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Topologically protected superfluid phases of 3He allow one to simulate many important aspects of
relativistic quantum field theories and quantum gravity in condensed matter. Here we discuss a topological
Lifshitz transition of the effective quantum vacuum in which the determinant of the tetrad field changes
sign through a crossing to a vacuum state with a degenerate fermionic metric. Such a transition is realized in
polar distorted superfluid 3He-A in terms of the effective tetrad fields emerging in the vicinity of the
superfluid gap nodes: the tetrads of the Weyl points in the chiral A-phase of 3He and the degenerate tetrad
in the vicinity of a Dirac nodal line in the polar phase of 3He. The continuous phase transition from the
A-phase to the polar phase, i.e., the transition from the Weyl nodes to the Dirac nodal line and back, allows
one to follow the behavior of the fermionic and bosonic effective actions when the sign of the tetrad
determinant changes, and the effective chiral spacetime transforms to antichiral “anti-spacetime.” This
condensed matter realization demonstrates that while the original fermionic action is analytic across the
transition, the effective action for the orbital degrees of freedom (pseudo-EM) fields and gravity have
nonanalytic behavior. In particular, the action for the pseudo-EM field in the vacuum with Weyl fermions
(A-phase) contains the modulus of the tetrad determinant. In the vacuum with the degenerate metric (polar
phase) the nodal line is effectively a family of 2þ 1d Dirac fermion patches, which leads to a non-analytic
ðB2 − E2Þ3=4 QED action in the vicinity of the Dirac line.

DOI: 10.1103/PhysRevD.97.025018

I. INTRODUCTION

Recent researchon topological phases ofmatter has focused
on gapless fermionic quasiparticles topologically protected in
the bulk of the system. Examples include Dirac and Weyl
fermions and their possible higher spin generalizations in
nonrelativistic condensed matter systems not constrained by
Lorentz symmetry [1–3]. Such quasiparticles feature promi-
nently in, e.g., semimetals, [4–6] topological superfluids and
superconductors where they are protected by topology and/or
various discrete symmetries. What sets such systems apart
from other gapless (massless) fermionic systems in condensed
matter and high-energy physics is the emergent quasirelativ-
istic form of the low-energy dispersion [7–9]. The symmetries
of the low-energy dispersion, i.e., the effective fermionic
metric, are set by the low-energy ground state properties and
background fields and thus are not typically constrained by
Lorentz symmetry. Among the most striking features of such
topologically protected gapless systems is the presence of
quantum anomalies similar to relativistic field theories
[10–18] and surface states with dispersionless bands, e.g.,
Fermi arcs [19], drumhead states, and flat bands [20–22].
As in any fermionic theory, the coupling of the low-

energy fermions to geometry and gauge fields is through

effective tetrad fields (and the spin connection). For
example, the determinant of the tetrad det e may have
different signs throughout the system (as dictated, e.g., by
global topology), but the metric and dispersion are not
sensitive to this sign. On the other hand, the presence of
topological terms in the effective action after the low-
energy fermions have been integrated out can make the
theory anomalous under such transformations. One is
therefore interested in the global spacetime symmetries
P, T and other discrete symmetries of the system that can
be anomalous in the low-energy quantum theory.
Here we address the question what happens if det e

changes sign and the right-handed fermions continuously
transform to the left-handed fermions and vice versa (i.e.,
not necessarily through a symmetry operation) without
considering the possible anomalous or topological terms
in the effective action. The relativistic analogue of such a
transformation was termed “antispacetime” in Ref. [23] and
has been considered, e.g., in Refs. [24–26]. As the tetrad
and metric become singular as det e crosses zero, this
connects to the problem in quantum gravity over which
type of singular metrics should be integrated over in the
gravitational path integral [27]. Reference [23] suggested
three alternatives to this problem: (i) Antispacetime does
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not exist, and det e > 0 should constrain the gravity path
integral; (ii) Antispacetime exists, but the action depends
on j det ej, rather than on det e. (iii) Antispacetimes exists
and contribute nontrivially to quantum gravity.
We consider the problem of degenerate tetrads for Weyl

and Dirac fermions in superfluid 3He in the A- and polar
phases, respectively. Related to the singular tetrads, we study
the resulting low-energy effective actions for the orbital
degrees of freedom of the superfluid. Formally these couple
to the (neutral) 3He fermions in the form of effective 3þ 1d
and 2þ 1d QED. Namely we will focus on the effective
Euler-Heisenberg actions [28–30] for the orbital dynamics. In
particular, for the Weyl fermions in 3He-A, we can make a
transformation to effective antispacetime with det e < 0
through the (topological Lifshitz) phase transition to the
polar phase of 3He, or more trivially through a continuous
SOð3Þ rotation of the orbital angular momentum anisotropy
axis in the laboratory frame (see Fig. 1). In the polar phase, the
full 3þ 1d tetrad is degenerate, i.e., det e ¼ 0, and the low-
energy fermionic spectrum is characterized by a nodal line of
2þ 1d Dirac fermions. We then consider the singularities in
the effective action which occur due to the presence of the
nodal line. In this case the 3þ 1d spacetime for fermions near
theWeyl point transforms to a family of 2þ 1d effective low-
energy spacetimes, which leads to a nonanalytic effective
action for the corresponding pseudo-EMorbital fields emerg-
ing in the vicinity of the nodal line.
The transformation from chiral 3He-A spacetime to chiral

anti-spacetime through the polar phase in 3He demonstrates
that the emerging bosonic low-energy effective action does
not depend on the sign of det e, instead it contains

ffiffiffiffiffiffi−gp ¼
j det ej and is therefore non-analytic in terms of the tetrad
field. The transition with a degenerate tetrad also demon-
strates that the original action for fermions is analytic, but it
is not fully diffeomorphism invariant. It is invariant under
the volume-preserving (i.e., δg ¼ 0) coordinate transfor-
mations. By rescaling, it can be made diffeomorphism

invariant, but after that it becomes nonanalytic. The
emergent bosonic effective action, obtained by integration
over fermions, acquires the same properties: it is invariant
under coordinate transformations but is non-analytic in
terms of the tetrad. Depending on the details, it is possible
that topological terms emerge, they are however, anoma-
lous under discrete (or gauge) symmetry transformations.
Finally, the topological Lifshitz transition associated

with the change of sign of det e has been also considered
in for the so-called type-III and IV interacting (or driven)
Weyl fermions [31] with tilted Weyl cones in frequency
space. Here we discuss this transition for the interacting (or
driven) type-II Weyl fermions with a non-zero tilt of the
conical dispersion in frequency [32–34]. In this case the
intermediate state at the Lifshitz transition contains a
degeneracy surface of the bands touching at the Weyl
point instead of the nodal line in the spectrum [22,35–38].

II. POLAR DISTORTED 3He-A

According to von Neumann and Wigner, [39], in 3þ 1
dimensions two bands may touch each other at a point
(Weyl or Dirac point of codimension 3) or have a band
degeneracy along a line (a Dirac nodal line of codimension
2). The topological origin of the band touching is dis-
cussed, e.g., in Ref. [40]. Weyl points are topologically
protected by an integer valued topological invariant N3 in
momentum space, see, e.g., [9] and a zero-sum-ruleP

aN3;a ¼ 0 of total chirality applies in the bulk of any
system [10]. The existence of Weyl points requires broken
P or T symmetry, while the combination PT remains a
symmetry. Violation of PT symmetry leads to inflation of
the Weyl points and formation of the Fermi pockets
[9,41,42]. Examples of Weyl points are found in topologi-
cal superfluids, superconductors, and semimetals: two
spin-degenerate N3 ¼ �2 Weyl points are found both in
3He-A and in the distorted 3He-A that break time-reversal
symmetry. Similarly, the Dirac nodal line is found in the
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ê2

ê1
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FIG. 1. Schematic illustration of the Lifshitz transition through the polar phase in polar distorted 3He-A, where right-handed fermions
transform to left-handed and vice versa. (a) 3He-A has two (spin-degenerate) Weyl points of opposite chirality (red stars) atW� ¼ �pFl
with triads e�a . (b) As the triad e2 is varied adiabatically through zero, the polar phase with a nodal line (red) emerges from the poles
when e2 ¼ 0. (c) For the adiabatic evolution ê2 → −ê2 or a SOð3Þ-rotation of the whole orbital part l̂ → −l̂ with respect to the
laboratory frame, the chirality of the Weyl points interchanges as well.
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Bogoliubov spectrum of the recently experimentally dis-
covered polar phase of 3He [43,44], where the nodal line is
protected by topology together with time-reversal sym-
metry T. Throughout the paper, we shall focus on these
topological spin-triplet p-wave superfluids with gapless
Dirac and Weyl fermions.

A. Weyl fermions in polar distorted 3He-A

The spin-triplet p-wave order parameter ΔαβðkÞ ¼
ðiσ2σμÞαβkiAμi of polar distorted superfluid 3He-A is given
by [28]

Aμi ¼ d̂μðmi þ iniÞ; ð1Þ

where d̂ is the spin-anisotropy axis and the orbital structure
is parametrized by two real and orthogonal vectors,
m · n ¼ 0. It is convenient to introduce the third unit
vector l̂:

l̂ ¼ m × n
jm × nj : ð2Þ

If jmj ¼ jnj ¼ Δ0=pF, Eq. (1) describes 3He-A with gap
Δ0. The chiral A-phase Cooper pairs have orbital angular
momentum along l̂ and therefore the phase has uniaxial
orbital anisotropy along this unit vector. If n ¼ 0 (or
m ¼ 0), one has the polar phase, which is time reversal
invariant. Otherwise, Eq. (1) describes the polar distorted
A-phase [43].
The model, weakly-coupled Bogoliubov-de Gennes

Hamiltonian corresponding to Eq. (1) for the fermionic
quasiparticles is given by

HðpÞ ¼ p2 − p2
F

2m
τ3 þm · pτ1 þ n · pτ2 ð3Þ

where τa are Pauli matrices in Bogoliubov-Nambu space
and the spin quantum number along d̂ is degenerate and
ignored. In the A-phase and in the polar distorted A-phase
there are two Weyl points located at momentaW� ¼ �pF l̂
in Fig. 1. The low-energy Hamiltonians for quasiparticles
in the vicinity of these Weyl points, Wþ and W−, have
the form:

H�ðpÞ ¼ ðp −W�Þ · ðe1τ1 þ e2τ2 þ e�3 τ
3Þ; ð4Þ

where

e1 ¼ m; e2 ¼ n; e�3 ¼ �vF l̂; ð5Þ

and vF ¼ pF=m. The BdG Hamiltonians Eq. (4) describe
fermions with an effective tetrad field eka, effective gauge
field Aeff , and charges q� ¼ �1:

H ¼ eaτa · ðp − q�AÞ; eka ¼ ðeaÞk; Aeff ¼ pF l̂:

ð6Þ

Note that the two tetrad fields eka in Eq. (5) have the
antiparallel components e�3 , and thus the tetrad determi-
nants for these two Weyl fermions have opposite signs:

e� ¼ �jmjjnjvF: ð7Þ
This means that these fermions have opposite chiralities,
while they have the same effective metric gik ¼ ei1e

k
1 þ

ei2e
k
2 þ ei3e

k
3 with determinant:

ffiffiffiffiffiffi
−g

p ¼ jeþj−1 ¼ je−j−1 ¼
1

je1jje2jje3j
; ð8Þ

The chirality of fermions is determined by the orientation of
the unit vector l̂: The Weyl fermions at Wþ ¼ þpF l̂ are
always right-handed and the topological charge N3 ¼ þ1
describes a hedgehog with (pseudo)spins pointing outward.
The Weyl fermions at W− ¼ −pF l̂ are always left-handed
with the topological charge N3 ¼ −1 [9].

B. Change of sign of tetrad determinant across
the transition through the polar phase

Let us discuss the Lifshitz transition where n ¼ e2 ¼ bŷ
and the parameter b crosses zero with 1 ≥ b ≥ −1 [43],
see Fig. 1. At b ¼ 0 the determinant of the tetrad changes
sign and the right-handed fermions transform to the left-
handed ones [23–25]. At this transition, the polar phase
where the two fermion bands are degenerate along a line, is
crossed. From the point of view of the low-energy fermions
and effective gravity, the 3þ 1d tetrad is degenerate with
det e ¼ 0 in the polar phase, corresponding to a nodal line of
2þ 1d spacetimes in the transverse directions in momentum
space (we ignore here the tiny symmetry-breaking spin-orbit
interaction which destroys the Dirac nodal line [45]).
Across this transition the l̂-vector changes its orientation

to its opposite, W� → W∓, and the chiralities at p ¼ Wþ
and p ¼ W− points in momentum space change sign,
compare Fig. 1(a) and Fig. 1(c). In Fig. 1(a) the point
Wþ ¼ pF l̂ is the right-handed Weyl point, while after
transition in Fig. 1(c) it is expressed in terms of l̂ as
W− ¼ −pF l̂, and thus becomes the left-handedWeyl point.
At e2 ¼ 0, i.e., in the polar phase, the spatial part of the
3þ 1d tetrad eμa becomes degenerate, which signals
appearance of the 2þ 1d nodal line. According to the
analysis Hořava [8] and the topological classification of
Refs. [46,47], one expects that relativistic invariance
emerges in the low-energy transverse directions. The
system effectively transforms to a one-parameter family
of 2þ 1d QFTs, with dyads e1 and e3 along the transverse
directions that depend on the position along the nodal line
in Fig. 1(b).
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C. Effective 3 + 1d QED

Let us first consider the effective electrodynamics of
the orbital degrees of freedom for the case of the 3þ 1d
polar distorted A-phase, when approaching the polar
phase with e2 ¼ 0. The position of the Weyl point plays the
role of pseudo gauge field, Aeff ¼ pF l̂, with the corre-
sponding pseudomagnetic field Fik ¼ ∇iAk −∇kAi ¼
pFϵikmð∇ × l̂Þm. For the static case, ∂tAeff ¼ 0, the effec-
tive free energy obtained after integration over the massless
Weyl fermions has logarithmic contribution, see, e.g.,
[9,28]:

ΔFgrad½B� ¼
ffiffiffiffiffiffi−gp

48π2
B2 ln

�
E2
UV

B

�
þ � � � ; ð9Þ

where B ¼
ffiffiffiffiffiffi
B2

p
is the quasirelativistic contraction of the

pseudomagnetic field,

B2 ¼ gimgknFikFmn; ð10Þ

and EUV is a cutoff scale of the order of the superfluid gap
Δ0 and the ellipses represent subleading contributions
compared to log×B2 as B → 0. In superfluid 3He-A, one
has je1j ¼ je2j ¼ Δ0=pF ≪ vF ¼ je3j, and neglecting the
terms of the relative magnitude Δ0=vFpF ≪ 1 one obtains

ΔFgrad ¼
p2
FvF lnðE

2
UV
B Þ

48π2je1jje2j
ððe1 · ðl̂ ·∇Þl̂Þ2 þ ðe2 · ðl̂ ·∇Þl̂Þ2Þ:

ð11Þ

D. Singularity in the effective 3 + 1d QED near
the degeneracy of the metric

It is important that both Weyl points of opposite chirality
give the same contribution to the effective action. This
means that the action depends only on the modulus of the
tetrad determinant je�j and reflects the fact that the polar
phase with det e ¼ 0 is singular from the perspective of the
effective 3þ 1d spacetime and QED: the metric becomes
degenerate and the effective action diverges. Similarly,
when e2 crosses zero, the sign of the tetrad determinant
changes and the left-handed Weyl fermions transform to
right-handed ones in the polar distorted 3He-A phase
following after the transition.
The singularity in the effective action can be seen from

Eq. (11): When the polar state with a degenerate tetrad
approaches, i.e., when, say e2 → 0, one has:

Fgrad →
p2
FvF lnðE

2
UV
B Þ

48π2
1

je1jje2j
ðe1 · ðl̂ ·∇Þl̂Þ2 ð12Þ

¼ p2
FvF lnðE

2
UV
B Þ

48π2
je1j
je2j

ðl̂ · ðl̂ ·∇Þm̂Þ2: ð13Þ

Here we explicitly introduced the unit vector m̂ along e1,
i.e., e1 ¼ je1jê1 ¼ Δ0

pF
m̂ and we took into account that

l̂ · m̂ ¼ 0. The divergence of the quadratic term in Eq. (13)
suggests that at the degenerate point of the tetrad, i.e., in the
polar phase, where e2 ¼ 0, the low-energy effective action
with lower power of the gradients emerges. Moreover, in
the polar phase one has a nodal line of zeroes and near the
nodal line, the low-energy fermions are effectively 2þ 1d
Dirac fermions rather than 3þ 1d Weyl fermions near the
point nodes. For 2þ 1d QED with massless fermions, the
leading singularity of the effective low-energy action
comes with a B3=2 term instead of the B2 lnðE2

UV=BÞ,
see, e.g., Ref. [30]. The analogous effective action for the
orbital dynamics of the polar phase is discussed in the next
section.
Note that the original fermionic action and the

Hamiltonian in Eq. (3) do not experience any singularity
at the transition to the polar phase when e2 ¼ m ¼ 0.
However, HðpÞ has axial anisotropy along l̂ and the theory
is not (classically) diffeomorphism nor even Lorentz invari-
ant. The low-energy fermions in Eq. (6), which acquire
Lorentz invariance, also experiences no singularity at the
transition through e2 ¼ 0. However, Eq. (6) still lacks the
full diffeomorphism invariance, obeying only the invariance
under unimodular coordinate transformations. After the
introduction of new tetrads ~e1 ¼ jej−1=3e1, ~e2 ¼ jej−1=3e2,
~e3 ¼ jej−1=3e3 and e00 ¼ jej−1=3 with j~ej ¼ jej1=3, the action
with the Hamiltonian

~HAðpÞ ¼ j~ej ~eaτa · ðp − qAAeffÞ; ð14Þ

becomes invariant under the full coordinate transformations.
However, it contains a fractional power of the original tetrad
determinant. As a result the action becomes nonanalytic, in
contrast to the original fermionic action. This explains the
origin of the nonanalyticity in e in the bosonic action: it can
be analytic only in theories of unimodular gravity [48–51].

III. POLAR PHASE, DEGENERATE METRIC,
NONANALYTIC 2+ 1-DIMENSIONAL QED

A. Dirac fermions and 2 + 1d QED in the polar phase

When n ¼ 0 in Eq. (1), one has the polar phase with
e2 ¼ 0 and the BdG Hamiltonian with a nodal line,

HðpÞ ¼ vFðp − pFÞτ3 þ p · e1τ1 ð15Þ

where e1 ¼ c⊥m̂ with c⊥ ¼ Δ0

pF
. For e2 ¼ 0, the two Weyl

points transform to the nodal line at p · m̂ ¼ 0, p2 ¼ p2
F.

Let us parametrize the nodal line and the normal vector as a
function of angle α, see Fig. 1(b) and Fig. 2:

pðαÞ ¼ pFðl̂ cos αþ l̂ × m̂ sin αÞ ¼ m�e3ðαÞ; ð16Þ
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here l̂ is a unit vector perpendicular to m̂, andm� ¼ pF=vF.
The unit vector ê2ðαÞ ¼ ðl̂ × m̂Þ cos α − l̂ sin α is along the
tangent of the nodal line and perpendicular to p̂ðαÞ.
For each α, one has a patch of 2þ 1d massless Dirac

fermions, with the low-energy Hamiltonian

Hðp; αÞ ¼ ðp − pðαÞÞ · ðe1τ1 þ e3ðαÞτ3Þ: ð17Þ

Note that pðαþ πÞ ¼ −pðαÞ, and the point antipodal to α
has a Dirac fermion with opposite chirality. We again
identify AeffðαÞ ¼ pðαÞ as the effective pseudo EM field
coupled to the low-energy fermions. To study the fluctua-
tions of the nodal line, we proceed as in the previous
section by constructing the effective action forAeffðαÞ. This
corresponds to effective orbital gradient energy of the
orbital order parameter m̂ of the polar phase induced by
the quantum fluctuations of the superfluid vacuum.
Let us parametrize the fluctuations of the nodal line

induced by a texture of the superfluid order parameter m̂ðrÞ
as follows. Rotations of the polar axis m̂ are Goldstone
modes of the superfluid vacuum (in experiments, m̂ is fixed
by the uniaxial anisotropy of the aerogel sample [43]). Set
m̂0 ¼ ẑ and a perpendicular unit vector l̂0 ¼ x̂ in a
homogenous equilibrium state. Without loss of generality
m̂ðrÞ; l̂ðrÞ can be chosen as (see Fig. 2):

m̂ðrÞ≡ m̂0 þ δm̂ ¼ ẑ cos θðrÞ þ x̂ sin θðrÞ ≈ ẑþ x̂θðrÞ;
ð18Þ

l̂ðrÞ≡ l̂0 þ δl̂ ¼ x̂ cos θðrÞ − ẑ sin θðrÞ ≈ x̂ − ẑθðrÞ;
ð19Þ

where the slowly varying rotation parameter θðrÞ ≪ 1.

δAeffðα; xÞ≡ δpðα; xÞ ¼ pF cos αδl̂

¼ −pF cos αðδm̂ · x̂Þẑ ¼ pF cos αðŷ × δm̂Þ:
ð20Þ

where ŷ ¼ ẑ × x̂.
Let us first consider the 2þ 1d fermions at α ¼ 0. This is

geometrically the 2þ 1d image of the Weyl point of 3He-A
and Aeffð0Þ ¼ pF l̂0. The only nonzero component of the
2þ 1d pseudomagnetic field is By ¼ ϵyzxFzx (i.e., the
2þ 1d magnetic field is along the neglected third dimen-
sion corresponding to the tangent ê2ð0Þ ¼ ŷ),

Fikðα ¼ 0Þ ¼ dAi

dxk
−
dAk

dxi
¼ dAz

dx
ẑix̂k; ð21Þ

dAz

dx
¼ pF

dðδm̂ · x̂Þ
dx

¼ pFð∇ · m̂Þ: ð22Þ

Here the last equation follows if

δm̂ðrÞ · x̂ ¼ θðrÞ≡ θðxÞ ð23Þ

i.e., the deformation θðrÞ only depends on x. The covariant
value of this pseudomagnetic field is

B2ðα ¼ 0Þ≡ Fikð0ÞFmnð0Þgimgkn ¼ c2⊥v2Fp2
Fð∇ · m̂Þ2:

ð24Þ

The generalization of this expression to α ≠ 0 is

B2ðαÞ ¼ c2⊥v2Fp2
Fð∇ · m̂Þ2 cos4 α: ð25Þ

Here one factor of cos2 α comes from the vector potential
δAðαÞ in Eq. (20), and another factor of cosα comes
from the projection of Fzx to the transverse ð~x; zÞ-plane
normal to the nodal line in Eqs. (21), (22), i.e., one has
~x ¼ x cos α − y sin α, where ~x is the local coordinate of the
2þ 1d fermions perpendicular to the nodal line.

B. Effective action for the polar pseudo-EM field

For 2þ 1d Dirac fermions, the Euler-Heisenberg effec-
tive action ΔL2þ1d

QED ½B� after integrating out the fermions is
different from Eq. (9) but instead is of the form [30,52]

ΔL2þ1d
grad ½B� ¼ ffiffiffiffiffiffi

g⊥
p ζð3=2Þ

4
ffiffiffi
2

p
π2

jBj3=2: ð26Þ

We note that in addition to this, a chiral 2þ 1d fermion
may produce the parity/time-reversal anomaly related to
the topological Chern-Simons term [30]. This is forbidden
in the time-reversal invariant polar phase. In the chiral
A-phase, in addition to (9) one produces the topological
Wess-Zumino term [28] related to the chiral anomaly [12],

θ

α

δAeff(α)

p(α)

ê3(α)

ê2(α)

m̂0

m̂0 + δm̂

FIG. 2. Dependence of the effective vector potential of 2þ 1d
Dirac fermions on their position on the nodal line in Eq. (20).
This field is caused by the texture of the polar phase order
parameter m̂ðrÞ ¼ m̂0 þ δm̂ðrÞ. This vector is perpendicular to
the nodal line, and thus the deformation m̂ðrÞ tilts the plane of the
nodal line. Such deformation corresponds to the Goldstone mode
propagating in the polar phase. In terms of the effective 2þ 1d
QED, this is the photon mode.
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the coefficient of which changes sign after transition
through the polar phase.
Integration of Eq. (25) along the nodal line in momentum

space, pF

R
2π
0 dαjB2ðαÞj3=4, gives the nonanalytic contri-

bution to the gradient energy density

ΔFpolar
grad ðBÞ ¼ CpF

ffiffiffiffiffiffiffiffiffi
−g⊥

p jBj3=2 ð27Þ

¼ Cðc⊥vFÞ1=2ðpFÞ5=2j∇ · m̂j3=2: ð28Þ
where g⊥ ¼ 1=ðvFc⊥Þ is the determinant of the 2þ 1d
metric in the dimensions perpendicular to the nodal line and

C ¼ ζð3=2Þ
4

ffiffiffi
2

p
π2

Z
2π

0

dαj cos αj3 ¼
ffiffiffi
2

p
ζð3=2Þ
3π2

: ð29Þ

Substituting the physical parameters of the polar phase (the
gap amplitude ΔP ¼ c⊥pF and coherence length ξ ¼
vF=ΔP), one obtains

ΔFpolar
grad ¼ ζð3=2Þ ffiffiffi

2
p

3π2
vFp2

Fξ
−1=2j∇ · m̂j3=2: ð30Þ

The above expression resolves the singularity in the
distorted A-phase in Eq. (13), when e2 → 0. The cross-
over contribution between 3þ 1d and 2þ 1d in the polar
distorted A-phase close to the transition to the polar phase
can be approximated as (neglecting the logarithmic factor
and leaving only the relevant terms):

ΔFgrad ∼
p2
FvF

ξ1=2

ð∇·m̂Þ3=2 þ
je2j=je1j

ðl̂·ðl̂·∇Þm̂Þ2
: ð31Þ

C. Creation of quasiparticles by 2 + 1d
pseudoelectric field

Adding a pseudoelectric field E ¼ ∂tAeff ¼
pF cos α∂tðŷ × δm̂Þ leads to the substitution

ffiffiffiffiffiffi
B2

p
→ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 − E2
p

in the above formulas [28,30], as a result one
obtains

Lgrad½B;E�

¼ ffiffiffiffiffiffiffiffiffi
−g⊥

p ζð3=2Þ
4

ffiffiffi
2

p
π2

vFp2
Fξ

−1=2

×
Z

2π

0

dα

�
ð∇ · m̂Þ2cos4α −

1

v2F
ð∂tm̂Þ2cos2α

�
3=4

:

ð32Þ
When pseudoelectric field is dominating, i.e., B2 − E2 < 0,
the expression in the brackets becomes negative and the
action acquire a non-zero imaginary part, which describes
the Schwinger effect, i.e., the production of pairs of Dirac
particles from the vacuum. For B ¼ 0, the probability of
spontaneous creation of Dirac particles from the vacuum by
the pseudoelectric field per unit time per unit volume is

ImLgrad ¼
ffiffiffiffiffiffiffiffiffi
−g⊥

p ζð3=2Þ
4

ffiffiffi
2

p
π2

sinð3π=4Þ

×
p2
F

vF
Δ−1=2

P j∂tm̂j3=2
Z

2π

0

dαj cos αj3=2

¼ ffiffiffiffiffiffiffiffiffi
−g⊥

p ζð3=2Þ
4π2

B

�
5

4
;
1

2

�
p2
F

vF
Δ1=2

P j∂tm̂j3=2; ð33Þ

where Bðx; yÞ is the beta function. The pseudoelectric field
can be generated by the time dependent order parameter,
which may result in dissipation proportional to ω3=2,
see Refs. [28,53] for similar considerations for the A- and
B-phases of 3He.

IV. BAND TOUCHING LINE IN A TYPE-II
WEYL MATERIAL

Finally, let us briefly discuss a topologically protected
band touching or degeneracy surface of Weyl fermions
related to the zero of the effective metric determinant. In the
general case of interacting (or driven) systems, the Weyl
fermions in the vicinity of the band touching are described
by a 16 component of the tetrad field eμa, which enter the
linear expansion of the 2 × 2 Green’s function [31], with
pμ ¼ ðω;pÞ,
G−1ðpμÞ ¼ e00σ

0p0 þ ei0σ
0pi þ eiaσapi þ e0aσap0: ð34Þ

The tetrad components ei0 and e0a are perturbations that
parametrize the tilting of the Weyl cone in momentum and
frequency space, leading to different types of Weyl fer-
mions [31,34]. In the case of an isotropic Weyl cone
characterized by a single “speed of light” or Fermi-velocity
c, the tetrads can be parametrized in terms of two velocity
fields v and w:

e00 ¼ −1; eia ¼ cδia; ei0 ¼ vi; e0a ¼
wa

c
;

ð35Þ
with the corresponding effective metric gμν ¼ eμaeνbη

ab,

gμνðv;wÞ ¼
�

1 − w2

c2 −ðv þ wÞ
−ðv þ wÞ −c2δij þ vivj

�
; ð36Þ

and the determinant

gðv;wÞ≡ det gμν ¼ −
1

e2
¼ −

1

c2ðc2 þ v · wÞ2 ð37Þ

e≡ det eμα ¼ −cðc2 þ v · wÞ: ð38Þ
The sign of the determinant of the tetrad field crosses zero
either at c ¼ 0 or at c2 þ v · w ¼ 0. The first case is similar
to the crossing the polar phase, where the determinant
changes sign when one of the speeds of light, the speed of
light propagating along e2, crosses zero. Let us consider the
second case.
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The energy-momentum dispersion gμνpμpν ¼ 0 is given by the poles of the Green’s function, G−1ðω;pÞ ¼ 0 and it
consists of the two bands:

ω�ðpÞ ¼
p · ðv þ wÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − w2

c2Þðc2p2 − ðp · vÞ2Þ þ ðp · ðv þ wÞÞ2
q

1 − w2

c2
ð39Þ

The two bands are degenerate when the square root in
Eq. (39) is zero, i.e., at

ðwðp · vÞ þ c2p∥Þ2 þ ðc2 − w2Þc2p2⊥ ¼ 0; ð40Þ

where p∥ and p⊥ are components of momentum parallel
and transverse to w respectively. Let us consider the case
when w < c and v > c, which corresponds to an overtilted
or type-II Weyl fermions with a frequency-momentum
normalization w. Then Eq. (40) is satisfied when p⊥ ¼ 0

and c2 þ v · w ¼ 0, i.e., at the transition, at which the
determinant of the tetrad changes sign and the right-handed
fermions transform to the left-handed ones [23,24]. At this
transition the two bands touch each other at the line
p × w ¼ 0, where ωþ ¼ ω− ¼ −c2ðp · wÞ=w2. In contrast
to the Dirac nodal line in the polar phase of 3He, here the
band touching or degeneracy does not occur at zero-energy
(i.e., at the chemical potential). For the latter to occur, a
symmetry protecting the degeneracy at zero energy is
required, such as chiral symmetry and/or time reversal
symmetry in the polar phase of 3He. Nevertheless, the
surface of band touching is still topologically protected,
see, for example, Refs. [22,38].

V. CONCLUSION

In this paper, we considered the effective 3þ 1d and
2þ 1d QED coupled to massless Weyl and Dirac fermions
and the associated Euler-Heisenberg effective actions in the
orbital dynamics of polar distorted superfluid 3He-A. In
particular, one can continuously dial between the 3þ 1d
Weyl and 2þ 1d Dirac fermions by tuning the orbital
structure of the order parameter [43].
We considered the transition in terms of the effective

spacetime experienced by the low-energy fermions via the
emergent tetrad fields. In this condensed matter setting, one
can realize the transition from “spacetime to antispacetime”
[23]. In superfluid 3He the change of the determinant of the
Weyl fermion tetrad field occurs through the topological
Lifshitz transition of the Bogoliubov-Fermi line associated
with the polar phase with a degenerate zero tetrad compo-
nent. While the action for fermions is different in spacetime
and anti-spacetime, the effective action for the bosonic
fields (effective electromagnetic and gravity fields) is the
same for both tetrads. The bosonic action is proportional
to

ffiffiffiffiffiffi−gp ¼ j det ej and this is a nonanalytic function of the
determinant of the tetrad field det e. The nonanalytical

behavior is demonstrated at the transition, where the tetrad
field becomes degenerate. This leads to the topologically
protected Dirac nodal line in the polar phase and to the band
touching surface in Weyl semimetals. When the Lifshitz
transition is approached the bosonic action develops a
singularity, at which the 3þ 1d action effectively trans-
forms to a one-parameter family of 2þ 1d Dirac fermions.
In particular, the Schwinger pair production of massless
fermions by the effective electric field, which is propor-
tional to E2 in 3þ 1d quantum electrodynamics and in
Weyl superfluid 3He-A, transforms to the E3=2 behavior in
the polar phase, which will be a definitive characteristic
of the 2þ 1 quantum electrodynamics emerging near the
nodal Dirac line.
We note that we focused on the Euler-Heisenberg

effective actions and did not consider any possible topo-
logical terms of the effective action that are related to
anomalies: the chiral anomaly and Wess-Zumino term for
3He-A and the parity anomaly for the 1d family of 2þ 1d
Dirac fermions [54]. The latter is not relevant for the 3þ 1d
polar phase which is time-reversal invariant, while the
Wess-Zumino term in distorted 3He-A changes sign after
transition through the polar phase.
The original fermionic action is analytic and remains

analytic across the Lifshitz transition through the superfluid
states corresponding to the degenerate tetrad. The fermionic
action can be rewritten in the fully covariant way, but after
that it becomes nonanalytic in the tetrad field. This non-
analyticity is extended to the effective bosonic action and is
a natural consequence of the emergent quasirelativistic
symmetry of the low-energy condensed matter system. This
gives one suggestive answer to the question posed by
Diakonov [25] and Rovelli et al. [23]: “Antispacetimes”
with det e < 0 may exist and they contribute trivially to
quantum gravity in a sense that the emergent bosonic action
does not resolve between spacetime and antispacetime,
since it is proportional to j det ej. This is in contrast to
topological terms in the effective action which arise often
due to anomalous discrete transformations relating space-
time and antispacetime.
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