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Premetric electrodynamics is a covariant framework for electromagnetism with a general constitutive
relation. Its light-cone structure can be more complicated than that of Maxwell theory as is shown by the
phenomenon of birefringence. We study the energy density of quantized premetric electrodynamics
theories with linear constitutive relations admitting a single hyperbolicity double cone and show that
averages of the energy density along the worldlines of suitable observers obey a quantum energy inequality
(QEI) in states that satisfy a microlocal spectrum condition. The worldlines must meet two conditions:
(a) the classical weak energy condition must hold along them, and (b) their velocity vectors have positive
contractions with all positive frequency null covectors (we call such trajectories “subluminal”). After
stating our general results, we explicitly quantize the electromagnetic potential in a translationally invariant
uniaxial birefringent crystal. Since the propagation of light in such a crystal is governed by two nested light
cones, the theory shows features absent in ordinary (quantized) Maxwell electrodynamics. We then
compute a QEI bound for worldlines of inertial subluminal observers, which generalizes known results
from the Maxwell theory. Finally, it is shown that the QEIs fail along trajectories that have velocity vectors
which are timelike with respect to only one of the light cones.
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I. INTRODUCTION

The phenomenon of birefringence provides a vivid
illustration of the difference between electrodynamics in
media and in vacuum—the propagation of light is governed
by two light cones, neither of which need be that of the
background spacetime. At the theoretical level, neither the
constitutive relationH ¼ HðFÞ relating the electromagnetic
induction to the field strength nor the Maxwell equations
dH ¼ J and dF ¼ 0 need make reference to any metric
structure. Consequently, general electrodynamics can dis-
play amuch richer causal structure than thevacuum situation
inwhichH ¼ ⋆F, where⋆ is theHodge operator induced by
the metric. Any more general causal structure necessarily
includes birefringence [1]. This premetric viewpoint on
electromagnetism can be derived from basic principles [2,3]

and has been studied both from a phenomenological view-
point [4–6] and for its technical and conceptual interest as an
example of a theory based on nonmetric structures [7–10],
including the interesting situation where the constitutive
relation is obtained from a more general geometric structure
such as an area metric, which can appear e.g., as an effective
background in quantum electrodynamics on curved back-
grounds at first order [7].
The present paper concerns quantized premetric electro-

dynamics [11], recently formulated in terms of the 1-form
potential by two of us [12]. Wewill investigate properties of
its energy density, particularly the extent to which it can
assume negative expectation values. In quantum field
theory (QFT) it has long been known that pointwise
positivity of the energy density is incompatible with
standard assumptions [13]. Therefore the energy density
can exhibit negative expectation values and, at any given
point, is typically unbounded from below as a function of
the state. In various theories, however, it turns out that local
averages of the energy density are bounded below by
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quantum energy inequalities (QEIs, also called quantum
inequalities). QEIs have been proved for a variety of free
fields in flat and curved spacetimes (see [14–19] for early
results and [20–22] for reviews and references) and also for
nonfree models including a large class of conformal field
theories in two dimensions [23] and the massive Ising
model [24]. In [25], for example, it was shown that smooth
local averages of the energy density of a free scalar field
along arbitrary smooth timelike curves in any globally
hyperbolic spacetime obey QEIs valid in all Hadamard
states of the theory (the most general class regarded as
physically relevant), and analogous QEIs hold for vacuum
electromagnetism [26]. Our purpose here is to extend these
results, for the first time, to a premetric theory.
Several aspects of the theory must be reconsidered in the

premetric setting, because their usual formulation depends
on the spacetime metric. For instance, the energy density is
normally defined as a contraction of the stress-energy
tensor with a timelike vector, while the QEIs hold along
timelike curves, but not along null curves [27] or over
spatial volumes [29] or, consequently, along spacelike
curves. Moreover, the defining property of Hadamard
states is that their singularity structure is determined by
the metric [30,31]. At the outset, therefore, it is not clear
how to proceed in a theory with two light cones, for
example, nor is it clear what QEIs can be expected.
To be specific, we consider a general class of electro-

dynamic theories with local and linear constitutive relations
possessing a single pair of hyperbolicity cones in the
cotangent bundle (see Sec. II A below) of which one can
be selected as “positive frequency” (while the other is its
exact opposite). This assumption does not exclude the
possibility that there is more than one light cone, and it is
compatible with the light-cone structure of a birefringent
uniaxial medium, for example. In this situation one may
classify trajectories according to their velocity tangent
vectors as subluminal, interluminal, or superluminal. The
subluminal trajectories are followed by the admissible
observers identified in [32] and generalize the notion of
timelike curves (traveling more slowly than all light rays) in
metric background geometry; by contrast, interluminal
observers travel faster than some (but not all) light rays,
while superluminal observers travel faster than all light
rays. The classical energy density may be defined along any
future-pointing observer trajectory, which in general may
be sub- or interluminal (and in some cases even super-
luminal; see Sec. II B), as a component of a kinematic
energy-momentum pseudo–3-form (replacing the stress-
energy tensor). Particular importance will be attached to
those trajectories along which the (classical) energy density
is everywhere non-negative and vanishes only where the
field strength does. We refer to this as the strict weak energy
condition (sWEC).
Our main general result is that the quantized energy

density obeys a QEI along any future-pointing subluminal
observer trajectory for which the classical sWEC holds, in

any state obeying a microlocal spectrum condition of the
type studied in [12] and enlarged upon here. The main
problem is to write the energy density in a sum-of-squares
form; after that, the argument proceeds more or less as in
[25,26] taking account of the different form of the micro-
local spectrum condition in the present case. The argument
is fully rigorous, making use of microlocal techniques. As
the analysis of [12] was restricted to translationally
invariant constitutive relations, we have to supplement
our hypotheses with assumptions that the QFT exists (in
the expected form). In due course it is hoped to address the
conditions on the constitutive relation under which these
assumptions can be proved.
The general QEI is illustrated for the constitutive relation

corresponding to a translationally invariant uniaxial bire-
fringent medium, in which we are able to compute the finite
QEI bound explicitly for subluminal trajectories moving at
uniform velocity relative to the medium. Light propagation
is governed by two light cones, which are nested and touch
along a pair of opposing generators. The outer light cone in
the tangent bundle (corresponding to the inner light cone in
the cotangent bundle) determines the propagation of
ordinary (“fast”) rays, while the inner light cone in the
tangent bundle governs the extraordinary (“slow”) rays.
Subluminal observer trajectories have velocities less than
the speed of slow light and the QEI bound is indeed finite
for such, but due to the absence of boost and rotational
symmetry, which is broken by the preferred direction given
by the optic axis, the bound depends on the rapidity with
respect to the rest frame of the crystal and the angle to the
optical axis of the subluminal observer. The QEI bound
diverges as the velocity vector of the trajectory of the
observer approaches the inner light cone. This leaves open
the question of whether there is any constraint on energy
densities along faster trajectories, because the QEI bounds
are not expected to be sharp, so a divergence in the bound
does not imply that this is actually exploited by states of the
theory. We are able to answer this question negatively by
explicitly constructing a family of single-particle states
whose averaged energy densities may be made arbitrarily
negative along trajectories moving at “interluminal” veloc-
ities, i.e., between the slow and fast speeds of light in the
given direction. A point of interest here is that the usual
counterexamples to the existence of QEIs for spatial or null
averaging [27,29] are based on superpositions of the
vacuum with a two-particle state and involve some careful
estimates; here, we are able to give a much more direct and
transparent example. One point that we do not address,
however, is whether there might be components of kin-
ematic energy-momentum other than the energy density
that have finite QEI bounds along trajectories moving faster
than slow light.
We begin with a short review of premetric electrody-

namics and a thorough extended discussion of the notion of
observers in the premetric setting in Sec. II, where we
introduce all notions and notations needed in this article
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and rewrite the electromagnetic energy density of premetric
electrodynamics into a form well adapted for quantum
energy inequalities. In the following Sec. III, we define a
(classical) point-split version of the energy density in
premetric electrodynamics and, after quantizing it, give a
general proof of the quantum energy inequality. We then
turn to the explicit example of the uniaxial crystal in
Sec. IV, where we derive the two-point function of a ground
state for electrodynamics inside the crystal. In Sec. V we
derive the quantized point-split energy density along
subluminal observer trajectories (i.e., slower than the slow
speed of light) explicitly. The resulting quantity is used to
compute the QEI bound for these observers. We then show,
by explicit constructions, that the energy density along
worldlines with interluminal velocities is not bounded from
below, so there are no QEIs for such trajectories.

II. PREMETRIC ELECTRODYNAMICS

Let us recapitulate some basic elements of premetric
electrodynamics, following [2]. In this approach, electro-
dynamics on a four-dimensional manifold M is formulated
quite generally by the equations of motion

dA ¼ F; ð1aÞ

dH ¼ J; ð1bÞ
for the electromagnetic vector potential 1-form A, the field
strength 2-form F, the induction pseudo–2-form H and the
current pseudo–3-form J. The physical properties of the
electromagnetic medium are encoded in the constitutive
relation

H ¼ #F

between H and F. There remains a gauge freedom A ↦
Aþ dλ in the potential A. Putting these various equations
together one obtains

d#dA ¼ J: ð2Þ
Once A is obtained (up to the gauge freedom) F and H can
be derived from it.
Note that (1a) follows from the assumption of magnetic

flux conservation, adopted as an axiom in [2]. Had one
adopted dF ¼ 0 as a starting point, one would need to
assume additionally trivial first de Rham cohomology to
obtain (1a).
In this paper we adopt the setting of local and linear

premetric electrodynamics, in which the map # can be
expressed using a constitutive tensor κabcd so that

ð#FÞab ¼
1

2
κab

cdFcd: ð3Þ

Thus we disregard the nonlocal and nonlinear features often
exhibited by realistic media. In general the constitutive

tensor is a pseudotensor field. The methods described in
this and the next sections are general enough to encompass
constitutive relations which depend on x ∈ M. Only in
Sec. IV do we restrict our considerations to a constant
constitutive relation.
This is the moment for a brief intermezzo on Levi-Civita

symbols, of which we will use two: the first, εabcd, is the
totally antisymmetric rank-ð4

0
Þ pseudotensor density of

weight þ1 whose components obey ε0123 ¼ 1 in every
coordinate chart, while the second, ε̂abcd, is the totally
antisymmetric rank-ð0

4
Þ pseudotensor density of weight −1

with components obeying ε̂0123 ¼ 1 in every coordinate
chart. Evidently, the Levi-Civita symbols can attain the
numerical values þ1;−1, 0 in coordinate charts. Moreover,
εabcdε̂abcd ¼ 4!. If a metric is available, the Levi-Civita
symbols can be transformed into one another (up to a sign
depending on the signature of the metric) by raising and
lowering indices. In our case such an identification is not
available, thus justifying the notationwith andwithout a hat.
The Levi-Civita symbol allows us to express the local

and linear constitutive relation (3) in terms of the more
convenient so-called constitutive density, a tensor density
χabcd of weight þ1 defined so that

ð#FÞab ¼
1

4
ε̂abcdχ

cdefFef: ð4Þ

Often it is more convenient to use χ rather than κ. From (4),
we immediately read off the antisymmetry in the first and
second pairs of indices,

χabcd ¼ χ½ab�½cd�:

Additionally we assume that (1) can be derived from an
action (i.e., it is nondispersive), which leads to the addi-
tional symmetry

χ½ab�½cd� ¼ χ½cd�½ab�:

Finally, using the constitutive density, the field equa-
tions (2) can be rewritten as

ðPAÞa ≔ ∂bðχabcd∂cAdÞ ¼ ja; ð5Þ

where ja ¼ εabcdJbcd=3! is the current density, obeying the
conservation law ∂aja ¼ 0. We emphasize that (5) is indeed
a covariant equation due to the tensor density and anti-
symmetry properties of χ. Indeed, ∂a here is just the
covariant derivative with respect to any affine connection.

A. Fresnel polynomial and the quasi-inverse
of the principal symbol

In this section we briefly introduce and define a
“quasi-inverse” of the principal symbol of the field
equations (5). As described in [12], this quasi-inverse
can be used to construct the Green functions of the theory
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if the constitutive relation is constant. In Sec. IV B we will
perform this construction for the uniaxial crystal.
The principal symbol of (5) is

MabðkÞ ¼ MðabÞðkÞ ¼ χacbdkckd:

We immediately notice that

MabðkÞka ¼ 0 ¼ MabðkÞkb;

which reflects the gauge freedom in (2) as well as the
conservation of the current density—two sides of the
same coin.
For each nonzero covector k, which may also be

complex, choose a vector κðkÞ such that k · κðkÞ ¼ 1. It
is convenient (and later indeed necessary) to choose κðkÞ
homogeneous of degree −1 in k for almost all k, and
henceforth this will be assumed. The Fresnel polynomial is
defined (up to an overall sign—see below) as

GðkÞ ≔ adjðMÞabðkÞκaðkÞκbðkÞ

¼ 1

4!
ε̂c1a1a2a3 ε̂d3b1b2b3χ

a1c1b1d1χa2c2b2d2χa3c3b3d3

× kd1kc2kd2kc3 ;

where adjðMÞ denotes the adjugate matrix ofM. Clearly it
is a density of weight þ1 and a homogeneous polynomial
of order 4 in k. Its zeros are the characteristic wave
covectors k which represent light rays in the geometrical
optics approximation. It was first found in [10] in the study
of light propagation in premetric linear electrodynamics.
Moreover, the Fresnel polynomial determines whether (5)
possesses a well-posed initial value problem, which it does
if G is a so-called hyperbolic polynomial [12,32].
We say that the Fresnel polynomial is hyperbolic at

x ∈ M with respect to a covector n if Gðx; nÞ ≠ 0 and
t ↦ Gðx; ξþ tnÞ has only real roots for real covectors ξ.
The covectors n for which GðxÞ is hyperbolic at the point x
form open convex cones ΓxðnÞ ⊂ T�

xM, called hyperbol-
icity cones. It can be shown that hyperbolicity cones always
exist in pairs ΓxðnÞ and Γxð−nÞ ¼ −ΓxðnÞ; i.e., if GðxÞ is
hyperbolic with respect to n, it is also hyperbolic with
respect to −n. If it is possible to choose a smooth
distribution Γ ¼ ⨆x∈MΓx of hyperbolicity cones for G,
we say that the Fresnel polynomial is hyperbolic onM with
respect to Γ. The hyperbolicity double-cones Γ ∪ ð−ΓÞ are
the generalizations of the cones of past and future pointing
timelike covectors from Lorentzian geometry. Given such a
choice we call the selected covectors in Γ subluminal
future-pointing covectors. As we will see in the next
section, they can be used to identify future-pointing
vectors, i.e., directions. In metric geometry one classifies
subluminal covectors according to the sign of their
Lorentzian “norm.” Depending on the signature convention
for the metric, this can be either positive or negative.

Similarly the sign of G is constant on any hyperbolicity
cone; in this article we choose it (without loss) to be
positive inside Γ.
Thus a hyperbolic Fresnel polynomial defines the causal

structure of the theory, which is usually determined by the
Lorentzian metric in ordinary Maxwell vacuum electro-
dynamics. In particular, it determines at every point x ∈ M
the set of null covectors

N x ≔ fk ∈ T�
xMnf0g jGðx; kÞ ¼ 0g: ð6Þ

Further details on hyperbolicity cones are discussed in
Sec. II B and in [12,32,33]. We will always assume that the
Fresnel polynomial is hyperbolic. This condition is com-
parable to the condition that the metric is Lorentzian and
does not degenerate at any point of the manifold.
With help of the gauge fixing vector field and the Fresnel

polynomial we can construct a pointwise quasi-inverse E of
the principal symbol M; see [12] for details. It is given by

EabðkÞ ≔
QcdðkÞπcaðkÞπdbðkÞ

GðkÞ ;

where πcaðkÞ ¼ δca − κcðkÞka are projectors onto a subspace
Vk of T�

xM complementary to the ray of k, and Q is
determined by the second adjugate of the principal symbol

QabðkÞ ≔ adj2ðMÞabcdðkÞκcðkÞκdðkÞ

¼ 1

8
ε̂bc1a1a2 ε̂ad2b1b2χ

a1c1b1d1χa2c2b2d2kd1kc2 :

The quasi-inverse E satisfies

McaðkÞEabðkÞ ¼ πcbðkÞ ¼ EbaðkÞMacðkÞ

whenever GðkÞ ≠ 0. It is a true inverse ofM, regarding the
latter as a map from Vk ⊂ T�

xM to the annihilator of k in
TxM. Since πacMcb ¼ Mab ¼ Macπbc , it satisfies

MacðkÞEcdðkÞMdbðkÞ ¼ MabðkÞ;
EacðkÞMcdðkÞEdbðkÞ ¼ EabðkÞ

and is therefore a “generalized reflexive inverse,” but it is
not the Moore-Penrose inverse of M (except for certain k
and κ) due to the condition k · κðkÞ ¼ 1.
Although G and Q are gauge independent, it is evident

that E depends on the choice of the gauge fixing vector field
κ; see Sec. 2.2 of [12] for details. Different choices of κ thus
lead to different, but gauge-equivalent, Green functions.
The choice of κ or, equivalently, π can be understood as the
selection of a set of polarization vectors. Physical observ-
ables of the quantum field theory will be gauge invariant.
Note also that EabðkÞ is homogeneous of degree −2 in k

and thus, in particular, EabðkÞ ¼ Eabð−kÞ.
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B. Observers

As there is no Lorentzian metric in premetric electrody-
namics, the description of legitimate observer trajectories
requires additional discussion. In fact, the motion of observ-
ers need have no relation to the laws governing propagation
of light, as is the case in the phenomenon of Cherenkov
radiation. Nonetheless, in our discussion of the QEIs, it will
be necessary to classify observer worldlines according to
whether their tangent vectors are slower than all light (which
we call subluminal), faster than some but not all light
(interluminal), or faster than all light (superluminal).
Standard Maxwell electrodynamics, governed by a single
light cone, excludes the possibility of interluminal vectors.
Our classification will rely on methods and results

developed in [32] and requires some additional technical
assumptions on the Fresnel polynomial G: specifically, we
will assume that G is reduced, bihyperbolic, energy-
distinguishing, and time-distinguishing, all of which will
be explained below. (These conditions have been identified
as important to obtain a reasonable physical theory [32];
however, it has not been determined whether they are all
independent, or whether bihyperbolicity might also imply
the time- and energy-distinguishing properties.)
Under these conditions, the null covectors [see (6)] split

into positive and negative frequency cones, defined con-
sistently in terms of the sign of their contraction with
subluminal vectors. Having identified these cones we find
that, conversely, subluminal vectors can be alternatively
characterized among future-directed vectors as the con-
nected component of vectors which have positive contrac-
tions with all positive frequency null covectors.
This characterization will play an important role in the

derivation of the QEI, which will hold for the subluminal
observers. Later, in Sec. V E, it will be seen that energy
densities observed by interluminal observers do not obey
(state independent) QEIs.
On a point of notation, we will need to define a number

of subsets Ux of the tangent and cotangent spaces TxM and
T�
xM. In such cases, the same symbol without the subscript

will denote the corresponding subset U ¼ ⨆x∈MUx of the
bundles TM or T�M.
Our starting point is the Fresnel polynomial G, and a

choice of hyperbolicity cone Γ, on which G is positive. We
have already identified the set of null covectors N x, which
governs the propagation of massless momenta in geometric
optics. In metric geometry this set bounds the hyperbolicity
cone,N x ¼ ð∂ΓÞnf0g, but in general it can be larger, as the
example of the birefringent crystal nicely demonstrates.
Given these ingredients, we may pick out cones of future
and past-pointing tangent vectors by

Γ�
x ≔ fz ∈ TxM j � k · z > 0 for all k ∈ Γxg:

In the special case M ¼ R4, and identifying M with T0M,
the closure of Γþ

0 contains the support of a fundamental

solution of the constant-coefficient partial differential
operator Gði∂Þ [31, Theorem 12.5.1].
In metric geometry, Γþ

x would be the forward causal cone
at x and observers with tangent vectors in Γþ could agree
on a partition of N into positive and negative frequency
cones. This is not possible in general. To make progress, we
must study the propagation of massless particles in the
geometric optics limit, described in a phase space picture
by the Helmholtz action

S½x; k; λ� ¼
Z

ðk · _x − λGðx; kÞÞ dτ;

where τ ↦ ðxðτÞ; kðτÞÞ is any parametrization of the
trajectory in T�M and λ is a Lagrange multiplier, restricting
to null covectors. One passes to configuration space by
eliminating λ and k as functions of x and _x with the help of
the equations of motion obtained by varying the Helmholtz
action. The result is a new action given by

S½x; μ� ¼
Z

μG#ðx; _xÞ dτ;

where μ is a new Lagrange multiplier function and G#ðx; _xÞ
is the so-called dual polynomial on TM, which is deter-
mined up to an irrelevant overall factor by the above
procedure. The Lagrange multiplier μ implies that the
corresponding tangent vectors z to solution curves lie in
the set of lightlike vectors

N #
x ≔ fz ∈ TxMnf0g jG#ðx; zÞ ¼ 0g:

At this point, we introduce two of our assumptions on G.
First, we assume that the lightlike tangent vectors N # can
be partitioned into (necessarily disjoint) future- and past-
pointing cones

ðN #Þ� ¼ N #
x ∩ Γ�:

In this situation, whereN # ¼ ðN #Þþ ∪ ðN #Þ−, we say that
G is time distinguishing. Second, we will assume that G is
bihyperbolic, which means that both G and the dual
polynomial G# are hyperbolic on M. Let Γ# ⊂ TM be a
hyperbolicity cone for G#, chosen to be future directed, i.e.,
Γ# ⊂ intðΓþÞ.1 It may be assumed without loss of general-
ity that G# is positive on Γ#.
We now come to the classification of nonlightlike

tangent vectors at each point x ∈ M, based on the

1Here, we adapt an argument from [30, p. 12], switching the
roles of G and G#, to show that a bihyperbolic and time-
distinguishing Fresnel polynomial always has a hyperbolicity
cone for G# contained in Γþ, and in fact within the interior
thereof, given that hyperbolicity cones are open.
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connected component of TxMnðN #
x ∪ f0gÞ to which they

belong. Namely,
(i) Γ#

x is the component of future-directed subluminal
vectors;

(ii) any component, other than Γ#
x, whose boundary is

contained in ðN #
xÞþ ∪ f0g consists of future-

directed interluminal vectors;
(iii) any component whose boundary meets both ðN #

xÞþ
and ðN #

xÞ− consists of superluminal vectors;
(iv) z ∈ TxM is past-directed subluminal (respectively,

interluminal) if −z is future-directed subluminal
(respectively, interluminal).

A few remarks are appropriate here, which we illustrate
with the sketch in Fig. 1. First, subluminal vectors were
identified in [32] as the tangent vectors to worldlines of
“admissible observers”; here, we prefer to use the term
“subluminal”, to describe the yellow sets in the illustration,
and to interpret the boundary ð∂Γ#Þnf0g ⊂ ðN #Þþ as the
cone of slowest future-pointing lightlike vectors. The
designation of “interluminal” vectors as those trapped
between either future or past-pointing lightlike sets should
be clear; they are blue in the picture. In metric geometry,
there are no future or past-pointing superluminal vectors.
Here, they may exist on the basis of the rich null-structure
available in premetric electrodynamics; see the red set in
the right part of the sketch.
Observer worldlines can now be identified as future-

directed trajectories γ; i.e., their tangent satisfies _γ ∈ Γþ.

They can be labeled as being subluminal, interluminal, or
superluminal depending on whether _γ is everywhere sub-
luminal, interluminal, or superluminal according to the
definition given above. In the standard Maxwell electro-
dynamics only subluminal observers exist, while in the
example of bimetric Fresnel polynomials with nested light
cones, subluminal and interluminal observers come into
play; see the left part of Figs. 1 and 2 and the discussion of
the uniaxial crystal in Sec. IV. Bimetric light propagation
with overlapping light cones, as in the right part of Fig. 1, is
an example for the existence of subluminal, interluminal,
and superluminal observer directions (see also [30, Fig. 7]).
We continue to develop the physical interpretation of the

subluminal vectors, aiming for an alternative characteriza-
tion for use in Sec. III C. Just as the hyperbolicity cone
Γ ⊂ T�M allowed the definition of cones of future- and
past-directed vectors, the hyperbolicity cone Γ# ⊂ TM
determines cones Γ#� of positive and negative frequency
covectors by

Γ#�
x ≔ fk ∈ T�

xM j � k · z > 0 for all z ∈ Γ#
xg:

A Fresnel polynomial G is said to be energy distinguishing
if and only if every null covector has either positive or
negative frequency, i.e., N ¼ N þ ∪ N −, where2

N �
x ≔ N x ∩ Γ#�

x

¼ fk ∈ N x j � k · z > 0 for all z ∈ Γ#
xg: ð7Þ

(a)

(b)

FIG. 1. Illustration of the classification of tangent vectors for
two different bimetric dual polynomials G#, showing (a) nesting
or (b) crossing of light cones. The circular pictures are slices
through the future half of the cones. Vectors are classified as
subluminal (yellow), interluminal (blue), and null (black). All
other vectors are superluminal. In (b) the bounded disk of future-
directed superluminal vectors is colored red.

FIG. 2. Cone structure in the cotangent (top) and tangent
(bottom) space at x ∈ M. Subluminal directions are inside the
inner cone, interluminal directions lie between the cones, and
superluminal directions are outside of both cones in TxM.

2Note that in the previous article [12] the definition of the set
N � was incomplete in the sense that the sets defined there did not
contain all future/past-pointing null directions for general Fresnel
polynomials.
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It can now be proven that for bihyperbolic and time- and
energy-distinguishing Fresnel polynomials which are also
reduced—that is, in any factorization of G into polynomials
with real coefficients there are no repeated nonconstant
factors—the subluminal vectors can be alternatively char-
acterized among future-pointing vectors as those having
non-negative contractions with all positive frequency null
covectors. In other words, for z ∈ intðΓþ

x Þ,

z ∈ Γ#
x ⇔ k · z > 0 for all k ∈ N þ

x : ð8Þ

Physically, this means that the subluminal observers are
precisely those that agree on N þ as indeed having positive
frequency.
To establish (7), consider first any subluminal z ∈ Γ#

x ⊂
intðΓþ

x Þ; by definition of N þ
x it holds that k · z > 0 for all

k ∈ N þ
x . To establish the reverse implication we employ

the invertible Legendre map Lx which maps Γx into TxM

Lx∶ Γx → TxM; k ↦
1

4Gðx; kÞ
∂Gðx; kÞ
∂ka : ð9Þ

As shown in the third and fourth lemmas in [30, Sec. VII],
the range of Lx is LxðΓxÞ ¼ intðΓþ

x Þ and contains Γ#
x. As a

map Lx∶ Γx → intðΓþ
x Þ an inverse of the Legendre map

exists L−1
x ∶intðΓþ

x Þ → Γx. It has the property that the
inverse image of Γ#

x ⊂ intðΓþ
x Þ,

Sx ≔ L−1
x ðΓ#

xÞ ⊂ Γx;

is precisely the cone of stable momenta: those massive
momenta k ∈ Γx that cannot lose energy by emitting
Cherenkov radiation while remaining on the same mass
shell [level sets of Gðx; ·Þ within Γx]. Now if z ∈ intðΓþ

x Þ
but z ∉ Γ#

x, then L−1
x ðzÞ ∉ Sx. This implies in turn (see

[30, Sec. X])3 that there exists a null covector k ∈ N þ
x such

that 0 > k · LxðL−1
x ðzÞÞ ¼ k · z. Taking the contrapositive,

the proof of (8) is complete.
This proof also enables us to characterize the positive

and negative frequency null covectors as

N �
x ¼ fk ∈ N x j � ka∂Gðx; nÞ=∂na > 0 for all n ∈ Sxg:

This is true since 1
4
ka∂Gðx; nÞ=∂na ¼ Gðx; nÞk · LxðnÞ > 0

for n ∈ S since LxðnÞ ∈ Γ#
x and we have assumed that

Gðx; nÞ > 0 for all n ∈ Γx so that Gðx; nÞk · LxðnÞ > 0 is
equivalent to k · LxðnÞ > 0. When we prepare for the proof
of the QEI in Sec. III B the characterizations (8) and II B

will ensure that the quantized point-split energy density can
be pulled back to subluminal observer trajectories as a
bidistribution.
Summarizing, we have given conditions on the Fresnel

polynomial that allow for the classification of tangent
vectors as subluminal, interluminal, or superluminal, and
provide corresponding definitions for observers. Further,
the subluminal vectors and positive frequency null covec-
tors have been given alternative characterizations that will
be needed in the sequel. We would like to stress again
that only subluminal observers are stable; for physical
interluminal and superluminal observers Cherenkov
radiation processes are not kinematically forbidden and
would be expected to emit radiation until they become
subluminal.

C. Energy density

In a premetric theory, the stress-energy tensor clearly
cannot be obtained by variations of an action with respect to
the (absent) metric. It is, however, possible to define the
stress-energy tensor of the electromagnetic field on kin-
ematic grounds (see Chaps. B. 2 and B. 5 of [2] and Sec. 2.8
of [12] which we follow here), writing the resulting energy
density in a form which is suitable for the derivation of the
quantum energy inequality.
In premetric electrodynamics, the kinematic energy-

momentum is a pseudo–3-form defined in terms of a vector
field N by

TN ≔
1

2
ðF ∧ ðN ⌟ HÞ −H ∧ ðN ⌟ FÞÞ:

This is motivated physically [2] by the requirement that
dTN is related to a component of the Lorentz force by
dTN ¼ ðN ⌟ FÞ ∧ J, in the case where N is a symmetry
vector field, viz., if the Lie derivative of the constitutive tensor
with respect to the vector field vanishes: LNκab

cd ¼ 0.
The kinematic energy momentum can be used to define

the energy density of the electromagnetic field along a
worldline γ in the following way. Choose any basis e ¼
feag3a¼0 of the tangent spaces along γ that can be extended
smoothly to a contractible neighborhood T of γ so that e0
coincides with the observer’s velocity vector on γ,
e0jγðτÞ ¼ _γðτÞ, and is everywhere future pointing in T
(i.e., e0jx ∈ Γþ

x ). The integral curves of e0 define a
congruence of observer worldlines in T , and at each point
x, the basis e specifies a system of rods and clocks for the
observer at x. Denote the dual basis by fe�ag3a¼0 and write
u ¼ e0, n ¼ e�0. Then the energy density of the electro-
magnetic field in T with respect to the frame e is

ρ ¼ ðn ∧ TuÞðe0; e1; e2; e3Þ; ð10Þ

which, at any given point x ∈ T , is the component of the
4-form n ∧ Tu along the observer worldline through x and

3Observe that there is a sign error in [30, Sec. X] in the
statement of conditions under which a massive momentum pmay
radiate positive frequency massless momentum in a Cherenkov-
like process. The condition stated there is that there must exist a
massless momentum r ∈ N þ

x such that r · LxðpÞ > 0. However,
doing the calculation with the conventions used in [30, Sec. X]
actually yields the opposite condition, namely, r · LxðpÞ < 0.
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taken with respect to the observer’s frame e. In particular,
the energy density along γ is obtained by restriction;
clearly, it depends on both γ and the choice of frame e.
The energy density may also be expressed as

ρ ¼ 1

8
εðeÞ−1χabcdðFabFcd − 4naueFebFcdÞ; ð11Þ

using the constitutive relation H ¼ #F, where we have
written εðeÞ ¼ εðe0; e1; e2; e3Þ for short. If the frame is
obtained from a system of local coordinates, ea ¼ ∂=∂xa,
the density factor becomes εðeÞ ¼ 1 (in those coordinates).
In order to derive the QEI it is useful to give a novel form

for ρ, which we have not seen discussed elsewhere for
premetric electrodynamics. Setting

λba ¼ δba − naub;

a straightforward calculation then shows that

ρ ¼ 1

8
εðeÞ−1χabcdλfbλhdðλeaλgc − 4nauencugÞFefFgh

¼ 1

8
ðχabcd1 þ χabcd2 ÞFabFcd; ð12Þ

where

χefgh1 ≔ εðeÞ−1χabcdλeaλfbλgcλhd;
χefgh2 ≔ −4εðeÞ−1χabcdnaueλfbncugλhd:

These expressions will allow us to find a point-split energy
density in the next section. They also give some insight
into the (classical) positivity of the energy density: ρ is
certainly non-negative if both χ1 and χ2 determine positive
(semi)definite metrics on the space of 2-forms. In fact, this
is a necessary and sufficient condition. To see why, note
that λc½aλ

d
b� projects (at each point x ∈ T ) onto the three-

dimensional subspace of “magnetic” 2-forms u⊥ ∧ u⊥,
where u⊥ consists of covectors annihilating u, while
2n½aucλdb� projects onto a complementary three-dimensional

“electric” subspace n ∧ u⊥. If χabcd1 GabGcd < 0, then by
defining Fab ¼ λcaλ

d
bGcd, one has ρ ¼ 1

8
χabcd1 GabGcd < 0.

A similar argument shows that if χ2 fails to be positive
semidefinite, then so does ρ.
Thus the weak energy condition (WEC), i.e., non-

negativity of ρ, is equivalent to positive semidefiniteness
of χ1 and χ2.
A stronger statement can be made and will be useful

to us in what follows. Suppose ρ is not only non-negative,
but vanishes precisely at points of vanishing field
strength F,

sWEC∶ ρðxÞ ≥ 0 for all x ∈ T 0; and ρðxÞ ¼ 0

for some x ∈ T 0 if and only if Fjx ¼ 0;

where T 0 is a subset of T . Then we will say that the strict
form of the weak energy condition (sWEC) holds on T 0
with respect to the frame e. The sWEC is equivalent to χ1
and χ2 being positive definite on the magnetic and electric
subspaces, respectively, at all points in T 0. For instance, if
χ1 is not positive definite on the magnetic subspace, then
there is a nonzero Fab in this subspace for which ρ ¼
1
8
χabcd1 FabFcd ≤ 0 and sWEC fails; a similar argument

holds in the electric case. Conversely, if χ1 and χ2 are
positive definite on their respective subspaces, then it is
easily seen from the definitions that sWEC holds.

D. Quantization

We briefly discuss the quantization of the electromag-
netic potential in premetric electrodynamics as described
in [12] with the following differences. Instead of closed
3-forms we base the quantization here analogously on
conserved vector densities with which they are in one-to-
one correspondence. Moreover we use a different sign
convention for the Fourier transform f̂ðξÞ ≔ R

fðxÞeiξ·xdnx,
where · denotes the Euclidean dot product.
Throughout this section, denote by j, j0 arbitrary con-

served compactly supported vector densities, and by A
compactly supported 1-forms. Further, recall that ðPAÞa ¼
∂bðχabcd∂cAdÞ. Distributions of some tensorial type are
continuous linear functionals on compactly supported
densities of the dual tensorial type; e.g., a covector
distribution acts on vector densities, and this convention
extends in an obvious way to bidistributions.
In order to formulate the quantum theory, we assume

that there is an antisymmetric covector bidistribution σ
which restricts to the space of conserved compactly
supported vector densities as an antisymmetric, bilinear
form with the property that σðj; j0Þ ¼ 0 for all j0 if and only
if j ¼ PA for some compactly supported 1-form A. If the
constitutive relation is constant, it was shown in [11,
Sec. II. G] that such an antisymmetric distribution exists
and is given by the Pauli-Jordan propagator, viz., the
difference of advanced and retarded Green functions
obtained with respect to a choice of gauge. Thus our
assumption amounts to a requirement on the global well-
posedness and solvability (up to gauge transformations) of
the field equation (2). In Sec. IV, we explicitly construct the
Pauli-Jordan propagator for the Fresnel polynomial of a
uniaxial crystal.
Once σ is fixed, the quantization may be performed using

well-established methods from algebraic quantum field
theory as used for example in mathematical approaches
to quantum field theory in curved spacetimes. Namely, we
construct an algebra of quantum fields A, which is the
unital �-algebra finitely generated by smeared quantum
field observables ÂðjÞ labeled by (complex-valued) com-
pactly supported, conserved vector densities j, and satisfy-
ing the relations
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Linearity∶ Âðαjþ βj0Þ ¼ αÂðjÞ þ βÂðj0Þ for all α; β ∈ C;

Hermiticity∶ ÂðjÞ� ¼ Âð|̄Þ;
Field equation∶ ÂðPAÞ ¼ 0;

Canonical commutation relations ðCCRÞ∶ ½ÂðjÞ; Âðj0Þ� ¼ iσðj; j0Þ1;

here, we denote the unit element ofA by 1 and make use of
our standing conventions on j’s and A’s.
The algebra element ÂðjÞ can be interpreted as a smeared

field
R
Âaja (recall that j is a vector density of weight 1, so

no volume element appears); later, we will discuss Hilbert
space representations in which this can be taken literally,
with Âa understood as an operator-valued distribution.
It is convenient to identify elements of A corresponding

to smeared field strengths: for any smooth compactly
supported second rank contravariant tensor density t, we
define

F̂ðtÞ ≔ 2Âðdiv tÞ; ð13Þ
where ðdiv tÞa ¼ ∂bt½ab� is clearly a conserved vector
density; F̂ðtÞ can be interpreted as a smeared field

R
F̂abtab.

The normalized positive functionals on A are called
(quantum) states. That means, Λ is a state on the field
algebra A if

Normalization∶ Λð1Þ ¼ 1;

Positivity∶ Λða�aÞ ≥ 0;

Hermiticity∶ Λða�Þ ¼ ΛðaÞ
for all a ∈ A. Each state Λ can be represented by a
hierarchy of n-point functions ðΛnÞn≥0 by setting

Λnðj1;…; jnÞ ≔ ΛðÂðj1Þ…ÂðjnÞÞ
for conserved compactly supported vector densities
j1;…; jn, and then extending arbitrarily to general com-
pactly supported vector densities. In this way the state fixes
the n-point functions only up to gauge equivalence.
Of particular importance are quasifree states (also

called Gaussian states). These states are completely
characterized by their two-point function so that all even
n-point functions are given by sums of products of two-
point functions according to a Wick expansion and all
odd n-point functions vanish. A two-point function Λ2

necessarily satisfies the following relations (recall our
standing conventions concerning the symbols j and A):

Positivity∶ Λ2ðj̄; jÞ ≥ 0;

Hermiticity∶ Λ2ðj; j0Þ ¼ Λ2ðj̄0; j̄Þ;
Field equation∶ Λ2ðj; PAÞ ¼ 0 ¼ Λ2ðPA; jÞ;

CCR∶ Λ2ðj; j0Þ − Λ2ðj0; jÞ ¼ iσðj; j0Þ:

In the framework developed in [12], physical states
in premetric electrodynamics are required to obey the
microlocal spectrum condition (μSC), a generalization
of the Hadamard condition used for QFT in curved
spacetimes [30,31]:

μSC among the gauge equivalent two-point functionsΛ2

induced by the state Λ, there should be at least one
that is a covector bidistribution, with wave-front set
obeying

WFðΛ2Þ ⊂ N þ ×N − ⊂ T�M × T�M ð14Þ

with N � as defined in (7) or equivalently (II B), and
whose antisymmetric part is fixed up to smooth terms
by the generalized CCR4

Λ2 − ΛT
2 ¼ iσ ðmodC∞Þ;

where the transposed distribution is defined by
ΛT
2 ðf; f0Þ ¼ Λ2ðf0; fÞ for general compactly sup-

ported vector densities f, f0.
The wave-front set encodes details about the singular

structure of a distribution in both configuration and
momentum space.5 The theory of the wave-front set is
developed, e.g., in [34]; see also [35,36] for an introduction
to the subject. The condition (14) asserts that the wave-front
set of Λ2 consists of pairs ððx1;k1Þ;ðx2;−k2ÞÞ∈T�M×T�M
such that ðxi; kiÞ are zeros of the Fresnel polynomial
Gðxi; kiÞ ¼ 0 and ðx1; k1Þ lies on the positive frequency
null structure while ðx2;−k2Þ lies on the negative frequency
null structure. It is possible to be rather more specific,
because the propagation of singularities imposes further
relations on the wave-front set. In scalar QFT on curved
spacetimes, for example, the pairs ðx1; k1Þ and ðx2;−k2Þ
must be connected by the Hamiltonian flow induced by
the principal symbol of the Klein-Gordon equation. We
avoid further specification here, partly because it will be

4This condition was implicitly assumed in [12]; here we make
it explicit.

5For completeness, we give a brief definition of the wave-front
set of a distribution u ∈ D0ðMÞ: Suppose first thatM ¼ Rn. Then
ðx; ξÞ ∉ WFðuÞ ⊂ M × ðRnnf0gÞ if there exist a conical neigh-
borhood Γ ⊂ Rnnf0g of ξ and a function χ ∈ C∞

0 ðMÞ with
χðxÞ ¼ 1 such that the Fourier transform F ðχuÞ is rapidly
decaying in Γ. Suppose now that M is a manifold. Then the
wave-front set can be defined in the same way using local
coordinate neighborhoods, and it can be shown that WFðuÞ is a
conical subset of the cotangent bundle.
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unnecessary for our purposes, but also because in premetric
theories various subtleties can arise. In the uniaxial crystal
studied in Sec. IV, for example, the Hamiltonian flow of
Gðx; kÞ degenerates along the optic axis, necessitating a
more ramified description of the wave-front set. Evidently,
the existence of states obeying the μSC places nontrivial
restrictions on the wave-front set of σ.
Any two-point functionsΛ2,Λ0

2 satisfying the microlocal
spectrum condition (even for distinct states) differ only in
their smooth part. To see this, set u ¼ Λ0

2 − Λ2 and observe
that, on the one hand, WFðuÞ ⊂ N þ ×N − by (14), while
on the other hand, the generalized CCR ensures that u is
symmetric up to smooth errors. Thus

WFðuÞ ¼ WFðuTÞ ¼ WFðuÞ ∩ WFðuTÞ
⊂ ðN þ ×N −Þ ∩ ðN − ×N þÞ ¼ ∅;

and we see that u is smooth.
We also remark that a state Λ for A induces by (13) a

unique two-point function for the smeared field strengths, a
second-rank covariant tensor bidistribution which inherits
the microlocal properties of Λ2. Moreover, the antisym-
metric part of this two-point function is fixed completely in
terms of the restriction of σ to vector densities and is
therefore common to all states.

III. QUANTUM ENERGY INEQUALITY

In this section we state and prove a QEI for premetric
electrodynamics. The proof follows the structure of [25,26]
but with some differences following from the more com-
plicated form of both the energy density and the light-cone
structure. In addition, [25,26] established QEIs for averag-
ing the energy density along timelike curves. Here the
structure which determines the “timelike” curves is the
Fresnel polynomial and its dual polynomial.
We prove a QEI for curves γ and their conormals n

satisfying two assumptions. First, the classical sWEC
should hold along γ; i.e., the energy density is non-negative
and vanishes precisely at points of vanishing field strength.
In Sec. III A this assumption will be used to construct a
suitable point-split classical energy density in a “sum of
squares” form. Second, the trajectory must be subluminal,
which is equivalent to the fact that its tangent vector has
everywhere positive contractions against every future-
pointing null covector as proven in Sec. II B (recall that
there may be multiple light cones that may touch or cross
each other). In Sec. III B, this assumption will be used in
the definition of the quantized point-split energy density.
Here, techniques from microlocal analysis are used. Once
this is done, the actual proof of the QEI in Sec. III C can
follow established lines [25,26].
The setting has been kept as general as possible to

accommodate variable constitutive relations—even though
the quantization in [12] was worked out only in the constant

case, the outline of the theory seems clear enough though
what is lacking is a rigorous and general existence proof
for the Pauli-Jordan propagator, so that a commutator may
be defined. In Sec. IV we will compute the QEI bound in
detail for electrodynamics in a translationally invariant
uniaxial birefringent crystal. This will also show that
averages of the energy density along “interluminal observer
trajectories,” whose tangents have positive contractions
against some, but not all, null covectors, do not obey
QEIs.
Finally, we remark that instead of providing an inequal-

ity for the energy density below, we could have produced
one for either the electric or the magnetic field squared—
the general methods would have been the same.

A. Classical point-split energy density

Let γ∶ I → M be a smooth curve, for some open interval
I ⊂ R, and let ρ be the energy density along γ, defined as in
Sec. II C with respect to a choice of frame e in a contractible
neighborhood T of γ. If the sWEC holds on γ (with respect
to e), then the tensor fields χ1 and χ2 induce positive definite
metrics along γ on the magnetic and electric subspaces,
respectively. Hence this also holds within some neighbor-
hood of γ, which we may take without loss of generality to
be T (redefining it if necessary).
We may therefore write

χabcd1 FabFcd ¼ XAB
1 babA bcdB FabFcd; ð15aÞ

χabcd2 FabFcd ¼ XAB
2 eabA ecdB FabFcd; ð15bÞ

where the indices A, B run over 1,2,3, babA , and eabA are
smooth dual frames for the magnetic and electric sub-
spaces, respectively, and X1 and X2 are smooth families of
real symmetric 3 × 3 matrices. Using the Kronecker-δ to
raise and lower matrix indices, ðXrÞAB (r ¼ 1, 2) are
positive definite (with respect to the inner product δAB
on three-dimensional vectors) at each point of T and
have spectra uniformly bounded away from zero on
compact subsets. They therefore possess (unique) smooth6

positive square roots ðYrÞAB on any such subset of T and
indeed, by considering a compact exhaustion, on all
of T . Accordingly, XAB

r ¼ ðYrÞACðYrÞCDδDB, and we have
a sum-of-squares form for the electromagnetic energy
density

ρ ¼ 1

2
δABðEAEB þBABBÞ; ð16Þ

where

6Square roots of uniformly positive definite matrices vary
smoothly with the matrix as can be seen by an application of the
inverse function theorem. We are grateful to Simon Eveson for
discussions on this matter.
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EB ¼ 1

2
FabeabA YAB

1 ;

BB ¼ 1

2
FabbabA YAB

2

are linear combinations of the components of Fab with
smoothly varying real coefficients. We caution that in
general the quantities EB and BB are not to be interpreted
as components of the electric or magnetic field strengths.
Indeed, the energy density in premetric electrodynamics
involves the electric and magnetic field strengths and also
the electric and magnetic excitations (see, e.g., [1, Sec. B.
5. 3]). Thus, our quantities EB and BB are combinations of
field strengths and excitations.
The expression (16) allows us to define the classical

point-split energy density for a worldline γðτÞ as

ρðτ; τ0Þ ≔ 1

2
δABðEAðγðτÞÞEBðγðτ0ÞÞ

þBAðγðτÞÞBBðγðτ0ÞÞÞ: ð17Þ

It is obvious that ρðτ; τÞ ¼ ρðτÞ is again the energy density
with respect to the worldline γ and the frame e.
There exists an interesting class of constitutive relations

and worldlines for which the point-split energy density can
be obtained without the need to use the square-root
construction above. Namely, suppose that there exists a
global Cartesian coordinate system on spacetime in which
the components of the constitutive density are translation-
ally invariant, and consider an inertial worldline γ with an
associated framing e that is translationally invariant. Then
the density factor εðeÞ−1 is constant, and the point-split
energy density may be given in the form

ρðτ; τ0Þ ¼ 1

8
ðχabcd1 þ χabcd2 ÞFabðγðτÞÞFcdðγðτ0ÞÞ

¼ 1

8
εðeÞ−1ðχabcd − 2χebcdne _γa − 2χabedne _γcÞ

× FabðγðτÞÞFcdðγðτ0ÞÞ: ð18Þ

Observe that translational invariance of χ and e are
necessary to obtain this expression because otherwise
one would have to specify where the prefactors before
the field strengths were evaluated. The system of inertial
worldlines in a uniaxial crystal, which we will discuss in
detail in Sec. IV, belongs to this class.

B. Quantized point-split energy density

The classical fields EA and BA are easily quantized. For
any (scalar) density f compactly supported in T , we define
(for B ¼ 1, 2, 3)

ÊBðfÞ ¼ 1

2
F̂ðeAYAB

1 fÞ;

B̂BðfÞ ¼ 1

2
F̂ðbAYAB

2 fÞ;

which are elements of the algebra A. Any (sufficiently
regular) state Λ induces scalar bidistributions EAB

2;Λ;B
AB
2;Λ ∈

D0ðT × T Þ by

EAB
2;Λðf1; f2Þ ≔ ΛðÊAðf1ÞÊBðf2ÞÞ;

BAB
2;Λðf1; f2Þ ≔ ΛðB̂Aðf1ÞB̂Bðf2ÞÞ;

whose wave-front sets are both contained inN þ ×N − if Λ
obeys the microlocal spectrum condition.
We note two important properties of the distributions

EAA
2;Λ and BAA

2;Λ (no sum on A): (a) their antisymmetric parts
are independent of the state Λ, being determined by the
CCRs; (b) they are of positive type as a consequence of the
positivity of Λ as a state.
Our aim is to define the (unrenormalized) point-split

energy density along γ in state Λ as a pullback

ρΛ ¼ 1

2
δABφ

�ðEAB
2;Λ þBAB

2;ΛÞ;

where

φ∶ I × I → M ×M

ðτ; τ0Þ ↦ φðτ; τ0Þ ¼ ðγðτÞ; γðτ0ÞÞ:

The required pullback exists provided that γ is a subluminal
trajectory as we now describe. Note that in this case we
have k · _γ > 0 for all k ∈ N þ. This condition implies
directly that the intersections Nγ ∩ N � are empty, where

Nγ ¼ fðγðτÞ; kÞ ∈ T�M j k · _γðτÞ ¼ 0g

is the set of conormals of γ, and also that the pullbacks

γ�N� ¼ fðτ; k · _γðτÞÞ ∈ T�I j ðγðτÞ; kÞ ∈ N �g

are contained in I ×R� ⊂ T�I. Now the conormals of the
map φ are the same as stated in [25]

Nφ¼fðγðτÞ;k;γðτ0Þ;k0Þ∈T�ðM×MÞjk · _γðτÞ¼k0 · _γðτ0Þ¼0g
¼Nγ×Nγ;

and we deduce immediately that ðN þ ×N −Þ ∩ Nφ

is empty. By the microlocal spectrum condition and
Hörmander’s criterion [37, Theorem 2.5.110], it follows
that the pullbacks φ�EAB

2;Λ and φ�BAB
2;Λ exist as distributions

in D0ðR × RÞ, with wave-front sets obeying

QUANTUM ENERGY INEQUALITIES IN PREMETRIC … PHYS. REV. D 97, 025019 (2018)

025019-11



WFðφ�EAB
2;ΛÞ;WFðφ�BAB

2;ΛÞ ⊂ φ�ðN þ ×N −Þ
⊂ ðI × IÞ × ðRþ ×R−Þ

in T�ðI × IÞ. Furthermore, the distributions φ�EAA
2;Λ and

φ�BAA
2;Λ (no sum) inherit the properties of having state-

independent antisymmetric parts and being of positive type.
Consequently, the point-split energy density ρΛ exists, is of
positive type, and has wave-front set

WFðρΛÞ ⊂ ðI × IÞ × ðRþ ×R−Þ ð19Þ

in T�ðI × IÞ.
It is useful to illustrate the above in the example

of a bimetric Fresnel polynomial, for which GðkÞ ¼
ϑζ−1ðk; kÞη−1ðk; kÞ, where ζ−1 and η−1 are the inverses
of two Lorentzian metrics with signature −þþþ and ϑ is a
density, and we assume that the (positive frequency) light
cone of η−1 lies inside that of ζ−1 in the cotangent space
T�
xM (see Fig. 2). Of course, this means that the (future)

light cone of ζ lies within that of η in the tangent space
TxM. (Uniaxial birefringent crystals have constitutive
relations of this type, in a degenerate case where the two
light cones touch along two generators.) In this situation,
N þ consists of the union of the positive frequency light
cones of both η−1 and ζ−1 in T�

xMnf0g. Meanwhile, the
hyperbolicity double cone of the bimetric theory consists of
the covectors satisfying η−1ðk; kÞ < 0, from which one
component can be chosen to be the hyperbolicity cone
Γ ⊂ T�

xM defining the causal orientation.
Vectors which are timelike with respect to both metrics,

such as the blue vector in Fig. 2, have positive contraction
with all positive frequency null covectors and are tangents
to subluminal trajectories. They form the cone Γ#, which
consists of the future timelike vectors of ζ in TxM. As
described above, the point-split energy density can be
defined for these curves. On the other hand, interluminal

vectors are timelike with respect to one of the metrics
while being spacelike for the other, such as the red vector in
Fig. 2. They have positive contractions with some positive
frequency null covectors but not with others, and so the
above construction does not apply. This is not to say
that the point-split energy density does not exist as a
distribution along interluminal trajectories, but rather
that it fails the sufficient condition provided by microlocal
techniques. Thus the bounds (19) (and also the QEI
below) are not guaranteed to hold. Indeed, we will show
later that, for uniaxial birefringent crystals, there are
states of the QFT that violate the QEIs along interluminal
trajectories.

C. Statement and proof of the QEI

The discussion above involved two assumptions on the
curve γ∶ I → M and the constitutive relation. The first was
that the classical sWEC holds along γ, with respect to a
choice of frame e, allowing the construction of a point-split
energy density onM ×M, while the second required γ to be
a subluminal trajectory, thus allowing the point-split energy
density to be defined using a pullback.
With these assumptions in force, let Ω be a fixed

reference state on A obeying the microlocal spectrum
condition. In particular, if Λ is also a state obeying the
microlocal spectrum condition, the differences EAB

2;Λ − EAB
2;Ω

andBAB
2;Λ −BAB

2;Ω are smooth, and therefore the same is true
of ρΛ − ρΩ. Furthermore, ρΛ − ρΩ is symmetric in its
arguments, because the antisymmetric part of ρΛ is state
independent. The expectation value in Λ of the normal
ordered energy density on γ (relative to the reference state
Ω) may then be defined as

h∶ρðτÞ∶iΛ ≔ ðρΛ − ρΩÞðτ; τÞ:

With our preparations complete, the QEI may be stated. It
asserts that the inequality

Z
R
gðτÞ2h∶ρðτÞ∶iΛdτ ≥ −

1

π

Z
∞

0

�Z Z
R2

gðτÞgðτ0Þe−iβðτ−τ0ÞρΩðτ; τ0Þ dτ dτ0
�
dβ ð20Þ

holds for all states Λ onA obeying the microlocal spectrum condition, and all real-valued compactly supported g ∈ C∞
0 ðIÞ,

and that the right-hand side of the inequality is finite. Note that this lower bound is independent of the state Λ but depends
on the reference state Ω.
The proof is similar to those of [25,26]—the main differences are contained in the construction of the energy density and

its pullback. Therefore, the following argument will be kept brief. The first step is to split the points apart, by insertion of a δ
function in its Fourier representation

Z
R
gðτÞ2h∶ρðτÞ∶iΛdτ ¼

1

2π

Z
R

�Z Z
R2

gðτÞgðτ0Þe−iβðτ−τ0ÞðρΛðτ; τ0Þ − ρΩðτ; τ0ÞÞ dτ dτ0
�
dβ:
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Next, we exploit the symmetry of ρΛ − ρΩ to write the expression as an integral over Rþ,

LHS ¼ 1

π

Z
∞

0

�Z Z
R2

gðτÞgðτ0Þe−iβðτ−τ0ÞðρΛðτ; τ0Þ − ρΩðτ; τ0ÞÞ dτ dτ0
�
dβ

≥ −
1

π

Z
∞

0

�Z Z
R2

gðτÞgðτ0Þe−iβðτ−τ0ÞρΩðτ; τ0Þ dτ dτ0
�
dβ

≥ −
1

π

Z
∞

0

F ððg ⊗ gÞρΩÞð−β; βÞ dβ;

where we have also used the positive type property to
discard ρΛ and written the resulting expression as an
integral of a Fourier transform, denoted here by F. Finally,
(19) entails that the Fourier transform of the compactly
supported distribution ðg ⊗ gÞρΩ decays faster than any
inverse power along ð−β; βÞ as β → ∞. Thus the integral is
finite and the QEI is established.

IV. UNIAXIAL BIREFRINGENT CRYSTALS

In order to gain a deeper understanding of how QEIs in
premetric electrodynamics differ from those in ordinary
Maxwell theory, we consider a simple translationally
invariant birefringent crystal in Minkowski spacetime
whose constitutive density takes the following form in a
global Cartesian coordinate system [12,38]

χabcd ¼ jηj12ð2ηc½aηb�d þ 4X½aUb�X½dUc�Þ: ð21Þ

Here we use the following notation:
(i) η is the Minkowski metric (with signature −þþþ)

and jηj12 is the associated density. When we raise or
lower indices, we use this metric.

(ii) U is a timelike vector field [normalized such that
ηðU;UÞ ¼ −1], which represents the rest frame of
the crystal.

(iii) X is a spacelike vector orthogonal to U [viz.,
ηðX;UÞ ¼ 0], which defines the optic axis of the
birefringent crystal. We set ξ2 ¼ ηðX;XÞ.

The quantities η, X, and U and hence χ are all translation-
ally invariant; in particular, χabcd is constant in the chosen
global Cartesian coordinate system and jηj ¼ 1. We label
the coordinate with indices running from 0 to 3 such
that 0 indicates a timelike direction. We can always rotate
the coordinate system such that U ¼ Ua∂a ¼ ∂0 and
X ¼ Xa∂a ¼ ξ∂1. From now on we will use this specific
coordinate system in our calculations.

A. Light rays

The Fresnel polynomial of the constitutive relation (21)
is bimetric,

GðkÞ ¼ jηj12η−1ðk; kÞζ−1ðk; kÞ; ð22Þ

where ηab ¼ ðη−1Þab and

ðζ−1Þab ¼ ηab − ξ2UaUb þ XaXb

are components of inverse metrics while ηab and

ζab ¼ ηab þ
ξ2

1þ ξ2
UaUb −

1

1þ ξ2
XaXb ð23Þ

denote the components of the metrics.
The zeros of the Fresnel polynomial determine the

propagation of light rays in the geometrical optics approxi-
mation. In the case at hand they are given by the ordinary
light cone defined through

η−1ðk; kÞ ¼ 0

and the extraordinary light cone described by

ζ−1ðk; kÞ ¼ 0:

Examples of extraordinary and ordinary light rays are
ka ∝ ð1; 0; 0; ð1þ ξ2Þ1=2Þ and ka ∝ ð1; 0; 0; 1Þ, respec-
tively. There is one direction along which the ordinary
and extraordinary light cones coincide, namely, the optic
axis X. If both η−1ðk; kÞ ¼ 0 and ζ−1ðk; kÞ ¼ 0, then
ðk · XÞ2 ¼ ξ2ðk · UÞ2, which occurs precisely when

ka ∝ Xa � ξUa;

i.e., in coordinates ka ∝ ð�1; 1; 0; 0Þ. The ordinary light
cone given by η is the inner light cone in the cotangent
spaces, while, by duality, it is the outer light cone in the
tangent spaces; compare Fig. 2. This inner cone is also the
hyperbolicity cone according to the discussion in Sec. II A.
Thus the ordinary light cone determines the maximum
velocity of light in the medium. In our terminology, an
observer whose velocity lies within the extraordinary light
cone is subluminal, and one whose velocity lies between
the extraordinary and ordinary light cones is interluminal.
In a 1þ 3 split, we can write each momentum covector k

as k ¼ ðk0; k⃗Þ. For each fixed k⃗ we define ωðk⃗Þ and ~ωðk⃗Þ as
the unique positive zeros of ηðk; kÞ−1 and ζðk; kÞ−1, as
functions of k0, namely,
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ωðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ k23

q
; ð24aÞ

~ωðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ ðk22 þ k23Þ=ð1þ ξ2Þ

q
: ð24bÞ

Clearly, ω ¼ ωðk⃗Þ and ~ω ¼ ~ωðk⃗Þ are the frequencies of a
light ray with momentum k⃗, propagating on the ordinary or
extraordinary (forward) light cone, measured by an
observer at rest with respect to the crystal. In the following
we will suppress the explicit k⃗ dependence of ω and ~ω.

B. Green functions, two-point functions, and
the Pauli-Jordan propagator

In this subsection, we compute the Pauli-Jordan propa-
gator, which is necessary to construct the algebra A of
smeared quantum fields, and present a suitable reference
state on A that satisfies the microlocal spectrum condition.
Both the Pauli-Jordan propagator and the two-point func-
tion of the state may be obtained from an analysis of the
retarded and advanced Green functions Eret=adv

ab ðx; x0Þ using
contour integral methods.
As stated in Sec. II A, the quasi-inverse E of the principal

symbolM is the main ingredient in the construction of the
Green functions. The results of [12] give

Eret=adv
ab ðx; x0Þ ≔ lim

ε→0þ

1

ð2πÞ4
Z
R3

Z
R�iε

EabðkÞ

× e−ik⃗·ðx⃗−x⃗0Þ−ik0ðt−t0Þ dk0 dk⃗;

where the limit in ε is taken in the sense of distributions
and, as before,

EabðkÞ ¼
QcdðkÞπcaðkÞπbdðkÞ

GðkÞ :

Since Q is contracted with the projectors π, it can be
replaced with a tensor ~Q which differs from Q by terms
proportional to the momentum covector k. For the uniaxial
crystal, a suitable ~Q is given by (see Appendix A in [12])

~QabðkÞ ≔ ηabζ
−1ðk; kÞ þ qaðkÞqbðkÞ ð25Þ

with

qaðkÞ ≔ ðk · XÞUa − ðk ·UÞXa:

Equation (25) nicely demonstrates the effect of the
crystal compared to Maxwell vacuum electrodynamics.
Indeed, the properties of the crystal are encoded in the
vector q, while the first term is the same as in vacuum
electrodynamics.

Defining the operators Eret=adv by

ðEret=advjÞaðxÞ ≔
Z
R4

Eret=adv
ab ðx; x0Þjbðx0Þ dx0;

it may be verified that the support of Eret=advj is contained in
the causal future/past of the support of j. In this context the
notions of causal future/past refer to the causal structure
defined by the Fresnel polynomial; see [11, Sec. 2.3] for the
technical definitions. Briefly, the causal future of a point
x ∈ M comprises all points which can be connected to x by
future/past-pointing nonsuperluminal curves, i.e., all curves
with future/past-pointing subluminal, interluminal, or lumi-
nal tangent as they are defined in Sec. II B.
The important property of the Green functions is that

they are inverses to the differential operator P up to gauge:
that is, the identities

PEret=advj ¼ j;

Eret=advPA ¼ Aþ dλ

hold for all conserved compactly supported vector densities
j, and for any compactly supported 1-form A, where λ
is a smooth function depending on A and the choice of
advanced or retarded.
The Pauli-Jordan propagator is the difference of the

advanced and retarded Green functions,

Δabðx; x0Þ ≔ Eadv
ab ðx; x0Þ − Eret

abðx; x0Þ:

We will use residue methods to evaluate the k0 integrals
involved in defining Δabðx; x0Þ, and therefore the gauge
fixing vector field κaðkÞ (used to construct the projectors π
in Eab) must be defined on k ∈ C ×R3, depend mero-
morphically on k0, and obey k · κðkÞ ¼ 1 everywhere
except at its poles. Noting that qaka ¼ 0, a convenient
choice is given by

κa ¼ ka þ iqa

η−1ðk; kÞ ;

for which one may calculate, using

ζ−1ðk; kÞ ¼ η−1ðk; kÞ − η−1ðq; qÞ;

that

EabðkÞ ¼
ηab

η−1ðk; kÞ −
ðka þ iqaÞðkb þ iqbÞ
ζ−1ðk; kÞη−1ðk; kÞ :

Evidently, the poles of EabðkÞ in k0 for fixed k⃗ are precisely
at k0 ¼ �ω and k0 ¼ � ~ω. Note that κ is complex even
when k is restricted to the real axis; consequently,
Δabðx; x0Þ also becomes complex. The imaginary part is
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associated with pure gauge terms and therefore has no
physical significance.
With these choices, Δabðx; x0Þ may be expressed as a

contour integral

Δabðx; x0Þ ¼
1

ð2πÞ4
Z
R3

Z
C
EabðkÞe−ik⃗·ðx⃗−x⃗0Þ−ik0ðt−t0Þ

× dk0 dk⃗; ð26Þ

where the contour C can depend on k⃗, provided it encircles
all the poles once in the counterclockwise direction as
shown in Fig. 3. Convergence of this integral is understood
in the distributional sense; that is, the k integrals should
be taken after integrating against compactly supported
vector densities in the two points x; x0 ∈ M. This con-
trols the integration in the large momentum limit and
leaves only the question of possible divergences at finite
momenta.
By changing the contour C in (26) we may obtain

distributions that will determine the positive and negative
frequency two-point functions Δ� of a vacuum state
on the algebra of observables A. Specifically, the kernel
∓ iΔ�

abðx; x0Þ is obtained by using the contours C�,
which encircle only the positive (þ) or negative (−)
frequency poles (see Fig. 3), instead of C. It is immediately
clear that

iΔabðx; x0Þ ¼ Δþ
abðx; x0Þ − Δ−

abðx; x0Þ: ð27Þ

Avoiding for the moment the special case k2 ¼ k3 ¼ 0
(in which case there are second order poles at k0 ¼
�ω ¼ � ~ω) the poles in the integrand are all first order
and one easily computes, using η−1ðk; kÞ ¼ ω2 − k20 and
ζ−1ðk; kÞ ¼ ð1þ ξ2Þð ~ω2 − k20Þ, that

res
k0¼ω

Eabðk0; k⃗Þ ¼ −
Uabðk⃗Þ
2ω

;

res
k0¼ ~ω

Eabðk0; k⃗Þ ¼ −
~Uabðk⃗Þ
2 ~ω

;

where

Uabðk⃗Þ ≔ ηab þ
ðka þ iqaÞðkb þ iqbÞ

η−1ðq; qÞ
����
k0¼ω

; ð28Þ

~Uabðk⃗Þ ≔ −
ðka þ iqaÞðkb þ iqbÞ
ð1þ ξ2Þη−1ðq; qÞ

����
k0¼ ~ω

: ð29Þ

Using the symmetry Eabð−kÞ ¼ EabðkÞ, one also has

res
k0¼−ω

Eabðk0;−k⃗Þ ¼
Uabðk⃗Þ
2ω

;

res
k0¼− ~ω

Eabðk0;−k⃗Þ ¼
~Uabðk⃗Þ
2 ~ω

:

In the above calculations, we have used the equalities

ζ−1ðk; kÞ ¼ −η−1ðqðkÞ; qðkÞÞ

for k on the ordinary light cone k0 ¼ �ω and

η−1ðk; kÞ ¼ η−1ðqðkÞ; qðkÞÞ

for k on the extraordinary light cone k0 ¼ � ~ω.
Assembling these results (and changing variables

k⃗ ↦ −k⃗ for Δ−
ab) we find

Δ�
abðx; x0Þ ≔

1

ð2πÞ3
Z
R3

�
Uabðk⃗Þ

e∓iωðt−t0Þ

2ω

þ ~Uabðk⃗Þ
e∓i ~ωðt−t0Þ

2 ~ω

�
e∓ik⃗·ðx⃗−x⃗0Þ dk⃗: ð30Þ

Note that the individual terms in the integrand have
divergences as k22 þ k23 → 0, which is the special case in
which the ordinary and extraordinary light cones touch.
However, their sum remains regular in this limit, and the
limiting value can be obtained by taking a residue at the
double pole formed when the two single poles merge. Thus
the above integrals are well defined in the distributional
sense. The Pauli-Jordan propagator is then

Δabðx; x0Þ ¼ −
1

ð2πÞ3
Z
R3

�
Uabðk⃗Þ

sin ðωðt − t0Þ þ k⃗ · ðx⃗ − x⃗0ÞÞ
ω

þ ~Uabðk⃗Þ
sin ð ~ωðt − t0Þ þ k⃗ · ðx⃗ − x⃗0ÞÞ

~ω

�
dk⃗: ð31Þ

FIG. 3. Illustration of the contours C, Cþ, and C− used to
compute the Pauli-Jordan propagator and the positive and
negative frequency bidistributions.

QUANTUM ENERGY INEQUALITIES IN PREMETRIC … PHYS. REV. D 97, 025019 (2018)

025019-15



Since Uab and ~Uab are symmetric in their indices, we
have

Δabðx; x0Þ ¼ ΔðabÞðx; x0Þ;
Δ�

abðx; x0Þ ¼ Δ�
ðabÞðx; x0Þ:

It is also clear that Δ−
abðx; x0Þ ¼ Δþ

baðx0; xÞ, and hence
Δabðx0; xÞ ¼ −Δbaðx; x0Þ, so Δ is an antisymmetric covec-
tor bidistribution. We remark that Lorentz boost invariance
is broken because the crystal four-velocity U and optic axis
X are preferred directions.

C. Positivity and the microlocal spectrum condition

In this subsection we show that the Pauli-Jordan propa-
gator and positive frequency two-point function meet the
general conditions required to formulate the algebra A of
smeared quantum fields and satisfy the microlocal spec-
trum condition.
Beginning with the Pauli-Jordan propagator, Δabðx; x0Þ

is evidently an antisymmetric bidistribution. It restricts to
conserved compactly supported vector densities as a
bilinear form

σðj; j0Þ ≔ Δðj; j0Þ ¼
Z
R4×R4

Δabðx; x0ÞjaðxÞj0bðx0Þ dx dx0

with the property that σðj; j0Þ ¼ 0 for all j0 if and only if
j ¼ PA for some compactly supported 1-form A. This fact
was already stated in [12]; however, a precise proof was
missing. For completeness, we sketch the required argu-
ment here, which uses the fact that Eret=adv are inverses of P
up to gauge. If σðj; j0Þ ¼ 0 for all j0, then Eadvj and Eretj
must be equal up to a pure gauge term. Therefore their
exterior derivatives are equal and, recalling the support
properties of Eret=adv, compactly supported. As F ¼ dEretj
is closed and compactly supported, there exists a compactly
supported 1-form A0 such that F ¼ dA0 and therefore
Eretj ¼ A0 þ dχ for some smooth χ. Here we have used
the Poincaré lemma in both the compact support and
unrestricted forms [39]. It follows that j¼PEretj¼PA0.
Conversely, if j ¼ PA0 for some compactly supported 1-
form A0, then Eret=advj ¼ Eret=advPA0 are equal up to a pure
gauge term, and so σðj; j0Þ ¼ 0 for all j0. Thus the Pauli-
Jordan propagator defines the desired bilinear form
required in Sec. II D to define the commutator of the
algebra of quantum fields.
Turning to Δþ, (27) together with the expression Δ− ¼

ðΔþÞT derived above show that the generalized CCRs are
fulfilled, i.e., Δþ − ðΔþÞT ¼ iΔ. The microlocal spectrum
condition requires the calculation of WFðΔþÞ, which is
most conveniently performed by using translational invari-
ance to give

WFðΔþÞ ¼ ⋃
3

a;b¼0

WFðΔþ
abÞ

¼ ⋃
3

a;b¼0

fðx; k; x0;−kÞ ∈ T�R4 × T�R4j

ðx − x0; kÞ ∈ WFð ~Δþ
abÞg;

where the scalar distributions ~Δþ
ab are defined so that

Δþ
abðx; x0Þ ¼ ~Δþ

abðx − x0Þ. To show that Δþ obeys (14) it
will suffice to show that WFð ~Δþ

abÞ ⊂ N þ. Because
GðkÞEabðkÞ is holomorphic, each ~Δþ

ab is a solution for
the partial differential operator Gði∂Þ, and it follows that
WFð ~Δþ

abÞ ⊂ N , which is the corresponding characteristic
set. We must therefore show that there are no directions
from N − in the wave-front set. This can be seen from the
computation

df ~Δþ
abðlÞ ¼

i
ð2πÞ4

Z
R3

Z
Cþ

EabðkÞf̂ðl − kÞ dk0 dk⃗;

for any test function f ∈ C∞
0 ðRÞ. As k0 has a non-negative

real part in the integration region, it is easily checked that
the above expression decays rapidly as l → ∞ in any cone
within ð−∞; 0Þ ×R3. Every direction in N − is therefore a
regular direction for ~Δþ

ab and hence excluded from the
wave-front set.
Next, we show that Δþ obeys the Hermiticity and

positive type conditions when restricted to the space of
conserved vector densities. To do this, it is useful to
decompose the tensors Uab and ~Uab as sums of manifestly
positive rank-1 tensors and additional “pure gauge” terms
containing either ka or kb, which vanish when contracted
with any vectors Va

1; V
a
2 for which k · Vi ¼ 0 (i ¼ 1, 2).

Starting with ~Uab, an obvious possibility is to decompose
~Uab ¼ ~ua ~ub þ pure gauge, where

~ua ≔
qaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ ξ2Þη−1ðq; qÞ
p ����

k0¼ω

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ k23

p
0
BBB@

k1
~ω

0

0

1
CCCA:

However, this covector diverges as k22 þ k23 → 0, i.e., in the
limit where the extraordinary and ordinary light cones
touch. Instead, we use a gauge-modified version

~vaðk⃗Þ ≔ ~uaðk⃗Þ −
k1ka

~ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ k23

p

¼ 1

~ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ k23

p
0
BBB@

0

ðk22 þ k23Þ=ð1þ ξ2Þ
−k1k2
−k1k3

1
CCCA; ð32Þ
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which satisfies ζ−1ð~v; ~vÞ ¼ 1 and remains bounded as
k22 þ k23 → 0, giving a decomposition ~Uab ¼ ~va ~vb þ
pure gauge.
Turning to Uab, we note that the (nonzero) tensor

Vabðk⃗Þ ≔ ηab −
qaðkÞqbðkÞ
η−1ðq; qÞ

����
k0¼ω

þ 2ðk · XÞXðakbÞ
η−1ðq; qÞ

����
k0¼ω

−
ηðX;XÞðkakb þ 2ðk ·UÞUðakbÞÞ

η−1ðq; qÞ
����
k0¼ω

annihilatesUa, Xa, and ka and therefore has rank-1. Indeed,
one has Vab ¼ vavb, where

vaðk⃗Þ ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k22 þ k23
p

0
BBB@

0

0

k3
−k2

1
CCCA ð33Þ

obeys the normalization condition η−1ðv; vÞ ¼ 1; as Vab
differs from Uab only by pure gauge terms, we have
Uab ¼ vavb þ pure gauge.
Evidently the polarization covectors v and ~v satisfy an

analogue of the Coulomb gauge: writing ka ¼ ðω; k⃗Þ,
~ka ¼ ð ~ω; k⃗Þ, we have

~v · U ¼ 0 ¼ v ·U;

η−1ðk; vÞ ¼ 0 ¼ ζ−1ð~k; ~vÞ

for all k⃗. Evaluating Δþðj; j0Þ, the pure gauge terms drop
out, and one has

Δþðj; j0Þ ¼ 1

ð2πÞ3
Z
R3

�
vaðk⃗Þ|̂að−kÞvbðk⃗Þ|̂0bðkÞ

2ω

þ ~vaðk⃗Þ|̂að−~kÞ~vbðk⃗Þ|̂0bð~kÞ
2 ~ω

�
dk⃗

for all conserved compactly supported vector densities j, j0.
Hermiticity holds because v and ~v are real, while the
positivity condition is satisfied because

0 ≤ Δþð|̄; jÞ ¼ 1

ð2πÞ3
Z
R3

�jvaðk⃗Þ|̂aðkÞj2
2ω

þ j ~vaðk⃗Þ|̂að~kÞj2
2 ~ω

�
dk⃗:

Summarizing, the positive frequency solution Δþ obeys
all the conditions required to define a physical quasifree
state Ω on the algebra A, completely determined by

ΩðÂðjÞÂðj0ÞÞ ≔ Δþðj; j0Þ: ð34Þ

Below, this will be shown to be a ground state with respect
to time translations. By construction, Δþ extends the
two-point function of Ω to a bidistribution.

D. Fock space and quantum fields

It will be useful to have a Hilbert space representation of
A available, in which the “vacuum” state Ω defined by (34)
is a vector state. This can be done using the bosonic Fock
space over a one-particle space

L2ðR3; dk⃗=ð2πÞ3Þ ⊗ C2:

In familiar notation, this Fock space carries a quantum field
ÂaðxÞ ¼ Âaðt; x⃗Þ given by

Âaðt; x⃗Þ ≔
1

ð2πÞ3
Z
R3

�
aðk⃗Þ vaðk⃗Þffiffiffiffiffiffi

2ω
p e−iðk⃗·x⃗þωtÞ

þ ~aðk⃗Þ ~vaðk⃗Þffiffiffiffiffiffi
2 ~ω

p e−iðk⃗·x⃗þ ~ωtÞ þ H:c:

�
dk⃗; ð35Þ

where the annihilation and creation operators obey the
CCR

½aðk⃗Þ; a�ðk⃗0Þ� ¼ ½ ~aðk⃗Þ; ~a�ðk⃗0Þ� ¼ ð2πÞ3δð3Þðk⃗ − k⃗0Þ1

with all other commutators vanishing. The integral in (35)
includes rays along the optic axis, at which the polari-
zation covectors v and ~v have discontinuous, direction-
dependent, limits. As they remain bounded, however, (35)
is well defined; what is required is that maps such as
j ↦ ð2ωÞ−1=2v · |̂jk0¼ω are well-defined maps from test

vector densities to L2ðR3; dk⃗=ð2πÞ3Þ.
Smearings of Â against conserved vector densities, and

sums of products thereof, provide a representation of A.
For example, it is not difficult to verify directly that Âa
solves the field equations (2). Indeed, the computation
reduces to the verification of

χacbdvbkckd ¼ 0; χacbd ~vb ~kc ~kd ¼ 0

on the ordinary or extraordinary, respectively, light cone,
easily proved using (21), (33), and (32). The CCRs
hold as a result of (31) and the equality of Uab and
vavb (respectively, ~Uab and ~va ~vb) up to pure gauge terms;
in a similar way, one may compute directly that

hΩjÂðjÞÂðj0ÞΩi ¼ Δþðj; j0Þ

holds for conserved j, j0, where we have written Ω to
denote also the Fock vacuum vector, annihilated by all aðk⃗Þ
and ~aðk⃗Þ. Note that Â can be smeared against any smooth
compactly supported vector density to give a Hilbert space
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operator, but only smearings against conserved vector
densities yield operators representing elements of A.
Although boost invariance is broken in the crystal

background, translational invariance is maintained. In par-
ticular, time translations are generated by the Hamiltonian

H ¼ 1

ð2πÞ3
Z
R3

ðωa�ðk⃗Þaðk⃗Þ þ ~ω ~a�ðk⃗Þ ~aðk⃗ÞÞ dk⃗

with respect to which Ω is clearly a ground state.
Starting from these definitions, one can introduce oper-

ators corresponding to other observables. For example, the
quantized field strength

F̂abðxÞ ¼ −
2i

ð2πÞ3
Z
R3

�
aðk⃗Þ k½avb�ðk⃗Þffiffiffiffiffiffi

2ω
p e−iðk⃗·x⃗þωtÞ

þ ~aðk⃗Þ
~k½a ~vb�ðk⃗Þffiffiffiffiffiffi

2 ~ω
p e−iðk⃗·x⃗þ ~ωtÞ − H:c:

�
dk⃗

can be directly obtained from (35).

V. QEI FOR THE UNIAXIAL CRYSTAL

In this section, we first demonstrate the existence of
negative energy density states in the uniaxial crystal, then
show that the QEI derived in Sec. III holds for subluminal
trajectories, and evaluate the bound explicitly. Among other
things this involves an explicit proof that the classical
sWEC holds on subluminal trajectories. The situation is
different for interluminal trajectories: the classical sWEC
fails and, consequently, so do the QEI bounds. A subtle
point is also addressed: in the premetric situation there is no
preferred proper time normalization of observer trajecto-
ries. Accordingly, we discuss normalizations both arising
from the background Minkowski metric η and intrinsically
generated from the premetric theory, and we trace the effect
on our results.

A. States with locally negative energy density

In the Fock space, normal ordering with respect to the
state Ω can be achieved by the standard normal ordering of
annihilation and creation operators. Computing the normal
ordered energy density operator ∶ρ̂ðfÞ∶ in this way for a
given choice of frame, we adapt a simple argument here to
demonstrate that there exist states with locally negative
energy density expectation values. Consider the quantum
states defined by the family of vectors

ΨðϕÞ ≔ cosϕΩþ sinϕ ∶ρ̂ðfÞ∶Ω; ϕ ∈
�
−
π

2
;
π

2

�
;

where Ω is the Fock vacuum vector discussed in Sec. IV D
and f ∈ C∞

0 ðR4Þ is a real-valued test function, normalized
so that ∶ρ̂ðfÞ∶Ω ¼ 1. [As shown in Appendix B, one can

exclude the possibility that ∶ρ̂ðfÞ∶Ω ¼ 0.] Calculating the
expectation value of the quantized energy density in the
state given by ΨðϕÞ yields

h∶ρ̂ðfÞ∶iΨðϕÞ ¼ sinð2ϕÞ∥∶ρ̂ðfÞ∶Ω∥2∶þ sin2ϕhΩj∶ρ̂ðfÞ3Ωi
¼ 2ϕþOðϕ2Þ:

Choosing −ϕ sufficiently small, we thus see that there exist
states such that the expectation value of the quantized
energy density becomes negative and therefore the point-
wise energy density must also be negative on an open set
within the support of f. By translation, one can arrange that
this occurs in any desired region of any given worldline of
interest. Owing to the quantum energy inequality, however,
the expectation of ∶ρ̂ðfÞ∶ cannot become arbitrarily neg-
ative in the states ΨðϕÞ or any other states satisfying the
microlocal spectrum condition.

B. Quantized point-split energy density

We now begin the explicit computation of the QEI along
trajectories with uniform velocity relative to the crystal.
The first step is to obtain the point-split energy density,
for which purpose we may use (18) instead of (17) due to
translational invariance. However, the calculations that
would be needed to use (17) can be read off from
Sec. V C. The QEI bound itself will be derived in Sec. VD.

1. General expression

Let γ be a subluminal trajectory, equipped with a frame e
such that εðeÞ ¼ jηj1=2 (equal to unity in the global
Cartesian coordinates). Evaluating the point-split energy
density (18) in the state defined by the two point function
(30), we obtain

ρΩðτ; τ0Þ ¼
1

2ð2πÞ3 ðχ
abcd − 2χebcdne _γa − 2χabedne _γcÞ

×
Z
R3

�
k½aUb�½dkc�

e−ikðγðτÞ−γðτ0ÞÞ

2ω

þ ~k½a ~Ub�½d ~kc�
e−i~kðγðτÞ−γðτ0ÞÞ

2 ~ω

�
dk⃗;

where we again use the notation k ¼ ðω; k⃗Þ and ~k ¼ ð ~ω; k⃗Þ
for the ordinary and extraordinary null covectors given
by k⃗.
Specializing to the case of a constant velocity inertial

observer γðτÞ¼ _γτ [maintaining the condition εðeÞ¼jηj1=2],
we employ the definition of U and ~U in (28) and (29) to
obtain from a straightforward but lengthy calculation
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ρΩðτ; τ0Þ ¼ −
1

2ð2πÞ3
Z
R3

�ðk · _γÞη−1ðn; kÞ
ω

e−ik·_γðτ−τ0Þ

þ ð~k · _γÞζ−1ðn; ~kÞ
ð1þ ξ2Þ ~ω e−i~k·_γðτ−τ0Þ

�
dk⃗; ð36Þ

with Minkowski spacetime limit ξ → 0,

ρΩðτ; τ0Þ ¼ −
1

ð2πÞ3
Z
R3

ðk · _γÞη−1ðn; kÞ
ω

e−ik·_γðτ−τ0Þ dk⃗:

To gain more insight about this expression we will
evaluate it more explicitly for subluminal and interluminal
trajectories.

2. Expression for subluminal trajectories

Consider a uniform velocity trajectory that is η-timelike,
and therefore is either subluminal or interluminal. Let
α ∈ R be its rapidity, in the rest frame of the crystal,
and β ∈ ð−π; π� be the angle made between the 3-velocity
and the positive x axis, i.e., the optic axis. Without loss of
generality (rotating the coordinate system in the yz plane if
necessary) the worldline takes the form

γðτÞ ¼ ℵτðcosh α; sinh α cos β; 0; sinh α sin βÞ: ð37Þ

Then _γ ¼ ℵðcosh α; sinh α cos β; 0; sinhα sin βÞ is constant,
and this vector may be extended to a frame e with e0 ¼ _γ
and εðeÞ ¼ jηj1=2, and so that the dual basis covector
n ¼ e�0 is

n ¼ ℵ−1ðcosh α;− sinh α cos β; 0;− sinh α sin βÞ:

The normalization factor ℵ in (37) was introduced to trace
how our results (38) and (42) depend on the parametriza-
tion of the worldlines, and will be discussed in Sec. V B 3.
While the worldline γ is η-timelike by construction, it is

not necessarily timelike with respect to ζ because

ζð_γ; _γÞ ¼ ℵ2
ξ2sinh2α sin2β − 1

1þ ξ2
;

see (23). Therefore the trajectory is subluminal if

sinh2α sin2β < ξ−2

and interluminal if

sinh2α sin2β > ξ−2:

This distinction has another significance: as we show in
Sec. V C, the sWEC holds for subluminal trajectories but
fails in the interluminal case.
For the rest of this subsection, and also Sec. V D, we will

assume that γ is subluminal, so _γ is timelike with respect to

both metrics η and ζ. In this case, the integrals in (36) may
be calculated using identities (A2) and (A3) proved in
Appendix A to give

ρΩðτ; τ0Þ ¼
Cðα; β; ξÞ
ð2πÞ2ℵ4

Z
∞

0

κ3e−iκðτ−τ0Þ dκ; ð38Þ

where

Cðα; β; ξÞ ≔ ℵ4

�
n · _γ

ηð_γ; _γÞ2 þ
n · _γ

ζð_γ; _γÞ2
�

¼ 1þ ð1þ ξ2Þð1 − ξ2sinh2α sin2βÞ−2
¼ 2þ ð1þ 2sinh2α sin2βÞξ2 þOðξ4Þ: ð39Þ

FIG. 4. Plot of Cðα; β; ξÞ with α and ξ in the range ½−2.5; 2.5�,
β ¼ 0; π

16
; π
2
(from left to right), and Cðα; β; ξÞ cut off at the

value 9.
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Note that Cðα; β; ξÞ → 2 as ξ → 0 with α, β
fixed, which reproduces the known Lorentz-invariant
Minkowski spacetime result for electromagnetism [26].
On the other hand, fixing ξ we see that Cðα; β; ξÞ →
2þ ξ2 as α → 0 or β → 0, but Cðα;β;ξÞ→þ∞ as
sinh α sin β → �ξ−1; i.e., Cðα; β; ξÞ diverges for world-
lines which become lightlike with respect to the extraor-
dinary light cone given by ζ. The shape of Cðα; β; ξÞ can
be seen in Fig. 4 in the cases β ¼ 0; π

16
; π
2
.

As expected, the result (38) depends on the normaliza-
tion ℵ of the worldline under consideration, whose influ-
ence we will discuss now.

3. Normalization factor

There are different viewpoints from which one can
interpret this uniaxial crystal electrodynamics. One may
regard it as describing a crystal in Minkowski spacetime
which is probed by observers whose dynamics are deter-
mined by special relativity. Alternatively, one may see the
constitutive relation of the crystal as fundamental and
demand that probes obey the point particle dynamics
and causal behavior dictated from the theory of electro-
dynamics which it defines. For our purposes, the difference
between the two viewpoints lies in the way one para-
metrizes the trajectory of the probe, along which one
calculates the QEI. The choice of parametrization is
reflected in the quantized point-split energy density (38)
by the appearance of normalization factor ℵ.
In the context of special (SR) and general relativity

timelike worldlines γ are observer worldlines if they are
proper time parametrized, i.e., satisfy ηð_γ; _γÞ ¼ −1, respec-
tively, η replaced by a general Lorentzian metric. For the
curves we are considering, this corresponds to the choice
ℵ ¼ ℵSR ¼ 1, which represents observers not influenced
by the crystal background structure.
An alternative choice for ℵ is to consider observers subject

to the dispersion relation induced by electrodynamics. The
Fresnel polynomial of the uniaxial crystal (UC) defines a
natural massive dispersion relation jηj−1=2GðkÞ ¼ m4, and
this in turn gives a natural parametrization of the motion of
probe particles with mass m, i.e., their proper time. The
precise mathematical methods to derive this normalization
were discussed in detail in [32]. In this approach the
normalization ℵ ¼ ℵUC depends on the crystal parameter
ξ, the rapidity α, and the angle β made with the optic axis,
modifying the point-split energy density along the curve. As

a matter of fact the calculations needed to compute the
normalization as a function ℵðα; β; ξÞ for massive point
particles governed by this electrodynamically induced clock
are nontrivial, which is whywe only derive it to third order in
the crystal parameter

ℵUC ¼ 1 −
ξ2

4
ð1þ sinh2α sin2βÞ þOðξ4Þ:

The derivation can be found in Appendix C. The all order
calculation is beyond the scope of this work and may be
investigated in the future. What can be deduced to all orders
already at this point is that ℵξðα; βÞ ¼ ℵðα; β; ξÞ is a smooth
nonvanishing function of the rapidity parameter α and the
angle β. This behavior is guaranteed by the smoothness and
invertibility properties of the Legendre map [see Sec. II B
around (9) and [32]] as a map from massive momenta, i.e.,
the interior of the hyperbolicity cone Γ of the dispersion
relation, onto velocities inside the dual Γþ of the hyper-
bolicity cone.
For the dependence of the point-split energy density (38)

on the rapidity α, the angle β, and the crystal parameter ξ
this means that for the special relativistic observer nor-
malization ℵSR ¼ 1, Cðα; β; ξÞ determines the behavior of
the point-split energy density completely. For the alter-
native normalization ℵUC to second order in the crystal
parameter we find the modified dependence

Cðα; β; ξÞ
ℵ4
UC

¼ 2þ ð3þ 4sinh2α sin2βÞξ2 þOðξ4Þ; ð40Þ

which nicely illustrates the influence of the normalization
factor explicitly by comparing (39) and (40).

C. Proof of the sWEC

To show that the general quantum energy inequality
derived in Sec. III holds for subluminal trajectories in the
uniaxial crystal considered here, we also need to show that
the sWEC holds for such trajectories. We will show this
using the decomposition of ρ into χ1 and χ2 in (12), acting
on the subspace of magnetic and electric 2-forms, respec-
tively. More precisely, we will use the formulas (15) to
express χ1 and χ2 as 3 × 3 matrices in a judiciously
chosen basis.
Choose the following dual frame for the magnetic and

electric subspaces

½bab1 � ¼ ð0;− sinh α sin β; 0; 1þ ðcosh α − 1Þsin2β; 0; ð1 − cosh αÞ cos β sin βÞ; ð41aÞ

½bab2 � ¼ ðsinh α sin β; 0;− sinh α cos β; 0; cosh α; 0Þ; ð41bÞ

½bab3 � ¼ ð0; sinh α cos β; 0; ð1 − cosh αÞ cos β sin β; 0; 1þ ðcosh α − 1Þcos2βÞ; ð41cÞ
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½eab1 � ¼ C−1
2ð1þ sinh2α sin2β; 0;−sinh2α cos β sin β; 0; cosh α sinh α sin β; 0Þ; ð41dÞ

½eab2 � ¼ ð0; cosh α; 0;− sinh α sin β; 0; sinh α cos βÞ; ð41eÞ

½eab3 � ¼ C−1
2ð0; 0;− cosh α; 0; sinh α cos β; 0Þ; ð41fÞ

where C ¼ 1þ sinh2 α sin2 β and the six entries give the
01, 02, 03, 23, 31, 12 components, i.e.,

½babA � ¼ ðb01A ; b02A ; b03A ; b23A ; b31A ; b12A Þ

and similar for eabA . In this basis, we calculate (with the help
of the computer algebra system Mathematica)

XAB
1 ¼

0
B@

1 0 0

0 1 − ξ2sinh2α sin2β 0

0 0 1

1
CA;

XAB
2 ¼

0
B@ 1þ ξ2ð1þ sinh2α sin2βÞ 0 0

0 1 0

0 0 1

1
CA

so that χabcd1 ¼ XAB
1 bab1 bcd1 and χabcd2 ¼ XAB

2 eab1 ecd1 . We
immediately see that X2 is always positive definite, while
X1 is positive definite if and only if sinh2 α sin2 β < ξ−2,
which is exactly the condition of Sec. V B 2 that the
worldline γ is subluminal. This proves that sWEC holds
inside the uniaxial crystal along all subluminal trajectories.
Simultaneously, this shows that the QEI derived in Sec. III
holds.
Since the matrices X1, X2 are diagonal, we can easily

take their square roots in the subluminal case,

YAB
1 ¼

0
B@

1 0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2sinh2α sin2β

p
0

0 0 1

1
CA;

YAB
2 ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2ð1þ sinh2α sin2βÞ

p
0 0

0 1 0

0 0 1

1
CA:

We could use this result to explicitly determine the QEI
bound, i.e., the right-hand side of (20). However, because
of translational invariance it is easier to use simpler
methods as applied in the following section.

D. QEI bound for subluminal trajectories

We can now give the explicit form of the quantum energy
inequality (20) for the uniaxial crystal for curves which
propagate slower than the extraordinary speed of light. The
statement of the QEI is that for all subluminal curves (37),

that is, for sinh2 α sin β < ξ−2, the normal-ordered energy
density obeys

Z
R
jgðτÞj2h∶ρðτÞ∶iΛdτ

≥ −
1

π

Z
∞

0

�Z Z
R2

gðτÞgðτ0ÞρΩðτ; τ0Þ

× e−iβðτ−τ0Þdτ dτ0
�
dβ

for all states Λ obeying the microlocal spectrum condition
and all real valued compactly supported g. Inserting the
point-split energy density (38) and evaluating the resulting
integrals by rearranging the order of integration and the
Plancherel theorem, this becomes

Z
R
jgðτÞj2h∶ρðτÞ∶iΛ dτ

≥ −
Cðα; β; ξÞ
πð2πÞ2ℵ4

Z
∞

0

�Z
∞

0

κ3jĝðκ þ βÞj2dκ
�
dβ

¼ −
Cðα; β; ξÞ
πð2πÞ2ℵ4

Z
∞

0

�
jĝðθÞj2

Z
θ

0

κ3 dκ

�
dθ

¼ −
Cðα; β; ξÞ
2ð2πÞ3ℵ4

Z
∞

0

θ4jĝðθÞj2 dθ

¼ −
Cðα; β; ξÞ
4ð2πÞ2ℵ4

∥g00∥22; ð42Þ

and the overall result can be extended to complex-valued
test functions by applying the real result to the real and
imaginary parts of g separately. Thus along subluminal
trajectories there exists a finite negative bound on the
quantized energy density of the electromagnetic field. In
the Minkowski spacetime limit ξ → 0 the bound becomes
independent of α, β for either of the two normalizations
discussed, since Cðα; β; 0Þ ¼ 2 and ℵðα; β; 0Þ ¼ 1.
For the observer at rest with respect to the crystal (α ¼ 0)

we find

Z
R
jgðτÞj2h∶ρðτÞ∶iΛdτ ≥ −

2þ ξ2

16π2ℵ4
∥g00∥22;

and indeed this holds for any α if β ¼ 0, i.e., for motion
along the optic axis.
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However, for β ≠ 0, the closer the observer’s velocity
comes to the extraordinary speed of light, i.e., the light rays
propagating along the cone of ζ, the more negative the
lower bound (42) becomes, diverging in the limits
sinh α sin β → �ξ−1. Again this holds for either choice
of normalizations discussed.

E. Failure of QEIs along interluminal trajectories

Our QEI above was proved for averaging along sub-
luminal trajectories, for which the classical sWEC holds as
discussed in Sec. V C. Here, we show that no QEI can
hold along an interluminal trajectory (η-timelike and
ζ-spacelike) in the translationally invariant uniaxial bire-
fringent crystal. The argument is based on one introduced
in [40] for nonminimally coupled scalar fields and shows
that a failure of the classical sWEC for a positive energy
solution entails a corresponding failure in the QEI. It is
valid for any constant velocity curve passing through
x ¼ 0, and is thus independent of the parametrization
and normalization of the curve.
The starting point is the fact that single-particle states in

QFT correspond to classical positive frequency solutions.
Let Ψ be a vector state in the Fock space of the form

Ψ ¼
Z
R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~ωðk22 þ k23Þ

q
fðk⃗Þ ~a�ðk⃗ÞΩ dk⃗;

whereΩ is the vacuum vector and f ∈ SðR3Þ is a Schwartz
function, chosen so thatΨ is normalized. (The factors in the
square root are inserted for later convenience.) Then, using
the explicit form of the quantum field (35), the correspond-
ing positive frequency solution is

AaðxÞ ≔ hΩjÂaðxÞΨi

¼
Z
R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ k23

q
fðk⃗Þ ~vaðk⃗Þe−iðk⃗·x⃗þ ~ωtÞ dk⃗

and is easily seen to be smooth as a consequence of the
rapid decay of f.
As a consequence of Wick’s theorem, the n-particle state

Ψ⊗n has two-point function

hΨ⊗njÂaðxÞÂbðyÞΨ⊗ni
¼ nðAaðxÞAbðyÞ þ AbðyÞAaðxÞÞ
þ hΩjÂaðxÞÂbðyÞΩi;

and therefore the normal ordered two-point function is

hΨ⊗nj∶ÂaðxÞÂbðyÞ∶Ψ⊗ni ¼ 2nReðAaðxÞAbðyÞÞ:

It follows that the quantized energy density (defined with
respect to any curve γ and frame e) in the state Ψ⊗n is n
times that in state Ψ, which in turn equals twice the

corresponding complexified classical energy density of
the complex-valued solution AaðxÞ defined by

ρ ¼ 1

8
εðeÞ−1χabcdðF̄abFcd − 4na _γeReðF̄ebFcdÞÞ;

with F ¼ dA as usual. One sees immediately that if ρ < 0
at some point along γ—a failure of the classical sWEC for
positive energy solutions—then the quantum field theory
cannot obey a QEI: any weighted average of the quantized
energy density ∶ρ̂∶ along γ, supported in the region where
the sWEC fails, has a negative expectation value in the
state Ψ, and hence its expectation value in state Ψ⊗n is
unbounded from below as n → ∞.
It remains to show that f may be chosen to violate the

sWEC for a constant-velocity interluminal observer. The
solution is in the form of a wave packet of extraordinary
light rays. Using the same parametrization as in the
previous section, one finds that the definitions of A and
the polarization vector ~v [see (33)] imply F23 vanishes.
Now choose f01, f03, f31 to be suitable multiples of a
Gaussian in k⃗,

f01ðk⃗Þ ¼
iτ30ffiffiffiffiffi

π3
p

ð1þ ξ2Þ
expð−ð ~ωτ0Þ2Þ;

f03ðk⃗Þ ¼ −
4ik1k3τ50ffiffiffiffiffi
π3

p
ð1þ ξ2Þ2

expð−ð ~ωτ0Þ2Þ;

f31ðk⃗Þ ¼
4i ~ωk3τ50

5
ffiffiffiffiffi
π3

p
ð1þ ξ2Þ2

expð−ð ~ωτ0Þ2Þ;

and set

f ¼ −f01 sinh α sin β þ f03 sinh α cos β þ f31 cosh α:

Then we compute

F02ð0Þ ¼ i
Z
R3

k1k2fðk⃗Þ dk⃗ ¼ 0;

F12ð0Þ ¼ i
Z
R3

~ωk2fðk⃗Þ dk⃗ ¼ 0;

and the only nonzero components are

F01ð0Þ ¼ −i
Z
R3

ð ~ω2 − k21Þfðk⃗Þ dk⃗ ¼ −τ−20 sinh α sin β;

F03ð0Þ ¼ i
Z
R3

k1k3fðk⃗Þ dk⃗ ¼ τ−20 sinh α cos β;

F31ð0Þ ¼ −i
Z
R3

~ωk3fðk⃗Þ dk⃗ ¼ τ−20 coshα:

Moreover, note that Fab is smooth with Schwartz class
components.

FEWSTER, PFEIFER, and SIEMSSEN PHYS. REV. D 97, 025019 (2018)

025019-22



With this choice of Fab we find that bab2 Fab ¼ 2τ−20 is the
only nonzero contraction of Fab with any of the basis
vectors in (41). Therefore

ρð0Þ ¼ 4ð1 − ξ2sinh2α sin2βÞτ−40 < 0

in the interluminal case. Since ρ is smooth, it follows that
ρ < 0 in an open neighborhood of the origin.
In summary, we have shown that the classical sWEC is

violated for interluminal observers (in certain positive
frequency complex-valued solutions) and, consequently,
there exists no finite lower bound for the normal ordered
quantized energy density along their worldline. The same
result evidently holds for the magnetic part of the energy
density by itself. However, the electric part is positive
definite, and so we cannot conclude from these arguments
whether it is unbounded below in the QFT. Further insight
might be gained by considering states that are super-
positions of the vacuum with a two-particle state, as
in [27,29].

VI. DISCUSSION

The main result of this article is the rigorous derivation of
a state-independent quantum energy inequality for certain
types of observers in premetric linear electrodynamics, and
its explicit calculation in the illustrative and physically
interesting example of a uniaxial crystal. This required a
classification of possible observer trajectories (extending
previous work by [32]) to account for the richer causal
structure possible in the premetric theory, compared to the
usual Lorentzian metric structure of Maxwell electrody-
namics. For reduced, bihyperbolic, energy-distinguishing,
and time-distinguishing Fresnel polynomials, we classified
future-pointing trajectories as either subluminal, interlumi-
nal, and superluminal, depending on the relation of their
tangents to the null structure of the dual polynomial. Such a
classification is unnecessary in Lorentzian geometry, where
only one class of future-pointing trajectories exists, namely,
timelike trajectories.
The clarification of possible observer trajectories set

the language to discuss QEIs for quantized premetric
electrodynamics, which we proved to hold on general
grounds for subluminal observers in Sec. III C. In
Sec. IV, we derived an explicit QEI bound for subluminal
observers moving at uniform velocity relative to the
medium. We were particularly careful about the normali-
zation of the observer trajectories which may differ
according to the interpretation of the uniaxial electrody-
namics model. While the value of the QEI bound depends
on the normalization chosen, its divergence at the extraor-
dinary light cone does not. To gain an insight into the
quantized energy density along nonsubluminal directions,
we also showed in Sec. V E that there exist quantum states
in which the energy density can become arbitrarily negative
(independent of normalization).

The next steps in the quantization of premetric electro-
dynamics are the rigorous construction of the quantized
theory for nonconstant constitutive relations and its cou-
pling to other fields. Since general nonconstant constitutive
relations can lead to light-cone structures which split,
combine, and cross, not only is the causal behavior of
such theories more complicated but also the construction of
propagators faces additional difficulties. For instance, the
problem of propagation of singularities for distributional
solutions to PDEs with light cones of variable multiplicity
has not been conclusively solved in the mathematical
literature (see, e.g., [41,42]).
Regarding the coupling to other fields, a first step towards

a spinor theory on a background geometry determined by
Fresnel polynomial has been made in [43]. Next one could
attempt a quantization (in the algebraic approach) of the
spinor theory based on a Fresnel polynomial. It would be
interesting to investigate QEIs for such a theory (see [44,45]
for general QEIs on Dirac fields in the metric case).
An interesting phenomenon which appears also in quan-

tized premetric electrodynamics is the Casimir effect. In
[11], the Casimir effect was already studied in media with a
certain bimetric Fresnel polynomial, while in [46] the
Casimir effect in perfect electromagnetic conductors was
studied. Based on the results presented in this article, the
Casimir effect could be investigated explicitly in uniaxial
crystals, and a priori bounds for other media could be given.
Apart from being interesting in their own right, nonlinear

media have a promising application as analog models for
quantum gravity. For example, as in [47–49] one can study
nonlinear dielectrics as an analog model for light-cone
fluctuations. The premetric approach might provide a
clearer conceptual footing to this problem.
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APPENDIX A: IDENTITIES USED TO
EVALUATE THE QUANTIZED POINT-SPLIT

ENERGY DENSITY

In this appendix, we prove the identities (A2) and (A3)
used in Sec. IV.
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Let f ∈ C∞
0 ðRÞ, and let u and v be fixed 4-vectors with u

η-timelike and future pointing. We claim that

1

ð2πÞ3
Z
R3

ðk · uÞðk · vÞ
2ω

f̂ðk · uÞ dk⃗

¼ −
ηðu; vÞ

4π2ηðu; uÞ2
Z

∞

0

κ3f̂ðκÞ dκ: ðA1Þ

To prove this, first observe that if ðk · uÞðk · vÞ in (A1)
were replaced by kakb, the resulting integral would be
constructed covariantly from ηab and uaub and would
vanish on contraction with ηab; it is therefore propor-
tional to ηab − 4uaub=ηðu; uÞ. Therefore the left-hand
side of (A1) equals Aηðu; vÞ, where the constant of
proportionality A is fixed by the special case v ¼ u.
Using Lorentz invariance of the measure ð2ωÞ−1dk⃗, this
integral may be evaluated in the rest frame of u,
whereupon

Aηðu; uÞ ¼ −
ηðu; uÞ
2ð2πÞ3

Z
R3

ωf̂ðω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηðu; uÞ

p
Þ dk⃗

¼ −
ηðu; uÞ
4π2

Z
∞

0

ω3f̂ðω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηðu; uÞ

p
Þ dω:

Changing variables to κ¼ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ηðu;uÞp

gives the required
result (A1).
Removing the test function, (A1) implies

1

ð2πÞ3
Z
R3

ðk · uÞðk · vÞ
2ω

e−ik·uðτ−τ0Þ dk⃗

¼ −
ηðu; vÞ

4π2ηðu; uÞ2
Z

∞

0

κ3e−iκðτ−τ0Þ dκ: ðA2Þ

The above derivation applies equally well if η is replaced by
ζ and k by ~k, so we also have

1

ð2πÞ3
Z
R3

ð~k · uÞð~k · vÞ
2 ~ω

e−i~k·uðτ−τ0Þ dk⃗

¼ −
ζðu; vÞ

4π2ζðu; uÞ2
Z

∞

0

κ3e−iκðτ−τ0Þ dκ; ðA3Þ

for any ζ-timelike 4-vector u. [Alternatively, one can make
a change of variables to reduce the left-hand side to another
instance of (A2).]

APPENDIX B: THE NORMAL ORDERED
ENERGY DENSITY ACTING

ON THE VACUUM

Let f be a smooth compactly supported real-
valued function. We aim to exclude the possibility that

∶ρ̂ðfÞ∶Ω ¼ 0 unless f vanishes identically—a result analo-
gous to an instance of the Reeh-Schlieder theorem, needed
for our argument in Sec. VA on the existence of states in
which the expectation value of the quantized energy density
is negative. Writing ∶ρ̂ðfÞ∶Ω out, we find

∶ρ̂ðfÞ∶Ω ¼ −
εðeÞ−1
2ð2πÞ6 ðχ

abcd − 2_γaneχebcd − 2_γcneχabedÞ

×
Z Z

R3×R3

k½avb�k0½cv
0
d�ffiffiffiffiffiffiffiffiffiffiffi

4ωω0p f̂ðkþ k0Þa�ðk⃗Þa�ðk⃗0Þ

× dk⃗ dk⃗0Ωþ other terms;

where the other terms lie in orthogonal subspaces of the
2-particle subspace, generated by creation operators such as
~a�ðk⃗Þa�ðk⃗0Þ or ~a�ðk⃗Þ ~a�ðk⃗0Þ.
One calculates

∶ρ̂ðfÞ∶Ω ¼ −
εðeÞ−1
ð2πÞ6

Z Z
R3×R3

rðk⃗; k⃗0Þf̂ðkþ k0Þ

× a�ðk⃗Þa�ðk⃗0Þ dk⃗ dk⃗0Ωþ other terms;

where rðk⃗; k⃗0Þ is given by

4
ffiffiffiffiffiffiffiffi
ωω0p

rðk⃗; k⃗0Þ
¼ η−1ðv0; kÞðη−1ðv; nÞðk0 · _γÞ þ ηðk0; nÞðv · _γÞÞ
þ η−1ðv; k0Þðη−1ðv0; nÞðk · _γÞ þ ηðk; nÞðv0 · _γÞÞ
− η−1ðv; v0Þðη−1ðk0; nÞðk · _γÞ þ ηðk; nÞðk0 · _γÞÞ
− η−1ðk; k0Þðη−1ðv0; nÞðv · _γÞ þ η−1ðv; nÞðv0 · _γÞÞ
− η−1ðv; k0Þη−1ðv0; kÞ þ η−1ðk; k0Þη−1ðv; v0Þ

and the “other terms” have a similar form. Let k ¼ k0. Then,
using η−1ðk; kÞ ¼ 0, η−1ðv; kÞ ¼ 0, η−1ðv; vÞ ¼ 1,

rðk⃗; k⃗Þ ¼ −
η−1ðk; nÞðk · _γÞ

2ω
:

Noting that k · _γ > 0 and η−1ðk; nÞ < 0, we find
rðk⃗; k⃗Þ > 0. Therefore there is a nonempty open set N ⊂
R3 ×R3 on which infNr > 0.
It is clear that

∥∶ρ̂ðfÞ∶Ω∥2 ≥ 2

ð2πÞ6
Z Z

N
jrðk⃗; k⃗0Þj2jf̂ðkþ k0Þj2dk⃗ dk⃗0;

and it follows that ∶ρ̂ðfÞ∶Ω ¼ 0 only if f̂ vanishes almost

everywhere on fkþ k0jðk⃗; k⃗0Þ ∈ Ng, which has a nonempty
interior in R4. As f is compactly supported, f̂ is analytic,
and we may conclude that it (and hence f) vanishes
identically.
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APPENDIX C: THE DUAL LAGRANGIAN
FOR MASSIVE MOMENTA

To derive the intrinsic normalization factor ℵUC for the
curves employed in Sec. V B, we follow [32]. We derive the
dual Lagrangian determining the trajectories of particles
and observers with massive momenta via the Legendre map
from the dispersion relation. In our case the dispersion
relation is defined by the Fresnel polynomial of the crystal

PðkÞ ¼ jηj−1=2GðkÞ ¼ η−1ðk; kÞζ−1ðk; kÞ ¼ m4;

see (22). Since this calculation is rather involved, we
perform the derivation only up to third order in the crystal
parameter ξ.
The starting point is the Helmholtz action for free

particles satisfying the massive dispersion relation

S½x; k; λ� ¼
Z �

k · _x − λ ln

�
P

�
k
m

���
dτ;

where variation with respect to λ enforces the dispersion
relation PðkÞ ¼ m4. By successive variation with respect to
k and λ, it is possible to remove the dependence of the
action on k and λ to obtain an action which determines the
motion of massive point particles and the proper time of
observer clocks

S½x� ¼ m
Z

P�ð_xÞ dτ;

where P� is a one-homogeneous function with respect to _x.
In [32] it was shown that

P�ð_xÞ ¼ Pðkð_xÞÞ−1
4:

The term kð_xÞ is the inverse of the Legendre map

_xaðkÞ ¼ 1

4

∂kaGðkÞ
GðkÞ ¼ 1

2

ka

η−1ðk; kÞ þ
1

2

ðζ−1Þabkb
ζ−1ðk; kÞ

¼ ka

η−1ðk; kÞ þ
ðξ2ðk ·UÞ2 − ðk · XÞ2Þka

2η−1ðk; kÞ2

þ ððk · XÞXa − ξ2ðk ·UÞUaÞ
2η−1ðk; kÞ þOðξ4Þ;

which we expanded up to ξ2 (the term of order ξ3 vanishes).
Up to this order, the inverse of the Legendre map is
given by

kað_xÞ ¼
_xa

ηð_x; _xÞ þ
ðηð_x; XÞ2 − ξ2ηð_x;UÞ2Þ_xa

2ηð_x; _xÞ2

þ ðξ2ηð_x; UÞUa − ηð_x; XÞXaÞ
2ηð_x; _xÞ þOðξ4Þ:

Using this expression, we find

P�ð_xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð_x; _xÞ

p
þ ξ2ηð_x;UÞ2 − ηð_x; XÞ2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð_x; _xÞp þOðξ4Þ:

Thus an observer curve γ is uniaxial crystal electrodynam-
ics proper time parametrized if and only if P�ð_γÞ ¼ 1.
For the worldline (37) along which we study the point-

split energy density in Sec. V B we find

P�ð_γÞ ¼ ℵUC

�
1þ ξ2

4
ð1þ sinh2α sin2βÞ

�
þOðξ4Þ;

and thus the normalization factor must be

ℵUC ¼ 1 −
ξ2

4
ð1þ sinh2α sin2βÞ þOðξ4Þ: ðC1Þ
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