
 

Vacuum quantum stress tensor fluctuations: A diagonalization approach

Enrico D. Schiappacasse,1,* Christopher J. Fewster,2,† and L. H. Ford1,‡
1Institute of Cosmology, Department of Physics and Astronomy, Tufts University,

Medford, Massachusetts 02155, USA
2Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom

(Received 10 December 2017; published 23 January 2018)

Large vacuum fluctuations of a quantum stress tensor can be described by the asymptotic behavior of its
probability distribution. Here we focus on stress tensor operators which have been averaged with a
sampling function in time. The Minkowski vacuum state is not an eigenstate of the time-averaged operator,
but can be expanded in terms of its eigenstates. We calculate the probability distribution and the cumulative
probability distribution for obtaining a given value in a measurement of the time-averaged operator taken in
the vacuum state. In these calculations, we study a specific operator that contributes to the stress-energy
tensor of a massless scalar field in Minkowski spacetime, namely, the normal ordered square of the time
derivative of the field. We analyze the rate of decrease of the tail of the probability distribution for different
temporal sampling functions, such as compactly supported functions and the Lorentzian function. We find
that the tails decrease relatively slowly, as exponentials of fractional powers, in agreement with previous
work using the moments of the distribution. Our results lend additional support to the conclusion that large
vacuum stress tensor fluctuations are more probable than large thermal fluctuations, and may have
observable effects.
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I. INTRODUCTION

The definition and the use of the expectation value of a
quantum stress tensor operator have been a topic of intense
study in recent decades. The semiclassical theory for
gravity uses the renormalized expectation value of the
quantum matter stress tensor to give an approximate
description of the effects of quantum matter fields on the
gravitational field. As in the semiclassical theory of
electromagnetic radiation, it is expected that this theory
is a reasonable approximation to a more complete quantum
theory of gravity coupled to matter fields. It is known that a
renormalized stress energy operator for quantum fields in
curved spacetime is associated with quantum corrections to
Einstein’s equations, via higher order derivative terms [1].
These corrections lead to physical effects, such as small scale
factor oscillations around an expanding background universe
and quantum particle creation [2]. Moreover, this theory has
been successful about giving a plausible description of the

back reaction to black hole evaporation through Hawking
radiation [3]. However, the semiclassical theory does not
consider the quantum fluctuations of the stress tensor around
its expectation value and their possible effects. Several
authors have studied a variety of physical effects associated
with quantum stress tensor fluctuations [4]. These effects
include, for example, potentially observable gravity waves
from quantum stress tensor fluctuations in inflationary
models [5], effects of vacuum electric field fluctuations on
light propagation in nonlinear materials [6,7], and barrier
penetration of charged or polarizable particles through large
vacuum radiation pressure fluctuations [8,9].
In general, the physical effects of large fluctuations of a

quantum stress tensor operator can be studied through the
analysis of the probability distribution for the time or
spacetime averaged operator. This probability distribution
can be inferred (at least qualitatively) from the moments of
the averaged operator, and the exact distribution was found
in a two-dimensional model in Ref. [10]. The moments
method was used in Ref. [11] to infer the probability
distribution for several normal-ordered quadratic operators
in four dimensional Minkowski spacetime with Lorentzian
time averaging. These included the square of the electric
field and the energy densities of a massless scalar field and
of the electromagnetic field. This idea was extended in
Ref. [12] to compactly supported functions of time. These
results predict an asymptotic form of the probability
distribution function for large fluctuations of
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PðxÞ ∼ c0xbe−ax
c
; x ≫ 1: ð1:1Þ

Here the variable x is a dimensionless measure of the stress
tensor, and c0, a, b, and c are constants which depend on
the sampling function. In the case of the Lorentzian time
averaged electromagnetic energy density, for example,
a ∼ 1 and c ¼ 1=3. Because thermal fluctuations are
exponentially suppressed in energy, vacuum fluctuations
can dominate over thermal fluctuations at large energies.
However, the moments of a quantum stress tensor operator
(by which we mean an operator contributing to the full
stress tensor) grow very rapidly, to the extent that they
might not uniquely determine the probability distribution,
so it is desirable to seek alternative methods.
In the present paper, we develop such an independent test

of the moments approach for the study the probability
distribution of time-averaged quantum stress tensor oper-
ators. The main idea is to diagonalize the time-averaged
operator through a change of basis and calculate the
cumulative probability distribution function of their quan-
tum fluctuations in the vacuum state. We are interested in
checking the behavior predicted by the high moments
approach, and in determining which modes and particle
numbers give the dominant contribution to the large
fluctuations. Unlike the moments approach, which pri-
marily gives information about the asymptotic behavior of
the probability distribution for large vacuum stress tensor
fluctuations, the diagonalization approach in principle
gives a unique probability distribution for a broad range
of fluctuations x. We take the normal ordered square of the
time derivative of a massless scalar field in Minkowski
spacetime as our stress tensor operator, and find the tail of
the probability distribution for different temporal sampling
functions, specifically a class of compactly supported
functions and the Lorentzian function. The tails decrease
relatively slowly, as exponentials of fractional powers, in
agreement with previous results using the moments of the
distribution.
The paper is organized as follows: In Sec. II, we review

the main results of Ref. [12] on the high moments approach
to the analysis of the probability distribution for quantum
stress tensor operators. In Sec. III, we develop an inde-
pendent approach to the study of probability distributions
based on the diagonalization of the operator. In Sec. IV, we
show the numerical results obtained for different time
sampling functions. In Sec. V, we summarize and discuss
the main results of the paper.

II. MOMENT-BASED APPROACH TO THE
PROBABILITY DISTRIBUTION

Here we review the main results of Ref. [12]. Working in
4-dimensional Minkowski spacetime, let Tðt; rÞ be a
operator which is a quadratic function of a free field
operator and define its time average with a real-valued
sampling function fðtÞ by

T̄ ¼
Z

∞

−∞
∶Tðt; rÞ∶fðtÞdt: ð2:1Þ

We will consider measurements of the time average T̄
rather than T. The sampling function has a characteristic
width τ and should decay quickly as jtj ≫ τ. One example
is a Lorentzian function, used in Ref. [11], whose math-
ematical expression and Fourier transform are given by

fLðtÞ ¼
τ

πðt2 þ τ2Þ and f̂LðωÞ ¼ e−jωτj; ð2:2Þ

where the Fourier transform of fLðtÞ and its normalization
are given by

f̂LðωÞ ¼
Z

∞

−∞
dte−iωtfLðtÞ and f̂Lð0Þ ¼ 1: ð2:3Þ

However, if the measurement of the operator occurs in a
finite interval of time, the sampling function is better
described by a smooth and compactly supported function.
This kind of sampling function is strictly zero outside a
finite region, avoiding the long temporal tails of functions
like the Lorentzian. It therefore gives a better description of
a measurement which begins and ends at finite times. We
will be interested in compactly supported nonnegative
functions whose Fourier transform has the following
asymptotic form when ωτ ≫ 1:

f̂ðωÞ ∼ γe−βjωτjα ; ð2:4Þ
where α, γ, and β are constants. Here α ∈ ð0; 1Þ is a decay
parameter which defines the rate of decrease of f̂ðωÞ
(values α ≥ 1 are incompatible with f having compact
support). It is worth emphasising that τ does not directly
measure the support of f, but rather indicates the shortest
characteristic time scale associated with f; in our examples,
this will characterise the switch-on and switch-off regions.
For any given f (compactly supported or not) define the

nth moment of the normal-ordered time-averaged quadratic
operator T̄, Eq. (2.1), as

μn ¼ h0jðT̄Þnj0i; ð2:5Þ
where j0i is the Minkowski vacuum vector of the theory. As
wewill now see, the form of the Fourier transform f̂ defines
the rate of growth of the moments μn and, as a result, the
probability for large fluctuations.
In the first instance, we work in a box of finite volume

and express T̄ in a mode sum of creation and annihilation
bosonic operators as

T̄ ¼
X
ij

ð ~Aija
†
i aj þ ~Bijaiaj þ ~B�

ija
†
i a

†
jÞ; ð2:6Þ

where ~Aij and ~Bij are components of symmetric matrices ~A
and ~B, which have the functional forms
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~Aij ∝ ðωiωjÞ1=2f̂ðωi − ωjÞ; ð2:7Þ

~Bij ∝ ðωiωjÞ1=2f̂ðωi þ ωjÞ; ð2:8Þ

where ωi are the mode frequencies. Precise forms of ~A and
~B will be given when we come to specific examples in
Sec. IV. The moment μn can be expressed as an nth degree
polynomial in these components. As n increases, the
number of terms in the expression for the nth moment
grows rapidly. Fortunately, only one term gives the dom-
inant contribution for n ≫ 1:

Mn ¼ 4
X
j1…jn

~Bj1j2
~Aj2j3

~Aj3j4…
~Ajn−1jn

~B�
jnj1 : ð2:9Þ

First, ~Bj1j2 and ~B�
jnj1 have to begin and end, respectively, the

expression forMn because ~B�
ija

†
i a

†
j and ~Bijaiaj in Eq. (2.6)

are the only terms which do not annihilate the vacuum from
the left and right, respectively. Second, all the remaining
coefficients in Mn are ~Aij’s, which fall slower than ~Bij’s

when ωi becomes large. This arises because the ~Aij involve
a difference in frequencies, as opposed to the sum in the
~Bij. Provided that f̂ ≥ 0, all the terms contributing to the
nth moment are nonnegative, so Mn is actually a lower
bound on μn, which will gives us a lower bound on the
probability distribution for large vacuum fluctuations.
To be more specific, now consider the time average of

∶ _ϕ2∶, where ϕ is a massless scalar field in four-dimensional
Minkowski spacetime. Then, passing to a continuous mode
sum, the dominant term takes the form

Mn ¼
1

ð2π2Þn
Z

∞

0

dω1…dωnðω1…ωnÞ3f̂ðω1 þ ω2Þ

× f̂ðω2 − ω3Þ…f̂ðωn−1 − ωnÞf̂ðωn þ ω1Þ: ð2:10Þ
If f̂ has the asymptotic form (2.4), then the dominant term
has the asymptotic form, in units in which τ ¼ 1,

Mn ∼
3!γ2½2πfð0Þ�n−2Γ½ð3nþ 2Þ=α − 4�

ð2π2Þnα5ð2βÞð3nþ2Þ=α ð2:11Þ

for n ≫ 1, where fð0Þ ¼ ð2πÞ−1 R∞
−∞ dωf̂ðωÞ (see Sec. IV

of [12]). The most important part of this expression is the
gamma function factor, which leads a rapid rate of growth
of the high moments,Mn ∝ ð3n=αÞ!. Thus, the parameter α
is crucial in determining the rate of growth of the moments
when n ≫ 1.
The goal is to use the asymptotic form for the moments,

Eq. (2.11), to obtain information about the probability
distribution for large vacuum fluctuations. Return to arbi-
trary units for the characteristic time scale τ. Let PðxÞ be the
probability density for the distribution of the dimensionless
variable x ¼ T̄τ4 in measurements of T̄ in the vacuum state.
While there is no upper bound on the values of x that
can arise—and therefore no upper bound on the support of

P—there is a lower bound x > −x0 for some x0 > 0. There
is a deep connection between this feature of the stress tensor
probability distribution and quantum inequality bounds,
which is explained in detail in Refs. [10,11]. We define the
tail distribution (also called the complementary cumulative
distribution function), P>ðxÞ, as the probability of finding
any value y ≥ x in a measurement

P>ðxÞ ¼
Z

∞

x
PðyÞdy ð2:12Þ

and of courseP is normalized so thatP>ðxÞ ¼ 1 for x ≤ −x0.
The nth moment of T̄ can be written in terms of P as

μn ¼ τ−4n
Z

∞

−x0
xnPðxÞdx ð2:13Þ

and this can be compared with the asymptotic form of the
dominant contribution Mn, Eq. (2.11), to infer information
aboutPðxÞ andP>ðxÞ. In this way, we are led to consider the
asymptotic forms

PðxÞ ∼ c0xbe−ax
c
; and

P>ðxÞ ∼ 1 −
c0a−ð1þbÞ=c

c
Γ
�
1þ b
c

; axc
�
; ð2:14Þ

for large vacuum fluctuations, x ≫ 1, where c0, a, b, and c
are constants to be determined, and for which the corre-
sponding moments obey

μn≈c0

Z
∞

−x0
xnþbe−ax

c
dx¼ c0

c
a−ðnþbþ1Þ=cΓ½ðnþbþ1Þ=c�:

ð2:15Þ

when n becomes large. The similarity between this expres-
sion and the asymptotic form forMn, Eq. (2.11), is evident,
and leads to the identifications

c ¼ α

3
; b ¼ −

ð4αþ 1Þ
3

; a ¼ 2β

�
fð0Þ
π

�
−α=3

;

c0 ¼ cað1þbÞ=c3!γ2α−5ð2βÞ−2=α½2πfð0Þ�−2: ð2:16Þ

However, the situation is a little bit more subtle, because it is
not guaranteed that a set of moments growing as fast as
ð3n=αÞ! (for α < 1) determines a unique probability distri-
bution [13]. Fortunately, the difference between two prob-
ability distributions with the same moments is just an
oscillatory function, which does not add any interesting
feature to the general form of PðxÞ for our purposes.
Therefore the parameters in Eq. (2.16) should provide a
good approximation to the asymptotic behavior of PðxÞ
and P>ðxÞ. Rigorous arguments to this effect are given in
Sec. VI of [11].
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The argument just given applies to the case of a compactly
supported function with asymptotics given by Eq. (2.4). For
the case of a noncompactly supported sampling function
such as a Lorentzian, Eq. (2.2), a slightly different argument
is needed to compute the asymptotic form of the dominant
contribution Mn, as is explained in detail in Ref. [11].
However, the analysis of high moments still leads to an
asymptotic form for PðxÞ given by Eq. (2.14) with c ¼ 1=3.
This is consistent with the α → 1 limit of the relation
c ¼ α=3 derived for compactly supported functions, in
which limit the asymptotic form (2.4) agrees with that of
the Lorentzian (2.2), with γ ¼ β ¼ 1.
In general, we see that the decay parameter α in the

asymptotic form of the sampling function’s Fourier trans-
form determines the rate of decay in PðxÞ for large x, and
hence the probability of large vacuum fluctuations. The
smaller α is, the more slowly the tail decreases and the
greater the probability of large fluctuations becomes. For
compactly supported functions, the value of α is related to
the rate of switch-on and switch-off of fðtÞ. [See Eqs. (51)
and (52) in Ref. [12].]

III. DIAGONALIZATION OF THE QUADRATIC
BOSONIC STRESS TENSOR

So far, we have studied the probability distribution for
quantum stress operators by analyzing the behavior of high
moments of these operators. Now we proceed to develop an
independent test of themoment-based approach, inwhichwe
diagonalize T̄ and express the Minkowski vacuum vector in
the basis of its eigenstates. Note that the vacuum is not in
general an eigenstate of the time averaged quantum stress
tensor operator, T̄; indeed, this would be incompatible with
the Reeh–Schlieder theorem if the sampling function is
compactly supported.Using the expression for thevacuum in
terms of the new basis allows us to calculate the probability
distribution function of obtaining a specific result in a
measurement of T̄. This approach can yield information
about the contribution of various modes and occupation
numbers to the probability distribution, in addition to
providing a uniquely defined probability distribution.

A. Bogoliubov diagonalization

We express a general quadratic operator H as a mode
sum involving bosonic creation and annihilation operators
for N modes as

H ¼ 1

2

XN
ij

ða†i D1ijaj þ a†i D2ija
†
j þ aiD3ijaj þ aiD4ija

†
jÞ;

ð3:1Þ

where

½ai; a†j � ¼ δij1 and ½ai; aj� ¼ ½a†i ; a†j � ¼ 0; ð3:2Þ

and 1 is the identity operator. Here the coefficients of
Eq. (3.1) correspond to elements of N-square matrices
fDrg4r¼1 which form the so-called dynamical matrix

D ¼
�
D1 D2

D3 D4

�
: ð3:3Þ

Here we follow an approach developed by Colpa [14] for
the diagonalization of D. This approach was previously
applied to stress tensor operators by Dawson [15], who was
primarily concerned with quantum inequality bounds on
expectation values. The diagonalization of the quadratic
operator H implies a homogeneous linear transformation
(Bogoliubov transformation [16]) to go from the original
set of bosonic operators, ðai; a†i ÞNi¼1, to a new one,
ðbi; b†i ÞNi¼1, in which H takes a diagonal form. For our
purposes, we consider the case D1 ¼ D4 ¼ F and D2 ¼
D3 ¼ G with F and G real and symmetric matrices. Under
these conditions, we may normal order the operator H in
Eq. (3.1) to obtain

∶H∶ ¼ 1

2
ð2a†Faþ aTGaþ a†Ga†TÞ; with

a≡

0
BBBB@

a1
a2

..

.

aN

1
CCCCA and a† ≡ ð a†1 a†2 � � � a†N Þ; ð3:4Þ

and the superscript T denotes a transpose. Here we have
combined the first and last terms in Eq. (3.1) using the fact
that F is real and symmetric. Note that the operator T̄ in
Eq. (2.6) takes this form, in the case of infinite N, where
F ¼ ~A and G ¼ 2 ~B. An important observation is that we
may use the canonical commutation relations (3.2) to write

∶H∶¼ 1

2

�
a† aT

��
F G

G F

��
a

a†T

�
−
1

2
TrðFÞ1: ð3:5Þ

Now we apply a Bogoliubov transformation

a ¼ Abþ Bb†T; with b≡

0
BBBBB@

b1
b2

..

.

bN

1
CCCCCA and

b† ≡ ð b†1 b†2 � � � b†N Þ; ð3:6Þ
where A and B are real N × N matrices, and the new set of
bosonic operators satisfy the usual commutation relations
½bi; b†j � ¼ δij1 and ½bi; bj� ¼ ½b†i ; b†j � ¼ 0. Note that the
commutation relations for the a and a† operators and the
Bogoliubov transformation, Eq. (3.6), impose conditions
upon A and B matrices of the form
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AAT − BBT ¼ I and ABT − BAT ¼ 0; ð3:7Þ

where I and 0 are the identity and null N × N matrices,
respectively. A consequence of these equations is that
ðA − BÞðAT þ BTÞ ¼ I, so A� B is invertible with inverse
AT ∓ BT . Substituting Eq. (3.6) into Eq. (3.5), we obtain

∶H∶ ¼ 1

2

�
b† bT

��
AT BT

BT AT

��
F G

G F

�

×

�
A B

B A

��
b

b†T

�
−
1

2
TrðFÞ1: ð3:8Þ

Now we impose a diagonalization condition

�
AT BT

BT AT

��
F G

G F

��
A B

B A

�
¼

�Λ 0

0 Λ

�
; ð3:9Þ

in Eq. (3.8), where Λ ¼ diagðλ1;…; λNÞ. Using the canoni-
cal commutation relations for the bi, we obtain

∶H∶ ¼
XN
i¼1

λib
†
i bi þ Cshift1; ð3:10Þ

where

Cshift ¼
1

2
TrðΛ − FÞ: ð3:11Þ

It is clear that ∶H∶ is diagonal in the orthonormal basis
formed by vectors

jnib ¼
�YN

i¼1

ðb†i Þniffiffiffiffiffiffi
ni!

p
�
j0ib ð3:12Þ

where n ¼ ðn1;…; nNÞ with each ni a nonnegative occu-
pation number, so that b†i bijnib ¼ nijnib and j0ib is
annihilated by all the bi. The eigenvalues are easily read
off from

∶H∶jnib ¼ ðniλi þ CshiftÞjnib; ð3:13Þ

where the i-index runs from 1 to N, and a sum on repeated
indices is understood. The operator ∶H∶ is bounded from
below provided that λ1;…; λN are all nonnegative, in which
case Cshift is the lowest eigenvalue. This gives a quantum
inequality bound

hψ j∶H∶jψi ≥ Cshift ð3:14Þ

for all physical normalized states ψ . Note that Cshift is both
the lowest eigenvalue of the time-averaged stress tensor
operator, and the lower bound on its probability distribu-
tion, PðxÞ, so that Cshift ¼ −x0.

Let us return to the problem of achieving the diagonal-
ization in practice. Noting that Eq. (3.7) can be written in
matrix notation as

�
A −B
−B A

��
AT BT

BT AT

�
¼

�
I 0

0 I

�
; ð3:15Þ

we use the diagonalization condition, Eq. (3.9), to obtain

�
F G

G F

��
A B

B A

�
¼

�
A −B
−B A

��Λ 0

0 Λ

�

¼
�

AΛ −BΛ
−BΛ AΛ

�
; ð3:16Þ

which is equivalent to a set of 2N-equations to be solved for
A, B, and Λ, given F and G:

ðF þ GÞðAþ BÞ ¼ ðA − BÞΛ; ð3:17Þ

ðF −GÞðA − BÞ ¼ ðAþ BÞΛ: ð3:18Þ

A consequence of these equations and ðA�BÞ−1¼ðA∓BÞT
is that

ðAþBÞTðFþGÞðAþBÞ¼Λ¼ðA−BÞTðF−GÞðA−BÞ
ð3:19Þ

and as we are interested in the case where Λ is positive
definite, it follows that a solution is only possible if both
F þ G and F − G are also positive definite. In this case, the
equations can be solved as follows. First, because F −G is
positive, we may use the Cholesky decomposition [17] to
find a real and invertible matrix K such that K†K ¼ F −G.
The matrix KðF þGÞK† is real, symmetric and positive
definite and therefore can be brought to diagonal form
U†KðF þGÞK†U where all the diagonal entries are strictly
positive and U is a real orthogonal matrix. We then define

Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U†KðF þ GÞK†U

q
ð3:20Þ

It may be verified (see Appendix A) that the solution to
(3.17) and (3.18) is given by Λ together with

A ¼ 1

2
ðΦþΨÞ and B ¼ 1

2
ðΦ −ΨÞ; ð3:21Þ

where

Φ ¼ K†UΛ−1=2 and Ψ ¼ ðF þ GÞΦΛ−1: ð3:22Þ
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B. Probabilities for particle sectors and outcomes
for the single-mode case

Now that we have the real matrices, A and B, we want to
express the original vacuum state, j0ia, as a linear combi-
nation of the eigenstates of T̄, which are linear combina-
tions of the jniib in the new b-basis. First, we will develop
the simplest case, a single mode, to obtain insight into the
general case. The single mode case shows some interesting
features which hold for the general case. In this case, A and
B become 1 × 1 matrices, or real numbers. Express

j0ia ¼
X∞
n¼0

Cnjnib; ð3:23Þ

where Cn are coefficients to be determined. Apply the a-
annihilation operator from the left and use the Bogoliubov
transformation for the single mode case, Eq. (3.6), accord-
ing to

0 ¼ aj0ia ¼
X∞
n¼0

CnðAbþ Bb†Þjnib; ð3:24Þ

¼ C1Aj0ib þ
X∞
n¼0

ðCnþ2A
ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p jnþ 1ib

þ CnB
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnþ 1ibÞ: ð3:25Þ

Now apply ðj0ibÞ† from the left to obtain C1 ¼ 0. Then,
Eq. (3.25) becomes

X∞
n¼0

ðCnþ2A
ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p þ CnB
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p Þjnþ 1ib ¼ 0: ð3:26Þ

As the jnib form an orthonormal basis, we deduce

Cnþ2 ¼ −A−1B

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

nþ 2

r
Cn: ð3:27Þ

From this recursive expression and the fact that C1 ¼ 0, we
have that all Cn coefficients with odd-n are zero. The a-
vacuum is only connected with j2nib eigenstates of T̄. Let
us make explicit this feature of the system and relabel n by
2n in Eq. (3.27) and define M≡ A−1B to obtain

C2nþ2 ¼ −M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

2ðnþ 1Þ

s
C2n: ð3:28Þ

It can be easily proved by induction that the general term in
Eq. (3.28) has the form

C2n¼
�
−
M
2

�
n

ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p
n!

N for n¼ 0;1;2;3;…; ð3:29Þ

where N ≡ C0. We apply the normalization condition to
obtain N as

ah0j0ia ¼ 1 ¼
X∞
n0;n¼0

C�
2n0C2n bh2n0j2nib

¼ jN j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M2

p ; with jMj < 1: ð3:30Þ

Then jN j ¼ ð1 −M2Þ1=4. Here we have used Eq. (3.23)
and the orthonormality property of the a-vacuum.
Substituting the expression for N into Eq. (3.29), we have

C2n¼
�
−
M
2

�
n

ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p
n!

ð1−M2Þ1=4; for n¼ 0;1;2;3;…:

ð3:31Þ

As a result, the probability P2n of finding the original a-
vacuum state in a specific b-state, j2nib, and the corre-
sponding eigenvalue of T̄, Eq. (3.10), are given by

P2n ¼ jbh2nj0iaj2 ¼ jC2nj2; ð3:32Þ

T̄j2nib ¼ ð2nλþ CshiftÞj2nib; ð3:33Þ

where n ¼ 0; 1; 2; 3…. From these equations, we see that
the lowest possible outcome in a measurement of T̄ is just
Cshift, the a-vacuum state is only connected with 2n-particle
sectors of the b-state, and the probability of finding the
a-vacuum state in a specific b-state is concentrated in the
lower particle number sectors. Indeed, the asymptotic
expression for P2n decreases rapidly with n according to

P2n ∼ jN j2M
2nffiffiffiffiffiffi
πn

p ; for large n and jMj < 1: ð3:34Þ

These three features of the single mode case hold for the
general case that we now proceed to develop in the next
subsection.

C. Probabilities for particle sectors and outcomes
for the general case

Express the a-vacuum state as a linear combination
of ψn, where each ψn belongs to the n-particle subspace for
b-states, as follows

j0ia ¼
X∞
n¼0

ψn: ð3:35Þ

Apply the ai-annihilation operator from the left, use the
Bogoliubov transformation, Eq. (3.6), and define again
M≡ A−1B (now M is a matrix). In detail,
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b†k½bk þMkjb
†
j �j0ia

¼ b†kðA−1ÞkiðAijbj þ Bijb
†
jÞj0iab†k

¼ ðA−1Þkib†kaij0ia ¼ 0; ð3:36Þ

so

0 ¼
X∞
n¼0

½b†kbk þ b†kMkjb
†
j �ψn; ð3:37Þ

¼ ψ1 þ
X∞
n¼2

½nψn þ ðb†Mb†TÞψn−2�; ð3:38Þ

where we have used b†kbkψn ¼ nψn in the last line. The
expression inside the bracket in Eq. (3.38) consists of
n-particle terms with n ≥ 2, thus we can only have a
solution with ψ1 ¼ 0. That means that

ψn ¼ −
1

n
ðb†Mb†TÞψn−2 for n ≥ 2 ð3:39Þ

and ψ1¼ψ3¼ ��� ¼ψ2nþ1 ¼ 0. We can rewrite Eq. (3.39)
by relabeling n by 2n and expressing ψ2n in terms of ψ0 as

ψ2n ¼
ð−1Þn
2nn!

ðb†Mb†TÞnψ0: ð3:40Þ

Now, define ψ0 ¼ N j0ib to obtain

j0ia¼
X∞
n¼0

ψ2n¼N
X∞
n¼0

�
−
1

2

�
n 1

n!
ðb†Mb†TÞnj0ib; ð3:41Þ

¼ N e−
1
2
b†Mb†T j0ib; ð3:42Þ

where N is a normalization constant to be determined.
Now, we diagonalizeM such thatM ¼ STΞSwith S a real
and orthogonal matrix and Ξ ¼ diagðμiÞ. Set ci ¼ Sijbj
and c†i ¼ Sijb

†
j . They satisfy the bosonic commutation

relations, because

½ci; ck� ¼ ½Sijbj; Sklbl� ¼ SijSkl½bj; bl� ¼ 0; ð3:43Þ

½ci; c†k� ¼ SijSkl½bj; b†l � ¼ ðSSTÞik ¼ δik: ð3:44Þ

Here we have used the commutation relation of b-operators
and the orthogonality of S. Now note that we can rewrite
the exponent in Eq. (3.42) using

b†Mb†T ¼ b†i ðSTΞSÞijb†j ¼ μlSliSljb
†
i b

†
j ¼ μlc

†
l c

†
l ;

ð3:45Þ

where a sum on repeated indices is understood. Then the
a-vacuum expressed in terms of the b-states, Eq. (3.42),
becomes

j0ia ¼ N e−
1
2

P
i
μic

†
i c

†
i j0ib: ð3:46Þ

The normalization constant N is calculated using the
a-vacuum normalization and the definition for c†i ’s. For a
single mode we have

ah0j0ia ¼ 1 ¼ jN j2
����X∞

n¼0

ð−μ=2Þn
n!

ðc†Þ2nj0ib
����2; ð3:47Þ

¼ jN j2
X∞
n¼0

ð−μ=2Þn
n!

ffiffiffiffiffiffiffiffiffiffiffi
ð2nÞ!

p
j2nib

�����
�����
2

; ð3:48Þ

¼ jN j2ð1 − μ2Þ−1=2; with jμj < 1: ð3:49Þ

Then jN j ¼ ð1 − μ2Þ1=4. As expected, we have recovered
the result of the previous subsection, Eq. (3.30), noting that
for the single-mode case μ ¼ M. For the multimode
situation, we have

jN j ¼
Y
i

ð1 − μ2i Þ1=4: ð3:50Þ

The probability Pfnig of finding the a-vacuum state in
a specific b-state, jfnkgib, which now depends upon
N-modes, can be obtained from Taylor expanding the
exponential in Eq. (3.42) according to

Pfnkg ¼ jbhfnkgj0iaj2 ¼ jbhfnkgjN e−
1
2
b†Mb†T j0ibj2;

ð3:51Þ

¼
����bhfnkgjN

�
1 −

1

2

XN
i;j¼1

b†iMijb
†
j þ � � �

�
j0ib

����2;
ð3:52Þ

¼
����bhfnkgjN

�
j0ib −

1ffiffiffi
2

p
XN
i¼1

Miij2iib

−
XN
i<j

Mijj1i1jib þ � � �
�����2: ð3:53Þ

From this expression, we can determine, for example, the
probability of finding the system in theb-vacuum state,Pf0g,
or in some configuration in the two-particle sector such as
Pf2ig or Pf1i1jg. These probabilities and the corresponding
outcomes associated with a measurement of T, Eq. (3.10),
are specifically given by

Pf0g ¼ jN j2; and T̄j0ib ¼ Cshiftj0ib; ð3:54Þ

Pf2ig ¼ ð1=2ÞjN j2jMiij2; and

T̄j2iib ¼ ð2λi þ CshiftÞj2iib; ð3:55Þ

Pf1i1jg ¼ jN j2jMijj2; and

T̄j1i1jib¼ðλiþλjþCshiftÞj1i1jib; with i < j: ð3:56Þ
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Here it is understood that i, j run from 1 to N. Now, we can
reexpress the normalization constant,N , to obtain informa-
tion about the total probability for each particle sector. We
take Eq. (3.50) and write the product as a determinant of the
M matrix as

jN j2¼
Y
i

ð1−μ2i Þ1=2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1−M2Þ

q
¼ e

1
2
Tr½logð1−M2Þ�;

ð3:57Þ
where we have used the well known formula detðWÞ ¼
expfTr½logðWÞ�g for a given matrix,W. Expressing the log-
function as an infinite power series, and Taylor expanding
the exponential, we can recognize the contribution for each
particle sector as follows

1 ¼ jN j2e−1
2
Tr½logð1−M2Þ� ¼ jN j2e1

2

P
∞
n¼1

TrðM2nÞ
n ; ð3:58Þ

¼ jN j2þjN j2
�
1

2
TrðM2Þ

�

þjN j2
�
1

4
TrðM4Þþ1

8
Tr2ðM2Þ

�

þjN j2
�
1

8
TrðM2ÞTrðM4Þþ 1

48
Tr3ðM2Þþ1

6
TrðM6Þ

�
þOðM8Þ: ð3:59Þ

Then, the contributions to the total probability of the
b-vacuum and the two-particle sector, for instance, are
jN j2 and ð1=2ÞjN j2TrðM2Þ, respectively. Each 2n-particle
sector contributes with terms having 2n-factors of M.

IV. MASSLESS SCALAR FIELD IN
MINKOWSKI SPACETIME

A. The square of the time derivative of the field

We consider a minimally coupled massless scalar field,
ϕðt; rÞ, in a four-dimensional Minkowski spacetime in
spherical coordinates (t, r, θ, φ), with the origin of the
spherical polar coordinates placed at the fixed spatial point
at which ∶ _ϕ2∶ will be evaluated. We choose this particular
operator to facilitate comparison of our results with those of
Ref. [12], which focused on this operator for simplicity.
The equation of motion is given by the usual wave equation

□ϕðt; rÞ ¼ 0: ð4:1Þ
Solutions of this equation take the form [18]

fωlm ¼ gωlðrÞffiffiffiffiffiffi
2ω

p Ylmðθ;φÞe−iωt; ð4:2Þ

where

gωlðrÞ ¼ ω

ffiffiffiffi
2

R

r
jlðωrÞ; ð4:3Þ

and

1 ¼
Z

R

0

r2g2ωlðrÞdr: ð4:4Þ

Here jlðωrÞ and Ylmðθ;φÞ are the spherical Bessel func-
tions and the usual spherical harmonics, respectively. The
normalization, Eq. (4.4), is carried out in a sphere of radius
R. We set vanishing boundary conditions on the surface of
the sphere by requiring

ϕðrÞjr¼R ¼ 0; ð4:5Þ

which implies

ω ¼ znl
R

; n ¼ 1; 2;…: ð4:6Þ

Here znl is the nth zero of the spherical Bessel function, jl.
We expand the quantized field in terms of creation and

annihilation operators, aωlm and a†ωlm, as

ϕðt; rÞ ¼
X∞
l¼0

Xl

m¼−l

X
ω

ðaωlmfωlm þ a†ωlmf
�
ωlmÞ; ð4:7Þ

where a sum on ω is abbreviated notation for the sum on
n ¼ 1; 2;… with ω taking the values (4.6) for the angular
momentum sector l in question.
We want to calculate the time average of the normal-

ordered quadratic operator ∶ _ϕ2∶ at fixed spatial point r ¼ 0
with sampling function fðtÞ, as in Eq. (2.1). Since all l ≠ 0
spherical Bessel functions vanish at r ¼ 0, we only have to
consider the case l ¼ m ¼ 0. Then, using j0ðωrÞ ¼
½sinðωrÞ�=ðωrÞ and Y00 ¼ 1=

ffiffiffiffiffiffi
4π

p
in Eq. (4.2), we have

fω00ðt; rÞ ¼
sinðωrÞ

r
e−iωtffiffiffiffiffiffiffiffiffiffiffiffi
4πωR

p ; ð4:8Þ

which, in the limit when r → 0, becomes

fω00ðt; 0Þ ¼
ffiffiffiffiffiffiffiffiffi
ω

4πR

r
e−iωt: ð4:9Þ

Note that from the boundary conditions on the sphere,
Eq. (4.6), we have that zn0 ¼ nπ, so

ω ¼ nπ
R

; n ¼ 1; 2;…: ð4:10Þ

Making these simplifications in Eq. (4.7), taking the time
derivative, and forming the Wick square, we obtain
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∶ _ϕ2∶ðt; 0Þ ¼
X
ω

X
ω0

ðωω0Þ3=2
4πR

× ða†ωaω0eiðω−ω0Þt − aωaω0e−iðωþω0Þt þ H:c:Þ;
ð4:11Þ

where aω ≡ aω00, the sums run over the range given in
Eq. (4.10), and H.c. means Hermitian conjugate.
Convergence here should be understood in a distributional
sense, so that when we now let T ¼ ∶ _ϕ2∶ in Eq. (2.1),
we find

T̄¼
X
ω

X
ω0

ðωω0Þ3=2
4πR

× ½a†ωaω0 f̂ðω0−ωÞ−aωaω0 f̂ðωþω0ÞþH:c:�; ð4:12Þ

where f̂ is the Fourier transform of the sampling function
fðtÞ, Eq. (2.3).
We consider two different classes of sampling functions:

the Lorentzian function whose Fourier transform is given
by Eq. (2.2) (α ¼ 1) and compactly supported functions
whose Fourier transform has an asymptotic form when
ωτ ≫ 1 given by Eq. (2.4) (α ∈ ð0; 1Þ). For this last case,
we use a set of smooth, even, and nonnegative functions
fðtÞ∶R → ½0;∞Þ with compact support in ½−2δ; 2δ� and
with Fourier transform given by (see Sec. IIA&B of
Ref. [12]

f̂ðωÞ ¼ Ĥ2ðωÞ þ 1
2
½Ĥ2ðωþ π

2δÞ þ Ĥ2ðω − π
2δÞ�

Ĥ2ð0Þ þ Ĥ2ð π
2δÞ

: ð4:13Þ

Here ĤðωÞ is the Fourier transform of HðtÞ ¼
φðtþ δÞφðδ − tÞ, with φðtÞ being the inverse Laplace

transform of ~φðpÞ ¼ e−ðpτÞα . The Fourier transform f̂ðωÞ
is analytic, even, nonnegative and is normalized to one,
f̂ð0Þ ¼ 1. When ωτ ≫ 1, f̂ðωÞ has the asymptotic form
given by Eq. (2.4) with

γ ¼ 4φ2ð2δÞ
Ĥ2ð0Þ þ Ĥ2ð π

2δÞ
; ð4:14Þ

β ¼ 2 cos

�
πα

2

�
: ð4:15Þ

Figure 1 plots the compactly supported function fðtÞ and
its Fourier transform f̂ðωÞ for the cases of α ¼ 1=2,
α ¼ 0.6, and α ¼ 0.7. The plots for the α ¼ 1=2 case
agree with those in Figs. 4 and 5 in Ref. [12], where the
function and its Fourier transform were called LðtÞ and
L̂ðωÞ, respectively. It should be noted that τ is not the
duration of the sampling period, which is 4δ, but rather
sets the decay rate of the high frequency components in
the sampling function and corresponds to a characteristic
time scale of the switch-on and switch-off parts of fðtÞ.
However it can serve as a proxy for the overall sampling
time, within a set of functions related to f by scaling.
Using τ in this way also facilitates comparison with the
Lorentzian function, for which the total sampling dura-
tion is infinite.
We define dimensionless variables x1 ¼ T̄ðτ2Þ2 and

x2 ¼ T̄ð4πτ2Þ2 for the compactly supported functions
and the Lorentzian function, respectively. (The difference
in the numerical factors is to facilitate comparison with the
results of Refs. [11,12], which used slightly different
conventions.) Using the expression for ω, Eq. (4.10), these
variables become

FIG. 1. Plots for the compactly supported function fðtÞ (left) and its Fourier transform f̂ðωÞ (right), for the cases of α ¼ 0.5 (solid
line), α ¼ 0.6 (dotted line), and α ¼ 0.7 (dashed line). The values for δ used for each of these cases are, respectively, 0.5,0.9, and 1.0,
and units in which τ ¼ 1 are used.
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x1 ¼
1

2

X∞
r;s¼1

τ40
2π2

ðrsÞ3=2½a†rasf̂ðjr − sjτ0Þ

− arasf̂ððrþ sÞτ0Þ þ H:c:�; ð4:16Þ

and

x2 ¼
1

2

X∞
r;s¼1

8τ40ðrsÞ3=2ða†rase−jr−sjτ0 −arase−ðrþsÞτ0 þH:c:Þ;

ð4:17Þ

where we have defined

τ0 ≡ πτ=R: ð4:18Þ

Note that the expressions for x1 and x2 have the form of
Eq. (3.4). Thus, the matrices F and G for the case of a
compactly supported function are

Frs ¼
τ40
2π2

ðrsÞ3=2f̂ðjr − sjτ0Þ and

Grs ¼ −
τ40
2π2

ðrsÞ3=2f̂(ðrþ sÞτ0): ð4:19Þ

Similarly, those for the case of a Lorentzian sampling
function are

Frs ¼ 8τ40ðrsÞ3=2e−jr−sjτ0 and

Grs ¼ −8τ40ðrsÞ3=2e−ðrþsÞτ0 : ð4:20Þ

The F andGmatrices are all that we need to calculate, for a
given number of modes, the probability distribution and the

cumulative probability distribution associated with a meas-
urement of x1 or x2.

B. Numerical results for the cumulative probability
distribution function and tail for large fluctuations

Here we explain the general features of the numerical
calculation that we carry out to calculate the probability,
PðxÞ, and cumulative probability distribution function,
P>ðxÞ, for the two cases mentioned above. Here x denotes
either x1 or x2, defined in Eqs. (4.16) and (4.17). For a given
number of modes, we calculate [19] all possible outcomes in
a measurement of x up to and including the 6-particle sector,
except for the following outcomeswhich have been omitted:

λi þ λj þ λk þ λl þ λm þ λn þ Cshift; ð4:21Þ

2λi þ λj þ λk þ λl þ λm þ Cshift: ð4:22Þ

Recall that the λi are the one-particle eigenvalues which
appear in Eq. (3.10). Here it is understood all indices are
different in these expressions. These outcomes were not
included due to the large number of operations that they
would entail. For example, the outcome with six different
eigenvalues, Eq. (4.21), would involve about 109 operations
for the case of 100 modes. All probabilities and outcomes
included in the calculation are listed explicitly inAppendixB.
We build the cumulative distribution P>ðxÞ by adding the
probabilities of outcomes, Pfnig, from Eq. (3.53), which are
sorted from the lowest to the largest value of x.
The number of modes and the value for τ0 are crucial in

determining the quality of the P>ðxÞ-curve. Recall that we
have standing waves, Eq. (4.2), inside a sphere of radius R,
which is related to τ and τ0 by Eq. (4.18), and that the

TABLE I. Numerical results for the parameters of the P>ðxÞ-curves illustrated in Fig. 2, for the case of compactly supported functions
with different values of α and for the Lorentzian function. Units in which τ ¼ 1 have been adopted. Here values of P>ðxÞ for different
particle sectors are calculated adding all probabilities for all possible outcomes for the given sector as is indicated in Table III. Since xmax
is the maximum value obtained in a measurement of x for a given number of modes and size of the sphere, the expression ½1 − P>ðxmaxÞ�
gives us the loss of probability.

P>ðx1Þ α ¼ 0.5 P>ðx1Þ α ¼ 0.6 P>ðx1Þ α ¼ 0.7 P>ðx2Þ Lorentzian
Modes 120 120 120 140
Points Oð109Þ Oð109Þ Oð109Þ Oð109Þ
δ 0.5 0.9 1.0 N/A
γ 2.9324 1.0433 0.5235 1
β 1.4142 1.1756 0.9080 1
fð0Þ 1.4990 0.8616 0.8274 0.6366
τ0 3.5725 2.0 2.0 0.2
xmax Oð108Þ Oð107Þ Oð107Þ Oð106Þ
Cshift −7.816 13 × 10−2 −1.484 20 × 10−2 −1.371 13 × 10−2 −5.933 38 × 10−2

Vacuum 9.885 03 × 10−1 9.728 41 × 10−1 9.718 98 × 10−1 9.702 77 × 10−1

2nd sector 1.130 68 × 10−2 2.610 08 × 10−2 2.695 37 × 10−2 2.870 07 × 10−2

4th sector 1.867 04 × 10−4 1.012 18 × 10−3 1.096 04 × 10−3 9.489 46 × 10−4

6th sector 3.448 28 × 10−6 4.389 49 × 10−5 4.972 86 × 10−5 2.975 18 × 10−5

½1 − P>ðxmaxÞ� 6.833 16 × 10−8 2.098 90 × 10−6 2.493 84 × 10−6 4.373 97 × 10−5

SCHIAPPACASSE, FEWSTER, and FORD PHYS. REV. D 97, 025013 (2018)

025013-10



sampling time scale τ is defined for the Lorentzian function
in Eq. (2.2), and for the compactly supported functions in
Eqs. (2.4) and (4.15). For a fixed characteristic time scale,
τ, the radius of the sphere is inversely proportional to
dimensionless variable τ0. For a given number of modes, if
the size of the sphere is too large, there will not be enough
data in the tail (x ≫ 1) of the P>ðxÞ-curve to perform a
reliable fit. By contrast, if the size of the sphere is too small,
the P>ðxÞ-curve will not be smooth, showing a steplike
behavior. For the compactly supported functions, we also
have to determine values for δ, which defines the support of
the sampling function fðtÞ, i.e., the duration of the sampling.
We choose these values to be slightly larger than the first
maximum of the corresponding φðtÞ, and the results are
given in Table I, working in units where τ ¼ 1. Then the
sphere radius R ¼ τ0=π gives values 1.14, 0.64 and 0.64 for
α ¼ 0.5, 0.6, 0.7, respectively, for the values of τ0 consid-
ered. Note that for α ¼ 0.5 we have R > 2δ, which means
that the total sampling time is less than the time taken for
light to travel to the boundary and back. Accordingly, the
numerics ought to give a good approximation to sampling in
Minkowski space; this is an instance of local covariance,
which has a number of applications to quantum inequalities

[20]. By contrast, in the other two remaining cases we have
R < 2δ, so the sampling process can be sensitive to the
presence of the bounding sphere. The reduced values of δ
used for α ¼ 0.6, 0.7 were required to obtain numerical
stability.
We build P>ðxÞ-curves for compactly supported func-

tions whose Fourier transform is given by Eq. (4.13)
with three different values of the decay parameter,
α ¼ ð0.5; 0.6; 0.7Þ, and the Lorentzian function. Table I
summarizes the main characteristic of these curves which
are shown by Fig. 2 for the range 450≲ x≲ 10 000. All
curves are smooth, show the presence of large vacuum
fluctuations (x ≫ 1), and have sufficient amount of data to
carry out the subsequent fit procedure. Recall that the
original a-vacuum state is expressed in terms of a linear
combination of b-states which are eigenstates of x. As
expected, the most likely b-state is the b-vacuum state and
the P>ðxÞ-curves are bounded below by the value
Cshift ¼ −x0 < 0. The loss of probability for each case is
given by ½1 − P>ðxmaxÞ�, where xmax is the maximum value
obtained in a measurement of x for a given number of modes
and size of the sphere. All analyzed cases show a small loss
of probability of the order of 10−5 or less. This small loss of

FIG. 2. P>ðxÞ-curves for the case of compactly supported functions with decay parameters (α ¼ 0.5, 0.6, 0.7) and the Lorentzian
function (α ¼ 1) for the range 450≲ x≲ 10 000. Additional information is shown in detail in Table I.
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probability indicates that the outcomes which have been
included provide a reasonable approximation for P>ðxÞ.
Our calculated values of the lower bound Cshift can be

compared with results from other approaches. In the
case of the Lorentzian function, our calculated value
Cshift ¼ −0.059 333 8, is of the order of the predicted value
from the analysis using high moments, x0 ¼ −0.0236 [11]
and well within the (nonoptimal) theoretical bound Cshift ≥
−27=128 ¼ −0.211 given by the method of [21]. For a
general compactly supported test function f, the theoretical
bound is

Cshift ≥ −
τ4

16π2

Z
∞

−∞
ðf1=200ðtÞÞ2dt ð4:23Þ

which can be obtained by setting p ¼ ffiffiffiffi
ω

p
in Eq. (3.11) of

[21]. For the case α ¼ 0.5, the integral on the right-hand
side of (4.23) can be evaluated numerically and yields the
bound Cshift ≥ −0.3592. Our calculated value Cshift ¼
−0.078 161 3 is therefore consistent with the theoretical
bound and indicates that the latter bound is weaker than the
sharpest possible bound by a factor of approximately 4.6.
This result is broadly in line with Dawson’s computations
[15], where a ratio of about 3 was found. Note that Dawson
used a toroidal spatial geometry rather than a ball and a
squared Lorentzian sampling function of infinite duration,
so one would not expect an exact match with our results.
Since we want to test the predicted behavior of the

cumulative probability distribution for large fluctuations in
vacuum, we focus on the tail of each P>ðxÞ-curve and
propose a trial function inspired by Eq. (2.14). Specifically,

P>ðx; θ̂Þ ¼ p1 −
c0a−ð1þbÞ=c

c
Γ
�
1þ b
c

; axc
�
: ð4:24Þ

Here θ̂ ¼ ðp1; a; b; c; c0Þ are the five free parameters to be
determined through the usual process of best-fitting. We fit

the numerical data to this trial function. Producing a P>ðxÞ-
curve implies propagating errors from the successive sum
of the Pfnig, defined in Eq. (3.53), but errors coming from
the diagonalization procedure are mostly dominated by the
error in jNj2, from the vacuum sector. Constructing the tail
of each P>ðxÞ-curve entails dealing with 106 data points.
To make the fitting-procedure possible in a reasonable time,
we bin the data as follows. LetN be the total number of data
points. We split this set in several subsets Ni, where N ¼Pj

i¼1Ni and j is the total number of subsets. Consider one
subset of values of x and the associated values of P>ðxÞ,
Ni¼f(x1;P>ðx1Þ);(x2;P>ðx2Þ);…;(xNi

;P>ðxNi
Þ)g. Next

replace it by the averaged values N̄i ¼ (x̄i; P̄>ðx̄iÞ), where
x̄i ¼

PNi
k¼1 xk=Ni and P̄>ðx̄iÞ ¼

PNi
k¼1 P>ðxkÞ=Ni. The

size of the subset is taken to depend on the steepness of
the P>ðxÞ-curve. The steeper this curve, the smaller is Ni.
This procedure ensures that the best fit to the set of
averaged values represents a good fit of the original curve.
The 106 data points are typically divided into about 103

bins. The values of Ni, the number of points per bin, range
from about 102 at the smaller values of x to about 104 at the
larger values.
The fitting procedure is based on the least-squares

method to find the specific set of values of parameters
which minimize the error variance. We name this specific
set as θ� ¼ ðp�

1; a
�; b�; c�; c�0Þ. The estimation of the error

variance, s2, is given by

s2 ¼ 1

ðj − 5Þ
Xj

i¼1

½P̄>ðx̄iÞ − P>ðx̄i; θ̂Þ�2
ðN=NiÞ

; ð4:25Þ

where (j − 5) is the number of degrees of freedom, P̄>ðx̄iÞ
is the ith value of the averaged P̄>ðx̄Þ-curve, P>ðx̄i; θ̂Þ
is the ith value of the fitting curve. Note that we are
weighting each ith value of the square of the residuals,
½P̄>ðx̄Þ − P>ðx̄i; θ̂Þ�2, by the ratio ðN=NiÞ. This gives a

TABLE II. Parameters obtained from the best fit of Eq. (4.24) for compactly supported functions with different values of α, and for the
Lorentzian function.

α ¼ 0.5 ðs2 ∼ 10−18Þ α ¼ 0.6 ðs2 ∼ 10−21Þ
Estimate Standard Error Theoretical [12] Estimate Standard Error Theoretical [12]

p�
1 1 9.868 90 × 10−10 1 1 3.820 57 × 10−12 1

a� 3.215 74 0.269 16 3.199 65 2.867 07 3.091 90 × 10−3 3.045 45
b� −0.649 13 6.745 95 × 10−2 −1 −1.291 64 1.948 00 × 10−3 −1.133 33
c� 0.173 68 6.217 54 × 10−3 0.166 67 0.198 625 1.747 22 × 10−4 0.2
c�0 1.249 53 × 10−2 6.173 59 × 10−3 4.846 78 × 10−2 5.522 94 × 10−2 8.369 18 × 10−4 1.578 57 × 10−2

α ¼ 0.7 ðs2 ∼ 10−22Þ Lorentzian ðs2 ∼ 10−17Þ
Estimate Standard Error Theoretical [12] Estimate Standard Error Theoretical [11]

p�
1 1 6.874 24 × 10−13 1 0.999 96 5.446 78 × 10−11 1

a� 2.749 69 1.185 28 × 10−3 2.479 20 1.049 98 1.195 09 × 10−2 0.667 749
b� −1.172 10 5.717 00 × 10−4 −1.266 67 −1.145 78 9.338 92 × 10−3 −2
c� 0.228 107 1.154 23 × 10−4 0.233 33 0.315 336 1.076 43 × 10−3 0.333 333
c�0 3.059 54 × 10−2 3.228 38 × 10−4 5.443 08 × 10−3 2.084 59 × 10−2 8.840 06 × 10−4 0.477 696
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greater weight to the larger subsets. We have also assumed
that the error in the values associated with the j different
subsets is the same. This allows us to directly sum the
squares of the residuals over the various subsets. If the
errors of the different subsets are different, then weight
factors for each subset would be needed.
Table II summarizes the statistical information obtained by

the best-fitting procedure for each case which includes the

estimate value for parameters and their respective standard
errors (only from statistical sources). Figure 3 shows the
P̄>ðx̄Þ-curves with their respective best fits to the trial
function, Eq. (4.24). In the case of the Lorentzian function,
the P̄>ðx̄Þ-curve and its respective fit are indistinguishable on
the scale shown. Figure 3 shows that the diagonalization
procedure is able to reproduce smooth tails for all the cases
considered, which are well fitted by the trial function given

FIG. 3. Best fitting using Eq. (4.24) to reproduce the P̄>ðx̄Þ-curve for the cases of compactly supported functions with different decay
parameters (range of 1000 ≲ x≲ 10 000) and for the Lorentzian function (range of 400≲ x≲ 5000). In each case, the dots and the line
correspond to the P̄>ðx̄Þ-curve and its fit, respectively. For the case of the Lorentzian function, dots and line are indistinguishable on the
scale shown.
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by an incomplete gamma function, Eq. (4.24). The variance
of the fits are small in comparison to the variation of the
P̄>ðx̄Þ-curves. For example, for the case of the compactly
supported functionwithα ¼ 0.7, we have s2 ∼Oð10−22Þ but
the change of the P̄>ðx̄Þ-curve over the range plotted in Fig. 3
is the order of 10−9.
All values of parameters obtained through the best-fitting

procedure agree reasonably well with the predicted ones
from the high moments approach [11,12], except for those
for the c0 parameter. The deviations of the fitted values for
this parameter from to the predicted values, which are of
Oð1Þ or less, are probably caused by the use a finite number
of modes and finite size of the sphere. The most important
parameter to be evaluated is c, because it is related to the rate
of decrease of the probability distribution for large fluctua-
tions, Eq. (1.1). Recall that c ¼ α=3, where α ∈ ð0; 1Þ is the
decay parameter for the family of compactly supported
functionswith Fourier transform given byEq. (4.13). For the
case of a Lorentzian function we have c ¼ 1=3. The values
of the c parameter obtained for each case agree very well
with the predicted ones,with a percentage error less than 6%.
For instance, for the case of a compactly supported function
with α ¼ 0.6, the percentage error is about 0.69%. In
complete agreement with previous results based on the high
moments analysis [11,12], our results confirm the fact that
averaging over a finite time interval compactly supported
functions results in a probability distribution which falls
more slowly than for the case of the Lorentzian function, and
both fall more slowly than exponentially.

V. SUMMARY AND DISCUSSION

Large vacuum fluctuations of quantum stress tensor
operators can have a variety of physical effects such as
production of gravity waves in inflationary models [5],
fluctuations of the light propagation speed in nonlinear
materials [6,7], and enhancing barrier penetration of
charged or polarizable particles [8,9]. These quantum
fluctuations can be studied through the analysis of the
probability distribution for the time or spacetime averaged
operator in Minkowski spacetime. The asymptotic behavior
of the probability distribution can be inferred by studying
the moments of the normal ordered operator. The study of
several normal-ordered quadratic operators time averaged
with a Lorentzian function [11] or compactly supported
functions [12] predict an asymptotic form of the probability
distribution for large vacuum fluctuations x given by
PðxÞ ∼ c0xbe−ax

c
, Eq. (1.1), where x is a dimensionless

measure of the quadratic operator. This form leads to an
asymptotic form for the cumulative probability distribution
given by an incomplete gamma function, Eq. (2.14). Here
c0, a, b, and c are constants which depend on the sampling
function used to take the time average. The c-parameter is
the most important one, and defines the rate of decrease of
the tail of the probability distribution. For the family of
compactly supported functions with asymptotic Fourier
transforms given by Eq. (2.4), where 0 < α < 1, we have

c ¼ α=3. For the case of a Lorentzian function, Eq. (2.2),
we have α ¼ 1 and c ¼ 1=3. The smaller α, the smaller the
rate of decrease of the tail and greater the probability of
large fluctuations. The value of α is related to the rate of
switch-on and switch-off of compactly supported functions.
In the present paper, we have developed a methodwhich is

independent of the moments approach for the study of the
probability distribution for quantum vacuum fluctuations of a
time averaged quantum stress tensor operator, T̄, in Eq. (2.1).
Since the vacuum state is not usually an eigenstate of T̄, we
diagonalize this operator through a change of basis.
Expressing the vacuum state in terms of the new basis in
which T̄ is diagonal, we are able to calculate the probability
distribution,PðxÞ and the cumulative probability distribution
function, P>ðxÞ for obtaining a specific result in a measure-
ment of T̄. Specifically, we work with the time averaged
quadratic operator T̄ ¼ R

∞
−∞ ∶ _ϕ2ðt; 0Þ∶fðtÞdt, where ϕ is a

massless minimally coupled scalar field and fðtÞ is the
sampling function. We use a dimensionless variable
x ∝ T̄τ4, where τ is a characteristic time scale of the sampling
function. Numerical results for both Lorentzian and com-
pactly supported functions show that the probability distri-
bution of vacuum quantum fluctuations is bounded below at
x ¼ −x0 < 0, and that the tail of the probability distribution
varies as an incomplete gamma function in agreement with
the previous studies [11,12]. We apply a best-fit procedure
through a least-squaresmethod to the tail of theP>ðxÞ-curves
in order to determine values for parameters in Eq. (4.24). The
results for p1, a, b, and c parameters show good agreement
with the predictions of the high moments approach. (See
Table II.) The diagonalization procedure is able to reproduce
with great accuracy the rate of decrease of the tail of the
cumulative probability distribution.We reproduce the relation
c ¼ α=3 for α ¼ ð0.5; 0.6; 0.7; 1Þ, where α ¼ 1 corresponds
to the case of the Lorentzian function, with percentage errors
less than 6% compared to the theoretical values predicted by
the high moments approach [11,12]. Our results confirm that
averaging over a finite time interval, with compactly sup-
ported functions, results in a probability distribution which
falls more slowly than for the case of Lorentzian averaging,
and both fall more slowly than exponentially.
Recall that we have quantized the scalar field in a sphere

with finite radius R, so the probability distribution which
we calculate could differ from that of empty Minkowski
spacetime. As was noted in Sec. IV B, there should be no
difference for the α ¼ 1=2 case, as the duration of the
sampling is less than the light travel time to the boundary
and back. In the other cases, there could in principle be an
effect of the boundary. However, this is likely only to alter
the lower frequency modes, which are not expected to give
a large contribution to the tail of the distribution.
The diagonalization method is free of the ambiguity

potentially present in the high moments approach, and leads
to a unique result for the probability distribution. It also has
the potential to determine the entire distribution, including
its lower bound, which is also the optimum quantum
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inequality bound on expectation values of the averaged
operators. In addition, it can provide information about the
particle content of the eigenstates of the averaged stress
tensor which are associated with the large fluctuations.
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APPENDIX A: DERIVATION OF THE
BOGOLIUBOV TRANSFORMATION

The expression Λ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UTKðFþGÞKTU

p
entails

UΛ2U−1¼KðFþGÞKT , where K† ¼ KT and U−1 ¼ UT .
Then, withΦ¼KTUΛ−1=2 andΨ¼ðFþGÞΦΛ−1, we have

ðF þGÞΦ ¼ ΨΛ ðA1Þ
by definition and also KΨ¼KðFþGÞΦΛ−1¼UΛ1=2. Then

ðF −GÞΨ ¼ KTKΨ ¼ KTUΛ1=2 ¼ ΦΛ: ðA2Þ
Using the definitions of A and B from Eq. (3.21),
Equations (A1) and (A2) lead to Eqs. (3.17) and (3.18),
respectively, according to

ðF þ GÞðAþ BÞ ¼ ðF þGÞΦ ¼ ΨΛ ¼ ðA − BÞΛ; ðA3Þ

ðF − GÞðA − BÞ ¼ ðF −GÞΨ ¼ ΦΛ ¼ ðAþ BÞΛ: ðA4Þ

Finally, using ΦΨT ¼ KTUΛ−1=2ðK−1UΛ1=2ÞT ¼ I and
hence ΨΦT ¼ I, we have

AAT − BBT ¼ 1

2
ðΦΨT þΨΦTÞ ¼ I; ðA5Þ

ABT − BAT ¼ 1

2
ðΨΦT −ΦΨTÞ ¼ 1

2
ðI − IÞ ¼ 0; ðA6Þ

where I and 0 correspond to the identity and null matrices,
respectively. These equations are the conditions that A and
B have to satisfy in order to define a Bogoliubov trans-
formation, Eq. (3.7).

APPENDIX B: LIST OF OUTCOMES AND
PROBABILITIES

We listed below probabilities of finding specific out-
comes in a measurement of a time averaged normal ordered
quadratic operator. We have only considered up to the 6-
particle sector taking out the outcomes given by Eqs. (4.21)
and (4.22). It is understood that the coefficients of the M
matrix, which appear in Table III, come from the diago-
nalization procedure explained in Sec. III A.

TABLE III. Probabilities and outcomes of a time averaged normal ordered quadratic operator.

Probability Outcome

jN j2 Cshift

jN j2jMijj2 λi þ λj þ Cshift
a

1
2
jN j2jMiij2 2λi þ Cshift

3
8
jN j2jMiij4 4λi þ Cshift

jN j2jM2
ij þ 1

2
MiiMjjj2 2λi þ 2λj þ Cshift

a

1
2
jN j2jMiiMjk þ 2MijMikj2 2λi þ λj þ λk þ Cshift

b

3
2
jN j2jMiij2jMijj2 3λi þ λj þ Cshift

jN j2jMilMjk þMikMjl þMijMklj2 λi þ λj þ λk þ λl þ Cshift
c

5
16
jN j2jMiij6 6λi þ Cshift

15
8
jN j2jMiij4jMijj2 5λi þ λj þ Cshift

3
16
jN j2j4MiiM2

ij þM2
iiMjjj2 4λi þ 2λj þ Cshift

1
4
jN j2j2M3

ij þ 3MiiMijMjjj2 3λi þ 3λj þ Cshift
a

1
8
jN j2j2M2

ikMjj þ 8MijMikMjk þ 2MiiM2
jk þ 2M2

ijMkk þMiiMjjMkkj2 2λi þ 2λj þ 2λk þ Cshift
d

3
8
jN j2jM2

iiMjk þ 4MiiMijMikj2 4λi þ λj þ λk þ Cshift
(b)

1
4
jN j2j2MikMilMjjþ4MijMilMjkþ4MijMikMjlþ2MiiMjkMjlþ2M2

ijMklþMiiMjjMklj2 2λi þ 2λj þ λk þ λl þ Cshift
e

3
4
jN j2j2M2

ijMik þMiiMikMjj þ 2MiiMijMjkj2 λi þ 2λj þ λk þ Cshift
3
2
jN j2j2MijMikMil þMiiMilMjk þMiiMikMjl þMiiMijMklj2 3λi þ λj þ λk þ λl þ Cshift

f

aHere we have ði < jÞ.
bHere we have ðj < kÞ.
cHere we have ði < j < k < lÞ.
dHere we have ði < j < kÞ.
eHere we have ði < jÞ ∩ ðk < lÞ.
fHere we have ðj < k < lÞ, and the M matrix is defined in Sec. III C.
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