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Recently, Cardoso, Houri and Kimura constructed generalized ladder operators for massive Klein-
Gordon scalar fields in space-times with conformal symmetry. Their construction requires a closed
conformal Killing vector, which is also an eigenvector of the Ricci tensor. Here, a similar procedure is used
to construct generalized ladder operators for the Klein-Gordon equation with a scalar curvature term. It is
proven that a ladder operator requires the existence of a conformal Killing vector, which must satisfy an
additional property. This property is necessary and sufficient for the construction of a ladder operator. For
maximally symmetric space-times, the results are equivalent to those of Cardoso, Houri and Kimura.
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I. INTRODUCTION

In two recent papers [1,2], Cardoso, Houri and Kimura
constructed ladder operators for the Klein-Gordon equation
in manifolds possessing closed conformal Killing vectors,
which are, in addition, eigenvectors of the Ricci tensor.
More precisely, they constructed a first-order operator D
such that, if Φ is a solution of

ð□ −m2ÞΦ ¼ 0; ð1Þ
then DΦ satisfies

ð□ −m2 − δm2ÞDΦ ¼ 0: ð2Þ
Most of their examples involve maximally symmetric

space-times, where the above conditions are satisfied.
Because maximally symmetric space-times have constant
curvature, one may wonder whether the mass term in
Eq. (1) could be replaced by a scalar curvature term, which
is quite natural from a geometrical point of view.
Here, I will consider the Klein-Gordon equation

ð□þ χRÞΦ ¼ 0; ð3Þ

where□ ¼ gμν∇μ∇ν is the d’Alembertian (or Laplacian for
a Riemannian manifold) and χ is a constant, which I will
call the “eigenvalue,” with some abuse of nomenclature.
The scalar curvature R is assumed to be nonvanishing. I
will investigate, under which conditions there exists a first-
order ladder operator D that maps a solution of Eq. (3) to a
solution of

ð□þ χ0RÞDΦ ¼ 0: ð4Þ

If it exists, the ladder operator D and the new eigenvalue
will be determined.

II. LADDER OPERATORS FROM CONFORMAL
KILLING VECTORS

A. Properties of conformal Killing vectors

Because conformal Killing vectors (CKVs) will play a
crucial role in the construction of the ladder operator D, I
will start by recalling some of their basic properties.
Consider a Riemannian or pseudo-Riemannian manifold

of dimension n admitting a CKV ζ,

∇μζν þ∇νζμ ¼ 2Qgμν; Q ¼ 1

n
∇μζ

μ: ð5Þ

Several identities derive from Eq. (5). It is straightforward
to obtain

□ζμ ¼ −ðn − 2Þ∇μQ − Rμνζν: ð6Þ

Differentiating this once more, one gets

∇μ□ζμ ¼ −ðn − 2Þ□Q −
1

2
ζμ∇μR − RQ: ð7Þ

However, the left-hand side of Eq. (7) can also be written as

∇μ□ζμ ¼ ½∇μ;□�ζμþn□Q¼ 1

2
ζμ∇μRþRQþn□Q: ð8Þ

Comparing Eqs. (7) and (8), one obtains the identity*mueck@na.infn.it
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□Q ¼ 1

1 − n

�
RQþ 1

2
ζμ∇μR

�
: ð9Þ

When acting on a scalar, the following commutation
relation holds:

½□; ζμ∇μ� ¼ 2Q□ − ðn − 2Þð∇μQÞ∇μ: ð10Þ

B. Equations for ladder operators

Consider the first-order operator

D ¼ ημ∇μ þ V; ð11Þ

where η and V are some vector and scalar, respectively. IfD
is a ladder operator in the sense of Eqs. (3) and (4), then
there must exist another first-order operator D0 ¼ η0μ∇μ þ
V 0 such that

ð□þ χ0RÞD −D0ð□þ χRÞ ¼ 0: ð12Þ

Hence, the problem to be solved is to establish under which
conditions one can find D, D0 and the new eigenvalue χ0,
given the eigenvalue χ.
By direct calculation, one finds

ð□þ χ0RÞD −D0ð□þ χRÞ
¼ ½ημ − η0μ�∇μ□þ ½2ð∇νημÞ∇ν∇μ þ ðV − V 0Þ□�
þ ½ðχ0ημ − χη0μÞRþ 2∇μV þ Rμ

νη
ν þ□ημ�∇μ

þ ½□V þ ðχ0V − χV 0ÞR − χη0μ∇μR�: ð13Þ

To satisfy Eq. (12), the terms collected in brackets on the
right-hand side of Eq. (13) must vanish separately. The term
in front of the third-order derivative simply yields

η0μ ¼ ημ: ð14Þ

The second-order term vanishes, if and only if η is a CKV,
ημ ¼ ζμ, and

V 0 ¼ V þ 2Q; ð15Þ

where Q was defined in Eq. (5). Thus, Eqs. (14) and (15)
determine D0, if D can be found.
Using Eqs. (14) and (15) as well as the identities (6) and

(9), the two terms in the second and third lines of Eq. (13)
give rise to the following two equations:

ðχ0 − χÞRζμ þ 2∇μV − ðn − 2Þ∇μQ ¼ 0; ð16Þ

ðχ0 − χÞRV þ□V þ 2χðn − 1Þ□Q ¼ 0: ð17Þ

Obviously, these always allow for the trivial solution
Q ¼ V ¼ 0, χ0 ¼ χ, in which ζμ is a Killing vector. In

this trivial case, the operator D is a symmetry operator.
Henceforth, we shall assume nonzero Q.
Taking the divergence of Eq. (16) and using again

Eq. (9), one finds

2□V− ½n−2þ2ðn−1Þðχ0−χÞ�□Qþðχ0−χÞðn−2ÞRQ
¼ 0: ð18Þ

To proceed, let us introduce

~V ¼ V þ γQ; ð19Þ

where γ is a constant. A short calculation shows that, if γ is
chosen such that

χ0 − χ ¼ ðn − 2Þχ
γ

−
n − 2þ γ

n − 1
; ð20Þ

then Eqs. (17) and (18) can be combined into an equation
involving only ~V,

½ðn − 2þ 2γÞ□þ ðn − 2Þðχ0 − χÞR� ~V ¼ 0: ð21Þ

Note that γ should be considered as a parameter, from
which the new eigenvalue χ0 is determined via Eq. (20). To
proceed further, one must distinguish the cases n ≠ 2
and n ¼ 2.

C. Case n ≠ 2

With some hindsight, one can introduce a new constant
α by

χ0 − χ ¼ −
ðn − 2þ 2γÞα

n − 1
; ð22Þ

and define, for the sake of brevity,

W ¼ 2 ~V
n − 2þ 2γ

: ð23Þ

With Eqs. (19), (22) and (23), Eqs. (16) and (21) take the
forms

�
∇μQþ α

n − 1
Rζμ

�
¼ ∇μW; ð24Þ

�
□ −

n − 2

n − 1
αR

�
W ¼ 0; ð25Þ

respectively. Using Eqs. (20) and (22), γ is determined in
terms of α and χ as one of

γ¼−
ðn−2Þð1−αÞ
2ð1−2αÞ

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4ðn−1Þð1−2αÞχ

ðn−2Þð1−αÞ2
s #

: ð26Þ

WOLFGANG MÜCK PHYS. REV. D 97, 025011 (2018)

025011-2



We will comment on the case α ¼ 1=2, which seems to be
special, in a moment.
At this point, we can make the following observation. If,

for a CKV ζμ, ∇μQ is proportional to Rζμ, i.e., if

∇μQþ α

n − 1
Rζμ ¼ 0 ð27Þ

holds for some constant α, then Eqs. (24) and (25) can be
trivially solved byW ¼ 0. This implies that, with γ given by
Eq. (26), the scalarV in the ladder operator (11) isV ¼ −γQ,
and the new eigenvalue χ0 follows from Eq. (22). Therefore,
Eq. (27) is a sufficient condition for the existence of a ladder
operator. In the following, we show that the property (27) of
the CKV is also a necessary condition.
To show this, consider Eqs. (24) and (25). The diver-

gence of Eq. (24) can be used to eliminate □W from
Eq. (25), which yields

W ¼ Qþ ðn − 1Þð1 − 2αÞ
ðn − 2Þα

1

R
□Q: ð28Þ

In passing, we note that the case α ¼ 1=2 cannot be a
solution, because Eq. (28) would imply W ¼ Q, which is
inconsistent with Eq. (24). Substituting Eq. (28) back into
Eq. (24) and taking again the divergence gives

□
1

R
□Qþ 2ðn−2Þα2

ðn−1Þð1−2αÞ□Q−
ðn−2Þ2α2

ðn−1Þ2ð1−2αÞRQ¼ 0:

ð29Þ

This can be rewritten as

ð□þ a1RÞ
1

R
ð□þ a2RÞQ ¼ 0; ð30Þ

where a1;2 are given by

a1;2 ¼
ðn − 2Þα

ðn − 1Þð1 − 2αÞ ½α� ðα − 1Þ�: ð31Þ

Therefore, Q must satisfy either

�
□þ ðn − 2Þα

ðn − 1Þð1 − 2αÞR
�
Q ¼ 0 or

�
□ −

ðn − 2Þα
ðn − 1Þ R

�
Q ¼ 0: ð32Þ

In the first case, Eq. (28) givesW ¼ 0, which is the solution
discussed above. In the second case, one getsW ¼ 2αQ, so
that Eq. (24) becomes

∇μQþ α

ðn − 1Þð1 − 2αÞRζ
μ ¼ 0; ð33Þ

which is again of the form (27), with ~α ¼ α=ð1 − 2αÞ.
Hence, we have shown that the property (27) of the CKV is
a necessary and sufficient condition for the existence of a
ladder operator.
It is interesting to note that, by virtue of the identity (9),

the condition (27) implies

ζμ∇μR ¼ 2βRQ;
�
□þ 1þ β

n − 1
R
�
Q ¼ 0; ð34Þ

where

β ¼ nα − 1

1 − 2α
; α ¼ 1þ β

nþ 2β
: ð35Þ

Finally, it may also be useful to express Eq. (26) in terms
of β,

γ¼−
1

2
ðn−1þβÞ�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−1þβÞ2þ4ðn−1Þðnþ2βÞχ

q
:

ð36Þ

D. Case n= 2

For n ¼ 2, there is no need to introduce α, because
Eq. (20) reduces to

χ0 − χ ¼ −γ; ð37Þ

and Eqs. (16) and (17) become, with Eq. (19),

−γRζμ þ 2∇μ ~V − 2γ∇μQ ¼ 0; ð38Þ

−γR ~V þ γ2RQþ□ ~V þ ð2χ − γÞ□Q ¼ 0: ð39Þ

The divergence of Eq. (38) implies

□ ~V ¼ 0; ð40Þ

so that Eq. (39) gives

~V ¼ γQþ 2χ − γ

γ

1

R
□Q: ð41Þ

Proceeding as in the case n ≠ 2, one can show that
Eqs. (40) and (41) allow only the solutions

□Q ¼ 0 or

�
□þ γ2

2χ − γ
R

�
Q ¼ 0: ð42Þ

In the first case, Eq. (41) gives ~V ¼ γQ, which means V¼ 0
from Eq. (19). This, in turn, implies γ ¼ 0 from Eq. (38),
i.e., χ0 ¼ χ. Thus, if □Q ¼ 0, which is equivalent to the
statement that Rζμ must be divergence free, thenD ¼ ζμ∇μ
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maps a solution of Eq. (3) to another solution with the same
eigenvalue.
The second case of Eq. (42) gives ~V ¼ 0, so that

Eqs. (38) and (39) give rise to the two conditions

Rζμ þ 2∇μQ ¼ 0;

�
□þ γ2

2χ − γ
R

�
Q ¼ 0: ð43Þ

Notice that these conditions are independent of each other,
because the vector condition is divergence free. The
eigenvalue shift γ is to be determined from the scalar
condition, in the sense that, if Q satisfies

½□þ ð1þ βÞR�Q ¼ 0 ð44Þ

for some β, then γ is one of

γ ¼ −
1

2
ð1þ βÞ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ βÞ2 þ 8ð1þ βÞχ

q
: ð45Þ

In the last two equations, we have adopted the notation of
the general case, cf. Eqs. (34) and (36).

III. COROLLARY AND EXAMPLES

One can observe that, in all cases, in which a ladder
operator exists, Q itself satisfies a Klein-Gordon equation
of the form (3),

ð□þ χRÞQ ¼ 0; χ ¼ 1þ β

n − 1
; ð46Þ

where we have adopted the notation used in Eq. (34).
Therefore, one can apply the results to construct the
function

Φ ¼ DQ ¼ ζμ∇μQ − γQ2; ð47Þ

where γ is one of the solutions of Eq. (36),

γ ∈ ð1þ β;−n − 2βÞ: ð48Þ

For γ ¼ 1þ β, a short calculation shows that χ0 ¼ 0.
Therefore, if Φ given in Eq. (47) is nonzero, then it must
satisfy the massless Klein-Gordon equation.
The simplest examples of ladder operators are, of course,

those of a maximally symmetric space-time. Maximally
symmetric space-times have Rμν ¼ 1

n Rgμν with constant
Ricci scalar R. This implies β ¼ 0 from Eq. (34). Moreover,
they possess closed CKVs, for which ∇½μζν� ¼ 0. Using
Eq. (6), one can easily show that

∇μQþ 1

nðn − 1ÞRζ
μ ¼ 0; ð49Þ

which is Eq. (27) with α ¼ 1=n. Taking the case of AdSn
with unit radius, where R ¼ −nðn − 1Þ, and writing
−χR ¼ m2, one recovers the results for AdSn of [1].
As a nontrivial example, consider a spatially flat

Friedmann-Lemaître-Robertson-Walker universe in n ¼ 4
dimensions,

ds2 ¼ −dt2 þ a2ðtÞðdr2 þ r2dΩ2Þ: ð50Þ
The vector ζ ¼ a∂t is a time-like (closed) CKV, with
Q ¼ _a, ∇Q ¼ ädt. Moreover, the Ricci scalar is

R ¼ 6

�
ä
a
þ _a2

a2

�
: ð51Þ

Taking, with hindsight,

aðtÞ ¼ t−1=β; ð52Þ

one can easily verify that Eq. (27) holds with α given by
Eq. (35). In this example, Φ ¼ DQ ¼ 0.

IV. CONCLUSIONS

Ladder operators for the Klein-Gordon equation with a
scalar curvature term have been considered. It has been
shown that ladder operators require the existence of a CKV.
Furthermore, ladder operators exist, if and only if the CKV
satisfies an additional property. This property, for dimen-
sions n ≠ 2, is simply thatRζμ must be proportional to∇μQ.
For n ¼ 2, there are two cases, which have been discussed in
detail. In all cases, the ladder operator has the form

D ¼ ζμ∇μ − γQ; ð53Þ

with a constant γ that depends on the eigenvalue χ and a
geometrical parameter that is involved in the additional
property of the CKV.
The construction of the ladder operators is similar to

Ref. [1], but appears to be somewhat more general, because
the assumptions that the CKV be closed and an eigenvector
of the Ricci tensor are replaced by the single requirement
Eq. (27) (for n ≠ 2). This simplification can be attributed to
the use of a scalar curvature instead of a mass term in the
Klein-Gordon equation. The results of Ref. [1] for max-
imally symmetric space-times have been recovered and a
simple nontrivial example has been provided. It would be
interesting to find more examples of CKVs satisfying
Eq. (27), e.g., among those given in Refs. [3,4].
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