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WKB approximation methods are applied to the case of a massive scalar field around a five-dimensional
Reissner-Nordström black hole. The divergences are explicitly isolated, and the cancellation against the
Schwinger-DeWitt counterterms are proven. The resulting finite quantity is evaluated for different values of
the free parameters, namely, the black hole mass and charge, and the scalar field mass. We thus extend our
previous results on quantum vacuum polarization effects for uncharged asymptotically flat higher-
dimensional black holes to electrically charged black holes.
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I. INTRODUCTION

In Ref. [1], we have adapted the WKB method to higher-
dimensional Schwarzschild black holes and explicitly
calculated the scalar vacuum polarization for the case of
five, i.e., (4þ 1), dimensions everywhere outside the
horizon. Other works that have studied vacuum polariza-
tion in higher dimensions are Ref. [2] in which the five-
dimensional case is also treated, Ref. [3] in which
odd-dimensional anti-de Sitter spacetime is considered,
Refs. [4,5] in which renormalization in higher dimensions
is developed with care, Ref. [6] which studied vacuum
polarization on branes, and Refs. [7,8] in which scalar
vacuum polarization, using a mode-sum regularization
prescription, is computed for higher-dimensional
Schwarzschild black holes with explicit results up to 11
dimensions. The initial studies in vacuum polarization in
curved spacetimes [9–13] focused in four, i.e., (3þ 1),
dimensions and had the aim of improving the understand-
ing of particle production in curved spacetimes and various
aspects of black hole evaporation.
Following Ref. [1], in which higher-dimensional

Schwarzschild black holes were studied, here we adapt

again the WKB method originally devised in Refs. [10,11]
to the case of higher-dimensional Reissner-Nordström
black holes.
The paper is organized as follows. In Sec. II, we will

outline the standard properties of the Green function and its
mode-sum decomposition in a five-dimensional spacetime.
In Sec. III, the WKB method is used to obtain a truncated
approximation of the Green function. In Sec. IV, we use
the point-splitting method to renormalize the coincidence
limit of the Green function, i.e., the vacuum polarization,
regularizing first the summation in the angular modes
followed by the energy modes. In Sec. V, we numerically
compute the previously calculated renormalized vacuum
polarization, providing results for different values of black
hole mass, charge, and scalar field mass. In Sec. VI, we
draw some conclusions.

II. VACUUM POLARIZATION IN HIGHER
DIMENSIONS

We are interested in the vacuum polarization hϕ2ðxÞi of a
scalar quantum field, which is given by the coincidence
limit of the associated Euclidean Green function GE, which
satisfies the differential equation

ð□E − μ2 − ξRÞGEðx; x0Þ ¼ −
δðx − x0Þffiffiffiffiffijgjp ; ð1Þ
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where □E is the d’Alembertian operator with Euclidean
signature, μ is the scalar field mass, ξ is the coupling
constant, R is the spacetime curvature, and x and x0 are
spacetime points.
In this work, we will consider the background to be

a five-dimensional black hole described by a five-
dimensional metric of the type

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
3; ð2Þ

where t and r are the time and radial coordinates,
respectively, dΩ2

3 represents the line element of a 3-sphere,
and fðrÞ is some function of r. We assume that at infinity
fðrÞ goes as 1=r2 as it should for a five-dimensional
spherical asympotically flat spacetime, and we also assume
that fðrÞ contains a horizon at some radius rþ.
Performing a Wick rotation t ¼ −iτ on the time coor-

dinate, we obtain the Euclidean metric

ds2E ¼ fðrÞdτ2 þ dr2

fðrÞ þ r2dΩ2
3; ð3Þ

which is positive definite everywhere outside the horizon.
In order to avoid conical singularities in the Euclidean
metric, the coordinate τ must be periodic with period β
equal to

β ¼ 4π

�
df
dr

�
−1

r¼rþ
: ð4Þ

The quantity T ¼ β−1 will then be the characteristic
temperature of the black hole.
Working in the Hartle-Hawking vacuum state, we may

write the finite temperature Euclidean Green function in the
mode-sum representation

GEðx; x0Þ ¼
α

4π3
X∞
n¼−∞

eiωnΔτ

×
X∞
l¼0

ðlþ 1ÞCð1Þ
l ðcos γÞGnlðr; r0Þ; ð5Þ

where α≡ 2π=β, Δτ ¼ τ − τ0, ωn ≡ αn, γ is the geodesic

distance in the 3-sphere, and Cð1Þ
l ðxÞ is a Gengenbauer

polynomial. Inserting the mode-sum expansion, Eq. (5), in
Eq. (1) leads to the differential equation for the radial Green
function

�
d
dr

�
r3fðrÞ d

dr

�
− r3

�
ω2
n

fðrÞ þ μ2 þ ξR

�

− lðlþ 2Þr
�
Gnlðr; r0Þ ¼ −δðr − r0Þ: ð6Þ

The solution to Eq. (6) can be expressed in terms of
solutions of the corresponding homogeneous equation.
In particular, if pnlðrÞ and qnlðrÞ are solutions of the
homogeneous equation regular at the horizon and
infinity, respectively, then the radial Green function can be
written as

Gnlðr; r0Þ ¼ Cnlpnlðr<Þqnlðr>Þ; ð7Þ
where r< and r> denote the largest and the smallest values
of the set fr; r0g. The quantity Cnl is a normalization
constant, given by

Cnl ¼ −
1

r3fðrÞ
1

WðpnlðrÞ; qnlðrÞÞ
; ð8Þ

where Wðp; qÞ is the Wronskian of the two functions.
We now want to find the solution of Eq. (6). We will

first present the approximate limiting solutions at infinity
and at the horizon, and then we develop the general
solution. The limiting solutions serve as boundary con-
ditions for the general solution. In particular, they are useful
for numerical calculations checking.

III. WKB APPROXIMATION

A. Near-infinity and near-horizon solutions

The form of pnl and qnl of the Green function in Eq. (7),
solution of Eq. (6), can be obtained by expressing the
homogeneous equation in two limits, namely, the near-
infinity limit and the near-horizon limit.
Starting with the near-infinity limit, i.e., the large r limit,

the homogeneous equation of Eq. (6) becomes
�
d2

dr2
þ 3

r
d
dr

− ðω2
n þ μ2 þ ξRÞ

�
qnlðrÞ ¼ 0; ð9Þ

the solution of which, regular at infinity, is of the form

qnlðrÞ ∼ r−3=2e−r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
nþμ2þξR

p
: ð10Þ

The near-horizon limit may be obtained by using the
tortoise coordinate r�, defined through dr� ¼ dr

fðrÞ, in terms
of which, in the near-horizon limit and for n ≠ 0, the
homogeneous equation of Eq. (6) becomes

�
d2

dr2�
− ω2

n

�
pnlðrÞ ¼ 0: ð11Þ

The solution of Eq. (11), regular at the horizon, is given by

pnlðrÞ ∼
e−ωnr�

r
: ð12Þ

In the case n ¼ 0, the homogeneous equation of Eq. (6),
in the near-horizon limit, becomes d

dr ðlnp0lðrÞÞ ¼
1

f0ðrÞ ðlðlþ2Þ
r2 þ μ2 þ ξRÞ, the solution of which goes as
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p0lðrÞ ∼ exp

�Z
r

rþ

�
lðlþ 2Þ

u2
þ μ2 þ ξR

�
du

f0ðuÞ
�
: ð13Þ

These limiting solutions will be especially important
when performing numerical computations, since they will
provide the boundary conditions necessary to solve Eq. (6)
numerically.

B. WKB general solution

We shall now display a general solution of Eq. (6) by
following the standard procedure developed in
Refs. [10,11], which makes use of a WKB approximation.
We begin by using the following ansatz for the solutions of
the homogeneous equation for the radial Green function,

pnlðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r3WðrÞ
p exp

�
þ
Z

r

rþ

WðuÞ
fðuÞ du

�
; ð14Þ

qnlðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r3WðrÞ
p exp

�
−
Z

r

rþ

WðuÞ
fðuÞ du

�
; ð15Þ

whereW is the WKB function to be determined. The above
expressions are chosen specifically to eliminate all sign
dependent terms once inserted in the homogeneous equa-
tion of Eq. (6), while at the same time satisfying both the
near-horizon and large r limits which are going to be
calculated below. We will omit the n and l indices in the
WKB function WðrÞ whenever necessary for notational
convenience. In the end, we are left with the homogeneous
equation

W2 ¼ Φþ a1
W0

W
þ a2

W02

W2
þ a3

W00

W
; ð16Þ

where

Φ ¼ ððlþ 1Þ2 − 1Þ f
r2

þ σðrÞ; ð17Þ

σ ¼ ω2
n þ ðμ2 þ ξRÞf þ 3f2

4r2
þ 3ff0

2r
; ð18Þ

and

a1 ¼
ff0

2
; a2 ¼ −

3

4
f2; a3 ¼

f2

2
; ð19Þ

where a prime in the functionsW and f denotes a derivative
with respect to the coordinate r. Inserting Eqs. (14) and (15)
in Eq. (7), taking the radial coincidence limit, and using the
fact the Wronskian is given byWðpðrÞ; qðrÞÞ ¼ −f=ð2WÞ,
we obtain

Gnlðr; rÞ ¼
1

2r3WnlðrÞ
: ð20Þ

The solution to Eq. (16) can now be expressed iteratively as
W ¼ W0 þW1 þ � � �. At zeroth order, for example, we
have W0 ¼

ffiffiffiffi
Φ

p
. The expansion we are interested in is

1

W
¼ 1ffiffiffiffi

Φ
p ð1þ δΦþ δ2Φþ � � �Þ; ð21Þ

were δnΦ=
ffiffiffiffi
Φ

p
represents the nth order WKB correction to

1=W. For renormalization purposes, we may only be
concerned with the first order approximation, for which
one can check that

δΦ ¼ −
a1
4

Φ0

Φ2
þ
�
a3 − a2

8

�
Φ02

Φ3
−
a3
4

Φ00

Φ2
: ð22Þ

We thus obtain the approximated solution ~W truncated at
first order,

1

~W
¼ 1þ δΦffiffiffiffi

Φ
p ; ð23Þ

or, writing explicitly,

1

~W
¼ 1ffiffiffiffi

Φ
p þ α1

1

Φ5=2 þ α2
ðlþ 1Þ2
Φ5=2

þ α3
1

Φ7=2 þ α4
ðlþ 1Þ2
Φ7=2 þ α5

ðlþ 1Þ4
Φ7=2 ; ð24Þ

with

α1 ¼
rðða1r − 4a3Þf0 − a1r3σ0 þ a3rf00 − a3r3σ00Þ

4r4

þ fð6a3 − 2a1rÞ
4r4

; ð25Þ

α2 ¼
fð2a1r − 6a3Þ − rðða1r − 4a3Þf0 þ a3rf00Þ

4r4
; ð26Þ

α3 ¼ −
ða2 − a3Þð−rf0 þ 2f þ r3σ0Þ2

8r6
; ð27Þ

α4 ¼ −
ða2 − a3Þðrf0 − 2fÞð−rf0 þ 2f þ r3σ0Þ

4r6
; ð28Þ

α5 ¼ −
ða2 − a3Þðrf0 − 2fÞ2

8r6
: ð29Þ

Taking the spatial coincidence limit, the Euclidean Green
function given in Eq. (5) can then be approximated as

GWKBðx; x0Þ ¼
α

8π3r3
X∞
n¼−∞

eiωnΔτ
X∞
l¼0

ðlþ 1Þ2
~WnlðrÞ

: ð30Þ

The Euclidean Green function in Eq. (30) is divergent
both in the angular and energy modes, i.e., in the l and n
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modes, respectively. We take care of this in the following.
The divergence in the angular l modes is purely math-
ematical and can be promptly removed. On the other hand,
the divergent terms in the energy n modes are physical and
must be canceled by some counterterms in order to obtain a
fully renormalized result. First, we regularize the l modes
and afterward the n modes.

IV. RENORMALIZATION

A. Regularization in the l modes

The summation in the angular modes for large l will be
divergent so long as terms of (lþ 1) with powers larger
than −1 are present. Expanding ðlþ 1Þ2= ~W for large
(lþ 1), we obtain

T lðrÞ ¼
rffiffiffi
f

p ðlþ 1Þ þ r

32f3=2ðlþ 1Þ ð−16r
2ω2

n þ 16f

− 4f2 − 16fσ þ 4rff00 þ r2f02 − 4r2ff00Þ; ð31Þ
which diverges in the final sumofEq. (30). This divergence is
not physical and can be removed by subtracting the quantity
α

8π3r3
P∞

n¼−∞ eiωnΔτ
P∞

l¼0 T lðrÞ, from Eq. (30). The term
involving ω2

n is irrelevant, since the summation in n will
give ζð−2Þ, which is zero. This means the dependence of T l

is purely on l, and so, α
8π3r3

P∞
n¼−∞ eiωnΔτ

P∞
l¼0 T lðrÞ is a

multiple of δðαΔτÞ. Therefore, since Δτ ≠ 0, we are effec-
tively subtracting 0, canceling the divergent large l behavior
in the process. After the subtraction, we may take the full
coincidence limit, for which the Green function becomes

GWKBðx; xÞ ¼
α

8π3r3
X∞
n¼−∞

X∞
l¼0

�ðlþ 1Þ2
~Wnl

− T l

�
: ð32Þ

B. Regularization in the n modes

We now proceed to the regularization of the n modes,
physically associated to UV divergences. We will isolate
the divergent pieces of Eq. (32) and explicitly see that they
cancel with the counterterms provided by the point-splitting
method developed in Ref. [9].
The Green function (32) can be written as

GWKBðx; xÞ ¼
α

8π3r3

�
G0 þ 2

X∞
n¼1

Gn

�
; ð33Þ

where we have defined Gn as

Gn ¼
X∞
l¼0

�ðlþ 1Þ2
~Wnl

− T l

�
ð34Þ

and have made use of the fact that
P∞

n¼−∞ Gn ¼
G0 þ 2

P∞
n¼1 Gn. The term G0 is finite by construction,

so all divergences must be contained within Gn. In
particular, powers of n larger than −1 will result in infinity

after the summation. To obtain an expression for Gn, we
shall make use of the Abel-Plana sum formula

X∞
l¼j

fðlÞ ¼
Z

∞

0

dt
e2πt − 1

½fðjþ itÞ − fðj − itÞ�

þ fðjÞ
2

þ
Z

∞

j
fðτÞdτ: ð35Þ

Applying Eq. (35) to Eq. (34) and expanding for large n, we
arrive at the following divergent part of the Green function:

Gdiv ¼
α

8π3f3=2
X∞
n¼1

��
μ2f −

f
r2

þ 6ξf
r2

þ f2

r2
−
6ξf2

r2

þ 5ff0

4r
−
6ξff0

r
−
f02

16
þ ff00

4
− ξff00

�

× lnωn þ ω2
n lnωn

�
: ð36Þ

The divergent terms of the form 1=ωn cancel out, as
expected from spacetimes with odd dimensions; see
Ref. [5]. To obtain a finite renormalized result, we should
subtract the counterterms given in Eq. (36) from
Eq. (32), i.e.,

Greg ¼ GWKB −Gdiv: ð37Þ
In order to check that Eq. (36) is the correct divergent

part, we use the generic method devised by Christensen,
i.e., the point-splitting method [9]. Choosing the point
split to lie in the τ coordinate, the geodesic separation σ
becomes

σ ¼ f
2
ε2 −

ff02

96
ε2 þOðε6Þ; ð38Þ

and the Schwinger-DeWitt counterterms are then given by

GSD ¼ lim
ε→0

�
1

16π
ffiffiffi
f

p
ε

��
1

6
− ξ

�
R − μ2 −

f0

4r
þ f02

16f

�

þ 1

8π2f3=2ε3

�
: ð39Þ

Now, we must express the counterterms as a sum in energy
modes, and in order to do that, we convert the inverse
powers of ε into sums by using the results

lim
ε→0

1

ε
¼ −

2α

π

X∞
n¼1

lnωn þOðεÞ; ð40Þ

lim
ε→0

1

ε3
¼ α

π

X∞
n¼1

ω2
n lnωn þOðεÞ; ð41Þ

derived in Ref. [1]. Inserting Eqs. (40) and (41) into
Eq. (39), one immediately arrives at Eq. (36), thus con-
firming its correctness.
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V. NUMERICAL RESULTS FOR THE FIVE-
DIMENSIONAL ELECTRICALLY CHARGED

REISSNER-NORDSTRÖM BLACK HOLE

In obtaining Greg, one has made use of the WKB
approximation, since Greg ¼ GWKB − Gdiv. We want to go
a step further and obtain a more exact result. The remainder
δG between the exact value of the Euclidean Green function
GE and the WKB approximated Green function GWKB, i.e.,
δG ¼ GE − GWKB, is usually ignored because it is consid-
ered negligible. However, here, in our numerical calculation,
we take care of this remainder δG. Thus, instead of writing
the approximated vacuum polarization expression as usual,
hϕ2ðxÞiren ¼ Greg, we use the exact value for the fully
renormalized vacuum polarization as

hϕ2ðxÞiren ¼ Greg þ δG: ð42Þ
The quantityGreg can be evaluated directly using Eq. (37). In
the numerical results that follow, we have used the WKB
approximation up to secondorder and calculated numerically
the remainder δG, which is the most computationally
demanding term. In the process of numerically calculating
the remainder, we usedEqs. (12) and (13) for the first point in
the numerical range of the solution (near-horizon limit) and
Eq. (10) for the last point (large radius limit). Of course, if
we were to increase the order of the WKB approximation
in Greg, it would reduce the magnitude of the remainder δG.
We have opted to use the WKB approximation up to second
order since it in general yields accurate results.
In what follows, we specify that the metric given in

Eq. (2) is the metric for a five-dimensional electrically
charged Reissner-Nordström black hole, such that fðrÞ is
given by

fðrÞ ¼ 1 −
2m
r2

þ q2

r4
; ð43Þ

where m is the mass parameter and q is the electrically
charge parameter. The metric function fðrÞ given in
Eq. (43) has an event horizon with radius

rþ ¼ ðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

q
Þ1=2: ð44Þ

It has another horizon, the Cauchy horizon, with radius
r− ¼ ðm −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
Þ1=2, but it does not enter into our

calculations. In addition, for the function fðrÞ given in
Eq. (43), the inverse Hawking temperature defined in
Eq. (4) is

β ¼ ðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
Þ5=2

ðm2 − q2 þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
Þ
π: ð45Þ

For completeness, we remark that the parameters m and q
appearing in Eq. (43) are related to the black hole ADM
mass M and electrical charge Q, through the relations

m ¼ 4G5M
3π and q2 ¼ 4π

3
G5Q2, respectively, where G5 is the

gravitational constant for a five-dimensional spacetime.
In Figs. 1–3, we plot hϕ2iren − hϕ2i∞, i.e., the renor-

malized vacuum polarization normalized to zero at infinity,
as a function of the coordinate distance from the five-
dimensional Reissner-Nordström black hole horizon
radius, i.e., r − rþ, for three different values of the black
hole mass, black hole electric charge, and scalar field mass,
respectively. For each parameter choice, we find finite
values at the horizon with no problems of convergence.
Note that, since we deal with a five-dimensional spacetime,
the trace of the Maxwell stress-energy tensor does not
vanish, and thus the Ricci scalar of the Reissner-Nordström
metric is not zero, unlike the four-dimensional case.
Despite this, we choose to set ξ ¼ 0, which is an
assumption commonly used, as the mass already introduces
a nontrivial factor into the problem. In Fig. 1, we see that
the value of the vacuum polarization at the horizon
decreases with increasing black hole mass. This is

FIG. 1. Plots of the vacuum polarization hϕ2iren − hϕ2i∞ as a
function of the coordinate distance from the black hole horizon
radius, i.e., r − rþ, for three black hole massesm. The charge and
scalar field mass are fixed as q ¼ 10 and μ ¼ 0, respectively.

FIG. 2. Plots of the vacuum polarization hϕ2iren − hϕ2i∞ as a
function of the coordinate distance from the black hole horizon
radius, i.e., r − rþ, for three black hole charges q. The back hole
and scalar fieldmasses are fixed asm ¼ 20 andμ ¼ 0, respectively.
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expected, as the black hole temperature decreases and so it
is harder to produce excitations in the quantum field. In
Fig. 2, the value at the horizon decreases with increasing
charge, i.e., as the black hole approaches the extremal limit.
This is again expected, as an extremal black hole has zero
temperature. In Fig. 3, we see that increasing scalar field
mass induces a larger vacuum polarization at the horizon.

VI. CONCLUSIONS

In this work, we have extended our previous results [1]
and calculated the renormalized vacuum polarization for a

massive scalar field around a five-dimensional electrically
charged black hole. We have followed the standard
approach which makes use of the WKB approximation
to extract the infinities present both in the angular
and energy modes of the mode-sum expanded Green
function. We have also compared the explicit divergent
part with the Schwinger-DeWitt counterterms to get
a fully renormalized result for the vacuum polarization.
Terms up to second order were used in the approximation,
which provided numerical results illustrating the
behavior of the vacuum polarization as a function of the
various parameters. A simple understanding of the finer
features of the vacuum polarisation hϕ2iren in the various
cases is difficult due to the complexity of the calculations
involved.
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radius, i.e., r − rþ, for three scalar field masses μ. The mass and
chargeof theblackholeare fixedasm ¼ 20andq ¼ 10, respectively.
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