalism
in case that such requirement is not met. This is hard to realize
in our M-theory construction of model (M, 1), since it would
require a (to date) nonexistent formalism: topological M-theory.
Needless to say, a careful study of such scenario is beyond
the scope of the present work and we shall not proceed in this
direction. The interested reader can gain more insight on this
topic from the discussion between (3.346) and (3.350) in [13].
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the bulk energy minimization equations that allowed us to
obtain (6.11) to begin with. Doing so is the aim of the
present section.

The set of energy minimization equations we must twist
are, as already pointed out at the very end of Sec. V B:
(5.40), (5.42), (5.91) and (5.92). Before twisting, however,
we make the following observation: the various coefficient
choices made so far in order to obtain a topological
|

o,k=1 a=1 k=1

where we have used the fact that by;, = by, forall k = 1, 2, 3 and the same is true for b

now insert in the above our coefficient choices in (6.51) and further set the till now arbitrary parameters (1, , my, .,

3 2 3 3
Z Vosm Dsgpy = <Z Z n, a(ﬂk> + /by <Z ml(,‘,llsz/?(ﬂk) :
k=1

boundary theory the BHN
equations (5.91).

To be precise, consider the third term in the second BHN
equation for « = 1 and f = 2 and interpret the dot product
there appearing as a usual scalar product, in the same spirit
as we did earlier in (5.45). Once more, we work with the
normalization convention that €, = 1. Then, this term can

be written as

considerably  simplify

(6.69)

as can be seen from (4.125). If we
1, 0 )) to

vk

l//3
b-
1 1 1 1 1
mi) = mby) = myg |20 = myy, (6.70)
12
then we obtain
° (1) (1)
Z V bsi mg Dy =/ bramyy l(lem + D23 + Dyg3) + (Dig2 — Dagy)
Sk=1
g(l) g<1>
+ (112)13 (D3 — Dypr) + (12)23 (Drp3 = Dypa) |- (6.71)
91212 91212

Written in this manner, it is straightforward to see that the
consistency requirements (5.92) set to zero each term
between brackets on the right-hand side above. Further,
since the BHN equation of which this term is part
of is antisymmetric under the exchange of (e, ), the above
holds true for all allowed values of these indices. That is,

3
1

Z by €qp - mgy Dspy = 0.

Py

Vap=12. (672

In much the same way, one can show that the third term
in the first BHN equation (5.91) also vanishes:

Z

If one interprets the dot product above as the usual scalar
product, the proof is exactly as before. In more details,
one must obtain the values of the m® coefficients from
(5.30), (6.51) and (6.70). Also, one must realize that by, =
by owing to our approximation (5.77), which implies
eMH, =1 in (4.118). However, if one would like to
consider the more general scenario where (5.77) is not
imposed, (6.73) can still be enforced by simply entertaining

bot €ai - M5 Dspp =0, Y a=12. (6.73)

|
more elaborated interpretations of the dot product, in the
vein of (5.53) earlier on.

All in all, the conclusion is that our choices of the co-
efficients in Table III reduce the BHN equations in (5.91) to

4ilz|?

il .
T—7T
2l N~

mfa/i - l}; YapaV A [pr. @] =0

3
. 1
T Z h((zx/'/)kl dylor. 1] =0,
=1

(6.74)

for all @, p =1, 2. As explained around (5.49), these are
just Hitchin equations! This is a remarkable result: in our
setup, the BHN equations naturally decouple to Hitchin
equations and a set of constraint equations on the scalar
fields there appearing. Such result becomes even more
relevant in view that Hitchin equations are precisely the
starting point in the study of knots and their invariants in
[9]. The very same Hitchin equations are also related to a
number of other interesting topics, such as the Geometric
Langlands Program [46].

However exciting these directions may be, let us
get back on track: currently, our aim is to twist all
energy minimization equations. To this aim and as already
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anticipated in Sec. VIC, it is convenient to consider a
different mapping between our scalar fields and their
twisted one-form counterpart. In particular, instead of
(6.26), we would like to consider the identification in
(3.282) in [13]:
A= ZAﬂdx/‘, (A07A1,A2»Axp> = i(A§’€017€02,(/’3)-
"

(6.75)
All other twisted fields remain as previously explained in
(6.27)—(6.30). In this manner, the twisted version of (5.40)
and (5.42) is

Ay = D,o=D,6 = [6,6] = [0, \] = [6,A4] =0,

Voy=x,x0.0, Yk=123 (6.76)

Similarly, the twisted version of the Hitchin equations in
(6.74) is given by

R S~
A Z ht(xtizkl[Ak’ AJ =0,
=1

Foj —

3
1
Fup =8> g\iloo] =0, Yap=12. (677
k=1

where we have defined R as the following constant:

dip(r-7)
2ilz)?

%
Il

(6.78)

The above definition uses the fact that, as can be seen from
(4.131), all dy; coefficients have the same value. Note that,
from (5.83) and the equations mentioned in Table II, it
follows that 8 depends entirely on supergravity parameters
only. That is, parameters that characterize the M-theory
model (M, 1).

At this stage, the only equations left to be twisted are
those in (5.92). These become

D1A2 - D2A1 - DIAIII - DI,TIAI - DzAVN, - Dli/AZ

Our identifications (6.75) allow us to further rewrite the
above in a very concise manner in a differential geometry
language. To do so, we first compute a few auxiliary
quantities. We begin with the Hodge dual of A. Since (6.76)
sets the time component of this one-form to zero, we can
carry out this computation in the three-dimensional sub-
space spanned by (x|, x,, ). As we already explained, the
simplifying assumption (5.77) converts this to a Euclidean
space. Consequently, the calculation is trivial and yields

*A:Aldx2 /\dlZI—A2dX1 /\dl/7+Ay7dX1 /\dX2. (680)

Making use of the exterior covariant derivative introduced
in (6.42) and in much the same way as earlier in (6.43), it is
easy to see that

dAA = (DIAZ - DzA])dxl AN dX2

2
+ Y (Dol = DyA,)dx, A dip,

a=1
dA * A = (DlAl —+ D2A2 + DlpAli/)dxl A\ de A dl/NI
(6.81)

Upon comparing the above with (6.79), it is clear that this
last set of constraint equations can be written as in (3.287)
in [13]:

dyA=0=dy x A, (6.82)
which completes the twisting of all energy minimization
equations in Xjy.

Hereupon, we have gathered a good amount of knowl-
edge about the four-dimensional gauge theory following
from the M-theory configuration (M, 1), dual to the model
in [10]. In the following, we rephrase our findings in such a
way that their merit is made most visible.

Appropriately compactifying (M, 1), we have obtained
its associated four-dimensional action (4.146), defined in
the space X4. Then, we have derived the corresponding
Hamiltonian and written it in the particularly convenient
form (5.31). Clearly, the coefficients appearing in the
Hamiltonian are expressed only in terms of supergravity
parameters of (M, 1), by construction. Minimization of the
energy of this Hamiltonian for static configurations of the
fields led to a series of constraint equations (BPS con-
ditions) on these gauge and scalar fields. For the gauge
choice (5.35), they are given by (5.40), (5.42), (5.91) and
(5.92). It turns out that all these are the same equations
mentioned in [10] and derived using localization techniques
for path integrals in [44]. Consequently, we have repro-
duced the results of [10], but we have done so in the
well-known, conceptually simple classical Hamiltonian
formalism. In the process, we have established a precise
mapping between the usual gauge theory parameters
(9ym»©,7) and the parameters that characterize model
(M, 1): (5.82) and (5.83). In other words, we have given a
concrete, simple procedure to reproduce [10] and simulta-
neously provided a supergravity interpretation for it.

After the minimization process above described, the
nonvanishing part of the Hamiltonian was rewritten as the
action in (6.11). This is defined in the three-dimensional
space X3, the boundary of X,. Of course, if our construction
is to be a suitable framework for the study of knot
invariants, knots should be embedded in X5. Hence, the
boundary action should be topological for our goals. Upon
a topological twist, this was proven to be indeed the case:
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(6.11) converts to the Chern-Simons action (6.64). Note
that the Chern-Simons gauge field is a linear combination
of the twisted gauge and scalar fields, as given by (6.62).
Further, N' = 2 supersymmetry was made compatible with
this construction, requiring only appropriate boundary
conditions for the twisted fields, stated in (6.33).

The careful analysis of the theory in X5 showed that it
indeed has all required features to host knots. What is more,
additional support to this claim followed from this very
same analysis in the following manner. Overall coherence
required us to twist the energy minimization conditions in
the bulk if we were to focus on the twisted boundary theory.
We then noted that, in obtaining (6.64), we were forced to
make certain choices for the coefficients summarized in
Table III. Aptly translating such choices to our BPS
conditions revealed that these were simplified to precisely
the set of equations that are the starting point for the study
of knots and their invariants in [9]! For completeness, we
remind the reader that the twisted BPS equations are those
in (6.76)—(6.79).

VII. SUMMARY, CONCLUSIONS,
AND OUTLOOK

In the first part of this work (Secs. II and III), we have
constructed two M-theory configurations: (M, 1) and
(M, 5). They have both been obtained from the type IIB
D3-NSS5 system of [10] by means of a well-defined series of
dualities and modifications. As depicted in Fig. 1, (M, 1)
has been proven to be dual to the aforementioned model in
[10], while (M, 5) has been argued to be dual to the
resolved conifold with fluxes in [8]. An apparent indication
of the seeming unrelatedness between (M, 1) and (M, 5)
(and hence between the models in [8,10]) is their super-
symmetry: N =2 and N = 1, respectively. However, we
have been able to trace their dissimilarities to a difference in
the orientation of branes in a dual type IIB picture: compare
Figs. 2(b) and 3(b). We have thus showed that, although
distinct, [8,10] are intimately related. So much so, that they
constitute one and the same physics approach to the study
of knots, albeit in different frameworks, each suitable to
address specific knots invariants.

In the second part, we have derived and studied in depth
the four-dimensional gauge theory following from the
configuration (M, 1). This gauge theory is defined in a
space that we have named X,. In Secs. IV and V, we have
obtained its action and written the associated Hamiltonian
in a particularly enlightening form: a sum of squared terms,
plus contributions from the three-dimensional boundary X3
of X,. Energy minimization then sets each such squared
term to zero independently and, for static configurations of
the fields, leads to various BPS conditions. These are
precisely the “localization equations” of [10,11,44],
obtained via elaborate techniques of localization of certain
path integrals. This correspondence implies that our
approach reproduces all the results in [10], but in a much

simpler formalism. Further, due to our careful deduction of
the Hamiltonian of the gauge theory directly from (M, 1),
we have been able to map all parameters in [10] to variables
of the M-theory model (M, 1). In this manner, we have been
able to give a precise supergravity interpretation to all the
findings in [10].

Finally, in Sec. VI, we have focused on the boundary
theory. We have shown that, upon a topological twist, a
Chern-Simons action captures the physics in Xj.
Remarkably, the Chern-Simons gauge field is a particular
linear combination of the twisted gauge and scalar fields of
the gauge theory in X4, exactly as in [10]. Additionally, we
have obtained the appropriate half-BPS boundary condi-
tions for all the fields, which ensure that the theory in X, is
indeed N = 2 supersymmetric. It follows that the space X
has all required features to host knots. In other words, after
Euclideanization, knots can consistently be embedded in
X3 and studied in the framework of the previously
described four-dimensional gauge theory.

The details regarding such embedding of knots, as well
as the study of their linking number, can be found in
Sec. 3.3 of [13]. In fact, this is a coherent and natural follow
up to the present paper. Let us briefly summarize its
contents. The key observation there is as follows: the
inclusion of certain M2-branes in the model (M, 1) can
simultaneously account for the correct insertion of knots in
X5 and source related changes in the BPS conditions in Xj,.
Such M2-branes make it intuitive and natural to explain
why four-dimensional techniques may be useful for the
study of knots and their invariants. What is more, the
modifications thus sourced to the BPS conditions are
accurately those identified as surface operators in [9—
11,14,47]. And so, [13] is able to give a supergravity
interpretation to these operators as M2-brane states. Finally,
restriction to the Abelian case, along with the implemen-
tation of Heegard splitting, monodromy identification and
the two strands braid group action in terms of 2 x 2
matrices whose components are evolution operators, allow
for the computation of the linking number for any arbi-
trary knot.

There are many interesting future directions. In fact, both
the present paper and [13] form the first volume in a series
of papers to appear that will attempt to cover a good deal of
them. On the one hand, we have not yet exploited most of
the immense potential of model (M, 1) and its four-
dimensional gauge theory. For example, a non-Abelian
extension of the construction in Sec. 3.3 of [13] should
readily reproduce the all-famous Jones polynomial and its
generalizations, as suggested by [10]. Another exciting
connection is to Khovanov homology: finite-dimensional
vector spaces associated to knots. Khovanov homology
arises naturally from a four-dimensional gauge theory in
the presence of surface operators, just like ours. The puzzle
of why the coefficients of the Jones and related polynomials
should be integers was resolved in [48], in terms of
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Khovanov homology. What is more, Khovanov’s invariants
are stronger than those of Jones (for instance, see [49]).

On the other hand, turning our attention to model (M, 5),
we see that most of the analysis is pending—most
notoriously, the details on its connection to [8] through
a flop transition, the derivation of its pertinent four-
dimensional gauge theory, and the suitable embedding
of knots in it. Once this is done, a wide range of
possibilities unfolds. Two such are the computation of
HOMFLY-PT polynomials, along the lines of [50] and the
study of A-polynomials, as in [12].
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