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The Hawking effect is one of the most extensively studied topics in modern physics, yet it remains
relatively underexplored within the framework of canonical quantization. The key difficulty lies in the fact
that the Hawking effect is principally understood using the relation between the ingoing modes which leave
past null infinity and the outgoing modes which arrive at future null infinity. Naturally, these modes are
described using advanced and retarded null coordinates instead of the usual Schwarzschild coordinates.
However, null coordinates do not lead to a true Hamiltonian that describes the evolution of these modes. In
order to overcome these hurdles in a canonical formulation, we introduce here a set of near-null coordinates
which allows one to perform an exact Hamiltonian-based derivation of the Hawking effect. This derivation
opens up an avenue to explore the Hawking effect using different canonical quantization methods such as
polymer quantization.
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I. INTRODUCTION

The Hawking effect [1] is one of the most remarkable
results obtained by employing quantum field theory in
curved spacetime [2–4] where an asymptotic observer in
the future finds a thermal emission from a black hole.
The thermal emissions are usually associated with sys-
tems with a very large number of microstates. However, a
classical black hole which is a solution of Einstein’s
general relativity [5–8] can be described by only a
handful of parameters. This puzzling aspect often leads
one to believe that the study of the Hawking effect might
allow one to understand the possible microstates of a
black hole which are expected to arise from a possible,
yet unknown, quantum theory of gravity. This has led to
an extensive set of studies on the Hawking effect in
different contexts [9–37].
However, despite being one of the most extensively

studied topics in modern physics, the study of the Hawking
effect itself remains relatively underexplored within the
canonical quantization framework. The key reason behind
the difficulty in canonical formulation is the basic tenet
through which one realizes the thermal emission. In
particular, the thermal nature of the Hawking quanta is
realized using the relation between the modes which leave
the past null infinity as ingoing null rays and the modes
which arrive at the future null infinity as outgoing null rays.
As expected, instead of the regular Schwarzschild coor-
dinates, the usage of the advanced and retarded null

coordinates then becomes quite crucial in the derivation
of the Hawking effect. However, null coordinates do not
lead to a true Hamiltonian that describes the evolution
of these modes incongruous to our need for studying
the system (nevertheless, see Refs. [38–41]). This in
turn creates hurdles for performing an extensive study of
the Hawking effect using the canonical quantization
framework.
In the context of polymer quantization of matter field,

recently it has been argued that the Unruh effect [42–44]
may get altered significantly due to the existence of a new
length scale akin to the Planck length [45–47]. Polymer
quantization [48,49] is a canonical quantization method
which is used in loop quantum gravity [50–52]. Given
the similarity of techniques employed in the study of the
Unruh effect and the Hawking effect, naturally one then
asks whether polymer quantization would also alter the
Hawking effect.
Therefore, it has become imperative to pursue the study

of the Hawking effect using the framework of canonical
quantization. In this article, we introduce one such frame-
work. In particular, we introduce here a set of near-null
coordinates that allows one to closely follow the basic
tenets of the Hawking effect and to perform an exact
Hamiltonian-based derivation of it. In an earlier canonical
attempt using the Lemaître coordinates by Melnikov and
Weinstein [53], the Hawking effect is understood indirectly
through the property of Green’s function rather than the
expectation value of the associated number operator. To the
best of our knowledge, there does not yet exist any exact
derivation of the thermal spectrum for Hawking radiation in
canonical formulation.
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In Sec. II, we briefly review the key aspects of the
standard derivation of the Hawking effect [1]. In particular,
a massless, free scalar field is considered for describing the
Hawking quanta. Additionally, a collapsing shell of matter
is considered of which the eventual collapse leads to the
formation of the black hole. The corresponding black hole
spacetime is taken to be the Schwarzschild spacetime.
Furthermore, one considers a set of two observers: one at
the past null infinity and the other observer at the future null
infinity. The observer at the past null infinity considers a set
of ingoing modes which are specified by the advanced null
coordinate. On the other hand, the observer at the future
null infinity studies the outgoing modes which are specified
by the retarded null coordinate. By using the relation
between the advanced and retarded null coordinates, one
computes the relevant Bogoliubov transformation coeffi-
cients. This in turn allows one to express the vacuum
expectation value of the number operator associated with
the Hawking quanta. The spectrum of these quanta turns
out to be thermal in nature. The corresponding temperature
is proportional to the surface gravity at the Schwarzschild
horizon and is referred to as the Hawking temperature.
In Sec. III, we begin by describing the properties of the

matter Hamiltonian for a massless, free scalar field in a
general globally hyperbolic spacetime. In order to derive
the Hawking effect within a canonical formulation, then we
introduce a pair of near-null coordinates. These new
coordinates are used by a set of two different observers
mainly in the asymptotic regions near past and future null
infinities respectively. Subsequently, we derive the relation
between the intervals along the spatial hypersurfaces which
are used by these two observers.
In order to perform canonical quantization of the scalar

field, we consider the Fourier modes of the field. Later, we
compute the Bogoliubov coefficients that relate the differ-
ent Fourier modes of the two different observers. These
coefficients are then used to compute the vacuum expect-
ation value of the Hamiltonian operator for the Fourier
modes as seen by the observer near future null infinity in
the vacuum state of the observer near past null infinity. We
identify the Hawking radiation as the characteristic out-
going radiation of which the existence is tied with the
nonzero values of the surface gravity at the event horizon.
This leads to an exact expression for the Hawking formula
and the corresponding Hawking temperature.

II. HAWKING RADIATION

In the standard derivation of the Hawking effect [1],
one considers a collapsing shell of matter of which the
eventual collapse leads to the formation of the black hole.
In addition, one also considers a massless scalar field to
describe the Hawking quanta (see Refs. [54,55] for studies
with massive field). However, the detailed dynamics of the
collapsing shell of matter is not important for the derivation
of the Hawking radiation.

A. Schwarzschild spacetime

We consider the resultant spacetime, after the collapse of
the matter shell to a black hole, to be described by the
Schwarzschild geometry. In particular, the spacetime metric
for an observer in the asymptotic future is given by

ds2 ¼ −Ωdt2 þ Ω−1dr2 þ r2dθ2 þ r2 sin θ2dϕ2; ð1Þ

where Ω ¼ ð1 − rs=rÞ and rs ¼ 2GM is the Schwarzschild
radius associated with the metric. Here, we use natural
units such that c ¼ ℏ ¼ 1. We note that the metric (1) can
also be used by an observer in the asymptotic past by taking
the limit rs → 0, when there was no black hole.
By defining the so-called tortoise coordinate r⋆ such that

dr⋆ ¼ Ω−1dr, one may reduce the Schwarzschild metric
(1) to the form

ds2 ¼ gμνdxμdxν ¼ Ω½−dt2 þ dr2⋆�
þ r2dθ2 þ r2 sin θ2dϕ2: ð2Þ

The choice of tortoise coordinate transforms the t − r plane
of the Schwarzschild geometry to become conformally flat.
By a suitable choice of the constant of integration, r⋆ can be
explicitly written as

r⋆ ¼ rþ rs ln

�
r
rs

− 1

�
: ð3Þ

For later convenience, we define the advanced and
retarded null coordinates v and u respectively as

v ¼ tþ r⋆; u ¼ t − r⋆: ð4Þ

The Schwarzschild metric (2) in terms of these null
coordinates can then be expressed as

ds2 ¼ −Ωdudvþ r2dθ2 þ r2 sin θ2dϕ2: ð5Þ

B. Massless scalar field

In order to describe the Hawking quanta, we consider a
minimally coupled, massless scalar field ΦðxÞ, described
by the action

SΦ ¼
Z

d4x

�
−
1

2

ffiffiffiffiffiffi
−g

p
gμν∇μΦðxÞ∇νΦðxÞ

�
: ð6Þ

The general solutions to the Klein-Gordon field equation
□ΦðxÞ ¼ 0 in the Schwarzschild spacetime (2) can be
expressed as

ΦðxÞ ¼
X
ωlm

cωlm
r

~fωðr⋆Þe−iωðt�r⋆ÞYlmðθ;ϕÞ; ð7Þ
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where cωlm are some constants, ~fωðr⋆Þ are solutions to the
reduced radial equation, and Ylmðθ;ϕÞ are the regular
spherical harmonics. In particular, at a large distance i.e.
for r ≫ ω−1, the function ~fωðr⋆Þ becomes a constant.

C. Creation and annihilation operators

In order to realize the Hawking effect, it is crucial to
consider two asymptotic observers: one is at past null
infinity I−, and the other is at future null infinity Iþ (see
Fig. 1). In particular, with respect to the past observer at I−,
the scalar field operator can be expressed as

Φ̂ðxÞ ¼
X
ω

½fωâω þ f�ωâ
†
ω�; ð8Þ

where the set of ingoing solutions to field equation ffωg
forms a complete family on I− along with the inner
product ð−i=2Þ RS dΣaðfω∇af�ω0 − f�ω0∇afωÞ ¼ δωω0 where
S ¼ I−. Further, in order to render the corresponding inner
product positive definite, the only positive frequency modes
ffωg, with respect to a canonical affine parameter along
I−, are chosen. The positive frequency ingoing solutions
near the past null infinity I− can be explicitly written as

fωðvÞ ¼
1ffiffiffiffiffiffiffiffiffi
2πω

p r−1e−iωvYlmðθ;ϕÞ: ð9Þ

The operators â†ω and âω denote the creation and annihi-
lation operators respectively. The corresponding vacuum
state j0−i is defined as

âωj0−i ¼ 0: ð10Þ

Similarly, for an observer in the asymptotic future, the
scalar field operator can be expressed as

Φ̂ðxÞ ¼
X
ω

½pωb̂ω þ p�
ωb̂

†
ω� þ

X
ω

½qωĉω þ q�ωĉ
†
ω�; ð11Þ

where field solutions fpωg are purely outgoing and
given by

pωðuÞ ¼
1ffiffiffiffiffiffiffiffiffi
2πω

p r−1e−iωuYlmðθ;ϕÞ: ð12Þ

These solutions (12) have zero Cauchy data on the event
horizon. On the other hand, field solutions fqωg have zero
Cauchy data on the future null infinity Iþ. The operators
(b̂†ω, b̂ω) and (ĉ†ω, ĉω) are the creation and annihilation
operator pairs in the respective domain. The corresponding
inner products are ð−i=2Þ RS dΣaðpω∇ap�

ω0 − p�
ω0∇apωÞ ¼

δωω0 with the integration surface being S ¼ Iþ and
ð−i=2Þ RS dΣaðqω∇aq�ω0 − q�ω0∇aqωÞ ¼ δωω0 where S is
the event horizon. As earlier, the set of solutions fpωg
is considered to contain only positive frequencies with
respect to the canonical affine parameter along the null
geodesic generator on Iþ.

D. Relation between null coordinates v and u

An essential input that leads to the emergence of the
Hawking effect is the relation between the null coordinates
of the asymptotic observers at the past and future null
infinities. In particular, using the relation between an affine
parameter interval along the future null infinity Iþ and the
corresponding interval on the past null infinity I−, one can
show that

ðv0 − vÞ ≈ −2rse−ðu0−uÞ=2rs ; ð13Þ

where u0 and v0 denote some pivotal points on Iþ and I−

respectively. Away to understand the origin of the relation
(13) is to use the following arguments. By considering a
pivotal point v0 on I−, an interval along I− can be
expressed as

ðv0 − vÞjI− ¼ 2ðr0⋆ − r⋆ÞjI− ; ð14Þ

where r0⋆ is the tortoise coordinate corresponding to the
point v0. Similarly, we can express an interval along Iþ as

ðu0 − uÞjIþ ¼ −2ðr0⋆ − r⋆ÞjIþ ; ð15Þ

where u0 is a pivotal point on Iþ and r0⋆ is the correspond-
ing value of the tortoise coordinate. However, there is a key
difference between the coordinate r⋆ as used by each of

FIG. 1. The standard Penrose diagram which is used to describe
the Hawking effect. The shaded region depicts the qualitative
evolution of a collapsing shell of matter of which the collapse
leads to the formation of the black hole. The ingoing null ray
departs from the past null infinity I−, whereas the outgoing null
ray arrives at the future null infinity Iþ.
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these two observers. First, there was no black hole when
the relevant ingoing modes departed from I−. So, for the
observer at I−, we must take the rs → 0 limit in the
expression of tortoise coordinate r⋆. This in turn reduces
the interval (14) to

ðv0 − vÞjI− ¼ 2ðr0 − rÞjI− ≡ Δ; ð16Þ
whereΔ is taken to be a positive interval along the past null
infinity I−. On the other hand, when the outgoing modes
arrive at the future null infinity Iþ, the black hole horizon
has already formed with nonzero Schwarzschild radius rs.
Therefore, using the radial coordinate r, the interval (15)
along Iþ can be expressed as

ðu0 − uÞjIþ ¼ Δþ 2rs ln

�
1þ Δ

Δ0

�
; ð17Þ

where we have defined Δ0 ≡ 2ðr0 − rsÞjIþ and have
identified the interval −2ðr0 − rÞjIþ as Δ using the geo-
metric optics approximation. By choosing the pivotal
values v0 ¼ −Δ0 and u0 ¼ v0 − 2rs lnð−v0=2rsÞ, we can
simplify their relation as

−
u
2rs

¼ −
v
2rs

þ ln

�
−

v
2rs

�
: ð18Þ

With the given choices of the pivotal values, the lnð−v=2rsÞ
term will dominate over the ð−v=2rsÞ term in the region
where jvj ≪ 2rs. It turns out that the relevant modes for
Hawking radiation are precisely those modes which origi-
nate from the region jvj ≪ 2rs on I−. Therefore, in this
region, one can approximate the relation (18) as

v ≈ −2rse−u=2rs : ð19Þ
The relation (19) can be identified with the relation (13)
with suitable choices of the pivotal values. We shall use
similar arguments for finding the analogous relation in
canonical formulation.

E. Bogoliubov coefficients and number operator

Being a complete basis, one can express the outgoing
modes pω in terms of the ingoing modes ffωg and ff�ωg as

pωðuÞ ¼
X
ω0

½αωω0fω0 ðvÞ þ βωω0f�ω0 ðvÞ�: ð20Þ

Due to the mixing of modes, the vacuum state j0−i of the
observer at the past null infinity I− is no longer annihilated
by the annihilation operator b̂ω of the observer at future null
infinity Iþ i.e. b̂ωj0−i ≠ 0. The expectation value of the
number operator corresponding to the observer at the future
null infinity Iþ, in the vacuum state corresponding to the
observer at past null infinity I−, can be expressed as

Nω ≡ h0−jb̂†ωb̂ωj0−i ¼
X
ω0

jβωω0 j2: ð21Þ

The relation (20) between the modes of these two observers
and the relation (19) between their coordinates are used to
explicitly evaluate the Bogoliubov transformation coeffi-
cient βωω0 . This in turn leads the expectation value of the
number operator to become

Nω ¼ 1

e2πω=ϰ − 1
; ð22Þ

where ϰ ¼ 1=ð2rsÞ is the surface gravity at the horizon.
Equation (22) corresponds to the spectrum of blackbody
radiation for bosons at the temperature TH ¼ ϰ=ð2πkBÞ ¼
1=ð8πGMkBÞ. This phenomenon of blackbody radiation
perceived by the observer at the future null infinity Iþ in a
black hole spacetime is referred to as the Hawking effect.
The corresponding temperature TH is called the Hawking
temperature.

III. CANONICAL FORMULATION

A key structural step that leads to the derivation of
the Hawking effect in the covariant formulation is the
Bogoliubov transformation between the solutions of the
field which are functions of advanced null coordinate v (i.e.
ingoing modes) and the functions of retarded null coor-
dinate u (i.e. outgoing modes). Furthermore, in order to
evaluate these transformation coefficients explicitly, it is
essential to have the relation between the null coordinates v
and u along the past null infinity I− and the future null
infinity Iþ respectively. However, despite being intuitively
appealing, these coordinates, being null, pose challenges in
the canonical formulation. In particular, null coordinates do
not lead to a true Hamiltonian that describes the evolution
of these modes. Therefore, one must look for other suitable
coordinates to perform a Hamiltonian-based derivation of
the Hawking effect.

A. General scalar field Hamiltonian

In this subsection, we briefly review few key aspects
of a 3þ 1 spatiotemporal decomposition [56] of a general
globally hyperbolic spacetime. After the decomposition,
the invariant distance element can be expressed as

ds2 ¼ −N2dt2 þ qabðNadtþ dxaÞðNbdtþ dxbÞ; ð23Þ
where qab denotes the spatial metric, N is the lapse
function, and Na is the shift vector associated with the
foliation of the spacetime into the spatial hypersurfaces
Σt, labeled by the time parameter t. The full scalar field
Hamiltonian corresponding to the action (6) can be
expressed as

HΦ ¼
Z

d3x½NHþ NaDa�; ð24Þ

where the scalar Hamiltonian density H and the diffeo-
morphism generator Da are given by
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H ¼ Π2

2
ffiffiffi
q

p þ
ffiffiffi
q

p
2

qab∂aΦ∂bΦ; Da ¼ Π∂aΦ: ð25Þ

The determinant of the spatial metric qab is denoted by q.
The Poisson brackets between the field Φ and its conjugate
momentum Π can be written as

fΦðt;xÞ;Πðt; yÞg ¼ δ3ðx − yÞ: ð26Þ

Using Hamilton’s equation of motion, it is straightforward
to check that the field momentum Π can be expressed as

Π ¼
ffiffiffi
q

p
N

½∂tΦ − Na∂aΦ�: ð27Þ

B. 1 + 1-dimensional reduced action

We have already noted that the Hawking effect is
essentially connected with the structure of the
Schwarzschild metric in the t − r plane. Therefore,
in order to simplify the analysis, here we reduce the
3þ 1-dimensional scalar field action (6) to a 1þ 1-
dimensional action by integrating out the angular coor-
dinates θ and ϕ. In particular, by considering the form
of the general field solution (7), we make an ansatz for
the scalar field of the form

Φðxj; θ;ϕÞ ¼
X
lm

~φlmðxjÞYlmðθ;ϕÞ; ð28Þ

where xj ¼ t; r⋆. By substituting this general ansatz (28)
of Φðxj; θ;ϕÞ into the action (6) and integrating over the
angular coordinates, we get the reduced action of the
form

SΦ ¼
X
l;m

Z
dtdr⋆

�
1

2
ð∂t ~φlmÞ2 −

1

2
ð∂r⋆ ~φlmÞ2

−
Ω
2r2

fΩþ lðlþ 1Þgð ~φlmÞ2 þ
Ω
r
~φlm∂r⋆ ~φlm

�
: ð29Þ

The Hawking effect is understood using the relation
between the modes of scalar fields as seen by the
observers at the past and future null infinities.
Therefore, with respect to these two observers, one
can simplify the reduced action (29) by dropping the
terms which explicitly contain inverse powers of r and
are comparatively smaller at large radial distances (i.e.
r → ∞). The remaining terms in the simplified action
then become independent of l and m. One may redefine
the reduced scalar field φ ∝ ~φlm, such that the simplified
action can be viewed as a scalar field action in a (1þ 1)-
dimensional Schwarzschild spacetime, given by

Sφ ¼
Z

d2x

�
−
1

2

ffiffiffiffiffiffi
−ḡ

p
ḡij∂iφ∂jφ

�
; ð30Þ

where ḡij is the corresponding (1þ 1)-dimensional met-
ric. We shall use this reduced action (30) for further
computations.

C. Near-null coordinates

In the canonical formulation, the field dynamics can be
viewed as the “time evolution” of the field modes on the
“spatial hypersurfaces.” Clearly, the advanced and retarded
null coordinates are not suitable in the canonical formu-
lation, and one must look for coordinates which are not
null. First, we note that the ingoing field solutions (9) have
a phase factor of the form e−iωv. Along a given ingoing null
trajectory, the advanced null coordinate v is constant.
However, one may use the retarded null coordinate u to
parametrize the propagation along the trajectory. In other
words, ingoing field solutions fωðvÞ, using the relation
v ¼ uþ 2r⋆, can be viewed as if fωðuÞ ¼ e−iωufωð0Þ
where u changes along the trajectory. Remarkably, this
form can be compared with the time evolution of a
Schrodinger wave function ψωðτÞ ¼ e−iωτψωð0Þ corre-
sponding to a mechanical system with energy ω and the
time coordinate τ. Furthermore, we know that a massless,
free scalar field can be mapped into a set of quantum
mechanical harmonic oscillators by using Fourier trans-
formation. Therefore, these insights suggest that, in order to
realize the Hawking effect in a canonical formulation and
yet to mimic the methods of Bogoliubov transformations
between the null coordinates, we could define a timelike
coordinate by slightly deforming the retarded null coor-
dinate u and define a spacelike coordinate by slightly
deforming the advanced null coordinate v for an appro-
priate observer near the past null infinity I−. Similar
arguments can be made for an observer near the future
null infinity Iþ using the outgoing field solutions.
Following the above insights, we define a new set of

coordinates to be used by an observer near the past null
infinity I− as

τ− ¼ t − ð1 − ϵÞr⋆; ξ− ¼ −t − ð1þ ϵÞr⋆; ð31Þ

where ϵ is a real-valued parameter such that τ− and ξ− are
timelike and spacelike coordinates respectively. We use the
notion where a constant time surface implies a spacelike
surface. Here, we choose the parameter ϵ to be small and
positive such that ϵ ≫ ϵ2. This choice of parameter mimics
the basic tenets of the Hawking effect very closely.
However, in principle, one can choose the values of the
parameter in the domain 0 < ϵ < 2 which preserves the
timelike characteristic of the coordinate τ−. In any case,
the final result will be independent of the explicit values
of ϵ. We refer to this observer as O−.
Similarly, for an observer near the future null infinity Iþ,

we define another set of timelike and spacelike coordinates
τþ and ξþ as
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τþ ¼ tþ ð1 − ϵÞr⋆; ξþ ¼ −tþ ð1þ ϵÞr⋆: ð32Þ

As earlier, we refer this observer as Oþ. We may note from
Eqs. (31) and (32) that one can algebraically transform
these two sets of the coordinates from one to another by
simply substituting r⋆ → −r⋆. Further, for later conven-
ience, we have chosen the directions of ξ− and ξþ to be the
opposite of the directions of v and u coordinates respec-
tively when ϵ ¼ 0 is set (see Fig. 2 and Fig. 3).

D. Relation between spatial coordinates ξ − and ξ +
In order to explicitly realize the Hawking effect in

covariant formulation, one needs to compute Bogoliubov
transformation coefficient between the ingoing field

solutions (i.e. functions of v) and outgoing field solutions
(i.e. functions of u). The key input that is required to
evaluate these coefficients is the relation (19) between the
null coordinates of two different observers. We show here
that one can derive an analogous relation between the
spatial coordinates ξ− and ξþ. As earlier, let us consider a
pivotal point ξ0− on a τ− ¼ constant surface as seen by the
observer O− near the past null infinity. Then, an interval
along this surface can be expressed as

ðξ− − ξ0−Þjτ− ¼ 2ðr0⋆ − r⋆Þjτ− ¼ 2ðr0 − rÞjτ− ≡ Δ; ð33Þ

where r0 corresponds to the pivotal value ξ0− and the
interval Δ is positive. In Eq. (33), we have used the fact that
for the observer near the past null infinity there was no
black hole i.e. rs → 0. For the observer Oþ, we can express
an interval on a τþ ¼ constant surface near future null
infinity as

ðξþ − ξ0þÞjτþ ¼ Δþ 2rs ln

�
1þ Δ

Δ0

�
; ð34Þ

where Δ0 ≡ 2ðr0 − rsÞjτþ and using geometric optics
approximation we have identified the interval 2ðr −
r0Þjτþ also as Δ. By choosing the pivotal values ξ0þ ¼
ξ0− þ 2rs lnðΔ0=2rsÞ and ξ0− ¼ Δ0, we can simplify the
relation between the spatial coordinates ξ− and ξþ as

ξþ ¼ ξ− þ 2rs ln

�
ξ−
2rs

�
: ð35Þ

The modes which are seen as Hawking radiation to the
observer Oþ propagate out from a region where jξ−j ≪ 2rs
on a constant τ− surface as seen by the observerO− near the
past null infinity. For these modes, Eq. (35) can be
approximated as

ξ− ≈ 2rseξþ=2rs : ð36Þ
Equation (36) plays a role similar to the relation (19)
between the advanced and retarded null coordinates.

E. Field Hamiltonian for observer O−
We have seen that the Hawking effect is crucially

connected with the structure of the Schwarzschild metric
in the t − r plane. This (1þ 1)-dimensional metric, when
viewed from the coordinate system used by the observer
O−, appears to be of the form

ds2 ¼ g−μνdxμdxν ¼
ϵΩ
2

�
−dτ2− þ dξ2− þ 2

ϵ
dτ−dξ−

�
: ð37Þ

In the spacetime geometry (37), the reduced action (30) for
a minimally coupled massless scalar field can also be
expressed as

(a) (b)

FIG. 2. (a) The near-null coordinates for the observer O−

consist of the spacelike coordinate ξ− and the timelike coordinate
τ−. (b) Similarly, the near-null coordinates for the observer Oþ
consist of the spacelike coordinate ξþ and the timelike coordinate
τþ. In both plots, v and u are advanced and retarded null
coordinates respectively.

FIG. 3. The spatial hypersurfaces and the temporal directions in
near-null coordinates drawn on a Penrose diagram together with a
collapsing shell of matter.
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Sφ ¼
Z

dτ−dξ−

�
−
1

2

ffiffiffiffiffiffiffiffi
−g0

q
g0μν∂μφ∂νφ

�
; ð38Þ

where g−μν ¼ ðϵΩ=2Þg0μν. The metric g0μν although has off-
diagonal terms but being flat it allows one to use the
machinery of the Fock quantization.
Following the general form (24), the scalar field

Hamiltonian in (1þ 1) dimensions, as seen by the observer
O−, can be expressed as

Hφ ¼
Z

dξ−
1

ϵ

��
Π2

2
þ 1

2
ð∂ξ−φÞ2

�
þ Π∂ξ−φ

�
; ð39Þ

where the lapse function N ¼ 1=ϵ, the shift vector
N1 ¼ 1=ϵ, and the determinant of the spatial metric
q ¼ 1. The Poisson bracket between the field φ and its
conjugate momentum Π can be written as

fφðτ−; ξ−Þ;Πðτ−; ξ0−Þg ¼ δðξ− − ξ0−Þ: ð40Þ

Using the equations of motion, the field momentum Π can
be expressed as

Πðτ−; ξ−Þ ¼ ϵð∂τ−φÞ − ð∂ξ−φÞ: ð41Þ

F. Field Hamiltonian for observer O+

With respect to the observer Oþ, the metric for the
(1þ 1)-dimensional spacetime is given by

ds2 ¼ gþμνdxμdxν ¼
ϵΩ
2

�
−dτ2þ þ dξ2þ þ 2

ϵ
dτþdξþ

�
: ð42Þ

As earlier, by performing a conformal transformation of the
metric as gþμν ¼ ðϵΩ=2Þg0μν, one can express the scalar field
Hamiltonian for the observer Oþ as

Hφ ¼
Z

dξþ
1

ϵ

��
Π2

2
þ 1

2
ð∂ξþφÞ2

�
þ Π∂ξþφ

�
; ð43Þ

where the lapse function N ¼ 1=ϵ, the shift vector
N1 ¼ 1=ϵ, and the determinant of the spatial metric
q ¼ 1. The corresponding Poisson bracket is given by

fφðτþ; ξþÞ;Πðτþ; ξ0þÞg ¼ δðξþ − ξ0þÞ: ð44Þ
Similar to the expression (41), the field momentum for the
observer Oþ can be expressed as

Πðτþ; ξþÞ ¼ ϵð∂τþφÞ − ð∂ξþφÞ: ð45Þ

G. Fourier modes for observer O−
In order to perform the canonical quantization of the

scalar field, we follow the method as used in Ref. [57].

First, we define the Fourier modes for the scalar field with
respect to the observer O−, as

φ ¼ 1ffiffiffiffiffiffi
V−

p
X
k

~ϕkeikξ− ; Π ¼ 1ffiffiffiffiffiffi
V−

p
X
k

ffiffiffi
q

p
~πkeikξ− ;

ð46Þ
where ~ϕk ¼ ~ϕkðτ−Þ, ~πk ¼ ~πkðτ−Þ are the complex-valued
mode functions. The spatial volume V− ¼ R

dξ−
ffiffiffi
q

p
is

formally divergent. Therefore, to avoid dealing with
explicitly divergent quantity, we choose a fiducial box
with finite volume as

V− ¼
Z

ξR−

ξL−

dξ−
ffiffiffi
q

p ¼ ξR− − ξL− ≡ L−: ð47Þ

We shall see later that with the given definition of the
Fourier modes (46) the fiducial volume V− will drop out
from the expression of the Hamiltonian of the modes.
Given the finiteness of the fiducial volume, the Kronecker
delta can be expressed as

Z
dξ−

ffiffiffi
q

p
eiðk−k0Þξ− ¼ V−δk;k0 ; ð48Þ

whereas the Dirac delta can be written as

X
k

eikðξ−−ξ0−Þ ¼ V−δðξ− − ξ0−Þ=
ffiffiffi
q

p
: ð49Þ

Equations (48) and (49) together imply that wave vector
k ∈ fkrg where kr ¼ 2πr=L− with r being a nonzero
integer.
The scalar field Hamiltonian (39) for the observer O−

can be expressed in terms of the Fourier modes as Hφ ¼P
kðH−

k þD−
k Þ=ϵ where the Hamiltonian density H−

k for
the kth mode is

H−
k ¼ 1

2
~πk ~π−k þ

1

2
jkj2 ~ϕk

~ϕ−k ð50Þ

and the diffeomorphism generator D−
k is

D−
k ¼ −

ik
2
ð ~πk ~ϕ−k − ~π−k ~ϕkÞ: ð51Þ

The Poisson bracket between the Fourier modes of the
scalar field and the conjugate field momentum is given by

f ~ϕk; ~π−k0g ¼ δk;k0 : ð52Þ

H. Fourier modes for observer O+

In parallel to the case of the observer O−, we define the
Fourier modes for the scalar field as seen by the observer
Oþ as
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φ ¼ 1ffiffiffiffiffiffiffi
Vþ

p
X
κ

~ϕκeiκξþ ; Π ¼ 1ffiffiffiffiffiffiffi
Vþ

p
X
κ

ffiffiffi
q

p
~πκeiκξþ ;

ð53Þ
where ~ϕκ ¼ ~ϕκðτþÞ, ~πκ ¼ ~πκðτþÞ are the complex-valued
mode functions. The spatial volume Vþ is also chosen to be
that of a fiducial box with finite volume, given by

Vþ ¼
Z

ξRþ

ξLþ
dξþ

ffiffiffi
q

p ¼ ξRþ − ξLþ ≡ Lþ: ð54Þ

Using the appropriate representations of the Kronecker
delta and the Dirac delta, as in Eqs. (48) and (49), the scalar
field Hamiltonian (43) can be expressed in terms of the
Fourier modes as Hφ ¼ P

κðHþ
κ þDþ

κ Þ=ϵ where the
Hamiltonian density is

Hþ
κ ¼ 1

2
~πκ ~π−κ þ

1

2
jκj2 ~ϕκ

~ϕ−κ; ð55Þ

the diffeomorphism generator is

Dþ
κ ¼ −

iκ
2
ð ~πκ ~ϕ−κ − ~π−κ ~ϕκÞ; ð56Þ

and the corresponding Poisson bracket is given by

f ~ϕκ; ~π−κ0g ¼ δκ;κ0 : ð57Þ

I. Relation between Fourier modes

In order to establish the relation between the
Hamiltonian densities of Fourier modes for these two
observers, we need to find the relation between the
individual modes of the field and their conjugate momenta.
Being a scalar, the matter field can be expressed as
φðτ−; ξ−Þ ¼ φðτþ; ξþÞ where the coordinates can be
viewed as τ− ¼ τ−ðτþ; ξþÞ and ξ− ¼ ξ−ðτþ; ξþÞ in general.
However, the relation between the field momenta (41) and
(45) is slightly involved. First, we note that the observerO−

deals with the field modes which are ingoing modes. For
these modes, v ¼ tþ r⋆ ¼ ðϵ=2Þτ− − ð1 − ϵ=2Þξ− is con-
stant. Similarly, the relevant modes for the observer Oþ are
the outgoing modes. For these modes, u ¼ t − r⋆ ¼
ðϵ=2Þτþ − ð1 − ϵ=2Þξþ is constant. Therefore, the temporal
derivative term in the expression of the field momentum is
not independent and can be related to the spatial derivative
term. This property holds true for both the observers. This
in turn leads to a relation between the field momenta as
Πðτþ; ξþÞ ¼ ð∂ξ−=∂ξþÞΠðτ−; ξ−Þ. We use these relations
between the field and the conjugate momentum, as seen by
two different observers, to establish the relation between
the Fourier modes. In particular, by choosing spatial
hypersurfaces for the observers O− and Oþ, labeled by
fixed τ0− and τ0þ respectively, we can relate the Fourier
modes of the field as

~ϕκ ¼
X
k

~ϕkF0ðk;−κÞ; ð58Þ

where ~ϕκ ¼ ~ϕκðτ0þÞ and ~ϕk ¼ ~ϕkðτ0−Þ. Similarly, the
Fourier modes for field momenta can also be related as

~πκ ¼
X
k

~πkF1ðk;−κÞ; ð59Þ

where ~πκ ¼ ~πκðτ0þÞ and ~πk ¼ ~πkðτ0−Þ. The coefficient func-
tion Fmðk; κÞ is given by

Fmðk; κÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

V−Vþ
p

Z
dξþemξþ=2rseikξ−þiκξþ ; ð60Þ

where m ¼ 0, 1. The coefficient functions Fmðk; κÞ play a
role similar to the Bogoliubov coefficients in the covariant
formulation.

J. Regularization of Bogoliubov coefficients

Like the standard Bogoliubov coefficients, these coef-
ficient functions are also formally divergent, and one needs
to employ some regularization techniques to render them
finite. Here, we follow the regularization techniques which
are similar to the one used in Ref. [45]. First, one introduces
a nonoscillatory regulator with a small parameter δ in the
expression (60), as follows,

Fδ
mðk; κÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
V−Vþ

p
Z

dξþ

�
eðmþδÞξþ=2rs

dm

�
eikξ−þiκξþ ; ð61Þ

where dm ¼ ð1 − iδm=2rsκÞ. One can check that regulated
expression (61) reduces to the exact expression (60) when
the parameter δ is removed i.e. limδ→0Fδ

mðk; κÞ ¼ Fmðk; κÞ.
In order to evaluate the integral (61), one performs a

change of variable as z≡ jkjξ−. This in turn leads to

Fδ
mð�jkj; κÞ ¼ ð2rsÞ−β−mjkj−β−m−1

dm
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V−Vþ

p I�ðβ þmÞ; ð62Þ

where β¼ð2iκrsþδ−1Þ. The integral I�ðβÞ ¼
R
dze�izzβ

can be explicitly expressed in terms of Gamma function
Γðβ þ 1Þ by analytic continuation in either the upper or
lower half of the complex plane, depending on the sign of k.
The evaluated expression is given by

I�ðβÞ ¼ e�iπðβþ1Þ=2Γðβ þ 1Þ: ð63Þ

In order to express the integral (63) in terms of a complete
Gamma function, one needs to add two boundary terms

ΔIL ¼ R jkjξL−
0 dze�izzβ and ΔIR ¼ R

∞
jkjξR− dze

�izzβ. Both of

these terms vanish identically when one removes the
volume regulator by taking the limit ξL− → 0 and
ξR− → ∞. For later convenience, we write down two key
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relations between the different forms of Fδ
mð�jkj; κÞ, for

different values of the parameter, as

Fδ
0ð−jkj; κÞ ¼ e2πrsκ−iδπFδ

0ðjkj; κÞ; ð64Þ
and

Fδ
1ð�jkj; κÞ ¼∓ κ

jkjF
δ
0ð�jkj; κÞ: ð65Þ

K. Consistency relation between the regulators

We have introduced two sets of regulators so far. One
set is to regulate the volumes of the flat spatial slices
through the means of finite (ξL−, ξR−) and (ξLþ, ξRþ). The
relation (36) implies that they are related among them-
selves. Second, we have introduced the parameter δ as the
integral regulator. However, it turns out that these two sets
of regulators cannot be chosen independently in order to
ensure the consistency of the Poisson brackets for both the
observers.
In particular, the requirement that both Poisson brackets

f ~ϕk; ~π−k0g ¼ δk;k0 and f ~ϕκ; ~π−κ0 g ¼ δκ;κ0 are simultaneously
satisfied leads to a consistency condition on the coefficient
functions as
X
k>0

½F0ðk;−κÞF1ð−k; κÞ þ F0ð−k;−κÞF1ðk; κÞ� ¼ 1: ð66Þ

In terms of the regulated expression (61) of Fmðk; κÞ,
Eq. (66) demands

ðκrs=πÞjΓð2iκrs þ δÞj2
ðe2πκrs − e−2πκrsÞ−1 ¼ ðVþ=2rsÞð4πrs=V−Þ2δ

ζð1þ 2δÞ ; ð67Þ

where the Riemann zeta function ζð1þ 2δÞ ¼P∞
r¼1 r

−1ð1þ2δÞ. Using the Gamma function identity
ΓðzÞΓð1 − zÞ ¼ π= sin πz, the zeta function identity
lims→0½sζð1þ sÞ� ¼ 1, and Eq. (36), it is straightforward
to show that the volume regulator ξL− and integral regulator
δ should be varied together as ξL−=2rs ≃ 2πe−1=2δ. In other
words, the consistency condition (66) implies that these
two regulators are not independent of each other.

L. Relation between Hamiltonian densities
and diffeomorphism generators

Using the relations (58), (59) between the Fourier modes
of the field and their conjugate momenta, we can establish
the relation between the corresponding Hamiltonian den-
sities and the diffeomorphism generators. Furthermore, by
using the relations (64) and (65), we can express the
Hamiltonian density Hþ

κ as

Hþ
κ ¼ h1κ þ ðe4πrsκ þ 1Þ

X
k>0

	κ
k



2jF0ðk; κÞj2H−

k ; ð68Þ

where h1κ ¼
P

k≠k0 ½12F1ðk;−κÞF1ð−k0; κÞ ~πk ~π−k0 þ 1
2
jκj2 ×

F0ðk;−κÞF0ð−k0; κÞ ~ϕk
~ϕ−k0 �. Similarly, we can express

the diffeomorphism generators of the Fourier modes
corresponding to the observer Oþ as

Dþ
κ ¼ d1κ þ ðe4πrsκ þ 1Þ

X
k>0

	κ
k



2jF0ðk; κÞj2D−

k ; ð69Þ

where d1κ ¼
P

k≠k0 ð−iκ=2Þ½F1ðk;−κÞF0ð−k0; κÞ ~πk ~ϕ−k0 −
F1ð−k; κÞF0ðk0;−κÞ ~π−k ~ϕk0 �. We note that both the terms
h1κ and d1κ are linear in Fourier modes or their conjugate
momenta. Therefore, the vacuum expectation values of the
corresponding operators in the quantum theory will vanish
for these terms.

M. Reality condition on diffeomorphism generators

In order to represent the Hawking quanta, we have
considered here a real-valued scalar field i.e. φ�ðxÞ ¼ φðxÞ.
This property in turn imposes a reality condition on the
complex-valued Fourier modes as ~ϕ�

k ¼ ~ϕ−k. In general, we
can express a complex-valued mode function as ~ϕk ¼ ϕr

k þ
iϕi

k where ϕr
k and ϕi

k both are real-valued functions.
Similarly, we can express the Fourier modes of the
conjugate field momentum as ~πk ¼ πrk þ iπik which are
also subjected to the reality condition ~π�k ¼ ~π−k. Therefore,
unless one imposes this reality condition appropriately,
there would be double counting of the degrees of freedom
in terms of the real-valued mode functions.
In order to remove this double counting and also to

express the total Hamiltonian ðH−
k þD−

k Þ in terms of the
real-valued mode functions, here we make a choice by
setting ϕi

k ¼ 0 and πik ¼ 0. The key advantages of this
choice are that it brings H−

k (50) to the form of a standard
Hamiltonian of a simple harmonic oscillator with real-
valued coordinate and it also makes the diffeomorphism
generator term D−

k (51) vanish identically. Therefore, by
redefining the modes as ϕk ≡ ϕr

k and π−k ≡ πrk, we can
reduce the Hamiltonian density and the Poisson bracket for
the observer O− as

H−
k ¼ 1

2
π2k þ

1

2
jkj2ϕ2

k; fϕk; πk0 g ¼ δk;k0 : ð70Þ

We shall use the simplified form (70) of the Hamiltonian
density for performing Fock quantization. We should
mention here that one could also arrive at a similar
conclusion by considering a general complex-valued scalar
field ab initio [58,59] and imposing the reality condition
only at the end.

N. Number operator using Hamiltonian density

The Fock quantization of the scalar field is achieved by
essentially quantizing the real-valued Fourier modes ϕk by
using the method of Schrodinger quantization. We have

EXACT DERIVATION OF THE HAWKING EFFECT IN … PHYS. REV. D 97, 025016 (2018)

025016-9



already seen that a massless, free scalar field can be viewed
as a system of infinitely many decoupled harmonic oscil-
lators. Therefore, the Fock space is essentially a direct
product space of infinitely many quantum harmonic oscil-
lators. If we denote the vacuum state for the kth mode as
j0ki, then the Fock vacuum state for the observerO− can be
expressed as j0−i ¼

Q
k ⊗ j0ki. Furthermore, the energy

spectrum of the kth oscillator can be written as Ĥ−
k jnki ¼

ðnþ 1
2
Þjkjjnki where n denotes the energy levels.

We may recall that in covariant formulation the Hawking
radiation is realized by computing the vacuum expectation
value of the number operator corresponding to an observer
at future null infinity Iþ, whereas the vacuum state is taken
to be that of the observer at the past null infinity I−.
Therefore, in order to realize the Hawking effect, here we
consider the vacuum state to be j0−i which is the vacuum
state of the observerO−. On the other hand, we consider the
matter field operators that correspond to the observer Oþ.
For such a combination, the vacuum expectation value of
the Hamiltonian density operator hĤþ

κ i≡ h0−jĤþ
κ j0−i of a

positive frequency mode i.e. κ > 0 can be expressed as

hĤþ
κ i
κ

¼ e2πκ=ϰ þ 1

e2πκ=ϰ − 1

�
1

ζð1þ 2δÞ
X∞
r¼1

1

r1þ2δ

hĤ−
kri

kr

�
; ð71Þ

where we have used the properties of the vacuum state such
that h0kjϕ̂kj0ki ¼ 0 and h0kjπ̂kj0ki ¼ 0.
In the Fock quantization, usually one defines the number

operator by defining the creation and annihilation oper-
ators of the respective modes. However, we show here that
one can also extract the vacuum expectation value of the
number operator directly from the vacuum expectation
value of the Hamiltonian density operator corresponding to
the given mode. This will also be useful for the situation in
which the notion of creation and annihilation operators may
not be readily available. So, we define the number density
operator which represents the Hawking quanta as

N̂κ ¼ ½Ĥþ
κ − lim

ϰ→0
Ĥþ

κ �jκj−1: ð72Þ

The definition of number operator (72) makes it clear that
the existences of these Hawking quanta are related to the
nonzero values of the surface gravity ϰ at the horizon, as we
have subtracted out the contribution to the Hamiltonian
density due to the zero surface gravity.
In Fock quantization, hĤ−

kri ¼ 1
2
jkrj for all Fourier

modes. This in turns leads the vacuum expectation value
of the number density operator (72) to become

Nω ¼ hN̂κ¼ωi ¼
1

e2πω=ϰ − 1
¼ 1

eð4πrsÞω − 1
: ð73Þ

The expression (73) precisely corresponds to a blackbody
radiation at the temperature TH ¼ ϰ=ð2πkBÞ¼ 1=ð4πrskBÞ.
The temperature TH is known as the Hawking tempera-
ture. Clearly, it demonstrates that one could obtain the
exact thermal spectrum for Hawking radiation using a
Hamiltonian approach.

IV. DISCUSSION

In summary, we have presented an exact derivation of
the Hawking effect using the canonical formulation. In the
standard covariant derivation of the Hawking effect, the
thermal nature of the Hawking radiation is realized using
the key relation between the modes which leave the past
null infinity as ingoing null rays and the modes which
arrive at the future null infinity as outgoing null rays. This
key relation in essence underlies the basic tenets of the
Hawking effect. Naturally, to describe the Hawking effect
in covariant formulation, it is quite convenient to use the
advanced and retarded null coordinates. However, these
null coordinates are not quite useful in the canonical
formulation. In particular, null coordinates do not lead to
a true Hamiltonian that describes the evolution of these
modes. This in turn creates hurdles for a Hamiltonian-based
derivation of the Hawking effect in a canonical quantization
framework. Here, we overcome these hurdles by introduc-
ing a pair of near-null coordinates. These new coordinates,
which are used by two different observers, are obtained by
a slight deformation of the advanced and the retarded null
coordinates. Being structurally close to the null coordi-
nates, these new coordinates allow one to follow the basic
tenets of the Hawking effect very closely. Therefore, the
presented framework in this article opens up a rather new
avenue to explore the Hawking effect using various
canonical quantization methods such as the polymer
quantization [60]. Besides, it would be interesting in its
own right to pursue the canonical evolution, possibly using
numerical methods, of the field modes as seen by the
observers from the region near past null infinity to the
region near future null infinity.
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