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In this paper, we study the collapse of a massive shell in 2 + 1 and 3 + 1 dimensional gravity with anti-
de Sitter asymptotics. Using the Gauss—Codazzi method, we derive gravitational equations of motion of the
shell. We then use the functional Schrédinger formalism to calculate the spectrum of particles produced
during the collapse. At the late time, radiation agrees very well with the standard Hawking results. In
3 + 1 dimensions, we reproduce the Hawking-Page transition. We then construct the density matrix of this
collapsing system and analyze the information content in the emitted radiation. We find that the off-
diagonal elements of the density matrix are very important in preserving the unitarity of the system.
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I. INTRODUCTION

The existence of Hawking radiation is an outcome of
quantum effects in the curved spacetime near a black hole.
Although Hawking’s original calculations were based on a
ray-tracing method in the vicinity of the black hole horizon
[1,2], the Planckian spectrum of emitted radiation has been
derived using other methods as well [3—5]. The thermal
nature of Hawking radiation gives rise to the so-called
information loss paradox, and this has led to extensive
research on the origin of Hawking radiation [6-8].

In the case of the static black holes, the existence of an
event horizon is crucial for particle production because the
Killing vector which is timelike outside becomes spacelike
inside the horizon, thus allowing for the macroscopic flux
of positive energy toward infinity and negative energy
inside the black hole. However, one might also consider a
dynamical collapse. A time-dependent metric can also be
responsible for particle production since energy is not
conserved. During a gravitational collapse, the dynamical
background spacetime excites the modes of the fields
which propagate in that background, thereby producing
radiation [9,10]. This particle production, also known as
pre-Hawking radiation, should approach Hawking radia-
tion as the collapsing object reaches its own event horizon.
Hence, it is crucial to understand particle production due
to a collapsing object in the vicinity of its own horizon.
Additionally, a static event horizon does not form within
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finite time with respect to an outside observer, and hence,
understanding pre-Hawking radiation is very important.

Black hole physics in anti-de Sitter (AdS) spacetimes has
attracted a lot of attention, partially because of the non-
trivial structure of the curved AdS space and partially due
to the possible AdS/CFT correspondence. Most of the
existing work has focused on preexisting black holes in
AdS space. Although there is some work on the gravita-
tional collapse leading to the formation of black holes,
the bulk of it is on the collapse of a scalar field in the
curved background (see, e.g., [11,12]). In addition, there is
virtually no work on the quantum radiation which accom-
panies the gravitational collapse of an object.

In this paper, we study gravitational collapse of a dust
shell in the presence of a test scalar field in an asymptoti-
cally AdS spacetime. In the commonly used Bougliubov
method, knowledge of the explicit form of the modes is
critical in order to calculate the mismatch of modes at early
and late times of the collapse. However, finding the explicit
form of modes is a challenging task. To circumvent this
problem, we applied the functional Schrédinger formalism
to study the emitted particle spectrum [13—17]. This
method is suitable for time-dependent backgrounds since
the time-dependent wave functional contains information
about all field excitations and their time evolution. In
addition, this method does not require knowledge of the
explicit decomposition of the field into the particle modes.
We find that the radiation excited during the collapse
approaches the Planckian spectrum and matches the stan-
dard Hawking’s result, as the collapsing shell approaches
its own horizon radius. This method also allowed us to
construct the total density matrix of the excited modes in a
way similar to that of the Schwarzschild black holes [18].

This paper is organized as follows: In Sec. II, we study
the classical collapse of the dust shell in 2 + 1 dimensional
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gravitational spacetime using the Gauss—Codazzi method.
This spacetime admits the existence of an event horizon,
giving rise to black hole solutions known as the Bafiados-
Teitelboim-Zanelli (BTZ) black holes. In Sec. III, we apply
the functional Schrodinger formalism and derive the particle
spectrum and temperature of the emitted radiation during
late times. In Sec. IV, we construct the density matrix of
emitted quanta to analyze its information content. In Sec. V,
we repeat the analysis for 341 dimensional asymptotic AdS
spacetime. Finally, in Sec. VI, we conclude our findings.

II. 2+1 AdS SPACETIME: DYNAMICS OF THE
CLASSICAL SHELL COLLAPSE

In this section, we examine the classical collapse of a
dust shell in 2+ 1 dimensional gravity spacetime. The
primary objective is to derive an equation of motion
governing the dynamics of the collapsing shell. This
equation of motion is essential to obtain the radiation
spectrum. In [19], it was shown that a 2 + 1 dimensional
asymptotically AdS spacetime accommodates a spherically
symmetric solution of FEinstein equations. The metric
outside the collapsing shell can be written as

r? 1
dS2 = _(I_Z_M)dt2 + 2

)dr2 +r2dg?, (1)
12

where M is the mass of the shell, and / is a parameter
related to the cosmological constant A as A = —1/[%. It is
evident from the metric that the event horizon is located at
r = v/MI. This vacuum solution of the Einstein equation is
commonly known as the BTZ black hole. BTZ black holes
differs fundamentally from the Schwarzschild black holes
due to the absence of the singularity at the center [20]. BTZ
black holes have positive specific heat, and as a result, they
can exist in stable equilibrium with the environment. This
metric becomes an usual AdS spacetime for M = —1. The
metric inside the collapsing shell is obtained by putting
M = 0, which is also known as a “massless black hole.”
Thus, the form of metric inside the shell is given by

72 2\ -1
ds* = —<—) dr* + <—> dr* +r’dg?.  (2)
The metric on the shell is
ds* = —di® + r’d¢?. (3)
Since the metric must be continuous, we can match the

outside and inside metric at the shell to get the relationship
between the time coordinates as

Bt (%) (@)

ar 1
dr 7Bin

and

dt 1 B dR\? 5

dr B\ T + (Z) ; (5)
where Bj, = (1;—22) and By, = (1;—22 — M). To determine the
equation of motion of the shell, we apply Gauss-Codazzi
method for the surface layers [21,22]. As the shell is
moving, it curves the spacetime and creates discontinuity in
the extrinsic curvature (K). Einstein equations for this case
in their general form become

[K'] - 8 Tr[K] = 8z, (6)

where

S5 = / Tdn (7)

is the surface stress energy tensor, and [K] is the disconti-
nuity in the extrinsic curvature. We can take the trace
of both sides of the equation and obtain an expression for
[K;] as

) = sx(s] - 31 ®)

Now, we can substitute the expressions for our concrete
case. The surface energy tensor for the collapsing shell is
§% = cu®uP, where ¢ is the surface energy density of the
shell. Substituting this in the above equation gives

(2>gij)- )

Due to the absence of stress energy tensor outside the shell,
the equation of motion becomes

[K%] = 8zo(uu; —

do .

E—FO'M’L-:O, (10)
where |, is a covariant derivative in the given curved
background (in our case AdS). After simplification, it
yields (6R) . = 0, which upon integration over the whole
space gives 2zoR = p. Here, p is a constant of motion
which can be interpreted as the rest mass energy of the
shell. Using Eq. (9), the expression for [K,,] can be
calculated as

K yp) = 8ro(uyuy + Pgy,) (11)
=4ur. (12)

This equation allows us to calculate [K ] using the energy
associated with the shell. Alternatively, one can figure out
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the expression of [K,,] through the spacetime geometry.
Extrinsic curvature is defined as K,y = —ng. 4 = —rn’.
Plugging this in the left-hand side of the Eq. (12), gives us

(13)

To compute the normal vector components, we use the
identities n.n = —u.u =1 and u.n = 0. Consider n’™,
which is the unit normal vector pointing outside the shell
in r direction. For the metric outside the shell, these
identities lead to three equations:

n't—n"" = —4u.

r? 1
LM () - 2= 14
(= ) (1)
s (pm)mr =1 09

-— n —_ = n, =
(=" AP
u'n,+u'n,=0. (16)
Eliminating n, and u’, gives n; as

(17)

Near the shell, u” = 48, Substituting this into the previous
equation gives the contravanant component of the normal
vector

(18)

Similarly, n"~ (which points inside) can be calculated by
following the same procedure and setting M = 0 as

(19)

Plugging n"" and n"~ into Eq. (13) gives us the equation of
motion of the collapsing shell as

dR _ M + 16u*\? &2
dr 8u 2

This equation is written in terms of the shell time
coordinate 7, which is the proper time coordinate of an
observer moving together with the shell. However, we are
interested in the collapse from the outside observer’s
perspective. Using Eq. (5), we can transform the time
coordinate from 7 to ¢. The dynamics of the shell described
by an outside observer is

dR dR\ 2\ 2
—=B|1+B . 21
aoo(e(@)) e
Radiation emitted from the shell during its gravitational

collapse will depend on this dynamical equation. We will
do this in the next section.

III. 2+1 DIMENSIONAL AdS SPACETIME:
RADIATION FROM THE COLLAPSING SHELL

We consider a minimally coupled scalar field in the
collapsing shell background. As mentioned earlier, the
time-dependent geometry should lead to creation of par-
ticles. The scalar field modes placed in the time-dependent
geometry get excited out of vacuum. Since, strictly speak-
ing, particles are well defined only in static spacetimes
where one can define a proper timelike Killing vector, we
refer to these excitations as modes rather than particles in
the usual sense. The action for a minimally coupled scalar
field propagating in a curved spacetime is

1
s= [ @xFayeomoe @

Inside the shell, the metric is given by Eq. (2). The
corresponding action of the scalar field is

R(1)
Sin —ﬂ'/dT/
0

Since we are interested in the spectrum of the excited
modes with respect to an outside observer, S;, is rewritten
in terms of outside time coordinate (¢) as

Su=n [ / + ( lz) T(w)z} ,

(24)

an]-CE8E

0wy @)

e

where T = % The expression for T can be evaluated from
Egs. (4) and (5):

ar o Bout Bin + R%
dt B Bin Bout + R%

Plugging the relations for B;,, By, and R, yields

(162 + M) MP
= oo (U rae) @9

(25)

Similarly, the action outside the shell is
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s fo [ a2 (5

The total action can be obtained by summing up both
contributions. Since T approaches zero faster than
arctan(R?> — M[?), we can ignore the kinetic term in Sgy,
and the gradient term in S;,. The final expression becomes

St~ 7 / dt(—% A A drr(rlez)(é?,d?)z
+ A °° drr <;—j - M) (a,¢)2> . (28)

We can now decompose the scalar field in terms of the
spherically symmetric basis functions as

w007

(27)

b= ar()fu(r). (29)
X

The time dependence of the scalar field is absorbed in the
coefficients a;(¢), while f;(r) is a set of orthonormal basis
functions. The modes a,(¢) are the dynamical variables in
our context, and the explicit form of f,(r) is not needed in
our approach. In terms of these functions, the action takes
the form

1 da day 1
S_/dt<ﬂd—[kAkk/T[k_§akBkk/ak/>. (30)

The matrices A and By are given by

A = —ZﬂA drr( 2/lz)fk( r)fu(r), (31)

2
o r
By = —ZJTA d"r<l—2—M>f/k(")f'k’(r)- (32)
Once the action is known, we can proceed with the usual
quantization procedure. From the action in Eq. (30), we can
construct the Hamiltonian of the modes, and then write the
Schrodinger equation for the wave functional y(ay, 1) as

1 ~ 1 O (ag, t
|:/1§Hk<A l)kk’Hk/ +§akBkk’ak’:| l//((lk,t) = l%.
(33)

Here, I1 is the generalized momentum corresponding to the
dynamical variable a;(7):

.0
Hk = —laiak. (34)

Since matrices A and B are symmetric and real, both can
be diagonalized simultaneously by applying the principle
axis transformation. Then, one can write the Schrodinger
equation for the eigen mode

1o 1, _Oy(b,1)
{/12 g TP (Wb =i (35)

where b is the eigenmode (a linear combination of the
original modes a;), while o and f are eigenvalues of the
matrices A and B, respectively. Simultaneous diagonaliza-
tion of matrices A and B immensely simplify the problem
since all the eigenmodes are decoupled now. In order to
solve this partial differential equation, let us perform a
coordinate transformation to a new time variable # as

t
n= / dil, (36)
0

where 4 is given by Eq. (26). In terms of #, the Schrédinger
equation can be written as

2 a
[_zia%+ @’ (n )bz}w(b,n)ﬂawg;n)’ (37)
where
(1)2
o= (2) 5= (38)

This is an equation of a harmonic oscillator; hence, the
system is reduced to a set of decoupled harmonic oscillators
with time-dependent frequency. The above equation admits
an exact solution in the form of

. a i N i\ ab?
w(b,n) = e [ﬁ] exp {l (g” + @) T] . (39)

where 6 is the solution of a differential equation

Oy + w?*(n)0 = 7 (40)
with initial conditions
0(0) = — 0,(0) = 0 (41)
= \/(70’ ,(0) = 0.

Different choices of initial conditions correspond to differ-
ent modes b (though all the modes b satisfy the same
differential equation). Hence, the partial differential equa-
tion has been reduced to an ordinary differential equation
which can be solved numerically. To calculate the spectrum
of the excited modes, the wave functional is expanded in
terms of the harmonic oscillator basis functions ¢,(b) as
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w(b.1) = ch(t)CII(b)7 (42)

n

where the coefficients ¢, are given by

1) = / dbe, (b (b.1). (43)

While the choice of this basis appears natural for our
case, this set is infinite, which makes it inconvenient for
numerical calculations. However, as we will find soon,
higher excited states (corresponding to higher values of the
index n) are increasingly suppressed, so they are not crucial
for establishing our conclusions as long as a large enough
value of n is taken into account. Integrating Eq. (43), the
structural form of the coefficients ¢, () is calculated in
terms of time and frequency as

_ (=12 2 2\ "2 (n = 1)!!
Cn(ﬂW\/%(l—F) W’ (44)

where P is

0, i
Pl—ﬁ(g—i—E). (45)

The occupation number of the excited modes is

N(t,Q) :gi—iz [(1 —Qi92>2 + (%)2]. (46)

It is instructive to compare this occupation number with the
standard Planckian distribution

1

N(G)):W,

(47)

where = 1/T. For the preexisting BTZ black hole, the
Hawking temperature is T; = /M /2zl. In Fig. 1, we plot

N
— t=50
— t=55
— t=60
— t=65
S
' ' ' ' ' Q
0005 0010 0015 0020 0025 0.030

FIG. 1. Occupation number of the excitations given by Eq. (46)
is plotted as a function of frequency at different times. Clearly, as
time increases, distribution becomes more and more Planckian.

the occupation number from Eq. (46) as a function of
frequency at different times. It is clear from the plot that
the distribution approaches a Planckian one, as time
progresses. From Eq. (47), we see that In(1 + 1/N) =
Pw, so if we plot In(1 4 1/N) vs w, the slope of the graph
will be the inverse temperature. In Fig. 2, In(1 + 1/N) is
plotted as a function of Q to estimate the temperature of the
emitted radiation with respect to an asymptotic observer. At
early times, the fluctuations are too large to define temper-
ature, which means that the spectrum is not Planckian. This
is fine since we expect the Planckian spectrum only when
the collapsing object is very close to its own (future)
horizon. Fluctuations die out with time, and at late times,
temperature can be extracted from the slope. In the fitted
frequency range, the temperature of the emitted radiation
matches exactly the Hawking temperature. The fitted Q
range lies from O to 0.17, which is small in the outside
observer reference frame, but the corresponding initial
frequency of the mode, w,, at the time of mode creation
is large (due to the redshift Q = wy\/4). As the shell
approaches its own horizon, 4 — 0, so the redshift is
huge at late times. We note that in the original Hawking
calculations, geometrical optics approximation was used,
which is valid only at very high frequencies. Therefore, it is
natural to expect a perfect agreement in that regime.
However, the advantage of our method is that we keep
track of all the frequencies. For very low frequencies
(Q <« Ty), the spectrum may not look Plankian at first,
but fluctuations become increasingly smaller as the shell
approaches its own horizon, so at t — oo, it becomes
Planckian for all Q lower than ~0.17y. Unfortunately,
our analysis breaks down at very large values of Q because
the suppression is not exponential as expected in a
Planckian spectrum. This might be due to the vacuum

In(1+1/N)

0.10
0.08
0.06
0.04

0.02F

. . . o
0.002 0.004 0.006 0.008

FIG. 2. In this figure, we plot In(1 + 1/N) as a function of Q at
different times. The spectrum is not thermal at early times due to
large fluctuations. However, as time progresses it becomes more
and more thermal. At late times, the slope of the plot is inverse
temperature. We also calculate the ratio of the temperature
obtained by fitting the curve and the standard Hawking temper-
ature. We see that the ratio approaches unity as time progresses.
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T
0.08
0.06
0.04
0.02
20 40 60 80 100
FIG. 3. We plot the temperature of emitted radiation as a

function of the mass of the collapsing shell, for the fixed AdS
parameter / = 20, at late times. The dependence T VM is in
agreement with the standard results.

polarization effect, and suitable regularization should
remove it.

As mentioned before, the temperature of BTZ black
holes follow T « v/M /1. In Fig. 3, we plot the temperature
of the emitted radiation as a function of the mass of the
collapsing shell at late times. We get a very good agreement
with the known result for the BTZ black holes where
T « +/M/1. Similarly, in Fig. 4, we plot the temperature of
the collapsing shell as a function of the AdS parameter /.
We find that the temperature is inversely proportional to /,
thus matching standard results again.

At the end of this section, we note that we calculated
only the occupation number of the excited modes. We did
not calculate their further evolution as they try to penetrate
the potential barrier in order to escape to infinity (i.e.,
graybody factors), nor did we calculate what happens if the
modes at infinity encounter some nontrivial boundary
conditions (e.g., the reflective boundary conditions, which
would, in turn, reflect all the modes back to the collapsing
object).

0.06}
0.05¢
0.041
0.03f
0.02f

0.01p

2.0 4.0 Gb 8b 160 !
FIG. 4. We plot the temperature of emitted radiation as a
function of the AdS parameter, /, keeping the fixed mass,
M = 10. The temperature is inversely proportional to /, thus
matching the standard results.

IV. DENSITY MATRIX AND INFORMATION
CONTENT

Although the spectrum of the excited modes approaches
Planckian distribution as the shell approaches its horizon,
this does not tell us anything about the information content
of the emitted radiation. Occupation number has a diagonal
form and does not contain information about the correla-
tions between the emitted modes. In this section, we study
the full density matrix, including the off-diagonal elements.
The density matrix is defined as

p =)yl (48)

which in a harmonic oscillator basis takes the form

p= Zcmn|¢m><¢n

, (49)

where c,,,, are the time-dependent coefficients containing the
complete information about the time evolution of the system.
The diagonal elements in the density matrix give the mode
occupation number, and they are always real. Off-diagonal
elements give us the correlations among the modes and are
generally complex. Since H,,(0) = 0 for odd values of n, all
odd terms vanish; hence, we have this form:

fcoo 0 cop O .7
0O 0 0 O
| C20 0 c»n O
1o 0 0 o

In Fig. 5, we plot a first few nonvanishing elements of the
density matrix as a function of time at a fixed frequency
(Q =0.0001) for M =100, u =500, and [ =20. As
expected, the trace of all diagonal elements is unity.
Initially, ¢y is unity and all other excited states are zero
indicating that the system is in the vacuum state. As time
progresses, higher states increase, while ¢, decreases which
means that the time-dependent background is exciting the
field modes. Importantly, off-diagonal terms are of the same
order as diagonal terms, and cannot be ignored. In Fig. 6,
various elements of the density matrix are plotted as a
function of frequency at a fixed time (¢ = 6). We found that
at low frequencies the higher excited states are of the same
order of ¢, and as frequency increases cq, becomes more
and more dominant with respect to the higher excited states.
This is easy to explain because high frequency modes are
more difficult to excite.

Since we are interested in information evolution of the
system, Tr[p?] is plotted as a function of time at the fixed
frequency. If Tr[p?] is equal to one, then the system is in a
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1.0
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o6 — @

— C22
0.4f ~ Cos

Ca4
0.2F
0.0 1 2 3 4 5 6
FIG.5. We plot a first few nonvanishing elements of the density

matrix as a function of time at a fixed frequency (Q = 0.0001) for
M = 100 and [ = 20. Initially, cqo is unity, indicating that the
system starts from vacuum. As time progress, ¢, decreases, and
excited states increase implying that the modes are excited due to
the time-dependent geometry. It should be noted that the off-
diagonal terms are of the same order as the diagonal terms; hence,
correlations between the modes are non-negligible.

pure quantum state. On the other hand, if it vanishes then
the system is completely thermal (mixed state) and contains
no information about the initial state. Since the off-diagonal
elements are non-negligible, for comparison we calculated
Tr[p3] containing only the diagonal elements and Tr[p?]
containing all the elements. In Fig. 7, we plot Tr[p?] and
Tr[p;] as a function of time at Q = 0.0001. Tr[p7]
decreases with time suggesting that the system is evolving
from a pure to a mixed state. However, Tr[p?] remains unity
the whole time, which means that unitarity is preserved if
the off-diagonal elements are taken into account. In Fig. 8,
we plotted Tr[p?] as a function of frequency at t = 6. We
find that Tr[p7] is unity at high frequencies and decreases as
frequency goes down. This is expected because at high
frequencies, the system is dominated by (c,). However,
Tr[p?] remains unity regardless of the frequency.

We comment here on implications of this result to the
information loss paradox. We demonstrated that Tr[p?]

1.0

0.8

0.6

0.4

0.2

0.0

FIG. 6. We plot the density matrix elements as a function of
frequency at a fixed time (+ = 6) for M = 100 and [ = 20. We see
that as frequency increases ¢, becomes dominant, indicating that
the higher states are difficult to excite at high frequencies.

1.0
08}
06
04}
— Tref]
021 — Tref]
0.0 1 1 1 1 1 )t
1 2 3 4 5 6

FIG. 7. Tr[p?] is plotted with time at Q = 0.0001. Tr[p?]
contains only the diagonal elements of the matrix whereas
Tr[p?] contains all the elements. Tr[p?] decreases with time
suggesting that the system is going from pure to thermal/mixed
state. However, Tr[pﬂ remains unity at all times, which means
correlations among particles are significant enough to preserve
unitarity of the system.

remains unity during the whole evolution. However, to
claim that there is no information loss, it is crucial for an
observer to be able to see the whole density matrix, i.e., that
he is able to measure all the modes and their correlations at
least in principle. In the standard Schwarzschild case, when
calculating radiation from a preexisting horizon, one has to
trace out the infalling modes which eventually get lost in
the singularity. This leaves us with an incomplete density
matrix, and unitarity is lost. Black holes in 2 + 1 dimen-
sional AdS spacetime are special in that sense because they
do not have a singularity at the center. The modes are
therefore not irretrievably lost at the singularity, though
they might be hidden beyond the horizon for some time.
Since they are not destroyed in the singularity, but
presumably only trapped for some finite time, they will
be reemitted when the original black hole loses enough of
its mass. This would then imply that 2 + 1 dimensional
AdS black holes may not suffer from the information loss
problem. However, to verify that this indeed happens, one

1.0

0.8

0.6

0.4

0.2

00 1 1 1 1 J Q
0.0 0.1 0.2 0.3 0.4 0.5

FIG. 8. Here, we plot Tr[p2] and Tr[p?] as a function of omega
at t = 6. As frequency decreases, Tr[p,zl] decreases indicating that
emitted radiation is thermal at low frequencies. However, Tr[p?]
remains unity at all frequencies.
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would have to solve the full problem including the back-
reaction from the radiation to the collapsing object.
Moreover, near the center of the shell, the infinitely thin
shell approximation is not valid anymore; hence, the
question of singularity still remains in some form.

V. 3+1 DIMENSIONAL AdS SPACETIME:
DYNAMICS OF THE CLASSICAL SHELL
COLLAPSE AND QUANTUM RADIATION

In this section, we consider the collapse of the massive
shell in an asymptotic AdS space in 3 + 1 dimensions. The
primary motive to repeat the calculations is the fact that
the properties of black holes in 3 + 1 dimensional AdS
spacetime are significantly different from the 2 + 1 dimen-
sional BTZ black holes. The metric outside the collapsing
shell in 3 4+ 1 dimensions is

2 2M
dsz——<1+r—2——>dT2+
[ r

2 2 2
42_11/1)6” + rdQ-.

1
r_2
2

(1+7%

r

(50)

The metric inside the collapsing shell is the usual in 3 + 1
dimensional AdS spacetime

2 2\ —1
ds? = _<1 +;—2)de + (1 +;—2) dr? + rPdQ?. (51)

The metric on the shell is given by

ds®> = —d7® + r*dQ?. (52)
As in Sec. II, matching the time coordinates exactly at the
shell gives us the relationship between the outside observ-

er’s time, ¢, and the inside observer’s time, 7, with the
proper time on the shell, 7, as

dT 1 dR\?
LB+ (& 53
dr By, in+ <d¢) (53)
and
dt 1 dR\?
—=—/B — 1, 54
[Pt ( d1> (54)
where B, = (1 +1;—22) and By, = (1 + 1;—22 — 2¥). Application

of the Gauss-Codazzi method gives us the equation of
motion of the collapsing shell as

M +1N\° R
(L) R

Once the classical equation of motion is known, we can
evaluate the occupation number of the emitted radiation.
Since the formalism and the setup are very similar to the
2 4+ 1 dimensional case, we directly show the results. In
3 4 1 dimensions, the temperature of the AdS black hole is
given by

1 3ry
dary  Axl (56)
where ry is the horizon radius of the black hole obtained
by setting g,. = 0. Small black holes with the horizon
radius smaller than the AdS parameter [ behave like
Schwarzschild black holes. They exhibit negative specific
heat and are thermodynamically unstable. Black holes with
the horizon radius larger than the AdS parameter / behave
exactly the opposite. Their temperature increases as mass
grows, and they are thermodynamically stable. This tran-
sition between the small and large AdS black holes is
known as the Hawking-Page phase transition [23]. It is
instructive to check if quantum radiation from the collaps-
ing shell indicates the same behavior.

In Fig. 9, we plot the temperature of the radiation from
the collapsing shell at late times as a function of the mass of
the shell, for the fixed value of the AdS parameter (I = 20).
When the corresponding horizon radius of the collapsing
shell is very small, the temperature is inversely proportional
to mass, indicating a negative specific heat. On the other
hand, when the corresponding horizon radius of the
collapsing shell is very large, the temperature is directly
proportional to the mass of shell.

In Fig. 10(a), we plot various elements of the density
matrix as a function of time at Q = 0.001. As we can see,
the trend is similar to that of the 2 + 1 dimensional case.
Initially, the cgy is unity and decreases with time. The

0.04r
0.03f
0.02f
0.01r
— Tan
— Tshell
5 10 15 20 25 30 M

FIG. 9. We plot the temperature of the radiation emitted by the
collapsing shell in 3 4+ 1 dimensional AdS spacetime as a
function of its mass, for the fixed value of the AdS parameter,
I = 20. For small mass, the temperature is inversely proportional
to the mass of the shell. However, for the massive shell, the
temperature is directly proportional to the mass of the shell. This
is in complete agreement with the standard Hawking-Page
transition.
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FIG. 10. Here, we plot all the relevant quantities for 3 + 1 dimensional asymptotic AdS spacetime. The results are very similar to those

in the 2 + 1 dimensional case.

contribution from the higher excited states increases as time
progresses. In Fig. 10(b), the elements of the density matrix
are plotted as a function of frequency at = 10. The
contribution from the vacuum, cy,, increases with the
frequency, which is reasonable since high-frequency modes
are more difficult to excite. In Figs. 10(c) and 10(d), we plot
Tr[p?] as a function of time and frequency. Like in the 2 + 1
dimensional case, the off-diagonal elements are crucial in
preserving the unitarity of the system. The crucial differ-
ence is, however, that 3 + 1 dimensional AdS black holes
are singular at the center, and the crucial question remains
as to whether an outside observer can measure the complete
density matrix even in principle.

VI. CONCLUSIONS

In this paper, we investigated a massive shell collapse in
241 and 3 + 1 asymptotically anti-de Sitter spacetime.
Using the Gauss-Codazzi method, we studied classical
dynamics of the shell in both spacetimes. The interaction
between the time-dependent classical background and the
quantum scalar field propagating in this background leads
to the emission of particles. We employed the functional
Schrodinger formalism to evaluate the wave function of the
excited modes. This allowed us to study the time evolution
of the system, which would not have been possible with
standard Bogoliubov transformations. The calculated tem-
perature of the emitted radiation at late times (when the
collapsing shell is very close to its horizon) was found
to be in perfect agreement with the well-known Hawking’s

result, scaling as T « /M. The positive specific heat of

the dust shell implies that in the 241 dimensional
spacetime, the dust shell can remain in equilibrium with
the surrounding radiation. It is worth noting that the emitted
radiation spectrum is completely Planckian only at low
frequencies with respect to an outside observer. At very
high frequencies, the temperature diverges, possibly due to
the nonrenormalized action, and appropriate renormaliza-
tion should fix this. At early times, quantum fluctuations
are large, making it difficult to draw any conclusions about
the temperature of the emitted particle spectrum.

We also constructed the density matrix of the excited
modes in order to examine the information content of the
emitted radiation. The correlations among excited modes are
represented by the off-diagonal terms in the density matrix.
We found that the off-diagonal elements of the density matrix
are of the same order as the diagonal elements. The calcu-
lation of Tr[p?] taking contributions only from the diagonal
elements indicates the evolution of a pure state into a mixed
state. However, Tr[p?] of the density matrix containing all
elements remains unity at all times and frequencies. This
suggests that the off-diagonal terms are very important for the
preservation of unitarity. Black holes in 2 + 1 dimensional
AdS spacetime are special in the sense that they do not have a
singularity at the center, so this result might imply that they do
not suffer from the information loss problem.

Finally, we considered 3 + 1 dimensional asymptotically
AdS spacetime. For a low mass shell, we found the
temperature of the shell to be inversely proportional to
its mass, whereas, for a heavier shell, the temperature was
directly proportional to its mass. This perfectly corresponds
to the Hawking-Page transition. We also evaluated the
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density matrix of the excited modes and found, similar to
our results in 2 4 1 gravity spacetime, that off-diagonal
terms cannot be neglected.

The findings in this paper indicate that the functional
Schrodinger formalism fatefully reproduces results
obtained by other methods and at the same time has several
advantages. It allows us to study the time evolution of the

system and provides the complete wave function of the
system with total information about it.
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