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Vacuum quantum stress tensor fluctuations: A diagonalization approach
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Large vacuum fluctuations of a quantum stress tensor can be described by the asymptotic behavior of its
probability distribution. Here we focus on stress tensor operators which have been averaged with a
sampling function in time. The Minkowski vacuum state is not an eigenstate of the time-averaged operator,
but can be expanded in terms of its eigenstates. We calculate the probability distribution and the cumulative
probability distribution for obtaining a given value in a measurement of the time-averaged operator taken in
the vacuum state. In these calculations, we study a specific operator that contributes to the stress-energy
tensor of a massless scalar field in Minkowski spacetime, namely, the normal ordered square of the time
derivative of the field. We analyze the rate of decrease of the tail of the probability distribution for different
temporal sampling functions, such as compactly supported functions and the Lorentzian function. We find
that the tails decrease relatively slowly, as exponentials of fractional powers, in agreement with previous
work using the moments of the distribution. Our results lend additional support to the conclusion that large
vacuum stress tensor fluctuations are more probable than large thermal fluctuations, and may have

observable effects.
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I. INTRODUCTION

The definition and the use of the expectation value of a
quantum stress tensor operator have been a topic of intense
study in recent decades. The semiclassical theory for
gravity uses the renormalized expectation value of the
quantum matter stress tensor to give an approximate
description of the effects of quantum matter fields on the
gravitational field. As in the semiclassical theory of
electromagnetic radiation, it is expected that this theory
is a reasonable approximation to a more complete quantum
theory of gravity coupled to matter fields. It is known that a
renormalized stress energy operator for quantum fields in
curved spacetime is associated with quantum corrections to
Einstein’s equations, via higher order derivative terms [1].
These corrections lead to physical effects, such as small scale
factor oscillations around an expanding background universe
and quantum particle creation [2]. Moreover, this theory has
been successful about giving a plausible description of the
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back reaction to black hole evaporation through Hawking
radiation [3]. However, the semiclassical theory does not
consider the quantum fluctuations of the stress tensor around
its expectation value and their possible effects. Several
authors have studied a variety of physical effects associated
with quantum stress tensor fluctuations [4]. These effects
include, for example, potentially observable gravity waves
from quantum stress tensor fluctuations in inflationary
models [5], effects of vacuum electric field fluctuations on
light propagation in nonlinear materials [6,7], and barrier
penetration of charged or polarizable particles through large
vacuum radiation pressure fluctuations [8,9].

In general, the physical effects of large fluctuations of a
quantum stress tensor operator can be studied through the
analysis of the probability distribution for the time or
spacetime averaged operator. This probability distribution
can be inferred (at least qualitatively) from the moments of
the averaged operator, and the exact distribution was found
in a two-dimensional model in Ref. [10]. The moments
method was used in Ref. [11] to infer the probability
distribution for several normal-ordered quadratic operators
in four dimensional Minkowski spacetime with Lorentzian
time averaging. These included the square of the electric
field and the energy densities of a massless scalar field and
of the electromagnetic field. This idea was extended in
Ref. [12] to compactly supported functions of time. These
results predict an asymptotic form of the probability
distribution function for large fluctuations of

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.025013&domain=pdf&date_stamp=2018-01-23
https://doi.org/10.1103/PhysRevD.97.025013
https://doi.org/10.1103/PhysRevD.97.025013
https://doi.org/10.1103/PhysRevD.97.025013
https://doi.org/10.1103/PhysRevD.97.025013
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

SCHIAPPACASSE, FEWSTER, and FORD

PHYS. REV. D 97, 025013 (2018)

P(x) ~ coxbe=ax

x> 1. (1.1)
Here the variable x is a dimensionless measure of the stress
tensor, and ¢y, a, b, and ¢ are constants which depend on
the sampling function. In the case of the Lorentzian time
averaged electromagnetic energy density, for example,
a~1 and ¢ =1/3. Because thermal fluctuations are
exponentially suppressed in energy, vacuum fluctuations
can dominate over thermal fluctuations at large energies.
However, the moments of a quantum stress tensor operator
(by which we mean an operator contributing to the full
stress tensor) grow very rapidly, to the extent that they
might not uniquely determine the probability distribution,
so it is desirable to seek alternative methods.

In the present paper, we develop such an independent test
of the moments approach for the study the probability
distribution of time-averaged quantum stress tensor oper-
ators. The main idea is to diagonalize the time-averaged
operator through a change of basis and calculate the
cumulative probability distribution function of their quan-
tum fluctuations in the vacuum state. We are interested in
checking the behavior predicted by the high moments
approach, and in determining which modes and particle
numbers give the dominant contribution to the large
fluctuations. Unlike the moments approach, which pri-
marily gives information about the asymptotic behavior of
the probability distribution for large vacuum stress tensor
fluctuations, the diagonalization approach in principle
gives a unique probability distribution for a broad range
of fluctuations x. We take the normal ordered square of the
time derivative of a massless scalar field in Minkowski
spacetime as our stress tensor operator, and find the tail of
the probability distribution for different temporal sampling
functions, specifically a class of compactly supported
functions and the Lorentzian function. The tails decrease
relatively slowly, as exponentials of fractional powers, in
agreement with previous results using the moments of the
distribution.

The paper is organized as follows: In Sec. II, we review
the main results of Ref. [12] on the high moments approach
to the analysis of the probability distribution for quantum
stress tensor operators. In Sec. III, we develop an inde-
pendent approach to the study of probability distributions
based on the diagonalization of the operator. In Sec. IV, we
show the numerical results obtained for different time
sampling functions. In Sec. V, we summarize and discuss
the main results of the paper.

II. MOMENT-BASED APPROACH TO THE
PROBABILITY DISTRIBUTION

Here we review the main results of Ref. [12]. Working in
4-dimensional Minkowski spacetime, let 7(z,r) be a
operator which is a quadratic function of a free field
operator and define its time average with a real-valued
sampling function f(¢) by

T— / (1) f(1)dr.

[se]

(2.1)

We will consider measurements of the time average T
rather than 7. The sampling function has a characteristic
width 7 and should decay quickly as |¢| > 7. One example
is a Lorentzian function, used in Ref. [11], whose math-
ematical expression and Fourier transform are given by

and  fy (@) = e,

fu(t) =

N (2.2)

where the Fourier transform of f; (¢) and its normalization
are given by

Fulw) = / " dtefy (1) and F,(0)=1.

[e5]

(2.3)

However, if the measurement of the operator occurs in a
finite interval of time, the sampling function is better
described by a smooth and compactly supported function.
This kind of sampling function is strictly zero outside a
finite region, avoiding the long temporal tails of functions
like the Lorentzian. It therefore gives a better description of
a measurement which begins and ends at finite times. We
will be interested in compactly supported nonnegative
functions whose Fourier transform has the following
asymptotic form when wz > 1:

A

fl@) ~ye Pl

where a, y, and f§ are constants. Here a € (0, 1) is a decay
parameter which defines the rate of decrease of f (@)
(values a > 1 are incompatible with f having compact
support). It is worth emphasising that z does not directly
measure the support of f, but rather indicates the shortest
characteristic time scale associated with f; in our examples,
this will characterise the switch-on and switch-off regions.

For any given f (compactly supported or not) define the
nth moment of the normal-ordered time-averaged quadratic
operator T, Eq. (2.1), as

pn = (0[(T)"[0),

where |0) is the Minkowski vacuum vector of the theory. As
we will now see, the form of the Fourier transform f defines
the rate of growth of the moments x4, and, as a result, the
probability for large fluctuations.

In the first instance, we work in a box of finite volume
and express T in a mode sum of creation and annihilation
bosonic operators as

(2.4)

(2.5)

T = Z(Aijajaj + Bjja;a; + B}‘jaia;),
ij

(2.6)

where A ij and B ;j are components of symmetric matrices A
and B, which have the functional forms
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Aij x (wiwj)l/zf(wi - 60,‘)’ (2.7)

Bjj x (wiwj)l/zf(wi + j),

(2.8)

where w; are the mode frequencies. Precise forms of A and
B will be given when we come to specific examples in
Sec. IV. The moment y,, can be expressed as an nth degree
polynomial in these components. As n increases, the
number of terms in the expression for the nth moment
grows rapidly. Fortunately, only one term gives the dom-
inant contribution for n > 1:

=4 Z lejz J2J3 1314 Ajn—ljnB;fnjl : (29)
/l Jn
First, B j,j, and B* , have to begm and end, respectively, the

expression for M, because B, ; l a; T and B ja;a;in Eq. (2.6)
are the only terms which do not annihilate the vacuum from
the left and right, respectlvely Second, all the remammg
coefficients in M, are A ’s, which fall slower than B ’s

when w; becomes large. Thls arises because the A 1nvolve
a difference in frequencies, as opposed to the sum in the
B; ;- Provided that f >0, all the terms contributing to the
nth moment are nonnegative, so M, is actually a lower
bound on y,, which will gives us a lower bound on the
probability distribution for large vacuum fluctuations.

To be more specific, now consider the time average of
'qb , where ¢ is a massless scalar field in four-dimensional
M1nkowsk1 spacetime. Then, passing to a continuous mode
sum, the dominant term takes the form

1 00 A
M, = m~/0 dw,...dw,(o,...0,) f(o, + v,)
Xf‘(wZ - a)3)"'f‘(wn—l - wn)f(wn + wl)'

If f has the asymptotic form (2.4), then the dominant term
has the asymptotic form, in units in which 7 =1,

(2.10)

N 312 [2nf(0)]n—2F[<3n +2)/a—4]
’ (272)"a’ (23) Crt2)/a

(2.11)

for n>> 1, where £(0) = (27)~" [*, dwf(w) (see Sec. IV
of [12]). The most important part of this expression is the
gamma function factor, which leads a rapid rate of growth
of the high moments, M,, « (3n/a)!. Thus, the parameter a
is crucial in determining the rate of growth of the moments
when n > 1.

The goal is to use the asymptotic form for the moments,
Eq. (2.11), to obtain information about the probability
distribution for large vacuum fluctuations. Return to arbi-
trary units for the characteristic time scale 7. Let P(x) be the
probability density for the distribution of the dimensionless
variable x = 7z* in measurements of 7 in the vacuum state.
While there is no upper bound on the values of x that
can arise—and therefore no upper bound on the support of

P—there is a lower bound x > —x for some x, > 0. There
is a deep connection between this feature of the stress tensor
probability distribution and quantum inequality bounds,
which is explained in detail in Refs. [10,11]. We define the
tail distribution (also called the complementary cumulative
distribution function), P (x), as the probability of finding
any value y > x in a measurement

P = [ Po)y (2.12)

and of course P is normalized so that P (x) = 1 forx < —x,.
The nth moment of 7 can be written in terms of P as

U, = 7_4”/ X"P(x)dx
—x

and this can be compared with the asymptotic form of the
dominant contribution M,,, Eq. (2.11), to infer information
about P(x) and P (x). In this way, we are led to consider the
asymptotic forms

(2.13)

P(x) ~ coxte=", and

—(14b)/c 1+b
coa F( +
C

P (x)~1-

, ax”) . (2.14)

c
for large vacuum fluctuations, x > 1, where ¢, a, b, and ¢

are constants to be determined, and for which the corre-
sponding moments obey

Iy & Co /Ooan)e—ax"dx:@a—(n+b+l)/cr[(n+b+ 1)/C]
—x c
(2.15)

when n becomes large. The similarity between this expres-
sion and the asymptotic form for M,,, Eq. (2.11), is evident,

and leads to the identifications
0)\ —«/3
. (f( >> |
T

(2.16)

da+1
=9 p=-terl)

co = ca " D)/e312a5 (26) 2/ 2mf (0)] 2

However, the situation is a little bit more subtle, because it is
not guaranteed that a set of moments growing as fast as
(3n/a)! (for @ < 1) determines a unique probability distri-
bution [13]. Fortunately, the difference between two prob-
ability distributions with the same moments is just an
oscillatory function, which does not add any interesting
feature to the general form of P(x) for our purposes.
Therefore the parameters in Eq. (2.16) should provide a
good approximation to the asymptotic behavior of P(x)
and P. (x). Rigorous arguments to this effect are given in
Sec. VI of [11].

025013-3



SCHIAPPACASSE, FEWSTER, and FORD

PHYS. REV. D 97, 025013 (2018)

The argument just given applies to the case of a compactly
supported function with asymptotics given by Eq. (2.4). For
the case of a noncompactly supported sampling function
such as a Lorentzian, Eq. (2.2), a slightly different argument
is needed to compute the asymptotic form of the dominant
contribution M,, as is explained in detail in Ref. [11].
However, the analysis of high moments still leads to an
asymptotic form for P(x) given by Eq. (2.14) with ¢ = 1/3.
This is consistent with the @ — 1 limit of the relation
¢ = a/3 derived for compactly supported functions, in
which limit the asymptotic form (2.4) agrees with that of
the Lorentzian (2.2), withy = f = 1.

In general, we see that the decay parameter o in the
asymptotic form of the sampling function’s Fourier trans-
form determines the rate of decay in P(x) for large x, and
hence the probability of large vacuum fluctuations. The
smaller a is, the more slowly the tail decreases and the
greater the probability of large fluctuations becomes. For
compactly supported functions, the value of « is related to
the rate of switch-on and switch-off of f(¢). [See Egs. (51)
and (52) in Ref. [12].]

ITI. DIAGONALIZATION OF THE QUADRATIC
BOSONIC STRESS TENSOR

So far, we have studied the probability distribution for
quantum stress operators by analyzing the behavior of high
moments of these operators. Now we proceed to develop an
independent test of the moment-based approach, in which we
diagonalize T and express the Minkowski vacuum vector in
the basis of its eigenstates. Note that the vacuum is not in
general an eigenstate of the time averaged quantum stress
tensor operator, T: indeed, this would be incompatible with
the Reeh—Schlieder theorem if the sampling function is
compactly supported. Using the expression for the vacuum in
terms of the new basis allows us to calculate the probability
distribution function of obtaining a specific result in a
measurement of 7. This approach can yield information
about the contribution of various modes and occupation
numbers to the probability distribution, in addition to
providing a uniquely defined probability distribution.

A. Bogoliubov diagonalization

We express a general quadratic operator H as a mode
sum involving bosonic creation and annihilation operators
for N modes as

1L, .
H = EZ(aiDl,-jaj +a}LD2,-ja; +Cl,'D3,'jClj +aiD4ijaj)’
ij

(3.1)

where

la;.a]] = 8,1 and [a;.a)] = [a].a}] =0,

(3.2)

ij

and 1 is the identity operator. Here the coefficients of
Eq. (3.1) correspond to elements of N-square matrices
{D,}%_, which form the so-called dynamical matrix

Here we follow an approach developed by Colpa [14] for
the diagonalization of D. This approach was previously
applied to stress tensor operators by Dawson [15], who was
primarily concerned with quantum inequality bounds on
expectation values. The diagonalization of the quadratic
operator H implies a homogeneous linear transformation
(Bogoliubov transformation [16]) to go from the original
set of bosonic operators, (a;,a,)¥,, to a new one,
(bl-,bj')f.v: |» in which H takes a diagonal form. For our
purposes, we consider the case D; = D, = F and D, =
D; = G with F and G real and symmetric matrices. Under
these conditions, we may normal order the operator H in
Eq. (3.1) to obtain

(3.3)

1
H: =3 (2a’Fa+a’Ga+a'Ga'), with
a
a
a= and a'=(a] o --- d). (34)
an

and the superscript 7 denotes a transpose. Here we have
combined the first and last terms in Eq. (3.1) using the fact
that F is real and symmetric. Note that the operator T in
Eq. (2.6) takes this form, in the case of infinite N, where
F =A and G = 2B. An important observation is that we
may use the canonical commutation relations (3.2) to write

:H::%<a* aT) (g i) (;T>—%Tr(F)1]. (3.5)

Now we apply a Bogoliubov transformation

b,
b,
a=Ab+Bb"", with b=| and
by
b" = (b b} bl). (3.6)

where A and B are real N x N matrices, and the new set of
bosonic operators satisfy the usual commutation relations
[b;. b}] = 6,1 and [b;,b;] = [b].b}] = 0. Note that the
commutation relations for the a and a' operators and the
Bogoliubov transformation, Eq. (3.6), impose conditions

upon A and B matrices of the form
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AAT —BBT =1 and ABT —BAT =0, (3.7)

where [ and O are the identity and null N x N matrices,
respectively. A consequence of these equations is that
(A—B)(AT + BT) = I, s0 A £ B is invertible with inverse
AT  BT. Substituting Eq. (3.6) into Eq. (3.5), we obtain

w3 ()G )6 )
2 B" AT)\G F
A B b 1
X . —=Tr
B A b’ 2
Now we impose a diagonalization condition
AT BT F G\/A B A 0
= , (3.9)
BT AT G F B A 0 A

in Eq. (3.8), where A = diag(4, ..., Ay). Using the canoni-
cal commutation relations for the b;, we obtain

(F)1.

N
TH: =Y Aiblb; + Caig. (3.10)
i=1

where

1
Cshift :ETI'(A—F) (311)
It is clear that : H: is diagonal in the orthonormal basis
formed by vectors
)

where n = (ny, ..., ny) with each n; a nonnegative occu-
pation number, so that b}b;n), = n;|n), and |0, is
annihilated by all the b;. The eigenvalues are easily read
off from

(j;l' (3.12)

tH:n), = (n:4; + Copis) 1), (3.13)
where the i-index runs from 1 to N, and a sum on repeated
indices is understood. The operator : H: is bounded from
below provided that 4, ..., Ay are all nonnegative, in which
case Cgp 1s the lowest eigenvalue. This gives a quantum
inequality bound

(Wl:H:ly) = Canin (3.14)
for all physical normalized states y. Note that Cg,;y, is both
the lowest eigenvalue of the time-averaged stress tensor
operator, and the lower bound on its probability distribu-
tion, P(x), so that Cy,r = —x.

Let us return to the problem of achieving the diagonal-
ization in practice. Noting that Eq. (3.7) can be written in
matrix notation as

( A —B) <AT BT> (I O)
-B A J\BT AT) \o 1)’
we use the diagonalization condition, Eq. (3.9), to obtain
F G A B B A -B A0
G FJ\B A) \-B A J\0 A
B < AN —BA>
\-BA AA )’

which is equivalent to a set of 2N-equations to be solved for
A, B, and A, given F and G:

(3.15)

(3.16)

(F+G)(A+B) = (A-B)A, (3.17)

(F—G)(A-B) = (A + B)A. (3.18)

A consequence of these equations and (A+B)~'=(AFB)T
is that

(A+B)(F+G)(A+B)=A=(A-B)(F-G)(A-B)
(3.19)

and as we are interested in the case where A is positive
definite, it follows that a solution is only possible if both
F 4+ G and F — G are also positive definite. In this case, the
equations can be solved as follows. First, because F — G is
positive, we may use the Cholesky decomposition [17] to
find a real and invertible matrix K such that KK = F — G.
The matrix K(F + G)K" is real, symmetric and positive
definite and therefore can be brought to diagonal form
U'K(F + G)K'U where all the diagonal entries are strictly
positive and U is a real orthogonal matrix. We then define

A=\/UK(F+G)K'U (3.20)

It may be verified (see Appendix A) that the solution to
(3.17) and (3.18) is given by A together with

A=-(®P+¥) and B=-(®-Y), (3.21)

NS
N =

where

®=KUA'? and ¥=(F+G)®A™'. (3.22)
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B. Probabilities for particle sectors and outcomes
for the single-mode case

Now that we have the real matrices, A and B, we want to
express the original vacuum state, |0),, as a linear combi-
nation of the eigenstates of 7, which are linear combina-
tions of the |n;), in the new b-basis. First, we will develop
the simplest case, a single mode, to obtain insight into the
general case. The single mode case shows some interesting
features which hold for the general case. In this case, A and
B become 1 x 1 matrices, or real numbers. Express

[&8)

(3.23)

where C, are coefficients to be determined. Apply the a-
annihilation operator from the left and use the Bogoliubov
transformation for the single mode case, Eq. (3.6), accord-
ing to

0 = al0), C,,(Ab + Bb)|n),. (3.24)
n=0
= CAI0), + > (Cop2AVR +2[n + 1),
n=0
+ C,BVn A+ 1n+1),). (3.25)

Now apply (|0),)" from the left to obtain C; = 0. Then,
Eq. (3.25) becomes

0

> (CrizAVA 2+ C,BVi T 1)n + 1), = 0.

n=0

(3.26)

As the |n), form an orthonormal basis, we deduce

n+1
n+2

—-A"'B

Cpin = C.,. (3.27)

From this recursive expression and the fact that C; = 0, we
have that all C, coefficients with odd-n are zero. The a-
vacuum is only connected with [2n), eigenstates of 7. Let
us make explicit this feature of the system and relabel n by
2n in Eq. (3.27) and define M = A~!B to obtain

Copy = -M n—CZn' (3.28)

It can be easily proved by induction that the general term in
Eq. (3.28) has the form

n/n)
C2n2<—%> ﬂj\/’ forn=0,1,2,3,...,
n!

(3.29)

where N = C,. We apply the normalization condition to
obtain NV as

A00), =1="Y" C},Cyp (20 20),,

n' ,n=0

2
= 7|N| with

V- M2

Then |N| = (1 — M?)"/4. Here we have used Eq. (3.23)
and the orthonormality property of the a-vacuum.
Substituting the expression for A into Eq. (3.29), we have

o () L

n!

M| <1.  (3.30)

- M*)V4 forn=0,1,2,3,....
(3.31)

As a result, the probability P,, of finding the original a-
vacuum state in a specific b-state, |2n),, and the corre-
sponding eigenvalue of 7, Eq. (3.10), are given by

P2n = |b<2n|0>a|2 =

|C2n|29 (332)

T|2n), = (202 + Cyig)[21),, (3.33)
where n =0, 1,2, 3.... From these equations, we see that
the lowest possible outcome in a measurement of T is just
Cnifi» the a-vacuum state is only connected with 2n-particle
sectors of the b-state, and the probability of finding the
a-vacuum state in a specific b-state is concentrated in the
lower particle number sectors. Indeed, the asymptotic
expression for P,, decreases rapidly with n according to

~ NP

for large n and |M| < 1. (3.34)

\/— )
These three features of the single mode case hold for the

general case that we now proceed to develop in the next
subsection.

C. Probabilities for particle sectors and outcomes
for the general case

Express the a-vacuum state as a linear combination
of y,,, where each y,, belongs to the n-particle subspace for
b-states, as follows

0,=3 v

n=0

(3.35)

Apply the a;-annihilation operator from the left, use the
Bogoliubov transformation, Eq. (3.6), and define again
M =A"'B (now M is a matrix). In detail,
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blt (b + Mkjbj'”(»

= by(A™");(Ayjb; + By;b})[0),b]

= (A™")blai|0), =0, (3.36)
SO
0="> [bibx + byMy;by,. (3.37)
n=0
=y + Z [nl//n + (bTMbTT)Wn—ﬂv (338)
n=2

where we have used b,tbkz//,, = ny,, in the last line. The
expression inside the bracket in Eq. (3.38) consists of
n-particle terms with n > 2, thus we can only have a
solution with y; = 0. That means that

1

W, =——0bMbT)y,, forn>2 (3.39)
n

and | =w; =" =y,,, | =0. We can rewrite Eq. (3.39)

by relabeling n by 2n and expressing y,,, in terms of y as

- )(b*Mb”)

o (3.40)

Now, define yy = N0), to obtain

an /\/Z (——> (b'Mb'T)"|0),, (3.41)

= Ne ' MbT 0y (3.42)

where N is a normalization constant to be determined.
Now, we diagonalize M such that M = STES with S areal

and onhogonal matrix and E = diag(y;). Set ¢; = S;;b;
and c = S,,b]T They satisfy the bosonic commutation

relatlons because

[S;:b

ij ]’Sklbl]

[cinci] = = 8;;Sulbj, b)) =0,  (3.43)

[ci, Ck] SiiSulbj, b” = ($8T)y = Sur.- (3.44)
Here we have used the commutation relation of b-operators
and the orthogonality of S. Now note that we can rewrite
the exponent in Eq. (3.42) using

bTMbTT = bj(S S) b = /l[ShS[jbj.b;- = //llC;C;-,

ij7j
(3.45)
where a sum on repeated indices is understood. Then the

a-vacuum expressed in terms of the b-states, Eq. (3.42),
becomes

10), = Ne™22Hc|0),. (3.46)

The normalization constant A is calculated using the
a-vacuum normalization and the definition for c}L’s. For a
single mode we have

a{00), =1 =N

S E o, G

n=0

2
o _ 2 n
= [NV Z%\/(zn)uzmh (3.48)
n=0 :
= NP =) V2, with |u| < 1. (3.49)
Then |[NV| = (1 —u?)"/*. As expected, we have recovered

the result of the previous subsection, Eq. (3.30), noting that
for the single-mode case p = M. For the multimode
situation, we have

V=TT =)

i

(3.50)

The probability Py, of finding the a-vacuum state in
a specific b-state, |{n;}),, which now depends upon
N-modes, can be obtained from Taylor expanding the
exponential in Eq. (3.42) according to

Py = lp({ni} [0)o* = | ({ni} N e 107 o),

(3.51)
_ h({nk}|N<1 —%i bIMb! + >|0>b
(3.52)
—|ottmv (101 - sz
_ ZN:MUII,»I,% L > ? (3.53)

i<j

From this expression, we can determine, for example, the
probability of finding the system in the b-vacuum state, Py},
or in some configuration in the two-particle sector such as
Py or Py These probabilities and the corresponding
outcomes associated with a measurement of 7, Eq. (3.10),
are specifically given by

Py = N2, and  T|0), = Cyi|0)s. (3.54)
Ppy = (1/2)INPIM;?,  and
T121)p = (24 + Caitt)[20)» (3.55)
P{lilj} = |N|2|Mij|2v and
T(1;1), = (i + 4+ Cair)[111)),, with i<j.  (3.56)
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Here it is understood that i, j run from 1 to N. Now, we can
reexpress the normalization constant, V, to obtain informa-
tion about the total probability for each particle sector. We
take Eq. (3.50) and write the product as a determinant of the
M matrix as

VP =TT0-m)2 =

i

det(l _ MZ) _ eiTr[log(]—Mz)]’

(3.57)

where we have used the well known formula det(W) =
exp{Tr[log(W)]} for a given matrix, W. Expressing the log-
function as an infinite power series, and Taylor expanding
the exponential, we can recognize the contribution for each
particle sector as follows

o Tr(M21)

|N| eZ n=1 n

1= |N|2 —1Tr[log(1-M?)] (3.58)

— WP+ NP |5 TiMe)

+ N]? [ Tr(M“)—i—éTr (Mz)}

+|N|2[ Tr(M2)Tr (M) + 418Tr (M2) 4+ Tr(/\/l6)

+O(M?). (3.59)
Then, the contributions to the total probability of the
b-vacuum and the two-particle sector, for instance, are
INV|? and (1/2)|N|*Tr(M?), respectively. Each 2n-particle
sector contributes with terms having 2n-factors of M.

IV. MASSLESS SCALAR FIELD IN
MINKOWSKI SPACETIME

A. The square of the time derivative of the field

We consider a minimally coupled massless scalar field,
@(t,r), in a four-dimensional Minkowski spacetime in
spherical coordinates (¢, r, 6, ¢), with the origin of the
spherical polar coordinates placed at the fixed spatial point
at which gb : will be evaluated. We choose this particular
operator to facilitate comparison of our results with those of
Ref. [12], which focused on this operator for simplicity.
The equation of motion is given by the usual wave equation

Oe(r,r) = 0. (4.1)
Solutions of this equation take the form [18]
Fum =200, (42)
where
i (r) = w\/%jz(wr), (4.3)

and

R
1:/) g, (r)dr

Here j,(wr) and Y, (0, ¢) are the spherical Bessel func-
tions and the usual spherical harmonics, respectively. The
normalization, Eq. (4.4), is carried out in a sphere of radius
R. We set vanishing boundary conditions on the surface of
the sphere by requiring

(4.4)

$(r)l,—r =0 (4.5)
which implies
o=t n=12, (4.6)
R

Here z,,; is the nth zero of the spherical Bessel function, j,.
We expand the quantized field i 1n terms of creation and

annihilation operators, a,,;,, and awlm, as
00 i
_ Z Z Z P
- (aa)lmf(ulm + Aopim wlm)’ (47)
=0 m=-1 o

where a sum on @ is abbreviated notation for the sum on
n=1,2,... with w taking the values (4.6) for the angular
momentum sector / in question.

We want to calculate the time average of the normal-
ordered quadratic operator :¢2 : at fixed spatial point r = 0
with sampling function f(¢), as in Eq. (2.1). Since all [ # 0
spherical Bessel functions vanish at » = 0, we only have to
consider the case [ =m =0. Then, using jy(wr)=
[sin(wr)]/(wr) and Yo, = 1/+/4x in Eq. (4.2), we have

sin(wr) e~

woolt, 1) = , 4.8
Fawoo(t.7) p = (4.8)
which, in the limit when r — 0, becomes
[ o ..
=4 /—=e7", 4,

Note that from the boundary conditions on the sphere,
Eq. (4.6), we have that z,, = nz, so

(4.10)

Making these simplifications in Eq. (4.7), taking the time
derivative, and forming the Wick square, we obtain
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FIG. 1.

20

Plots for the compactly supported function f(z) (left) and its Fourier transform f(w) (right), for the cases of a = 0.5 (solid

line), @ = 0.6 (dotted line), and @ = 0.7 (dashed line). The values for § used for each of these cases are, respectively, 0.5,0.9, and 1.0,

and units in which 7 = 1 are used.

)2
Z Z 477.'R

(l}
: !
X (ahag e @ — a, a,e” (@) L He),

(4.11)

where a, = a,y, the sums run over the range given in
Eq. (4.10), and H.c. means Hermitian conjugate.
Convergence here should be understood in a distributional
sense, so that when we now let T = ¢ :in Eq. (2.1),
we find

)32

DI

X [amaa)’f(w —C()) agda rz)f(w+w)+HC] (412)
where f is the Fourier transform of the sampling function
f(1), Eq. (2.3).

We consider two different classes of sampling functions:
the Lorentzian function whose Fourier transform is given
by Eq. (2.2) (a = 1) and compactly supported functions
whose Fourier transform has an asymptotic form when
wt > 1 given by Eq. (2.4) (x € (0, 1)). For this last case,
we use a set of smooth, even, and nonnegative functions
f(#):R - [0, 00) with compact support in [-28,25] and
with Fourier transform given by (see Sec. IIA&B of
Ref. [12]

N ﬁz(w)+%[ﬂ2(w+2—§)+ﬁ2(w—2—’;)]

fo) = 720+ 175 (4.13)

Here H(w) is the Fourier transform of H(f) =
@(t+8)p(6—1t), with ¢(r) being the inverse Laplace

transform of ¢(p) = e~(P?)". The Fourier transform f ()
is analytic, even, nonnegative and is normalized to one,
£(0) = 1. When wz>> 1, f(w) has the asymptotic form
given by Eq. (2.4) with

_ 49%(26)
TSR0 G (19
f = 2cos (”7“) (4.15)

Figure 1 plots the compactly supported function f(¢) and
its Fourier transform f(w) for the cases of a = 1/2,
a=0.6, and a =0.7. The plots for the a = 1/2 case
agree with those in Figs. 4 and 5 in Ref. [12], where the
function and its Fourier transform were called L(¢) and
L(w), respectively. It should be noted that 7 is not the
duration of the sampling period, which is 49, but rather
sets the decay rate of the high frequency components in
the sampling function and corresponds to a characteristic
time scale of the switch-on and switch-off parts of f(7).
However it can serve as a proxy for the overall sampling
time, within a set of functions related to f by scaling.
Using 7 in this way also facilitates comparison with the
Lorentzian function, for which the total sampling dura-
tion is infinite.

We define dimensionless variables x; = T(7?)> and
x, = T(4n7*)? for the compactly supported functions
and the Lorentzian function, respectively. (The difference
in the numerical factors is to facilitate comparison with the
results of Refs. [11,12], which used slightly different
conventions.) Using the expression for w, Eq. (4.10), these
variables become
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1 [Se]

4
x1 =3 D 30 (rs)lala,f(|r = sleo)

r.s=1

—a,a,f((r+s)7y) + Hel, (4.16)

and

1 (69
Xy = Eﬂz::] 873(rs)¥?(ataze =510 —a,a,e )% £ He.),
(4.17)
where we have defined

70 = nt/R. (4.18)
Note that the expressions for x; and x, have the form of
Eq. (3.4). Thus, the matrices F' and G for the case of a
compactly supported function are

4
Fro= 55 (rs)"2}(|r = slzo) and
27

4
7o

G = =05 (137 ((r + 5)r0). (4.19)

Similarly, those for the case of a Lorentzian sampling
function are
F,, = 8t}(rs)3/?eIr=sl and

G,, = —874(rs)32e~r+s)m, (4.20)

The F and G matrices are all that we need to calculate, for a
given number of modes, the probability distribution and the

cumulative probability distribution associated with a meas-
urement of x; or x,.

B. Numerical results for the cumulative probability
distribution function and tail for large fluctuations

Here we explain the general features of the numerical
calculation that we carry out to calculate the probability,
P(x), and cumulative probability distribution function,
P.. (x), for the two cases mentioned above. Here x denotes
either x; or x,, defined in Egs. (4.16) and (4.17). For a given
number of modes, we calculate [19] all possible outcomes in
ameasurement of x up to and including the 6-particle sector,
except for the following outcomes which have been omitted:

Ai+ 5+ M+ 2+ Ay + Ay + Copire, - (4.21)

20 + A + A + A+ Ay + Canige- (4.22)
Recall that the A; are the one-particle eigenvalues which
appear in Eq. (3.10). Here it is understood all indices are
different in these expressions. These outcomes were not
included due to the large number of operations that they
would entail. For example, the outcome with six different
eigenvalues, Eq. (4.21), would involve about 10° operations
for the case of 100 modes. All probabilities and outcomes
included in the calculation are listed explicitly in Appendix B.
We build the cumulative distribution P (x) by adding the
probabilities of outcomes, Py from Eq. (3.53), which are
sorted from the lowest to the largest value of x.

The number of modes and the value for 7 are crucial in
determining the quality of the P (x)-curve. Recall that we
have standing waves, Eq. (4.2), inside a sphere of radius R,
which is related to 7z and 7, by Eq. (4.18), and that the

TABLE L. Numerical results for the parameters of the P (x)-curves illustrated in Fig. 2, for the case of compactly supported functions
with different values of a and for the Lorentzian function. Units in which 7 = 1 have been adopted. Here values of P, (x) for different
particle sectors are calculated adding all probabilities for all possible outcomes for the given sector as is indicated in Table III. Since x,,,,
is the maximum value obtained in a measurement of x for a given number of modes and size of the sphere, the expression [1 — P (X;ax )]

gives us the loss of probability.

P.(x;) a=0.5 P.(x;) a=0.6 P.(x) a=0.7 P. (x,) Lorentzian
Modes 120 120 120 140
Points 0(10%) 0(10%) 0(10%) 0(10%)
S 0.5 0.9 1.0 N/A
v 2.9324 1.0433 0.5235 1
B 1.4142 1.1756 0.9080 1
£(0) 1.4990 0.8616 0.8274 0.6366
7 3.5725 2.0 2.0 0.2
Xmax O(10%) O(107) 0(107) 0(10%)
Capnift -7.81613 x 1072 —1.48420 x 1072 —1.37113 x 1072 —5.93338 x 1072
Vacuum 9.88503 x 107! 9.728 41 x 107! 9.71898 x 107! 9.70277 x 107!
2nd sector 1.13068 x 1072 2.61008 x 1072 2.69537 x 1072 2.87007 x 1072
4th sector 1.86704 x 1074 1.01218 x 1073 1.09604 x 1073 9.48946 x 10~
6th sector 3.44828 x 107° 4.38949 x 1073 4.97286 x 1073 297518 x 107>
(1= P (Xmax)] 6.83316 x 1078 2.09890 x 10° 2.49384 x 10°° 437397 x 107
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FIG. 2. P.(x)-curves for the case of compactly supported functions with decay parameters (« = 0.5, 0.6, 0.7) and the Lorentzian
function (a = 1) for the range 450 < x < 10000. Additional information is shown in detail in Table I.

sampling time scale 7 is defined for the Lorentzian function
in Eq. (2.2), and for the compactly supported functions in
Egs. (2.4) and (4.15). For a fixed characteristic time scale,
7, the radius of the sphere is inversely proportional to
dimensionless variable 7. For a given number of modes, if
the size of the sphere is too large, there will not be enough
data in the tail (x> 1) of the P. (x)-curve to perform a
reliable fit. By contrast, if the size of the sphere is too small,
the P. (x)-curve will not be smooth, showing a steplike
behavior. For the compactly supported functions, we also
have to determine values for 6, which defines the support of
the sampling function f(7), i.e., the duration of the sampling.
We choose these values to be slightly larger than the first
maximum of the corresponding ¢(7), and the results are
given in Table I, working in units where z = 1. Then the
sphere radius R = 7,/ 7 gives values 1.14, 0.64 and 0.64 for
a = 0.5, 0.6, 0.7, respectively, for the values of 7, consid-
ered. Note that for « = 0.5 we have R > 26, which means
that the total sampling time is less than the time taken for
light to travel to the boundary and back. Accordingly, the
numerics ought to give a good approximation to sampling in
Minkowski space; this is an instance of local covariance,
which has a number of applications to quantum inequalities

[20]. By contrast, in the other two remaining cases we have
R < 26, so the sampling process can be sensitive to the
presence of the bounding sphere. The reduced values of &
used for a = 0.6, 0.7 were required to obtain numerical
stability.

We build P. (x)-curves for compactly supported func-
tions whose Fourier transform is given by Eq. (4.13)
with three different values of the decay parameter,
a=(0.5,0.6,0.7), and the Lorentzian function. Table I
summarizes the main characteristic of these curves which
are shown by Fig. 2 for the range 450 < x < 10000. All
curves are smooth, show the presence of large vacuum
fluctuations (x > 1), and have sufficient amount of data to
carry out the subsequent fit procedure. Recall that the
original a-vacuum state is expressed in terms of a linear
combination of b-states which are eigenstates of x. As
expected, the most likely b-state is the b-vacuum state and
the P.(x)-curves are bounded below by the value
Cqnii = —xo < 0. The loss of probability for each case is
given by [1 — P (X )], Where x,, is the maximum value
obtained in a measurement of x for a given number of modes
and size of the sphere. All analyzed cases show a small loss
of probability of the order of 10~ or less. This small loss of
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probability indicates that the outcomes which have been
included provide a reasonable approximation for P. (x).

Our calculated values of the lower bound Cg,; can be
compared with results from other approaches. In the
case of the Lorentzian function, our calculated value
Canire = —0.059 3338, is of the order of the predicted value
from the analysis using high moments, x, = —0.0236 [11]
and well within the (nonoptimal) theoretical bound Cyg;s >
—27/128 = —0.211 given by the method of [21]. For a
general compactly supported test function f, the theoretical
bound is

Conite = (4.23)

_T_4/°°(f1/2”(t))2dt
1672 J_o
which can be obtained by setting p = \/w in Eq. (3.11) of
[21]. For the case @ = 0.5, the integral on the right-hand
side of (4.23) can be evaluated numerically and yields the
bound Cg;; > —0.3592. Our calculated value Cgy;n =
—0.078 1613 is therefore consistent with the theoretical
bound and indicates that the latter bound is weaker than the
sharpest possible bound by a factor of approximately 4.6.
This result is broadly in line with Dawson’s computations
[15], where a ratio of about 3 was found. Note that Dawson
used a toroidal spatial geometry rather than a ball and a
squared Lorentzian sampling function of infinite duration,
so one would not expect an exact match with our results.
Since we want to test the predicted behavior of the
cumulative probability distribution for large fluctuations in
vacuum, we focus on the tail of each P (x)-curve and
propose a trial function inspired by Eq. (2.14). Specifically,

. —(1+b)/c 1+b
Po(x:0) = p = F< -

,ax"). (4.24)

C C

Here § = (p1,a,b,c,cy) are the five free parameters to be
determined through the usual process of best-fitting. We fit

TABLE II.
Lorentzian function.

the numerical data to this trial function. Producing a P (x)-
curve implies propagating errors from the successive sum
of the Py, y, defined in Eq. (3.53), but errors coming from
the diagonalization procedure are mostly dominated by the
error in |N|?, from the vacuum sector. Constructing the tail
of each P (x)-curve entails dealing with 10° data points.
To make the fitting-procedure possible in a reasonable time,
we bin the data as follows. Let N be the total number of data

points. We split this set in several subsets N;, where N =

/_, N; and j is the total number of subsets. Consider one
subset of values of x and the associated values of P (x),
Ni={(x1.P~(x1)). (x2. P~ (x2))..... (xy,. P~ (xy,)) }. Next
replace it by the averaged values N; = (X;, P (%;)), where
% = >0t % /Ny and Po(%) =300, Po(x)/N;. The
size of the subset is taken to depend on the steepness of
the P. (x)-curve. The steeper this curve, the smaller is N;.
This procedure ensures that the best fit to the set of
averaged values represents a good fit of the original curve.
The 10° data points are typically divided into about 103
bins. The values of N;, the number of points per bin, range
from about 107 at the smaller values of x to about 10* at the
larger values.

The fitting procedure is based on the least-squares
method to find the specific set of values of parameters
which minimize the error variance. We name this specific
set as 0° = (pj,a*, b*, c*, cf). The estimation of the error
variance, s2, is given by

2 — 1 ZJ:[P>(5Q) _P>()_Ci;9)]27
(j=5) (N/N;)

(4.25)
i1
where (j — 5) is the number of degrees of freedom, P_ (X;)

is the ith value of the averaged P. (X)-curve, P (X;;0)
is the ith value of the fitting curve. Note that we are
weighting each ith value of the square of the residuals,

[P. (%) — P-(%;:0)]%, by the ratio (N/N;). This gives a

Parameters obtained from the best fit of Eq. (4.24) for compactly supported functions with different values of a, and for the

a=05 (s>~ 1071%)

a=0.6 (s> ~1072")

Estimate Standard Error Theoretical [12] Estimate Standard Error Theoretical [12]
)21 1 9.86890 x 10710 1 1 3.82057 x 10712 1
a* 3.215 74 0.269 16 3.199 65 2.867 07 3.09190 x 103 3.045 45
b* —0.649 13 6.74595 x 1072 -1 —1.29164 1.94800 x 1073 —1.13333
c* 0.173 68 6.21754 x 1073 0.166 67 0.198 625 1.74722 x 1074 0.2
g 1.24953 x 1072 6.17359 x 1073 4.84678 x 1072 5.52294 x 1072 8.36918 x 10~ 1.57857 x 1072

a=0.7 (s> ~1072) Lorentzian (s> ~107'7)

Estimate Standard Error Theoretical [12] Estimate Standard Error Theoretical [11]
Pi 1 6.87424 x 10713 1 0.999 96 5.44678 x 1071 1
a* 2.749 69 1.18528 x 1073 2.479 20 1.049 98 1.19509 x 1072 0.667 749
b* -1.17210 5.71700 x 10~ —-1.266 67 —1.14578 9.33892 x 1073 -2
c* 0.228 107 1.15423 x 10~ 0.233 33 0.315 336 1.07643 x 1073 0.333 333
I 3.05954 x 1072 3.22838 x 1074 5.44308 x 1073 2.08459 x 1072 8.84006 x 1074 0.477 696

025013-12



VACUUM QUANTUM STRESS TENSOR FLUCTUATIONS: ...

PHYS. REV. D 97, 025013 (2018)

1F

0.9999995

0.999999

0.9999985

P, ()

a=0.5

0.999998
0

0.9999979
0.999997895

= 0.99999789
0.999997885
0.99999788
0.999997875
0.99999787

P.(z

0.999997506 -

0.999997505

0.999997504

0.999997503 |-

0.999997502

P.(z)

0.9999565

0.999956

—~

I
~

0.9999555
il 0.999955 -

0.9999545

| 1 1 1 1 1 |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
z
a=0.6
1 1 1 1 1 1 ]
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Z
T T
a=0.7 |
1 1 1 1 1 1
0 1000 2000 3000 5000 6000 7000 8000 9000 10000
T
T T T T T T T T
o ~ -
8
/\ -
i a=1.0
L 1 1 1 1 1 1

0.999954 :
0 500 1000 1500

FIG. 3.

2500 3000 3500 4000 4500 5000
Zo

Best fitting using Eq. (4.24) to reproduce the P (¥)-curve for the cases of compactly supported functions with different decay

parameters (range _of 1000 < x < 10000) and for the Lorentzian function (range of 400 < x < 5000). In each case, the dots and the line
correspond to the P (x)-curve and its fit, respectively. For the case of the Lorentzian function, dots and line are indistinguishable on the

scale shown.

greater weight to the larger subsets. We have also assumed
that the error in the values associated with the j different
subsets is the same. This allows us to directly sum the
squares of the residuals over the various subsets. If the
errors of the different subsets are different, then weight
factors for each subset would be needed.

Table I summarizes the statistical information obtained by
the best-fitting procedure for each case which includes the

estimate value for parameters and their respective standard
errors (only from statistical sources). Figure 3 shows the
P_(X)-curves with their respective best fits to the trial
function, Eq. (4.24). In the case of the Lorentzian function,
the P (x)-curve and its respective fit are indistinguishable on
the scale shown. Figure 3 shows that the diagonalization
procedure is able to reproduce smooth tails for all the cases
considered, which are well fitted by the trial function given
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by an incomplete gamma function, Eq. (4.24). The variance
of the fits are small in comparison to the variation of the
P_ (%)-curves. For example, for the case of the compactly
supported function with @ = 0.7, we have s> ~ O(107%2) but
the change of the P (X)-curve over the range plotted in Fig. 3
is the order of 10~°.

All values of parameters obtained through the best-fitting
procedure agree reasonably well with the predicted ones
from the high moments approach [11,12], except for those
for the ¢, parameter. The deviations of the fitted values for
this parameter from to the predicted values, which are of
O(1) or less, are probably caused by the use a finite number
of modes and finite size of the sphere. The most important
parameter to be evaluated is ¢, because it is related to the rate
of decrease of the probability distribution for large fluctua-
tions, Eq. (1.1). Recall that ¢ = a/3, where a € (0, 1) is the
decay parameter for the family of compactly supported
functions with Fourier transform given by Eq. (4.13). For the
case of a Lorentzian function we have ¢ = 1/3. The values
of the ¢ parameter obtained for each case agree very well
with the predicted ones, with a percentage error less than 6%.
For instance, for the case of a compactly supported function
with @ = 0.6, the percentage error is about 0.69%. In
complete agreement with previous results based on the high
moments analysis [11,12], our results confirm the fact that
averaging over a finite time interval compactly supported
functions results in a probability distribution which falls
more slowly than for the case of the Lorentzian function, and
both fall more slowly than exponentially.

V. SUMMARY AND DISCUSSION

Large vacuum fluctuations of quantum stress tensor
operators can have a variety of physical effects such as
production of gravity waves in inflationary models [5],
fluctuations of the light propagation speed in nonlinear
materials [6,7], and enhancing barrier penetration of
charged or polarizable particles [8,9]. These quantum
fluctuations can be studied through the analysis of the
probability distribution for the time or spacetime averaged
operator in Minkowski spacetime. The asymptotic behavior
of the probability distribution can be inferred by studying
the moments of the normal ordered operator. The study of
several normal-ordered quadratic operators time averaged
with a Lorentzian function [11] or compactly supported
functions [12] predict an asymptotic form of the probability
distribution for large vacuum fluctuations x given by
P(x) ~ coxte=@*", Eq. (1.1), where x is a dimensionless
measure of the quadratic operator. This form leads to an
asymptotic form for the cumulative probability distribution
given by an incomplete gamma function, Eq. (2.14). Here
o, a, b, and c are constants which depend on the sampling
function used to take the time average. The c-parameter is
the most important one, and defines the rate of decrease of
the tail of the probability distribution. For the family of
compactly supported functions with asymptotic Fourier
transforms given by Eq. (2.4), where 0 < a < 1, we have

¢ = a/3. For the case of a Lorentzian function, Eq. (2.2),
we have @ = 1 and ¢ = 1/3. The smaller «, the smaller the
rate of decrease of the tail and greater the probability of
large fluctuations. The value of « is related to the rate of
switch-on and switch-off of compactly supported functions.

In the present paper, we have developed a method which is
independent of the moments approach for the study of the
probability distribution for quantum vacuum fluctuations of a
time averaged quantum stress tensor operator, 7', in Eq. (2.1).
Since the vacuum state is not usually an eigenstate of T, we
diagonalize this operator through a change of basis.
Expressing the vacuum state in terms of the new basis in
which T is diagonal, we are able to calculate the probability
distribution, P(x) and the cumulative probability distribution
function, P (x) for obtaining a specific result in a measure-
ment of 7. Specifically, we work with the time averaged
quadratic operator T = [ :¢*(1,0): f()dt, where ¢ is a
massless minimally coupled scalar field and f(¢) is the
sampling function. We use a dimensionless variable
x o« Tt*, where 7 is a characteristic time scale of the sampling
function. Numerical results for both Lorentzian and com-
pactly supported functions show that the probability distri-
bution of vacuum quantum fluctuations is bounded below at
X = —xg < 0, and that the tail of the probability distribution
varies as an incomplete gamma function in agreement with
the previous studies [11,12]. We apply a best-fit procedure
through a least-squares method to the tail of the P, (x)-curves
in order to determine values for parameters in Eq. (4.24). The
results for py, a, b, and ¢ parameters show good agreement
with the predictions of the high moments approach. (See
Table I1.) The diagonalization procedure is able to reproduce
with great accuracy the rate of decrease of the tail of the
cumulative probability distribution. We reproduce the relation
¢ =a/3fora=(0.5,0.6,0.7, 1), where @ = 1 corresponds
to the case of the Lorentzian function, with percentage errors
less than 6% compared to the theoretical values predicted by
the high moments approach [11,12]. Our results confirm that
averaging over a finite time interval, with compactly sup-
ported functions, results in a probability distribution which
falls more slowly than for the case of Lorentzian averaging,
and both fall more slowly than exponentially.

Recall that we have quantized the scalar field in a sphere
with finite radius R, so the probability distribution which
we calculate could differ from that of empty Minkowski
spacetime. As was noted in Sec. IV B, there should be no
difference for the @ = 1/2 case, as the duration of the
sampling is less than the light travel time to the boundary
and back. In the other cases, there could in principle be an
effect of the boundary. However, this is likely only to alter
the lower frequency modes, which are not expected to give
a large contribution to the tail of the distribution.

The diagonalization method is free of the ambiguity
potentially present in the high moments approach, and leads
to a unique result for the probability distribution. It also has
the potential to determine the entire distribution, including
its lower bound, which is also the optimum quantum
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inequality bound on expectation values of the averaged
operators. In addition, it can provide information about the
particle content of the eigenstates of the averaged stress
tensor which are associated with the large fluctuations.
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APPENDIX A: DERIVATION OF THE
BOGOLIUBOV TRANSFORMATION

The expression A=\/UTK(F+G)K'U entails
UNU'=K(F+G)K", where K" = KT and U™' = U".
Then, with ®=K"UA~"/? and ¥ = (F 4+ G)®A~", we have

(F+G)® = WA (A1)

by definition and also K¥=K(F+G)®A~'=UA!/?. Then
(F-G)¥ = KTKY = KTUA'? = ®A.  (A2)

Using the definitions of A and B from Eq. (3.21),
Equations (A1) and (A2) lead to Egs. (3.17) and (3.18),
respectively, according to

(F+G)(A+B) = (F+G)® =WA = (A-B)A, (A3)

(F-G)(A=B)=(F-G)¥ =®A = (A+B)A. (A4)

Finally, using ®¥7 = KTUA™'2(K-'UA'/?)T =1 and
hence Y®” = I, we have

—

AAT - BB = 2 (0¥ + ¥OT) = 1. (A5)
ABT — BAT = % (POT — W) = %(1 —1)=0, (A6)

where I and O correspond to the identity and null matrices,
respectively. These equations are the conditions that A and
B have to satisfy in order to define a Bogoliubov trans-
formation, Eq. (3.7).

APPENDIX B: LIST OF OUTCOMES AND
PROBABILITIES

We listed below probabilities of finding specific out-
comes in a measurement of a time averaged normal ordered
quadratic operator. We have only considered up to the 6-
particle sector taking out the outcomes given by Eqgs. (4.21)
and (4.22). It is understood that the coefficients of the M
matrix, which appear in Table III, come from the diago-
nalization procedure explained in Sec. III A.

TABLE III. Probabilities and outcomes of a time averaged normal ordered quadratic operator.

Probability Outcome
WP Canite

WP M) Ai + 2 + Capirt*
IV IM;[? 22; + Canige
SN IM L 44; + Canite

W PIMG; + 5 MM [?

SINPIM M+ 2M; My [*
SIVPIM [P M

IV MM + My M+ MMyl
g IV PP IM; [0

RINP MM

13? \./\/|2|4M,-,-M?j + M,%—Mjﬂz

TNV RM, + 3M MM ;|2

LINPRRMZM;; + 8MyMa My + 2M M3+ 2M3 My, + MMMy

SINPIMEM e + 4 MMM

%V\/"z|2MikMilej+4MijMilek+4MijMiijl+2MiiMjijl+2M?ijl+MiiijMkl‘2

%|N|2|2M12_/'Mik + MMy M + 2M; MM [*

%|N|2|2MijMikMil + MMM+ MMy M + MMMy ?

22 + 24; + Cnirt*
2%+ A + A + Capi”
34 + 4j + Canige
i+ A+ A+ 4+ Coir”
64; + Cahify
54i + A; + Cani
42; + 24; + Capin
3% + 324 + Canir*

22 + 22 + 24 + Cigt”
40+ 4+ L + Cai™
24 +24; + M + A + Conin®
Ai + 24 + A + Cpige
34+ A+ A+ A4+ Canist’

*Here we have (i < j).

Here we have (j < k).

“Here we have (i < j <k <1).
Here we have (i < j < k).
“Here we have (i < j) n (k < I).

"Here we have (j < k < [), and the M matrix is defined in Sec. III C.
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