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We determine the retarded and advanced Green’s functions and Hadamard parametrices in curved
spacetimes for linearized massive and massless gauge bosons and linearized Einstein gravity with a
cosmological constant in general linear covariant gauges. These vector and tensor parametrices contain
additional singular terms compared with their Feynman/de Donder-gauge counterpart. We also give explicit
recursion relations for the Hadamard coefficients, and indicate their generalization to n dimensions.
Furthermore, we express the divergence and trace of the vector and tensor Green’s functions in terms of
derivatives of scalar and vector Green’s functions, and show how these relations appear as Ward identities

in the free quantum theory.
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I. INTRODUCTION

A central notion in quantum field theory in a curved
spacetime M is that of Hadamard states [1-3]. These are a
class of quantum states which exhibit physically reasonable
properties, e.g., finite expectation values and fluctuations of
the stress tensor, and they can be characterized by their
singularity structure. For instance, the Minkowski vacuum,
thermal states in Minkowski space and the Bunch-Davies
states for free fields in cosmological spacetimes are
Hadamard states, as well as all states which are obtained
by applying smeared field operators to those states.

The short distance behavior of any Hadamard state is
described by a Hadamard parametrix H(x,x’). This is a
bisolution of the corresponding field equation with a smooth
source, which is defined locally and geometrically. That is,
H(x,x') is defined for all x" in a convex normal neighbor-
hood of x, and only depends on the geometry of M in this
neighborhood. In particular, it does not describe the two-
point function of any particular preferred state, but instead
specifies the singular part that any such state must have.
Hadamard parametrices are used to define renormalized
composite operators using the point-splitting method [4—6],
which includes the renormalized stress tensor for scalars,
spinors, vectors, gravitons and p-forms [7—16], in particular
its trace anomaly [6,17,18], and the calculation of chiral
anomalies [19-22]. More generally, they play a crucial role
in constructing the local and covariant time-ordered
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products on curved spacetimes [23-26], which form the
basis of renormalized perturbation theory on arbitrary
(globally hyperbolic) curved backgrounds.

However, so far the treatment of theories with local
gauge symmetry, namely Yang-Mills theories and linear-
ized Einstein gravity, has been mostly restricted to special
gauges: Feynman gauge in the case of Yang-Mills and de
Donder gauge for linearized gravity. In these gauges, the
equation of motion (EOM) is normally hyperbolic, i.e., the
second derivatives only appear in form of the wave operator
VZ = ¢V, V,. On a globally hyperbolic Lorentzian mani-
fold, normally hyperbolic operators have a well-posed
Cauchy problem (see, e.g., Ref. [27]), and consequently
there exist unique retarded and advanced Green’s functions
and corresponding Hadamard parametrices. In more gen-
eral gauges, the differential operators appearing in the
EOM contain second derivatives other than V2, and are
only Green hyperbolic [28,29]. For Green hyperbolic
operators, while uniqueness of Green’s functions still
holds, their existence is not guaranteed.

The main aim of the present article is to construct explicit
Green’s functions and the corresponding Hadamard para-
metrices in curved spacetimes for vector gauge bosons and
linearized Einstein gravity with a cosmological constant in
general linear covariant gauges. For the vector theory, there is
afamily of linear covariant gauges with parameter ¢ € R,'in
which the differential operator appearing in the EOM reads

'While the limit £ — 0 is not defined for the differential
operator, it exists for the Green’s function (29), as is well known.
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P, = ¢"(V2 —m?) — R" — —5; Loswr 1)

where we have included a mass term m? arising from

spontaneous symmetry breaking. Because of the last term,
this operator is not normally hyperbolic for general &, but
only for £ = 1 (the Feynman gauge). For linearized gravity,
there is a two-parameter family of linear covariant gauges
parametrized by &, { € R with the corresponding operator
P’&pa given in Eq. (38). Again, this operator is not normally
hyperbolic in general, and only in the gauge £ = { = 1 (the
de Donder gauge) the existence of Green’s functions is
guaranteed.

For practical calculations it is important to know the
vector and tensor Green’s functions and Hadamard para-
metrices with arbitrary & and £, since the calculations may
considerably simplify in certain gauges. For example, in
Landau gauge & — 0 (and { — oo for the tensor case) the
divergence of the Green’s function or Feynman propagator
vanishes, and the gauge £ - 0, { - n/2 (where n is the
dimension of M) presents advantages in AdS/CFT calcu-
lations [30]. Moreover, keeping the gauge parameters
arbitrary serves as a consistency check of gauge-fixing
independence in practical calculations, since all terms
depending on £ or ¢ must cancel out in the final results
for physical quantities.

Let us explain our general strategy by considering the
massive Proca operator [31]

P’};”z o= ¢ (V? —m?) — RW — VFVY, (2)
which is a prototype of a Green hyperbolic operator,
obtainable as the limit £ — co of Eq. (1). It is known
[28] that the (advanced or retarded) Green’s function

2
G;"p,“x’(x, x') of the Proca operator can be constructed from
the massive vector Green’s function in Feynman gauge

2 . . . . .
G;';/l (x,x") (which is known to exist and be unique since

pH
m2,1
G, (x, x") of the massive Klein-Gordon operator for scalar

fields according to

is normally hyperbolic) and the Green’s function

mZ 0 m2 1
G (x.x') = Gﬂp,’l(x, x') + WV”VI,/sz (x,x'). (3)

Similarly, we can express the Green’s function of P - in
. 2
terms of the Green’s functions G;’;},'l, G, and Gg,. It turns

out that, contrary to Eq. (3), GZ;Z/@ for £ < oo admits a

“Although not even P{*7” is normally hyperbolic, its trace-

reversed version P = P{*{” —1/(n—2)g""g,sP"" ? is, and
one can reconstruct the Green’s functions of P{*{” from the ones
of P{*” by purely algebraic means, see Eq. (41).

well-defined massless limit, and Gg‘f can be expressed
using mass derivatives of G,» at m = 0.

Once we have obtained an expression for the advanced or
retarded Green’s function, we construct the corresponding
Hadamard parametrix. Let us start with the scalar case,
and assume given a Hadamard state |w). Then the

Wightman function’
(4)

is a solution to P,»G,(x,x’) = 0 with the Klein-Gordon
operator

Gl (x,¥) = —i(wld(x)p(x)|w)

— \72 2
sz=v —m-,

(5)

while the time-ordered Feynman propagator

G, (x.x") = =i{w|T ¢ (x)p(x')|w)

=0(t=1)G,(x.x')+0(f —=1)G!,(x¥.x) (6)
is a solution to the inhomogeneous equation P,.G',
(x,x") = 6(x, x) with the covariant § distribution 6(x, x') =
5*(x —x')//=g, and where t = t(x) is any time function.
From those, the retarded Green’s function can be obtained
via

G (x,x') =0(1 = 1)[G},(x,x') = G, (¥, x)]

=G (x.x) =G (¥, x).

(7)

Since |w) is a Hadamard state, the Wightman function (4)
in four dimensions locally takes the form [27,32]
i U,z (x,x")
87° |o(x,x') +ie(t— 1)
+ V2 (x, %) In[uo(x, x') +ie(t = 1')]

Gh(x,x) =

+ W, (x, x’)} . (8)

where p is a mass scale, the functions U, 2, V2 and W, 2
are smooth symmetric biscalars, and the distributional limit
€ — 0% is understood. The symmetric biscalar o(x, x') is
Synge’s world function [33], equal to one half of the
(signed) square of the geodesic distance between x and X/,
which is well defined locally (i.e., when x’ is in a normal
geodesic neighborhood of x). It is easy to check that the
Feynman propagator (6) is given by expression (8) with
o(x,x") +ie(t — ') replaced by o(x,x’) + ie. The retarded
Green’s function (7) thus reads

The prefactor for the Wightman function, the Feynman
propagator and various other Green’s functions is a matter of
convention.

025022-2



GREEN’S FUNCTIONS AND HADAMARD PARAMETRICES ...

PHYS. REV. D 97, 025022 (2018)

O(-17)

G w) = =20

[Um25(6) - Vm2®(_6)}’ (9)
using the well-known formulas (valid in the distributional
limit € — 0")

1 | B
x+i€=77f;—1n'6(x), (10a)
In(x +ie) = In|x| + i7O(—x), (10b)

with Hadamard’s finite part distribution Pf. Since the
retarded Green’s function is unique, it doesn’t depend on
the state |y), and thus in particular the biscalars U, and
V2 are state-independent and only depend on the geom-
etry of the spacetime M. Therefore, we see that the biscalar
W,2 encodes the dependence of the Wightman function
G, (8) or the Feynman propagator G}, (6) on the quantum
state [yr). On the other hand, the geometric state-independent
Hadamard parametrix H,:(x,x’) is given by

i U,
Hsz_S—Jz2 O + V2 In (4?0, |, (11)

where the proper e prescription depends on whether one
considers the Wightman function G’:z or the Feynman
propagator an ,. In the Wightman case, the Hadamard
parametrix H',(x,x’) has the same e prescription as the
Wightman function (8), namely it is of the form (11) with
6, = o +ie(t —t'), while the Feynman Hadamard para-
metrix an ,(x,x") is of the form (11) with the Feynman
prescription o, = ¢ + ie. For notational convenience, in the
following we will work with the generic form (11), and
moreover drop the e subscript from o,. Note that both the
Wightman function G;z and the Feynman propagator anz
are actually independent of the scale y, and that a change
u—p' is compensated by the change W,.:(x,x") —
W,2(x,x") + 2V, 2(x,x") In (u/u’). For massive scalars,
one could choose x to be equal to m, which however creates
problems as m — 0 for the Hadamard parametrix.

In the vector case in Feynman gauge & =1, the
Hadamard parametrix is similarly given by [1]

m?,1

i 2
) == [ vt o

where the same remarks about the proper e prescription
apply. The Wightman function now contains a state-

dependent bitensor W;";‘l. As we will see [cf. Eq. (122)],

for a general gauge £ # 1 the Hadamard parametrix contains
additional singular terms proportional to 6=, and a new set

of bitensors {U, V};’;‘f related to the Feynman gauge

bitensors and the biscalars appearing in the scalar
Hadamard parametrix (11).

Along the same lines, we calculate the retarded or
advanced Green’s function Gi‘f;),a, for linearized gravity
around backgrounds which are solutions to Einstein’s
equations with a cosmological constant A. We express

G**, » in terms of the de Donder gauge Green’s function
uwp

Glll’ylp, »» and the vector and scalar Green’s functions G;';)z,’l
and G,,» with m a mass parameter proportional to A, and we
show that the limit m?> — 0 (which corresponds to A = 0)
exists. While for de Donder gauge the most singular term in
the Hadamard parametrix is again proportional to ¢!, for a
general gauge it turns out to be proportional to 673,

The remainder of the article is organized as follows: in
Sec. II we determine the advanced and retarded Green’s
functions for vector and tensor fields in general linear and
covariant gauges, in Sec. III we show that certain diver-
gence and trace identities which follow for the Green’s
functions can be obtained as Ward identities in the free
quantum theory, and in Sec. IV we determine the corre-
sponding Hadamard parametrices. We close in Sec. V with
an outlook on future work, and, with a view on practical
applications, also give expressions for the state-dependent
W coefficients in Appendix B under the assumption that the
Wightman functions or Feynman propagators in general
linear and covariant gauges are determined in the same way
as the Green’s functions. We use the “+++” sign convention
of Ref. [34], and work in n > 2 dimensions, except for the
Hadamard expansion in Sec. IV where we restrict to four
dimensions.

II. GREEN’S FUNCTIONS

Given a differential operator P, by definition advanced
and retarded Green’s functions G*4/™! satisfy

PxGadv/ret(x’ x’) — 5()(’ X/) B Px,Gadv/ret(x’ )C/), (13)

with the support properties
supp/G‘et(x, x')f(x")dgx" € J* (supp f),
supp/GadV(x, x)f(x')d,x" € J(supp f) (14)

for any compactly supported test function f, where J*(S)
[J7(S)] is the causal future (past) of a set S, and we set
dgx = \/—_gd”x. Given a Green’s function, the solution of
the inhomogeneous equation P¢ = f with retarded or
advanced boundary conditions is then given by the formula

¢rel/adv(x) — /Gret/adv(x, x’)f(x’)dgx’. (15)

Uniqueness of Green’s functions with a specific boundary
condition, thus, leads to unique solutions to the inhomo-
geneous equation under those boundary conditions. In
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particular, for vanishing source f =0 we obtain ¢ = O,
which we will make use of in the following.

In this section, we determine the advanced and retarded
Green’s functions of vector and tensor fields in general
linear covariant gauges. Since the Green’s functions that we
obtain are expressed in terms of the scalar and vector
Green’s function and their mass derivatives, we begin with
the massive Klein-Gordon operator. Our calculations are
valid for either advanced or retarded boundary conditions,
and for ease of notation we drop the superscript “adv/ret” in
the remainder of the article.

A. Scalar field

Consider a massive scalar field with minimal curvature
coupling. The differential operator appearing in its EOM is
the Klein-Gordon operator P, defined in Eq. (5). As
discussed in the introduction, P, is a normally hyperbolic
differential operator, and thus admits unique advanced and
retarded Green’s functions G, (x,x") which satisfy

P,2G,2(x,x") = 8(x,x'), (16)
with the support properties discussed above. For later use,
we will need mass derivatives of Green’s functions, and we

define

PN - 8sz é

MZ = ——F=
(9m2 mZZMZ’

(17)

3 .
m= {m2=m>

By differentiating Eq. (16) with respect to the mass, we
obtain

(18)
and

PG (x,x) = 26,2 (x, x'). (19)

B. Vector field

As explained in the introduction, the linearized Yang-
Mills equation is not normally hyperbolic. Here, we
consider a (massive) vector field in a general linear
covariant gauge, whose differential operator P” is given
by Eq. (1), with £ a gauge parameter. The choice E=1
(Feynman gauge) eliminates the last term in Eq. (1) and

P, is a normally hyperbolic operator. The Green’s
functions that we want to determine satisfy
P GI (x.) = (. ). (20)

with the bitensor of parallel transport gz, which for
coinciding points reduces to the metric

1im g = g5 1)

1. Divergence identity for E=1

To obtain the Green’s function G (

x'), we first need
to determine an expression for tﬂe

divergence of the
Feynman gauge Green’s function G";j, (x,x'). We follow
Ref. [1] and calculate

[V”G”;j, Yo, x) + VyG,p(x,x)]

=V [P”” G:’;j, Y(x, X)) + Vg P,2G,p(x,x')
= Vilgy6(x, )] + Vg6 (x, x') = 0, (22)
where the equality of the last line follows from the
properties of the parallel propagator g, [1,33].

According to the previous discussion, since P,. is
normally hyperbolic the solution of this equation with
either retarded or advanced boundary conditions is unique
and thus vanishing, and we infer that

VG (x.x) = =V G (x. ). (23)
This relation is in fact necessary for the Ward identities to
hold in the (free) quantum theory, which we explain in the
framework of Becchi—-Rouet—Stora—Tyutin (BRST) quan-

tization in Sec. III.

2. The massive vector Green’s function for general &

In the general case, inspired from the known flat-space
Green’s function we consider the combination

Fm?E _ ~m?, ~
Glyt =Gl + (E- 1)V, VG (24)
with an unspecified function G. A short calculation shows
that

P GIF(x,x) = gfy(x.x) (25)
if G fulfils
v [VﬁrPgsz(x X))+ VG (x ] =0. (26)

Since PI;UZJ
with retarded or advanced boundary conditions is unique,
and we conclude that Gm <= Gm ‘! The relation (23) then
shows that Eq. (26) for G reduces to

is normally hyperbolic, the solution of Eq. (25)

ViV [Pr2G(x,x') = G2 (x,X')] = 0. (27)
One easily verifies that a solution of this equation is
given by
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- G >»—Ggno
G= ’"—5’"’ 28
(1 =& 28)
and we thus obtain
G = G YV (G = Gan). (29)
v T m2 vV \Ym? Em? )

For the divergence of the general vector Green’s function,
we then calculate using the relation (23)

VG

5= —EVyGo, (30)

which reduces to relation (23) for £ = 1. We see that the
transversality of the Green’s function in Landau gauge
& = 0, which is known from the flat-space case, holds also
in general spacetimes, i.e.,

VGO =o. (31)

3. The massless limit

In the limit m — 0, we have
G,p = Gy +m2Gy+ O(m*), (32)
and we obtain

Gy =Gl = (- 1)V, VG, (33)

17/

which also can be obtained from the direct solution of
Eq. (27) using Eq. (18) for m? = 0.

C. Tensor field

Lastly we would like to determine the Green’s functions
for a symmetric second-rank tensor field (which we call
graviton) subject to the linearized Einstein equation, which
is the basic quantum field in perturbative quantum
gravity around fixed backgrounds [35-37]. Since in two
dimensions the integral of the Ricci scalar is a topological
invariant, we restrict to n > 3 dimensions. In this work, we
consider background metrics g, Wthh satisfy Einstein’s
equation with a cosmological constant’

1
R;w - ig/wR + g/wA =0, (34)

which implies

“The generalization to other background fields, such as
the inflaton in cosmological spacetimes, proceeds along the
same lines.

2A 2nA

= mg;m R =

V*R

n-2" Ryspo

=0, (35)

where the last equation follows from the Bianchi identities.
We stress that apart from this conditions, the Riemann
tensor is unconstrained; in particular we are not restricting
to de Sitter or anti-de Sitter spacetime where the
Weyl tensor C;wp(r uvpe 2/(” 2)( ulp9olv — y[pgﬂ]ﬂ>+
2/[(n=2)(n=1)]Rg,(,95), Would vanish.

We do not consider a mass term for the graviton. Writing
the perturbed metric as background g, plus perturbation
xhy, with k?> = 162Gy, and expanding the Einstein-Hilbert
action with cosmological constant to second order in 4,
we obtain the action

§0) — % / [h#(V2h,,, — 2PV, h,, +2V,V, h)

2
5 (2hy, = I)AJd,x. (36)

where h = ¢*h,, and V, is the covariant derivative
operator with respect to the background metric g,,. To

perform gauge fixing, we add to S the action

Sgr = — 25/( Ry ><V e — v;;)dgx (37)

with two gauge parameters & and ¢, where the analogue of
Feynman gauge, usually called de Donder gauge, is given
by £ = ¢ = 1. Variations of ¥ + Sgp with respect to hy,
leads to the field equation P;7“h,, =0, with the differ-
ential operator

OUY 1 c 1 G AUV c v 1 v
Pt =3 (=g )V + R (61— S gy

- (1 - é) Ve )y

1 1
—(1== ) (g»VrVe + povryy
+2< 5() (¢ +¢ )

1

and the Green’s function G*¢ p (X, X') satisfies
v ff

PGy (. x) = glgpolx).  (39)
Similar to the vector field, P;*" is not a normally hyper-

bolic operator for general values of £ and . However, even
in the case £ = { = 1 itis not normally hyperbolic since the
coefficient of V? is not the identity on symmetric rank-2
tensors, (¢’ g")? — 399" fuw # fP° (the factor 1/2 is

irrelevant). However, the trace-reversed operator
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_ 1
JLUPG __ plUpo Juvaf
Py =Py — P 9’ 9apP

— _go ﬂgl/ GVZ R’ (uv)o (40)
is normally hyperbolic, and possesses unique retarded and
advanced Green’s functions G vl From those, one
obtains the Green’s functions of P” “* by the same trace
reversal, a purely algebraic operatlon.

1.1 1.1
G;wa G/wa[i -

—zgﬂugngio}a’ﬁ” (41)
and thus their existence (and uniqueness) is also guaran-
teed. In the literature, it is common to directly use the trace
reversed variable l_zm, =h, — % guh. However, in our case
this does not lead to a simplification, and in particular P}*{”
is not the differential operator which one would obtain by
replacing h,, by }_z/w in the action for £ =¢ = 1.

1. Trace and divergence identities for E=¢=1

To construct the Green’s function in the general case, we
follow the same strategy as for the vector field. We thus first
derive a relation between the divergence of the tensor
Green’s function and the gradient of vector and scalar ones.
Let us introduce a mass parameter

4A
=- . 42
m — (42)

Pm2/2 |:V Gl lajﬂ/

—2R™ V,GY!

- VDVZGI ! D'L/(X/ﬂ/(

pva! /j/ ( /)

=V, [Zgﬂ(,,gg,)é(x, x') =

Since P2/, is again a normally hyperbolic operator we
conclude that [38]

2

2
VGwy = =2V Gl = 5 9y ViGue- (48)

lulg")
Similar to the vector case, we will also derive this relation
as a Ward identity for the free quantum theory in Sec. III.
Note that while certain states (i.e., Wightman functions or
Feynman propagators) for fields of negative mass might be
ill-behaved, the retarded/advanced Green’s functions are
completely well-defined. For example, in de Sitter space
where A > 0 the scalar Wightman function is infrared-
divergent for the natural Bunch-Davies vacuum state for all
m? <0 (which includes m? < 0), while in the retarded

Using that

popY __
g/mpl |

GYP 2, (43)

we calculate from Eq. (39) that

4
P gﬂyG}lw]r/ﬁ’<x’ x/) +mga’ﬁ/cmz ()C, x/) =0. (44)

Since P, is a normally hyperbolic operator, the
solution of this equation with retarded or advanced
boundary conditions is again unique and we infer the
trace identity [38]

4
gﬂyG,l,,,]aﬁ = mga’ﬁ’cmz' (45)
Using this identity, it follows that
1 ou VoNT2 pUCY 1,1 /
Eg/ ¢°V? + R Gy (. X)
(p o) _Lgpo’ . 5()6 )C/) (46)
g g/j’ n—2 ga[} s )

and we calculate

2
1
+ 2V Gl + — = 9y VG ]

2
) + 29/4 IVﬂ/ (.X', x/) + rga’ﬂ’vﬂﬁ('x7 xl)

2

2 2
jézg,,/ﬁré(x,x’)] + 2 V) 6(x, x') + rg{/ﬂ/vﬂé(x, xX)=0. (47)

2

Green’s function the problematic infrared divergence can-
cels out (see, e.g., Ref. [39]).

2. The graviton Green’s function for general € and &

In the general case where either & or { (or both) are
different from 1, again inspired from the flat-space Green’s
function,5 we consider the combination

5See, e.g., Refs. [40—42] and use the formula
d" 4o1°(2
/ 'I’X(p —16‘) P _ ;_1(2+a)
(2m)" ol (—a)
in n dimensions [43] Eq. (A.40), [44] Eq. (8.715) (converted to
our conventions).

(x> + i)™,
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G&é‘ ‘B = Gifa’/}’ + (é: - 1)(vﬂva/ éyﬂ’ + vyva’éﬂ '+ vyv/)” éua/ + vvvﬁ' Gﬂ(i)

o

o s ey + 0 V908 + o (€= 101-30 + 5 (120 ) 9,995,946
(49)
with unknown functions Gyﬁ/, Gl and Gz. This combination satisfies
P GEE (k') = g g 8(x.20). (50)
if G5, G, and G, fulfil the conditions
G (V2 = 2000V PGy + (1 = 2)C™V Vg Pag Gy — 11_ Cc (V2 = 2PNV (Pap G — G
=PV VG - (4 O G, (51)
and
(V P ~£/(1-20) lzczégpapsz )V «Glip) = IC—ZC(QMVZ —20VrVe) <V Vi + gaﬂZPM2>G1
i i 2 = il[(llt(zn(:)_ e VoV (¢7V? = 20VV7) (PypGr — Gi)
= Vv Get, — 5 L oo 4 PG+ E 599 VG (52)
where we defined
M=-— w2 (53)
1-2¢

Since P{’* has unique retarded and advanced Green’s functions, we infer that G e il = G1 «p» and can calculate the right-

hand sides of these conditions using the relations (30), (45) and (48). It is then easy to check that Egs. (51) and (52) are
fulfilled if

PGy = G2, (54a)

PG, = G, (54b)

P Gy =G™! 129 v,6 (54¢)
Guol w2 ¢/ (120) 08 = Oy z VuVpGr c

By a straightforward but lengthy calculation, we find a solution of these latter conditions in terms of (mass derivatives of)
vector and scalar Green’s functions, and replacing those solutions into the ansatz (49), we find that the retarded or advanced
Green’s function for the graviton in a general linear covariant gauge takes the form

m w2 1-¢ Gy — G2
Gil/(l//i/ G:wl(l//}/ - (5 )[V v G l + V/;/V )a}l] - 4(5 - ) Zé’ vﬂv va V/}/ (h)

4(1=¢) Gwe =Gy
oty O T a0 (G
41 =02 n Gyp — Gy — (M? — m?)Gyp
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Lastly, we also want to give expressions for the trace
and divergence of the graviton Green’s function in the
general gauge &, ¢ # 1. Using the relation (45) for the
trace of the graviton Green’s function in the gauge

|

4¢

VGSE, =
9" Gty = [ —2)(1 =

n(1-¢) -

& = ¢ =1, the divergence of the vector Green’s function
(23) and its mass derivative, the equations satisfied by the
scalar Green’s function (16) and its mass derivative (18),
we find

(n—=2)(£-1)¢

Gyp —

va/vﬁ,GMz} . (56)

(1-20)

Now using also the relation (48) for the divergence of the graviton Green’s function in the gauge £ = { = 1 and the mass

derivative of the vector Eq. (20) we find

” 2
« Gl W

v5<
VG 20
—(1=0)-(-

uvd =

—2¢V

2
T-22p >

3. Special gauges and vanishing cosmological constant

Let us elaborate here on the form of the graviton Green’s
function (55), the trace identity (56) and the divergence
identity (57) for special values of the gauge parameters and
for the case with a vanishing cosmological constant.

& — 1: This limit is clearly seen to be regular for all three
identities and will make some of the terms in those
expressions vanish.

¢ — 1: While the trace identity (56) is clearly regular in
this limit, the regularity of the other two identities is not
apparent, since from the definition (53) we have M? — m?
for { — 1. However, the mass terms always appear in the
combination

1—¢ 120 1
MZ—mZ  m?Z  mZ (58)

which remains regular as { — 1, and it follows that the
Green’s function is given by

¢l ’
Growp = ”mﬂ —2(&-1)(VV, Gm 5 +VyVy, ) ),
(59)
while trace and divergence are
GGy = ——— Gy G +4(E - )V, VG2,  (60a)
vl
\% G;wa/}’ = 2§V /Gmﬁ zga/ﬁ/V”sz
2(E=1)VyVyV,G . (60b)
¢ — 1, — 1: From the above expressions, Gﬂm, 5 and the

identities (45) and (48) are clearly recovered in this limit.

ga/ﬁ/v/lGMz -

1) |V VyV,Gyp.

25(1 9
-2

GMZ

-G
VaV Vi <M_m>

(57)

¢ — 0: In this limit, M — 0 and the trace of the Green’s
function vanishes

9vGe .y = 0.

uvd

(61)

&— 0, { = oo: In this limit, M — m?/2 and the trace
term in the gauge-fixing action (37) disappears. We have

2

v 0 [59) _ >
g Gm/a’ﬂ’ - _m (ga'ﬂ'Gm2/2 - Vo vﬂ’Gm2/2>’ (623)
VGl =0, (62b)

In view of vanishing of the divergence of Green’s function,
we can call this gauge generalized Landau gauge.

-0, {=n/2: In this gauge, the Green’s function
decomposes into two parts

2
0.n/2 _ ~TT
Cutr = Gty ~ G =)= 1) I G- (63)
where the “spin-2” part
1.1 21
G;T;(fﬁ' = G/waﬁ’ +2[v V I‘ v /5’ +v/j/v (u :/t)la ]
2 GMZ - sz
+ m (g;wva/ vﬁ’ + 9oy vy vu) <N[2_mz)
2(7’1 2) GMz —G 2 G 2
V NV ViV, L
+ P vV ﬁ{(Mz—mz)z Mz_mz}
2
005 9, O 64
+(n_2)(n_1>gaﬁgﬂl/ M ( )
is transverse and traceless,
_ v TT
V"Gﬂm =0=¢ Gﬂmﬁ,, (65)
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as can be checked using the trace (56) and divergence
identities (57). This gauge is used in AdS/CFT calcula-
tions [30].

A — 0: At first sight, this limit might seem divergent
since both M? and m? vanish in this limit. To show that the
limit actually exists, we expand around zero mass

~ 1 2
sz = GO + m2G0 =+ §m4G0 —+ O(m6), (663.)

G, = G+ m2Gy + O(m?), (66b)

and the analogous equations for M2, and obtain [using also
the definitions of m? (42) and M? (53)]

Gyve — G2 -
W O (67:)
G 2 GO 1—2(;?
szmz_)Mz—mz_ 1_CG0, (67b)
GMZ GO C N
Mz—mz_)Mz—m2+1—(:G0’ (67¢)
Gy — G2 G 1-3¢ 2

M2 —m2)? T M2 —m? 2(1-¢) "

The potentially divergent terms cancel out in the full
Green’s function, and it follows that

: 41 -¢ A
Gy lnmo = Glplaco = 26 = DT V6 + TV 60 + 15 = (0T + 00p ¥, 9,06
2(1-9) n 2
(1 _ 24«)2 n—2 (1 C) + (5 1)(1 3§> vuvuva’vﬂ’GO (68)
and
VG o = =26V GO+ 2 NG
it @) T (= 2)(1 = 2) T Ym0
2

o -ap

In flat space where in addition R,,,, = 0, this coincides
with well-known results (see footnote 5 on page 12).

III. WARD IDENTITIES

As mentioned in the previous sections, the relations
(30), (56) and (57) can be derived as Ward identities of
the free quantum theory. For the divergence relations (30)
and (57), this has already been noted previously
[15,45,46], and in this section we show how to derive
all three identities in the framework of BRST quantization
of gauge theories. A mathematically rigorous formulation
of BRST quantization in the algebraic approach to
quantum field theory on curved spacetimes has been
given in Refs. [37,46-48], but we only need some basic
facts which we state in the following.

A. Massive vector boson

In the BRST formalism, one introduces in addition to the
vector field A, fermionic ghost and antighost fields ¢ and ¢,
and an auxiliary bosonic (Nakanishi-Lautrup) field B. For a
massive (Proca) vector field, the theory is not a gauge
theory, and one must add an additional auxiliary scalar field
¢, known as Stueckelberg field [15,49,50]. The full action
then reads

1) = (n=2)¢J(1=8) + (n=2)(6 = 1)(1 =4 + 222V, VsV, Gy (69)

1 y i =
S:z/[AMPi;zéAy+¢P§mz¢—26P§m2C+§Bz]dgx, (70)

with the differential operators P, ¢ and Py, defined in
Egs. (1) and (5), and where we defined

B=B+&'V,A + mg, (71)

which completely decouples from the rest of the theory. In
the massless limit, we recover the gauge-fixed action of a
free gauge vector in the BRST formulation, and we can also
obtain the original massive theory in the gauge ¢ = 0.
Furthermore, in the limit £ — oo in which the differential
operator P’n’1 g ¢ gives the Proca operator (2), both the scalar

and the ghosts become infinitely massive and drop out of
the physical spectrum, such that the Proca theory is
recovered.

It is now straightforward to check that S is invariant
under the action of the free (linearized) BRST differential
Sy, which is a nilpotent (S% = 0) fermionic differential
acting according to
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SA, = V,c, (72a)
Soc =0, (72b)
So¢ = B, (72¢)
soB =0, (72d)
So¢p = —mc (72¢)

We see that S, generalizes the gauge symmetry to include the
additional fields, replacing the gauge parameter with the
ghost field. In the interacting classical theory, i.e., the full
non-Abelian Yang-Mills(-Higgs) theory, the full nonlinear
BRST differential s extends this action while remaining
nilpotent, and in the quantum theory, one needs to extend it
further to a quantum BRST differential q = s+ O(h)
[48,51]. The observables in the quantum theory are then
the interacting fields and composite operators invariant under
the action of q, but here we restrict to the free quantum theory
and only need S;. A general Ward identity then reads

O:<W|SOTOI“'

where |y) is a Hadamard state, 7 is time-ordering, O; are
field operators (including composite operators, which in the
free theory are local and covariant Wick powers defined with
respect to a Hadamard parametrix), and ¢, is the Grassmann
parity of O;.

The free quantum fields have the following Feynman
propagators in a Hadamard state |y):

O,lw)

250 TWITO; - (500;) - Oplw), (73)

WIT A (DA, () ) = GE (), (74a)
WITRP)lw) = iGEa(x'),  (74b)
WIT @@ ly) = —iGE,. (v, %), (74e)
WITBOB)ly) = -6(x. ¥, (74

¢

and analogously the Wightman functions G* are given by
the same formulas without the time-ordering 7. The
retarded Green’s functions can then be recovered from these
according to the relation (7): G™(x,x') = G¥(x,x) —
G"(x', x). Alternatively, one can consider the purely alge-
braic covariant (anti)commutators

[A,, (), Ay (x)] = A7 (x, 2'), (75a)
[p(x). p(x)] = iBg (x4, (75b)
{e(x).e(x)} = —iAg, (x.2). (75¢)
[B(x). B(x')] =0, (75d)

where A(x,x') = G*(x,x') — G*(x,x) is called the
causal propagator or Pauli-Jordan function. This would
be more in line with the spirit of the algebraic approach
to quantum field theory, where one constructs the algebra of
free or interacting quantum fields first (including renorm-
alization), and worries about states and expectation values
afterwards. Let us again denote the right-hand sides by an
unspecified “G”.
We then use the identity

(wlsoTA,(x)e(x)ly) =0
(or the commutator of those fields), which gives
0 = WITsoA, (x)e(x)|y) + (w|TA,(x)soc(x")|w)
=V, ([T c(x)e(x)lw)
+ (W] TA(x)(B =&V, A —mg) () |w)
= —iE[EV, Gy (. x') + VG (x,2)],

(76)

(77)

which is relation (30). Note that derivatives are taken
outside the time-ordered product, which is in accordance
with the algebraic approach [25,26], and with path integral
calculations (where it is sometimes called 7 * product). One
might also wonder if it is necessary for the scalar ¢ and the
ghosts to have the same propagator (74); this follows by
expanding the Ward identity 0 = (y|Sy7 ¢(x)c(x')|y).

B. Graviton

For the graviton, both ghost and antighost as well as the
auxiliary field obtain a Lorentz index, and the free BRST
differential acts as

Sohu = Ve, + Ve, (78a)
Soc, = 0, (78b)
SoC, = B,,. (78¢)
SoB, = 0. (78d)
The BRST-extended action reads
5=} / hyoPit hyd x+§ / B*B,dx
_/Eﬂpﬁz,_g/u_zﬁj)cvdgx (79)
with
B =B, +- <V” iV,Jz), (80)
¢ 20

the mass parameter m? from Eq. (42) and the differential
operator P} of Eq. (38). Again it is straightforward to
check that SOS = 0. The free quantum fields have the
following Feynman propagators in a Hadamard state |y):
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T By () hyy () y) = iGREE (), (81a)
WIT ¢, (¥, () y) = =G (x ), (81b)
WITB,(x)B,(x)|w) = %gﬂp/au,x’), (81c)

where the propagator (81b) is the vector one with the
specified mass and gauge parameter, and the analogous
expressions for the commutators. To derive the divergence
relation (57), we expand the Ward identity

(w1807 hy ()2 (X)) = 0 (82)

and obtain

0=WIT(Vue, + Vo) (x)ey (F)ly)

AT 0| By = (i = 39 ) | 2

1
el o &4 — %
= —i& {V o (x,x) = 2§g ﬁvp lea’/f( x.x)
+26V,G" " —4/(1 2¢>(x7x/)]' (83)

Using the trace identity (56) to replace the second term and
the relation (29) between the vector Green’s function in
different gauges, the divergence identity (57) follows.

Since the gauge symmetry of the free classical theory
hy, = hy +2V v, arises from linearized diffeomor-
phisms, the divergence identity in the form (83) is the
Ward identity associated to diffeomorphisms (and the c,
are the diffeomorphism ghosts). Similarly, the trace identity
(56) would be the Ward identity associated to linearized
Weyl transformations h,, — h,, + g,,w, but this is not a
(gauge) symmetry of the onglnal action S (36). To derive
it, we thus again need to consider an extended theory with
an additional compensating scalar field ¢, which trans-
forms under linearized Weyl transformations as
d—>d+ (n-2)w, and whose action is obtained from
the original action S (36) by replacing hy, w— 1/
(n —2)g,,¢. This theory is now invariant under hnearized
Weyl transformations, and to gauge fix this new symmetry
we add a (Weyl) ghost d, antighost d, and auxiliary field F.
The gauge-fixed extended action S’ then reads

1 oY 5 D D
§'=5 / iy PEF Ay + 2 / B,B'dx

" 1
+ / FPypdyx + 5 M? / P*dx

/C”Pm —¢)(1-20)Cv dgx—/&'PM:ddgx

n—20—(n-2 Cé/i’”vﬂddgx, (84)

+ %

where now
1
B,=B, +- : (V hy,, Cvﬂh) +§Vﬂ¢, (85a)
~ F 1-2¢ 2(n—=1) = (n=2)¢
F= - —
n—2 4¢ h 8(n—2) ¢ (85b)
2=n—2§_(”_2>§c 2
M- = Hn-2)(1=20) m-. (85¢)
The free BRST differential acts according to
Sohy = Ve, + Ve, + g,d, (86a)
So¢p = (n—2)d, (86b)
Sod = 0, (86¢)
Sod = F, (86d)
SoF =0, (86e)

with the action on ¢,, ¢, and B, unchanged from (78), and

again 8(,S" = 0. The Feynman propagators for /,, and Bare
unchanged, while the others now read

WITP()b()ly) =0, (87a)
WITF(x)¢()|w) = iGhp (x.2). (87b)
WIT F(x)F()y) = iMPGhp (x, ), (87c)

WIT e, (x)2y ()lw) = =iGEr 0wy, (87d)
WITe a0y =i =52

x VGE L (x,x), (87¢)
WITd(x)d()ly) = =iGhp (x, %), (871)
(W|Td(x)e, (x')|y) = 0. (87g)

To derive the trace relation (56), we expand the identity

(wlsoT hy, (x)d(x')w) = 0 (88)

and obtain
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0= 1729400+ ) ()} + (1 = 21T )| F o+ 15 20 2= =02 oy
_ (n— 2)4(; -20) gp/a/G;ifp’a’ (x, %) + n— ZCI—_(;C— 2)¢¢ vaI/GM2 (x, %) — GGy (x. xl):| 7 (89)

which coincides with Eq. (56).

While we had previously derived the divergence and
trace identities only for the (retarded or advanced) Green’s
functions, their derivation as Ward identities means that
they also must hold for Feynman propagators, and in
general for the state-dependent correlation functions if
the theory is to be consistent. This is obviously a much
stronger requirement, and further complicates the already
intricate issue of the construction of Hadamard states in
general curved spacetimes. However, once states have been
found in one particular gauge of the family of linear and
covariant gauges that we study in this paper, one can obtain
states that fulfil the divergence and trace identities for the
whole family by relating the Wightman functions or
Feynman propagators in the same way as the Green’s
functions (29), (33) and (55).

IV. HADAMARD EXPANSION

As explained in the introduction, the Wightman function
for a scalar field in any Hadamard state in four dimensions
has the form [27,32]

1
g sz ()C, X/> (90)

Ghx,x)=H',(x,x) -
for x" in a normal geodesic neighborhood of x, where H™ is
the Hadamard parametrix (11) with the Wightman pre-
scription® 6, = ¢ +ie(r — '), and where U,., V,» and
W,z are smooth biscalars. Since G:;z is a bisolution of the
Klein-Gordon equation, it follows that H:rnz is a bisolution
up to a smooth remainder:

P2 (XVH (x,x') = f'(x,x), (91)

with f and f’ being (unspecified) smooth functions. In fact,
this is the definition of a parametrix for a general differ-
ential operator [27,28]. The Hadamard parametrix an , for
the Feynman propagator is obtained from Eq. (11) using the
Feynman prescription o, = ¢ + ie. This parametrix is a
bisolution modulo a smooth remainder to the inhomo-
geneous equation:

®The prefactor is again a matter of convention.

Po(x)H, (x,x') = 6(x,x') + f(x,x'),
P, ()C’)an2 (x,x") = 8(x, %) + f(x,x), (92)

m
where again f and f’ are smooth functions. Similarly, one
can define advanced, retarded, Dyson (anti-Feynman)
Hadamard parametrices, which coincide with the respective
propagators/Green’s functions up to a smooth remainder in
any normal geodesic neighborhood. Those involve the
same biscalars U, and V., but differ in the type of ie
prescription needed near ¢ = 0 to properly define them as
distributions, and one can use the relations (10) to relate
them. In the following, we will work with the general form
(11), and the analogue for vector and tensor fields, and for
notational convenience drop the subscript ¢ on o.
Furthermore, we will denote a generic Green’s function
or two-point function by G.

A. Scalar field

It is well known that the biscalars Uz, V,2 and W,
possess an asymptotic expansion as x — x’, of the form

U, =UY), (93a)
{V/W},e = {v/wiet (93b)
k=0

with smooth biscalars U(Oz) s V<k) and W(kg , which for

m m2 m

analytic spacetimes is even convergent (see, e.g.,
Refs. [11,17,27,52] and references therein). By requiring
G;z to solve the Klein-Gordon equation outside of coinci-
dence and comparing manifest powers of o, one obtains

Ul = VA (94)

with the van Vleck—Morette determinant [1,33]
Ax.x') = ~[g(x)g(x')] det [V, Vpo(x.x)]. (95)

and the recursion relations

k1 1 k
Q21<+4V,(nz+ ) = —mp m? anz) (96a)
Q2k+4W,(:2H) - _m(sz Wﬁ? + Q4k+6vfr]:;rl)) (96b)
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with the differential operator
Qy =2V+6V, = VFeV, In A + k, (97)
subject to the boundary condition
0,V =P . VA. (98)

Again it is seen that U,. and V,. are completely deter-
mined geometrically, while for W, the first coefficient is
an arbitrary solution of the free Klein-Gordon equation

P,.W% =0, (99)

which encodes the state-dependence of the two-point
function. Imposing smoothness, there is a unique solution
to the recursion relations (96) for which the coefficients are
symmetric [52]. This solution can be given explicitly as an
integral in Riemannian normal coordinates, but in the
following we only need that the unique smooth solution
to OQf = 0is f = 0, from which it follows in particular that

the VE::Q) are polynomials of order k + 1 in m? [52,53]. For
completeness, we give an explicit solution in Appendix A.

1. Mass derivatives

Since the Green’s functions for vector and tensor fields in
a general gauge (29), (33) and (55) also involve mass
derivatives, we need to calculate the corresponding coef-
ficients of the Hadamard expansion. As explained previ-
ously, certain states (i.e., Wightman functions or Feynman
propagators) might be ill-behaved for certain ranges of the
mass parameter, and the same applies to their mass deriv-
atives. However, this problem does not arise for the retarded
or advanced propagators (which are state-independent), and

is thus confined to the W biscalar. In the following, we will

also present formulas for the coefficients Wi?’ with the

understanding that we only consider such states for which

the resulting expressions are well-defined. In contrast, the
k)

corresponding formulas for Uf:;) and the anz are always

well-defined; in fact, U f,?z) (94) is mass-independent, and as

stated before V;(qu) is a polynomial in m? of order k + 1. The

Hadamard expansion of the mass derivative (17) is then
simply obtained by taking a mass derivative of Egs. (8), (90)

or (11) and the recursion relations (96) for the coefficients.
0)

Since Ufnz is mass-independent, it follows that

i . N
Gue = == [V, In (4P0) + W3],

100
T (100)

where V and W have the asymptotic expansions

Ve =3 V86 =3 Wl (101)
k=0 k=0
They fulfil the recursion relations
N 1 N
O sV = o (P, VY —vE),  (102a)
u 1 R
K+l k k
Qasa Y = =g (P = W)
1 o (k+1
_mQ4k+6 Enj ) (102b)
with the boundary condition
N 1
7 = SVA (103)
for \7532) , and Wfr?,) fulfilling P, Wi?z) = Wfsz).

For later use, we now show by induction that for all
k>0

o (k1) 1 (k
A 104
m 2k +1) ™ (104)

Take first k = 0, which by the recursion relation (102) and
the boundary conditions (98) and (103) fulfils

Therefore,

o 1
Q4<an12 —Ev,,?Q) —0, (106)

and the unique solution of this first-order differential
equation which is smooth vanishes [52]. Assume now that
k > 1, and that the relation (104) has been shown up to
order k — 1. Applying the differential operator Q,;,4 on
Eq. (104) and using Eq. (102), we obtain

o (k+1 1 k
Qop+4 anj ) —mv;z)

1 N
=Tkt D) (QusaVW 2P, VM —2v1) - (107)

By the induction hypothesis we have ‘7511:2) = 1/(2k) VE:;Z_ b,
which using Eq. (96) leads to
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o (k1 1 k
Q2k+4 [Vin;r - mv;g]
1 Ko, 1 k=1
= —m <Q2k+2V£n2) +_Pm2VEn2 )) =0. (108)

Again, the unique smooth solution of this first-order
differential equation vanishes, and we obtain Eq. (104).
However, no similar relation exists for the Wffz)

Similarly, for the second mass derivatives we have

>>

G, é [V, In (420) + W], (109)
T

with (since \7(02)

.» 1s mass-independent, the first coefficient

XQ/f,?z) vanishes)
@mz = Z ‘ﬁlnfzdk, V:sz = Z V;V,(:zdk, (110)
k=1 k=0
the recursion relations
A (k+1) 1 A (k o (k
QsiaV e _m(PmZsz _2V(2)’ (111a)
& (k+1) 1 2K vk
QoeiaW, o = == P Wie = 2W™)
1 2 (k+1)
] Quit6V 2 (111b)
with the boundary condition
YO
Vie =3 VA, (112)
4,(0) .
and W, fulfilling
W = 2w, (113)

Moreover, taking a mass derivative of Eq. (104) we obtain
for all k> 1

Wty _ 1 e 1

v po 1
2(k+1) ™ 4k(k+ 1)

VD (114)

Since the coefficients Vf:? are polynomials in m~, one

can also derive formulas which relate coefficients for
different masses. The easiest way to obtain those is to

expand around zero mass
a/
2y¢ {7vfjﬁ} . (115)
m =0

k:Z )f

and then use the relations (104) and (114) and their
generalizations to higher mass derivatives, together with

2

the boundary conditions (98), (103) and (112) and their
generalizations to higher mass derivatives. Later on we will
need these expressions for k = 0, 1, 2, where we obtain

. 1
Vi = vy +m Vg = v+ S mVA, (116a)
1 1
Viiz) =y +§m2V(()O) +§m4vA
1 1
= vy 4 gm?V ) = omtVA, (116b)
2 @ 1 1 ( 1
Vit = Ve gtV emtVy) 4 gemS VAL (1160)

B. Vector field

The vector Green’s function and the local Hadamard
parametrix in Feynman gauge £ = 1 have been studied
quite extensively in the literature, see e.g., Refs. [1,54-58].
In this gauge, the Hadamard expansion takes the form [1]

m2,1

m2,1 1

U /
= —— [ v in (42

m?,1
= [T VI (o) + W

" (117)

where the same assertions as in the scalar case apply. In
particular, the functions U, V and W are smooth symmetric
bitensors possessing an asymptotic expansion of the form

m?.1(0)

vt =o', (118a)
- ng"pil“‘) k (118b)

ﬂ’lz
Wl = ZWW , (118¢)

and imposing the equation of motion (20) outside of
coincidence and comparing manifest powers of o, they
fulfil the recursion relations

m? 1 (k+1 1 w21 (k
Qo 4V 5 = gy 1guﬂPl:,lp Vo . (119a)

m?1(k+1) 1 o m? 1 (k)

Q2k+4 Wyﬁ/ - k +1 gyﬂP/;Zz 1Wp/3/

1 m? 1 (k+1

i 7 QarseV ey (119b)
with the boundary conditions
'O = VAgy, (120a)
m2,1(0

QZVDﬂ’ © — _gvﬂPZpZ’l(\/_A'gpﬂ/)’ (120b)

and WZZ,’I(O) being an arbitrary smooth solution of the

2
equation of motion P, W 10

o = 0, encoding the state
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dependence. An explicit solution in Riemannian normal
coordinates can be given in the same way as for the scalar
field. Here again appears the parallel propagator gz, which
is defined as the unique solution to [33]
VPV, gup =0, y{ggﬂﬂ/ = Gup- (121)
For a general gauge, the retarded or advanced Green’s
functions are given by Eq. (29) in the massive case and
Eq. (33) in the massless case, which completely determines
the U and V coefficients and thus the Hadamard para-
metrix; we assume that the relation between the Wightman
function or Feynman propagator in different gauges is also
given by Eqgs. (29) and (33), which then also determines the
W coefficients. Using the Hadamard expansion of the scalar
propagator (11) and taking into account that the first

coefficient Uir?z) is mass-independent, it then follows that
their Hadamard expansion is given by

C o rymEED mieo)
m* & n_ 7w 74
Gvﬂ' (x,x) - ]2 |: o2 + P
+ V;J’}}/gln (1*o) + Wy/s/ ] (122)
with the asymptotic expansions
'"*f—ZV k '”5—ZW Ik (123)

The coefficients {U/V/ W}:’;,’é(k)
the expansions (117) and (8) into Eq. (29), performing the
derivatives and comparing manifest powers of ¢. Using also
the mass expansion (116), this gives

are obtained by inserting

une =1 as L0, (124a)
g0 g _e= 1o g VA
v ) (200,Vy) +oup)
1
+3 VO +vO)e o,,,] (124b)
® _y®
Vil =V
m?,&(k) m? m?
V 4 - V / v v /7
17/ /3 p m
k1
[+ 2)o,0p (VR — V)
+ (204, V) + o) (ViR = VDY (1240)

where to shorten the resulting expressions we have defined

6., =V, V0, (125)

and the lengthy expressions for the W coefficients are given
in Appendix B.

We note the appearance of a term proportional to 6~ in
the Hadamard expansion (122), which seems more singular
than the 6~! term. However, the presence of 0,04 in the
numerator of this term reduces the strength of the singu-
larity, which in a mathematically precise way is captured by
the scaling degree or degree of divergence (scaling degree
minus spacetime dimension) [59,60]. Near coincidence, we
have o(x,x') =~ (x —x')?>/2 with the Minkowski squared
distance (x —x’)?, which upon a rescaling {x/x'} —
{x/x'} is rescaled by a factor A%, and ™! has thus scaling
degree 2 and degree of divergence 2 —4 = —2. Since the
degree of divergence is negative, o~! (with any e pre-
scription) is already well defined also at coincidence; i.e.,
the limit ¢ — 0 exists after smearing with arbitrary test
functions whose support contains x = x' (see, e.g.,
Refs. [24,26,46]). Similarly, o,(x,x') ~ (x —x’), near
coincidence which scales with a factor A. Therefore, the
degree of divergence of 6,04/ 62 is also —2 < 0, and this
term is again already well defined at coincidence for any €
prescription.

One might still wonder why this case is different from
the Hadamard expansion of the product [G,.(x,x")]?,
where also terms proportional to 62 appear. There, such
terms must in general be renormalized depending on the
concrete type of Green’s function/Wightman function/
propagator. For example, for the Feynman prescription ¢ +
ie we have (o +ie)72, which is not a well-defined
distribution in four dimensions. However, in our case this
term comes from taking a derivative of 6!, which is well-
defined for any prescription as a distributional derivative.
For example, for the Feynman prescription ¢ + ie we take a
derivative of the relation (10) and obtain

d 1 1
where the right-hand side is a well-defined distribution in
four dimensions, and the left-hand side is how o2 in the
Hadamard expansion (122) (with Feynman prescription)
should be understood. The higher negative powers of o
which appear for the graviton are defined analogously.

The massless limit can be taken easily using the
expansion (115) (and its analogue for the W coefficients,
which we assume to exist as explained above). Using also
the relations (103) and (104) we obtain

— l
UV =>——+/Ao,0p. (127a)
0. &-1 I~ 0
UD;/( ) Ugﬁl/ - T [(ZG@V/}/) —|— Gy/j/) A —|— VE) )Ul,Gﬁ/],

(127b)
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(k+1)

-1 A
VO'E(k) _ VO,I(]() _ gT [VDVﬁ/V(()k) + (k + )6 Uﬁ/VO

vp up

+ (204, + 0,0V, (127¢)
and the expressions for the W coefficients are again given
in Appendix B. Of course, these expressions are identical
to the ones that would be obtained by inserting the
Hadamard expansion of GO (100) into the massless vector
propagator (33).

1. Mass derivatives

For use in the graviton case, we also need the mass
derivative of the vector coefficients. In Feynman gauge
& =1, we take a mass derivative of the recursion relations
(119) and obtain

2 1 (k-1 1 2,1 (k 2,1 (k
QxisaVyy e = —m@yypﬂmp Vo . -V W),
(128a)
m2,1(k+1 1 ) 21 (k
Q2k+4wyﬂ’ e )* k+1 (guyPl,Zz lW:,nﬁ/ ®

=~ Wi 4 Que ¥, ) (1280)

and taking a mass derivative of the boundary conditions
(120) we have

m?,1(0)

~m?,1(0) Q2
vp

Uz//i’ =0, \/_guﬁ’ ( 1 29)

The last equation again admits a unique smooth solution
[which can be checked using the properties of the bitensor
of parallel transport (121)], given by

¢ n12 1(0
l/ﬂl \/_'gy/)” (130)

and similar to the case of the scalar field the boundary

A 2
condition for W/,

is
m2,1 (0)

A n12,l(0) o
W — leﬁ’

kP
InPz 1 W o

(131)

In complete analogy to the scalar case, we show by
induction that for all £ > 0

2,1 (kA1) 1 m?,1(k)
V / N V / 132

vﬂ M (132)
Take first k = 0, which by the recursion relation (128) and
the boundary conditions (120) and (130) fulfils

m?.1(0) m?,1(0)
—gWP”’” 1% +Voy

om?1(1)
Q4Vuﬁ/ - 217 pp

1 m=, m-, 1 mz,
=50Vl v O =Zo,vi O (133)

The unique smooth solution to this first-order differential
equation is given by (132). Assume now that k > 1, and
that the relation (132) has been shown up to order k — 1.
Applying the differential operator Q,;,4 and using equa-
tion (128), we obtain

em?,1(k m?,1(k
Qo a2k + D)V v 1)

m?,1(k

=0V ~2g,,P" Pt gy e,

21V o (134)

N
Since by induction we may assume that V;';/l(k) =

1/ kv 1 it follows that

m m2,
Oopsa2(k+1) yﬂ’l<k+1) Vyﬂ’l<k)]

m (k) 1 up —1)

1
—On2V et

kg”" m?.1 " ppf' =0

(135)

using the recursion relation (119), and the unique smooth

solution is again given by (132). Again, no similar relation
A 2

exists for the Wzlﬁ,'l(k).

In a general gauge, the mass derivative of the vector
coefficients is easily computed by taking a mass derivative
of the general Hadamard expansion (122). Since many
terms are mass-independent, their derivative vanishes and
we obtain

v
(2

sz.cf _

; " .6(0)
W= g

+v’” “In (u?0) + W, 5] (136)

with the asymptotic expansions

[so] [So]

k &om? & a2 E(k)
Z vﬂ’ 6 > W ZWD/J’ o

k=0 k=0

(137)

Using the relations (130) and (132) for the mass derivative
of the Feynman gauge vector coefficients, (103) and (104)
for the mass derivative of scalar coefficients, and (116) for
different masses, one can compute these coefficients, and
we delegate the lengthy expressions to Appendix B.

Let us here make a remark on the singular nature of the
Hadamard expansion of the vector propagator. Naively, one
might expect that the Hadamard expansion (122) of the
vector Green’s function in the general gauge £ # 1 contains
a term proportional to ¢, arising from two derivatives
acting on the term proportional to ¢~! in the Hadamard
expansion (11) of the scalar Green’s function. However,
since the general gauge vector Green’s function (29)
involves the difference between two scalar Green’s func-

tions with different masses, and the coefficient U 532) of this
term is independent of the mass (94), this term actually
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vanishes, and the most singular term in the Hadamard
expansion (122) is proportional to ¢72. Its coefficient
U™ <=1 s again mass-independent (124), and thus the
Hadamard expansion of the mass derivative of the vector
Green’s function (136) has only 6~! as its most singu-
lar term.

C. Tensor field

In the analogue of Feynman gauge £ = { = 1, we have
the Hadamard expansion [8,35]

1.1

i U
11 1 Vol 1,1 L1
Gl = =5z | L4 Vit I (20) + Wik | (138)

where the same assertions as in the scalar and vector case
apply. In particular, the functions U, V and W are smooth
symmetric bitensors possessing an asymptotic expansion of
the form

L1 1,1(0)
Uﬂl/a/ﬁ/ = U}wa’ﬂ” (1393)
Vil Z viet, (139b)
whl,, = WmS;, (139¢)
k=0

Requiring G;Lla’ 5 to be a solution of the equation of motion

1rpoc ~1,1
Pi1 G s
recursion relations

, = 0 outside of coincidence, they fulfil the

VARICES! 1 211k
Q2k+4 /wa( ; ) k 4 lgﬂpguaP/fG]K VK/la(’/j)” (140&)
1.1 k+l 1 v 1,1(/()
Q2k+4WﬂwE BT k+ 1gﬂpng T Wy
1 RIS

Trr 7 QuireV purp (140b)

with the boundary conditions
|

-9

$L=1) _
Uy’ = [2(5 ~ Do =1 ag)

£.£(0)
U;wa’ﬂ’
- (¢-Dle,V
1 -
L=
(1-20)
+2(c? - V)”W/ﬁ/AV“(z) + 60,0,0,05 AVEEE),

(g o );u/(z/}’ + C(é Z.:)(

1.100) 1
U;wa’/j’ - \/K<g(x’(ugy)/}’ - Egﬂyggﬂ/j’) s (1413)

1,1(0 A1 1,1(0
Q2Vﬂl’(1(//")l - _gﬂ/’gl’f’PTo-lK UK/la(’/iz’ (141b)

and W' is an arbitrary smooth solution of the equation
pva'p

of motion P} GWWOE, y = 0.

To obtain the Hadamard expansion in the general gauge
&, ¢ # 1 we have to insert the expansions (8), (100) and
(136) for the scalar and vector Green’s function and their
mass derivatives in the general gauge Green’s function (55),
using also the relations (132), (103), (116) and (141) as
well as the definitions of m? (42) and M? (53). After a

straightforward but lengthy calculation, it follows that

U§§
3 uaf e
Gﬂm’ﬁ' 822 [ c +Vﬂ”aﬁl n(u? 6>+W ’/f’:|’ (142)

where similar to the vector case the expansion of U now
contains negative powers of ¢, namely

0
&C &L(k)
Uﬂva’ﬂ Z Uﬂva’ﬂ’d
k==3

(143)

while V¢ and W% have the usual asymptotic expansion

Ve Z Vifa,ﬂ,a (144a)

£ £L(K)
Wty = Z Wi po*. (144b)

k=0
We obtain
£e(-3) _

Uﬂwf/)” =0, (145)
U = <2¢(8.0)o,0,0005 VB, (146)
Ve ,,,} VA - 20,0,0,05AVEER), (147)

1 .
- (g“'("g””” _Egﬂ"ga’ﬂ)ﬁ‘ (&= Doy + opugoe) VA =2 = Doy Vi) Vo)
(a’(\/Kgﬂ/)l/) +o, \Y% ’(\/Kgﬂ’ ) + 0, /V (\/ng ﬂ/) + aﬂ,v(”(\/ggy a’)}
(g o v)"m \/__C(Z-’: §>< 2 vz)uva \/_“‘ ( C) (9 c )m/a’ﬂ’ [VO (1 ) m \/K

(1-28) 4(1-20)

(148)
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pval f

2
VI = VIO — (= D)V, Vi (VAgp) + V.V (VAgs,)] -2 —1>a ey

m?,1(0)

.+ oVaVy

2.1(0) 2.1(0)
—(E=DlowuVyy  +opuVye  +0VaV i

(1-¢) o, (1-9) (1-3¢)
+ (1=20) (g- Gz)ﬂv(l//}/ Vo' + 1=20) (g-o- V)ﬂm,ﬂ, SISV A2 m2(g- Gz)mdﬂ/]
)

(1-¢) (1-3¢) (1-5¢ + 782
(1-20) a—2g) ™ Ve 550 0

- C(é, g) (6 . VB)/MG//}/\/K + 2(02 . VZ)ﬂya,ﬂ,AVf,C(z) + 6(0’3 . V)ﬂm/ﬂ/AV‘f'CG) + 24G”Gu6a/6ﬁ/AV§’g<4)

=+ ga’ﬁ’vﬂvy =+ g;wva’vﬂ’ =+

and (for k > 1)

V&C(k) Vl,l(k) _5; (V V /Vm A (k=1) +V V ,Vm A (k— 1)—2(k—|— 1)(5_ I)J”sz’l(k+l)6ﬂ’)

il =V 18" 418 D
1(k) 1(k) m (k)
— (€= DlowuVy Y+ opV i + VWV + o ViV + 2V, Vi Vo)
(k+2) (k+2) (k+1) (k+1)

2(1 C) 2 Vz _Vz VMz _Vz

R [ D+ D0 )y Bt (a0 Dy
2(1-¢) v, — v

+( =20) l(ga’/;’v Vo + 90 Ve Vﬁ’)ﬁ

+ V, VYV Vi AVEED (k4 1)(0 - V3) g AVESED (K 2) (k + 1)(6% - V2) ,pp AVECETD)

+ (k+3)(k+2)(k+ 1)(6° - V) gy AVEEESD) - (k +4) (k + 3) (k + 2) (k + 1)0,0,0,05 AVEEETD),

with the abbreviations

¢ (k) ¢/ (k) (k) (k) 2 _m2)V (k)
AV§,C(k)E—(§—1)4(1_C) _V2 +4(1‘C)2(32—‘5) Ve = Vi - - (M - )VMZ’
(1-20) M (1-20) (M2 = m?2)?
(g ' Gz)ﬂya’ﬂ’ = Gup0u0y + 90 0p
(o V)ﬂmzﬁ/ = 2aﬂay0(a/vﬁ/) + 20(,/0/,»/0(MV,,) + 46,0, 0p) + 0,0,00p + 00504,

(g "0 v);wa’ﬂ’ = 2ga’ﬁ'6(/4vu) + 2guu0(a’vﬁ’) + 9oy O + 9uw0dp»

(02 . Vz)ﬂm/ﬂ, = O'ar()'ﬁrvﬂvy + O' o, V IVﬁ/ + 20' O' /Vﬂr V —|— 20’ 6 IVﬁr V + ZG}WO'(O/VI;!) + 26a/ﬂ/6(ﬂvy)
+ 46((1/6[)")( \Y% V) + 46 Oy) a’v/}’ + 0,00 p +20 w(@Op ) + 20( v)dp + 20((1’0-[)’/)/41/7
(0" V3)ﬂm/ﬂ/ 26 V V Vﬂr +26 /Vﬂr V V +26 rvﬁrr V +26 /Vﬂ/ V + 0 VU,V/;/ +o0 /ﬂ/V V
+ zarfﬁ’(uvw + 204« Vﬂ’) + O s
E-1D(1=30)+2(1=¢
c(e.0) = (1 =9I - 1)( ) +2(1-0)]

2(1-2¢)?

m4(g ° Gz)ﬂya//}/:| \/K

(149)

(150)

(151a)

(151b)

(151c)

(151d)

(151e)

(151f)

(151g)

Again, we have delegated the even lengthier expressions for the W coefficients to Appendix B. Similarly to the vector case,

the general-gauge graviton Green’s function (55) is less singular than one would naively expect. Since the coefficient U 532) of
the most singular term in the Hadamard expansion of the scalar Green’s function (11) is mass-independent, the term
proportional to 6~! disappears both from the difference of scalar Green’s functions and their mass derivative in Eq. (55),
leaving the logarithmic term In(u’c) as the most singular. Because four derivatives act on it, one would expect a term
proportional to 6~* in the Hadamard expansion (142) for a general gauge. Nevertheless, the coefficient of this term turns out
to vanish (145), and the most singular term is proportional to 6~>. So far, the reason for this cancellation is unclear.
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D. Generalization to » dimensions

Since already in four dimensions the formulas for the
Hadamard expansions in general gauges (in particular the
state-dependent W coefficients) become quite complicated,
we only indicate how one proceeds in n # 4 dimensions. To
actually calculate the coefficients themselves, and in
addition their covariant expansion that is needed to calcu-
late the expectation values of composite operators, the use
of a computer algebra system is highly recommended [61].

1. Scalar field

In n dimensions, the Hadamard expansion for a scalar
field has the form (see, e.g., Ref. [11])

U,z

G, = —ic, T +V, o In(y?e) + W, (152)
where the constant c¢,, is given by
1/(4x) n=2
Ch=ATEy (153)
20m)} ’

and the asymptotic expansion of the biscalars {U/V/W}, -
is of the form

OV IWe =S qUviwiist, (154
k=0

where Vf:z) = 0 in odd dimensions and Uffz) =0 for k >

n/2 — 2 in even dimensions. That is, in odd dimensions the
logarithmic term is absent, in n = 2 dimensions U,> = 0,
and in even dimensions greater than n = 4 there are terms
more singular than ¢~!. The recursion relations (96) now
read

2
0y UK = ST U, (155a)
1

OV =~ PueVih (1550)

oW = (P oW 4 0y, VET) (155¢)

k+1

with the Klein-Gordon operator P,. (5), and must be
solved with the boundary conditions

v =0 Vv9=-va (156)
in n = 2 dimensions,
U0 =va, 0,V =-pPU"P (157)

in even dimensions greater than 2, and

vi% =0 (158)

(0)

in odd dimensions, while sz is always a solution of the

Klein-Gordon equation szWffz) = 0. Formulas for the

mass derivatives can then be derived in exactly the same
way as for n = 4.

2. Vector field

In Feynman gauge & = 1, we have the direct generali-
zation of the scalar formula for the propagator:

Gm

vp

m?,1
. y m? m?,
= —ic, [ n/g TtV "In (120) + " 1}, (159)

with the asymptotic expansions

= m2,1(k
{w/v/wyn! ;{U/V/W}yﬁ, Wk, (160)
where V;"ﬂz,’l(k) = 0 in odd dimensions and U:';'l(k) = 0 for

k > n/2 —2 in even dimensions. The recursion relations
are

k) P Un W (161a)

Qo2U,y T
Qo VI ) = - kilgy,,P’;jzlvjﬁ W (161b)
QZHHW:ZJ(H]) _ kj- G P, W/r)n;/,l(k)
ler T Qutan vt (16le)

with the operator P/;,pm defined in Eq. (1), and are solved

with the boundary conditions

m?,1(0)

2.1(0
UD/))I - 0’ VZ;}/ ( ) _\/Zgy/}’ (162)
in n = 2 dimensions,
O — VAg,y, (163a)
m?,1(0) m?,1(n/2-2)

Qn_zvyﬁ, = —gWP’:fZ IU/)/f/ (163b)

in even dimensions greater than 2, and

m2,1(0

'Y =Vagy,  vi'0=0  (164)
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and W10

in odd dimensions, B

to P w0 =,

m2,1"" p

In a general gauge, the Hadamard expansion is again
obtained by inserting the scalar and Feynman gauge vector
Hadamard expansions into Eq. (29). We refrain from giving
the general expression here, and only note that the most
singular term is of order ¢~"/2.

being a solution

3. Tensor field

In the gauge £ = =1, we again have the direct
generalization of the scalar formula for the propagator:

1,1
G — i U/wo/ﬂ’
pvd n Gn/2—1

+VLL I (o) + W ,ﬂ,} . (165)

puval puval

with the asymptotic expansions

0

1,1(k
{wv/witt,, = ;{U/V/W}Wf,ﬁ),ak,

(166)

where V'™ =0 in odd dimensions and U"“'¥) =0
uva' f pd fp
for k > n/2 —2 in even dimensions. The recursion rela-

tions are

L1(k+1) 87 71.1(k
Qoi2U ﬂwfrﬂr = —mgypgw (e Uyéa’p)’ (167a)
1
1L1(k+1 oy 1,1 (k
Q2k+nvﬂwf/ﬂ’ '= i 1w (i V}/éa(’ﬁz’ (167b)
LI(k+1) 1 5vr, 11 (k)
Q2k+” W/w(z’/}’ - _mgﬂl)gbﬂpqiy W}/ﬁr/[)"
1 L1 (k41
i Quky21n V,M(//;r ) (167c)

with the operator P{"{” defined in Eq. (38) and the
boundary conditions

1,1(0 1
U;wa(’ﬂ)’ = \/K<ga’(ygv)ﬂ’ - mgﬂyga’ﬂ’> s (168)

in n > 2 dimensions,

1.1(n/2-2)

1,1(0 5
Qn—ZV,,wE/ )' = _gppng/])fjly Uy(sa/ﬁ/ (169)
in even dimensions greater than 2, and
1L1(0) _
Viap =0 (170)

in odd dimensions, and Wlll;g,oﬁ), is a solution to
poySyyr1.1(0)
Py Wﬁdﬂ, =0.

In a general gauge, the Hadamard expansion is again
obtained by inserting the scalar and vector Hadamard
expansions into Eq. (55). The corresponding expressions
are extremely lengthy, and we note that while naively the
most singular term is of order 6~"/>72, it is again possible
that as in four dimensions its coefficient may vanish.

V. OUTLOOK

We have studied vector and tensor Green’s functions in
different linear covariant gauges, derived divergence and
trace identities and calculated their Hadamard expansions.
Although the classical gauge theories are clearly indepen-
dent of the choice of gauge fixing, the issue of gauge-fixing
independence at the quantum level is technically much
more involved (see, e.g., Ref. [45] for a proof of the
independence of the stress tensor of the gauge parameter for
electrodynamics). A suitable formalism to study these
issues is BRST quantization, where classical observables
are invariant under the action of the (classical) nilpotent
BRST differential s, which generalizes the gauge symmetry
to the additional fields introduced in the BRST formalism
as explained in Sec. III. Furthermore, two observables are
identified if they differ by an s-exact term, such that one
needs to study the cohomology of S. At the quantum level,
the BRST differential needs to be extended to a quantum
BRST differential q [48,51], which differs from s by
corrections of order 7 (and higher), and the (renormalized)
observables are in the cohomology of q. Formally, the
independence of the correlation functions of these observ-
ables from the choice of gauge fixing follows from the
BRST invariance of the full action § including counter-
terms SS =0, in a regularization scheme where q =S
(such as dimensional regularization). To prove this inde-
pendence rigorously, which can be done in the framework
of algebraic quantum field theory on curved spacetimes, it
is of course necessary to first construct the theory for
different choices of the gauge fixing. To construct the
algebra of (composite) field operators in the free theory, one
needs to know the Hadamard parametrix in order to define
local and covariant Wick powers, and to construct the
interacting algebra one needs to know the retarded Green’s
functions, both of which we provide in this work for the
class of linear covariant gauges. It then turns out that the
cohomologies of q for two different gauges are isomorphic
[62], i.e., there is a one-to-one map between observables
calculated in two different gauges.

ACKNOWLEDGMENTS

We thank Chris Fewster, Thomas-Paul Hack, Stefan
Hollands and Jochen Zahn for discussions, and Stefan
Hollands for originally suggesting the problem and for a
critical reading of the manuscript. This work is part of a
project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under the

025022-20



GREEN’S FUNCTIONS AND HADAMARD PARAMETRICES ...

PHYS. REV. D 97, 025022 (2018)

Marie Sktodowska-Curie grant agreement No. 702750
“QLO-QG”. M. T.T. thanks the Max-Planck-Institut fiir
Mathematik in den Naturwissenschaften and its
International Max Planck Research School (IMPRS) for
financial support.

APPENDIX A: HADAMARD COEFFICIENTS IN
RIEMANN NORMAL COORDINATES

The explicit solution to the recursion relations (96) can
be given in Riemann normal coordinates. For this, we first
rewrite the differential operator Q; (97) in the form

OF = VA(2V*6V, + k) <i> (A1)

VA

Riemann normal coordinates are such that the geodesics
from x" to x are straight lines:

Y(A) = () 4 Al = ()] (A2)
It follows that ¢ is given by
1 Oy* Oy¥
N — -
o5, ¥) = 5.0 (6) (A3)
and we calculate
dy”
(2VH6V, +k)F(y. x') = ( (,MV +k> (y,x)
= (220, + k)F(y,x')
= 20778, [F (y, ¥)]. (A4)

We thus obtain that the unique smooth solution of Q, F = J
is given for all k > 0 by

ooy =X [Nl o020 (as)
Va0 =2/ 74

The recursion relations for the scalar Hadamard coefficients
(96) can now be explicitly solved and read

(k)
(k+1) __ \/K /]|:Pm2Vm2:| 7 7k+1
1% = — ,xDARTA, Aba
8 = s [P | o) (A6)
Wk 1 (k+1) VA
m? k+1 2(k+1)
P, W 420k + 1)yET
x/[ m? ( nv m? }(y,x’)/lkd/l,
0 VA
(A6b)

and the boundary condition (98) for Vf'?z) can be written as

°=-—\F/[ e }y’ ¥)dL (A7)

For the vector and tensor coefficients we obtain similar
expressions.

APPENDIX B: FORMULAS FOR THE W
COEFFICIENTS

Assuming that the Feynman propagators or Wightman
functions in two different gauges are related in the same
way as the Green’s functions (29), (33) and (55), we can
also determine the relation between the W coefficients in
the same way as for the U and V coefficients. For the
vector, this gives

szf( ) W

Y
" ~V, VAW,

v/}’
~ (6 V),pllk+ 1)Aw<’<+1> T Av<k+1>]

—o,0p[(k+2)(k + AW

£,
+(2k +3)AvE], (B1)
where we defined
(k) (k) (k) (k)
w w V.,,=-V
k m? m? k m? m?
AWl =t Ayl =St (BY)
and
(U . v)l/ﬁ’ = ZU(VVﬁ!) + Gyﬁr, (B3)

and in the massless limit we have [using the relation (104)]

1
av o= lyten gy

5 (k
_)(5_1)W(())’ Em 2k 0

(k)
AWg.mZ
For the Hadamard expansion coefficients of the

mass derivative of the vector Green’s function (136), we
obtain

2 -1
Ubﬁ/"}:(O) = —éT\/KUDJﬁ/, (BSa)
o ~1

yﬂ’g fguﬁ’ - (6 v)uﬂ’f

1 53 )
-3 @ -1+ c L2 va o065,  (B5b)

etk _ 1 om2 1(k-1)
Vo™ =5 Vi V VsV

k+1

1 (k+1) _
(6 9), v -

0,050V (k2 1),
(B5c¢)
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~m? E(k)  m (k)
Wyﬂ/ - Wl/ﬂ,

UDO'/}/
2(k+2)

1 (k)
2_k vyvljléwf‘mz -

[(k+ D)k + 205w 4

where we defined
& (k+1)
EV
2k + 1)

1
2(k 4 1)

_plen _ Av(k+1)

(0-V),y [(k + Daw 4 5vé"}”}

(2K +3)5viE ], (B5d)

(k) (k+1)
gv —vY _2(k+ 1)AV
.fm m? £m? (B6a)

(k+1) __ m
syl =

§,m m2
WD kD A

WD = ok 4 1) 2

m? ’

k+1)
m?

(B6b)

m
2
Em m2

Finally, the W coefficients of the Hadamard expansion of the graviton in a general gauge read

WSC()

e =W —2(6 = 1) [V, Y, Y4V, W

=20 =1)(k+1)[(c-V)y, “;ﬂﬂ(k*')

2(1-¢)
TR

)
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2)
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(6 Vg

Wik -

{w+2Xk+nm‘anﬁ

wi, —
M2

ijl

+ = |:(ga’/}’v v + g/wva v/]’)
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(1-2) M

and the abbreviations (151).
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