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We provide general guidelines for generalizing dynamical reduction models to curved spacetimes
and propose a class of generally covariant relativistic versions of the Ghirardi-Rimini-Weber model.
We anticipate that the collapse operators of our class of models may play a role in a yet-to-be-formulated
theory of semiclassical gravity with collapses. We show explicitly that the collapse operators map a
dense domain of states that are initially Hadamard to final Hadamard states—a property that we expect
will be needed for the construction of such a semiclassical theory. Finally, we provide a simple
example in which we explicitly compute the violations in energy-momentum due to the state reduction
process and conclude that this violation is of the order of a parameter of the model—supposed to be
small.
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I. INTRODUCTION

Quantum theory, despite being empirically extraordi-
narily successful, continues to be beset by the so-called
measurement problem. In the Schrödinger picture, the
quantum state of an undisturbed system is supposed to
evolve unitarily according to the Schrödinger equation,
_ψ ¼ −iĤψ , where Ĥ is the quantum Hamiltonian. Yet,
when the measurement of an observable A is performed, the
state is supposed to undergo a process called reduction
whereby it changes abruptly from the premeasurement state
to an eigenstate of the operator Â, ψ ↦ αi, where i is an
index set element, with probability jhψ jαiij2, where αi is an
eigenvector of Â with eigenvalue ai, which is in turn taken
to be the outcome of the measurement.
As already discussed by the founders of the subject (see

the account in [1]) culminating in von Neumann’s book [2]
and in numerous subsequent textbooks (of which we
mention for example [3–8]—see also the collection of
articles by Bell [9] and also [10], to which we also refer
later for collapse models), the measurement problem has its
origin in the fact that the theory does not specify what a

measurement is and therefore it is never completely clear
which of the two rules, U or R (see footnote1), should be
applied in any particular situation. If, in a situation that might
be considered a measurement, one chooses to model the
measurement apparatus as a second quantum system coupled
to the measured quantum system and appliesU, one predicts
the existence of (macroscopic) superposition states, in which
the apparatus is entangled with the measured system, which
have no counterpart when one, instead, applies R. Although,
as explained long ago by Heisenberg and by von Neumann
(in [2]), the final prediction will not differ significantly for
most practical purposes, there remains an unsatisfactory
vagueness (see, e.g., Bell’s account [15]). Also, the seeming
presence, on the former choice, of macroscopic super-
position states (as illustrated by Schrödinger’s cat) is trou-
bling and seems to be at odds with our classical
understanding of macroscopic systems. Furthermore in
certain contexts, such as cosmology and black hole physics,
the problem cannot easily be bypassed.
Here we focus on some specific technical issues within

one set of proposals for resolving some aspects of the
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1Here we take Â to have nondegenerate discrete spectrum. von
Neumann [2] calls the unitary and reduction processes Rule II and
Rule I; below we shall follow Penrose [11–14] in calling them U
and R, respectively.
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measurement problem. Namely the so-called (spontaneous)
collapse or dynamical reduction models.
The first suggestion of a dynamics for wave function

collapse was by Bohm and Bub [16]. This was followed by
a specific proposal to describe the collapse as a dynamical
process by Pearle in [17,18], which, however, faced the so-
called “trigger problem” and the “preferred basis problem.”
These were successfully resolved in the proposal by
Ghirardi, Rimini, and Weber (GRW) [19].
This proposal attracted the attention of Bell who, in [20],

formulated it in terms of a stochastic time-evolving wave
function.2 (See also [21].) Bell also argued that the theory
contains enough to remove the concerns that a relativistic
collapse theory may be impossible. As is customary, we
shall refer to the theory of [19,20] as the GRW theory.
A major issue with the original GRW collapse theory

is that it does not incorporate the Bose-Einstein symmetry
(or Fermi-Dirac antisymmetry) needed to deal with iden-
tical particles. This was first fixed in the continuous
spontaneous localization (CSL) model [22]3 and independ-
ently by Diósi in [24].
An important result from that period, discussed in [25],

is a condition on the viable collapse models. The point is
that the time-evolving density operator characterizing the
modified evolution of a statistical ensemble of systems
must be determined by a master equation of the Gorini-
Kossakowski-Sudarshan (GKS)–Lindblad form [26,27] if
the model is to avoid the possibility of superluminal
communication. Once possessing a satisfactory collapse
dynamics, it is sometimes useful to restrict attention just to
the associated GKS-Lindblad master equation for the
corresponding time-evolving density operator. We refer
to this as the density-operator formulation of the theory.
In fact, as initially shown in [28], given anyGKS-Lindblad

master equation for a time-evolving density operator ρ̂ðtÞ, it is
possible to find4 a stochastic dynamical rule determining a
stochastically time-evolving wave function, ψ sðtÞ—s stand-
ing for the relevant stochastic parameters—such that ρ̂ðtÞ is
the average over the ensemble labeled by s of jψsðtÞihψ sðtÞj.
The stochastic dynamical rule that determines such an
ensemble of time-evolving wave functions is called an
unraveling of the time-evolving density operator or equiv-
alently of themaster equation that determines it. (Thenotion is
dueoriginally toCarmichael [29].) Sometimes, onealso refers

to ψ sðtÞ as an unraveling of ρ̂ðtÞ. However, a crucial point is
that there are, in general, multiple possible unravelings of the
same GKS-Lindblad equation, and, in the current work, we
consider the formulation of the theory in terms of a stochas-
tically time-evolvingwavevector to bemore fundamental.We
will refer to this as the wave-vector formulation of the theory.
More modern developments include substantial exper-

imental programs. For a recent review, see [30].
In relation to the measurement problem that we

discussed at the outset, the main positive feature of the
GRW and CSL models is that they replace U and R by an
objective set of (stochastic) rules that mimics a particular
combination of the applications of U and R and that one
can show that in many cases has the effect of eliminating
the troubling macroscopic superposition states.
These positive features of collapse models come at a price:

Dynamical collapse models are not without conceptual
difficulties of their own, such as the “tail problem,” but
(see, e.g., [31]) these seem to be resolvable. Moreover the
rules involve certain parameters, functions, and stochastic
processes, which are partly fixed by pragmatically tuning
them so as not to conflict with any known phenomena, but
which retain a high degree of arbitrariness. However, our
attitude to these models should perhaps be that they are just
stopgaps which will one day be replaced by a more funda-
mental theory inwhich the several presently ad hoc and partly
arbitrary parameters and functions become calculable in terms
of existing fundamental constants. In particular, there are
reasons to think that quantum gravity, when understood better
thanwepresently do,will do this job—perhaps along the lines
adumbrated by Penrose in [11–14] or by Diósi in [24,32] and/
or perhaps in line with the “matter-gravity entanglement
hypothesis” of one of us (see [33–36] and references therein).
In the meantime, by studying the predictions of existing
dynamical reduction models, we hope to be able to learn
lessons and make testable predictions which may one day be
confirmed by such more fundamental theories.
An important drawback of early dynamical reduction

models is that they are nonrelativistic, but the development
of these early models quickly led to inquiries about their
possible relativistic generalizations.
A valuable concrete proof of existence of collapse

models compatible with special relativity is provided by
[37], although that specific example only deals with
situations involving a fixed finite number of noninteracting
quantum particles, and it is not clear how it might be
generalized to fully quantum field theoretical settings.
Earlier considerations concerning thegeneral requirements

such theories must possess appeared in [38,39]. The con-
structive exchanges in [40–42], togetherwith the introduction
of an auxiliary “pointer field” into the dynamical reduction
models in [43,44] eventually lead to the development of
special relativistic versions of collapse theories fully adapted
to the context quantum fields [45,46]. In fact, a recent work
[47] argues that viable relativistically covariant collapse
theories must make use of such a kind of nonstandard fields

2In [19], the theory was formulated in terms of a deterministic
time-evolving density operator, ρ̂ðtÞ. In modern terminology
what Bell supplied was one particular “unraveling” of the master
equation that determines ρ̂ðtÞ.

3As emphasized in the recent paper [23], the difference
between the GRW and CSL models should, from a physical
point of view, be regarded as a relatively minor technicality; as is
explained there, what really matters is the choice of which
observables are “made sharp,” or, in the language we use in the
sequel here, of which are the relevant collapse generators.

4Strictly, as explained in [28] this statement holds within the
CSL formalism and not always in the GRW formalism.
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as the pointer field, alluded to above. In this regard, we should
point out that the possibility of having the collapse dynamics
tied to the curvature of spacetime, as is considered in [48–51],
might allow one to bypass such a conclusion.
We remark that the inherent nonlocality that must be

present in these models, and discussed in [40–42], is
nevertheless safe regarding faster than light communication
(i.e., the models do not allow it).
From a philosophical standpoint, addressing the tension

between the locality of special and general relativity and the
nonlocal aspects of global quantum states is relevant for
dynamical reduction models, and a range of positions
appear in the literature.
We might be motivated by Penrose’s work [2, p. 446] to

contemplate a radical revision of special relativity as being
possibly necessary before quantum collapse can be made
consistent with relativity. On the other side, Kochen [52]
has recently argued that, when the concepts of quantum
theory are appropriately conceptualized, the theory con-
tains no nonlocal features.
To exemplify the latter posture, one could be led to argue

that the measurement of a property of one subsystem of an
Einstein-Podolsky-Rosen pair, say the spin along the z-
direction of one of two spacelike separated particles, should
not be understood as ameasurement on the other subsystem.
This position does away with the need for essential (non-
epistemic) nonlocalities. A difficulty with such a sort of
instrumentalist viewpoint is that it fails to define what a
measurement is. For example, it does not explain why in the
above exampleone shouldnot consider ameasurement of the
spin of particle one also as a measurement on particle two,
while the observation of a black dot on the screen of a Stern-
Geralch experiment presumably does provide a measure-
ment of the corresponding spin component of the quantum
particle. The only difference we can see is that in the latter
case locality would not be compromised, while it is in the
former it clearly would be.
The position that we take is sympathetic to the posture of

Myrvold [53] and Maudlin [54], which argues for a clear
distinction between “action at a distance” and nonlocality.
The point is that dynamical reduction models can incor-
porate nonlocal aspects of physics in the form of, say,
nonlocal correlations without the need to ascribe an
asymmetric causal relation to the spatially correlated out-
comes of experiments, such asymmetry being the only
thing that is forbidden by Lorentz invariance. We point the
reader to the above cited references for in-depth discussions
of these conceptual subtleties, which, after all, are not the
central focus of the present paper.
From a physics standpoint, a serious complication for

special relativistic models is that any theory that produced
particles out of the Minkowski vacuum state would lead to
infinite particle creation, due to the Poincaré invariance of
the vacuum. This obstruction was tamed by techniques due
to Pearle andBedingham,with the aid of the aforementioned
pointer field (see [45,46], respectively). On the other hand,

in [55] Tumulka takes the approach that a flash ontology
of collapse theories might lead to a Lorentz-invariant
formulation of dynamical reduction models (without the
aid of external auxiliary fields) but, while some progress is
made in this direction, a concrete relativistic field model is
not formulated explicitly in [55].
In the aforementioned works [45,46,55], a fundamental

ingredient in the construction of the models is the choice of
a number operator (smeared as a number density or mass
density operator) acting on the Fock space of the quantum
theory. Hence, from the outset those formulations rely on
observables representations and the choice of a vacuum
state, which are structures that are unnatural in curved
spacetimes in the absence of symmetries. Not only that, but
even in Minkowski space one might, e.g., decide to count
Fulling-Rindler particles rather than Minkowski particles.
A particularly relevant issue to us here is that dynamical

reduction models generically violate conservation of
energy, on which we remark the parameters of each model
can be chosen to be consistent with the phenomenological
constraints on energy violation (along with the constraints
on all other phenomena).
When moving further to a general relativistic framework,

as in the work of Bedingham et al. [50], which generalizes
[45] to curved spacetimes, one expects that the theory will
violate the conservation of the renormalized energy-
momentum tensor, but if one wants a modified version of
the semiclassical Einstein equations5 to hold, one will at
least need the theory to be defined so that an initial state, for
which the expectation value of the renormalized energy-
momentum tensor is finite, avoids evolving, upon collapse,
into a state for which it has an infinite expectation value. In
the case of a linear scalar quantum field model, to which we
shall restrict our attention, this essentially reduces to needing
the property that any given initialHadamard statewill evolve
dynamically into a state which is also Hadamard.6

Here, we recall that, in quantum field theory in curved
spacetimes (QFT in CS) (see [56] for a brief general
introduction to the topic), the conventional wisdom is that
there does not exist a preferred vacuum state for the theory
in the absence of special spacetime symmetries or asymp-
totic behavior. Instead, for linear field theories, there exists
a class of physically admissible states, called Hadamard
states, for which the field two-point function has an
appropriate short-distance behavior so that the expectation
value of the renormalized energy-momentum tensor of the

5By (unmodified) semiclassical Einstein equations we mean a
replacement for the classical Einstein equations,Gab ¼ 8πGNTab
in which the classical energy-momentum tensor gets replaced by
the expectation value, hTabi, of a renormalized quantum energy-
momentum tensor in a suitable (Heisenberg) state.

6Actually, this property can be relaxed somewhat: In Sec. IV,
we, in fact, content ourselves with showing that, for a suitably
large class of Hadamard states, a state in this class will evolve
dynamically into another state in this class—and will therefore, in
particular, itself be Hadamard.
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theory is finite. The earliest formulations of the Hadamard
property culminated in the rigorous definition provided by
one of us and Wald [57], and it is this definition that we
shall use throughout this paper. (For more about the
Hadamard condition and the renormalized energy-momen-
tum tensor see, e.g., the articles [58,59] and the standard
monographs [60,61].)
While, in the present paper, our main interest in the

Hadamard condition is that it is essentially equivalent to the
existence of a finite renormalized energy-momentum tensor,
let us point out, in passing, that several interesting results
have recently been proven about Hadamard states. Most of
these rely on a more recent, equivalent, and very powerful,
alternative definition of the Hadamard condition, now
known as the microlocal spectrum condition, which was
provided by Radzikowski [62,63] in 1996 using notions
from microlocal analysis and which involves a generaliza-
tion of the spectrum condition (see, e.g., [64]) in flat-
spacetime QFT. Amongst these is the result [65] that, under
certain QFT structural conditions, which are satisfied, e.g.,
by the Klein-Gordon theory [66], then (in accordance with
the conventional wisdom mentioned above) there exists no
prescription for defining a state which is covariant in a
suitable sense (for which, again, see [65] and references
therein) under changes from one spacetime to another and
which has the Hadamard property in all of them. This result
helps us to understand (see [67]) why attempts (see, e.g., the
recent paper [68]) to give general constructions for preferred
states in general spacetimes necessarily fail to have the
Hadamard short-distance behavior, and thereby yield
unphysical results. The Hadamard property is also crucial
in the definition of localWick polynomials and time-ordered
products in QFT in CS [69,70], as well as in the definition of
particles in general curved spacetime situations [71–73].
We wish now to clarify the main purpose of the present

paper as being to answer the question whether, for a linear
scalar field theory model (namely, the Klein-Gordon
theory), there can exist a generally covariant quantum field
theoretic model that fits into the framework of Bedingham
et al. for QFT in CS with collapses with the property that
suitable initial Hadamard states evolve toHadamard states at
later times. We will answer this question in the affirmative.
In the course of doing so, we will give general guidelines
toward the construction of such theories.
We consider that the results of this paper are relevant

toward putting relativistic dynamical reduction models on a
firm theoretical foundation, and can en passant also lead to
further progress in the line of work [74–78], which is aimed at
understanding the formation of structure in quantum cosmo-
logical (inflationary)models, and also in the line ofwork [48–
50,79], in the physics of quantum black holes, offering a
possible resolution of the information loss puzzle [80].
Additionally, having dynamical reduction models, defined
by collapse operators thatmap initialHadamard states to final
Hadamard states, would seem to be a prerequisite for a viable
semiclassical theory of gravity that incorporates collapses.

The plan of the paper is as follows: In Sec. II, after a brief
review of the necessary QFT in CS formalism, we review
Bedingham’s framework for a relativistic generalization of
the GRW and CSL models and discuss some lines for their
further development as generalized to curved spacetimes in
[50]; in particular, from a set of physically motivated
conditions, we arrive at a generalization of the GRWmodel
to a generally covariant QFT in CS model.
In Sec. III we prepare the ground for the main result of

the paper by recalling the necessary details from the
definition of the Hadamard condition in [57] and how
Hadamard states yield a finite value for the expectation
value of the renormalized energy-momentum tensor.
In Sec. IV we then prove the main results of this paper:

Namely, that there exist certain collapse operators that define
the evolution of generally covariant dynamical reduction
models for a real Klein-Gordon field for which the dynamical
law guarantees that an initial Hadamard state, which belongs
to a suitable class of states (which is a dense domain in the
relevant Hilbert space), evolves into a final Hadamard state,
also inside this class. This is the content of theorems 5 and 7.
We then provide a simple example in which we compute the
expectation value of the renormalized energy-momentum
tensor in the Hadamard state resulting from such a collapse,
and estimate the difference in the expectation values of the
energy-momentum tensor in the initial and final states. We
show that an appropriate choice in a parameter of the model
yields a small change in the renormalized energymomentum.
Our final remarks appear in Sec. V.
The conventions of this paper are as follows: By a

spacetime, ðM; gÞ, we mean a real four-dimensional, con-
nected (Hausdoff, paracompact) C∞ differentiable mani-
fold, M, equipped with a Lorentzian metric g. We restrict
our interest to those spacetimes which are time orientable
and assume a choice of time orientation has been made, and
we further restrict our spacetimes to be globally hyperbolic
[81,82]. Our metric, g, has signature ð−;þ;þ;þÞ. For a
subset S ⊂ M, JþðSÞ denotes the causal future of S and
J−ðSÞ its causal past.
We use units in which c ¼ ℏ ¼ k ¼ 1 and use the symbol

GN to denote Newton’s constant. Spacetime points are
denoted by Roman characters (x; y;…). Complex conjuga-
tion is denoted by an overline. Concrete operators onHilbert
spaces are indicated by capital letters surmounted with
carets, such as Â; B̂;…, while elements of an abstract
noncommutative algebra are indicated by caret-free letters
such asA;B;…. The adjoint of aHilbert-spaceoperator, Â, is
denoted by Â�.OðxÞ denotes a quantity for whichOðxÞ=x is
bounded as x → 0.

II. QUANTUM FIELD THEORY AND DYNAMICAL
REDUCTION MODELS

The idea that state reduction in quantum theory may have
as a fundamental origin the quantum interactions between
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gravity and matter has been suggested by a number of
authors—here we mention the work of Diósi [24,32] and
Penrose [11–14], as well as a proposal by one of us (the
main early papers are [33–35]; see [36] for a review of
recent work and further references) in which the entangle-
ment between gravity and matter plays a fundamental
role in the explanation both of state reduction and of
entropy increase, i.e., of the origin of the second law of
thermodynamics.
Nevertheless, in the absence of a quantitative theory for

the quantum interactions between gravity and matter, we feel
it is a more realistic short-term goal to formulate relativistic
dynamical reduction models in terms of a suitable version of
semiclassical gravity with collapses where we expect precise
mathematical questions can be formulated and answered.
This, in turn, will need to be built on a prior understanding of
QFT in CS in the presence of collapses.
In particular, we expect that we need to address new

questions in QFT in CS related to the renormalizability of
the energy-momentum tensor. As we mentioned in the
Introduction, it is well known that, already in their non-
relativistic versions, dynamical reduction models violate
energy conservation, but these violations can be tuned
to be small enough to be phenomenologically acceptable.
Similarly, in the context of quantum field theory, dynamical
reduction models will violate the conservation of energy
momentum in the spacetime region where the state reduc-
tion occurs. However, the situation seems more severe in
quantum field theory, for one could imagine starting out in
a Hadamard state and producing a postcollapse state that is
not Hadamard. This would mean not only that energy
momentum conservation is violated but also that it is
violated by an infinite amount. It is the main purpose of
this paper to show that this need not happen; it is possible to
construct collapse models in a QFT in CS context for which
the Hadamard form is indeed preserved on collapse.
The plan for the remainder of this section is as follows:

We first recall, in Sec. II A in a concise way, the relevant
details about the mathematical formulation of the Klein-
Gordon theory in curved spacetimes. Because this theory is
linear, it is fully understood from a mathematical standpoint
and thereby provides a simple and useful arena for testing
dynamical reduction models in curved spacetimes. We then
proceed, in Sec. II B, to recall (in Sec. II B 1) earlier work
on how quantum field theory in a fixed spacetime can be
modified to incorporate spontaneous collapse and then, in
Sec. II B 2, we discuss our own proposal for how this
theory may be developed further in a way consistent with
general covariance.

A. The Klein-Gordon theory in curved spacetimes

On a given spacetime, ðM; gÞ, the real Klein-Gordon
field algebra, A, is the �-algebra with identity 1 generated
by (smeared) fields of the form ΦðfÞ, where f ∈ C∞

0 ðMÞ,
satisfying the following properties: (i) f ↦ ΦðfÞ is a

linear map (linearity); (ii) ΦðfÞ ¼ ΦðfÞ� (Hermicity);
(iii)Φðð□−m2−ξRÞfÞ¼0 (field equation); and (iv) ½ΦðfÞ;
ΦðgÞ�¼−iEðf;gÞ1 (spacetime commutation relations),
where E¼A−R is the advanced-minus-retarded funda-
mental solution, such that ð□ −m2 − ξRÞEf ¼ 0. Here, for
a given test function, f, ΦðfÞ is to be interpreted as the
integral over the spacetime manifold of the (mathematically
ill-defined) field at a point ΦðxÞ times fðxÞ with respect
to the natural volume element, dvol, for the spacetime
metric g.
We remark that, as is well known, the above spacetime

commutation relations may be regarded as the result of
imposing the usual canonical commutation relations on a
Cauchy surface and evolving with some choice of global
time function, i.e., a globally defined, real-valued function
on the spacetime with the property that all the constant time
surfaces are Cauchy; the result, however, is entirely
independent of that choice.
A state, ω, is a linear functional ω∶ A → C, which is

normalized, ωð1Þ ¼ 1, and positive, ωðAA�Þ ≥ 0 for any
A ∈ A. It is fully specified by the specification of all the
(smeared) n-point functions, i.e., of quantities of form
ωðΦðf1Þ � � �ΦðfnÞÞ. Throughout this paper, we shall con-
centrate on a class of states which are quasifree, which
means that all the n-point functions are determined by the
two-point function via the formula ωðexp½iΦðfÞ�Þ ¼
exp½−ωðΦðfÞΦðfÞÞ=2�.
The standard operator valued distributions and Hilbert

space approach to quantum field theory can be recovered
by performing the Gelfand-Naimark-Segal (GNS) con-
struction, which produces out of the observable algebra,
A, and an algebraic state, ω, a GNS triplet ðπ;D ⊂ H;ΩÞ,
where π∶ A → LðHÞ is a representation that maps algebra
elements to linear operators acting on a dense subspace D
of the Hilbert spaceH and whereΩ ∈ H is the GNS cyclic
vector [i.e., the set span fπðAÞΩ; A ∈ Ag is dense in H].
Let us call Φ̂ðfÞ ¼ πðΦðfÞÞ. We have that

ωðΦðfÞΦðgÞÞ ¼ hΩjΦ̂ðfÞΦ̂ðgÞΩi; ð2:1Þ

which is the textbook expression for theWightman two-point
function (smeared in the test functions f and g), Wðf; gÞ.
IdentifyingΩwith thevacuumstate of the theory,wehave that
Φ̂ðfÞ ¼ iâðKEfÞ − iâ�ðKEfÞ, where ðK;HÞ is the one-
particle Hilbert space structure associated with the quasifree
state ω (see Appendix A in [57]) and H ¼ ℱsðHÞ is the
symmetric Fock space over the one-particle Hilbert spaceH.
For ξ ∈ H, âðξÞ is the usual annihilation operator onℱs and
â�ðξÞ its adjoint, so that ½âðξÞ; â�ðχÞ� ¼ hξjχi1̂.

B. Relativistic collapse

1. Review of general formalism

Here we offer a brief description of, and further develop,
the relativistic collapse theory which was formulated by
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Bedingham in [45] and generalized to the context of a fixed
background curved spacetime in [50].
We shall assume here that our spacetime has a compact

spatial section. This will ensure that there is a globally
preferred Hilbert space representation up to unitary equiv-
alence. In fact, for such a spacetime, we know [83,84] that
the GNS representations of all pure quasifree Hadamard
states are unitarily equivalent, and therefore we can work in
a fixed one of these representations, say π on H. Also, if
the spacetime has a compact spatial section, the volume
enclosed by an initial and a final Cauchy surface (at finite
times) is finite, and a finite number of collapses occurs in
the state evolution from the former to the latter.7 We remark
concerning terminology that, in Sec. IV, when a vector ψ in
H is such that the two-point function of the algebraic state,
hψ jπðΦðfÞΦðgÞÞψi, is Hadamard, we shall refer to ψ as a
Hadamard state vector.
The basic idea is to adopt the Heisenberg picture

throughout for the field operators—i.e., we continue to
define the field algebra as in Sec. II A—but we assume,
for a given global time function whose constant-time
surfaces are Cauchy surfaces, that the state changes
abruptly on certain constant-time Cauchy surfaces, Σ,8

which contain certain randomly selected spacetime points
x which we shall call spacetime collapse centers (while the
state does not change in between these abrupt changes).
These spacetime collapse centers are supposed in [45]
to occur according to a Poisson distribution with a fixed
rate, μ (taken to be a new constant of nature), per unit
spacetime volume.
The rule for the change of state at such a Cauchy surface

is taken to be of the general form of the GRW reduction
rule,

ψΣ ↦ ψΣþ ¼ NL̂xðZÞψΣ; ð2:2Þ

where ψΣ denotes the state before the abrupt change and
ψΣþ the state after it. The collapse operator takes the
general form

L̂xðZÞ ¼
�
π

2α

�
−1=4

expð−αðB̂ðxÞ − Z1̂Þ2Þ; ð2:3Þ

and N denotes the normalization factor

N ¼ hL̂xðZÞψΣjL̂xðZÞψΣi−1=2: ð2:4Þ

Here, the collapse generator, B̂ðxÞ, is taken to be a self-
adjoint operator constructed—in a way which it will be our

purpose to specify below—out of local fields centered
around the spacetime collapse center x; α will be called
here the collapse parameter of the theory, taken, as μ, to be
a fundamental constant of nature with the same dimensions
as B̂ðxÞ−2; Z is a real scalar constant—which we shall
sometimes call the field-space collapse center below—
assumed to be chosen (anew at each collapse as indicated
by the subscript, x, on L̂x) at random with a probability
density

dP ¼ hL̂xðZÞψΣjL̂xðZÞψΣidZ: ð2:5Þ

When there might be more than one spacetime collapse
center, x, under consideration, we will write Zx to denote
the field-space collapse center (which is randomly chosen
according to the above prescription) at the spacetime
collapse center x. On the other hand, we shall sometimes
abbreviate the operator LxðZÞ by Lx in order to simplify our
notation. The fact that dP is a probability density follows
from the easily verified relation

Z
dZL̂xðZÞ2 ¼ 1̂: ð2:6Þ

If the spectrum of B̂ðxÞ is the whole real line, L̂xðZÞ will
have the effect of putting the state in an approximate
eigenstate of the collapse operator B̂ðxÞ with approximate
eigenvalue Z, thus tending to localize the state in “field
space” in analogy with the way that the nonrelativistic
GRW model approximately localizes the nonrelativistic
wave function in position space.9 We remark that it is the
field-space collapse center, Z, which plays an analogous
mathematical role here to the center of the collapse event, z,
of nonrelativistic GRW, while what we have called here a
spacetime collapse center, x, plays an analogous math-
ematical role to one of the random times, ti, at which
collapses happen in nonrelativistic GRW.
Consider the state of the system at some initial Cauchy

surface, Σi, to be given. It can then be shown [50] that, if the
following microcausality conditions hold for all spacelike
separated x and y,

ðiÞ ½L̂xðZÞ; L̂yðZ0Þ� ¼ 0 and ðiiÞ ½L̂xðZÞ; ĤintðyÞ� ¼ 0;

ð2:7Þ

equivalently,

ði0Þ ½B̂ðxÞ; B̂ðyÞ� ¼ 0 and ðii0Þ ½B̂ðxÞ; ĤintðyÞ� ¼ 0;

ð2:8Þ7One can give arguments that our results should be extendable
to spacetimes with noncompact spatial sections, but this would
involve us with further technicalities beyond those we are able to
treat in the present paper.

8Because of these abrupt changes of the state, the Heisenberg
evolution picture will not hold globally.

9If the spectrum of B̂ðxÞ is only a proper subset of the real line,
the localization will presumably do the best it can, but this issue
seems deserving of further investigation.
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then, given a set of spacetime collapse centers
fxjjΣf≻xj≻Σig (with labels j ¼ 1;…; n, corresponding
to an arbitrary total ordering, which respects the causal
ordering of the spacetime) occurring between “initial” and
“final” Cauchy surfaces Σi and Σf, and given the set of all
field-space collapse centers, Zxj , chosen at these spacetime
collapse centers, fZxj jΣf≻xj≻Σig, the state dynamics
leads to an unambiguous change of state between Σi and
Σf. Moreover, the probability rule that specifies the joint
probabilities of full sets of spacetime collapse centers
fZxj jΣf≻xj≻Σig does not depend on the choice of global
time function (assumed to have Σi and Σf as two of its
constant-time surfaces) for which the intermediate Cauchy
surfaces, on which the collapses happen, are constant-time
surfaces provided that the law characterizing the proba-
bility distribution of the spacetime locations itself does not
select a preferred time function. A Poisson distribution is
one possibility for such a rule.
Therefore, provided Eq. (2.7), or equivalently Eq. (2.8),

holds and given that our dynamical and (statistically
formulated) collapse rules make no reference to any
preferred global time function, the whole set of (overall
statistically formulated) dynamical rules will be covariant.

2. Our proposal for the choice of collapse generators

In this paper, we take the point of view that the choice of
the collapse operator should be made according to the
following guiding principles:
(1) Localization: In quantum field theory, processes are

not sharply localized at space-time points, but rather
smeared in compact spacetime regions.

(2) Causality: In bosonic quantum field theory, any
collapse operator must respect Einstein causality
through the canonical commutation relations (CCR)
condition of the field algebra.

(3) Covariance: Any collapse operator must be con-
structed in a general covariant way and avoid
Lorentz violations.

We remark that, in the nonrelativistic theory, locality is
less of a problem thanks to the existence of a position
operator. The guiding principles above will compensate for
the lack of such a position operator in a relativistic context.
In any case, these principles for relativistic QFT in CS seem
to allow one to construct a large class of possible models as
follows. First, if we have a Poisson distribution that selects
spacetime collapse centers fxigI, we let fxi ∈ C∞

0 ðMÞ be
smooth functions of compact support peaked around each
one of the spacetime collapse centers xi ∈ M.10

Then by choosing collapse generators of the form
ΦðfxiÞ, one can produce a model that satisfies all of our
principles. More generally, one can choose polynomials of
field operators that are covariantly smeared in the smooth
functions of compact support fxi , in accordance with the
following definition:
Definition 1. We call a collapse generator a covariantly

smeared polynomial collapse generator in fx if it is a
polynomial in fields smeared against test functions cova-
riantly constructed out of the metric, its inverse and their
derivatives, and the test function fx and its covariant
derivatives.
We shall refer to such collapse generators as covariant

polynomial collapse generators.
Some examples of covariant polynomial collapse gener-

ators are αΦðfxÞ, δΦðRfxÞ, and βΦð□fxÞΦðfxÞ þ γΦðfxÞ.
By the linearity of the field, equalities such as ΦðαRfxþ
β□fxÞΦðfxÞ¼αΦðRfxÞΦðfxÞþβΦð∇c∇cfxÞΦðfxÞ hold.
We define derivatives of the field weakly, e.g.,
ð∇aΦÞðgab∇bfxÞ¼−Φð□fxÞ, so, e.g., by the field equation,
Φðð□ −m2 − ξRÞfxÞ ¼ 0.
The reduction rule, Eq. (2.2), generalizes as follows: Let

α be the collapse parameter of the theory. Given a set of
spacetime collapse centers, fxigI, that have been chosen
according to the Poisson distribution discussed above, let
Z ∈ R be a real-scalar constant, randomly chosen [accord-
ing to (2.5)] for each spacetime collapse center, and
centering around each one of these spacetime collapse
centers and choosing a fixed smooth function of compact
support, fxi , define the evolution law at a constant-time
Cauchy surface for a choice of global time function passing
through any one of these spacetime collapse centers by

ψ ↦ ψxi ¼
L̂xiðZÞψ

hL̂xiðZÞψ jL̂xiðZÞψi1=2
; with ð2:9aÞ

L̂xiðZÞ ¼
�
π

2α

�
−1=4

exp ½−αðQ̂ðΦ̂; fxiÞ − Z1̂Þ2�; ð2:9bÞ

where QðΦ; fxiÞ is a fixed covariantly smeared polynomial
collapse generator in fxi . Z will again be called the field-
space collapse center.
It may seem somewhat strange (and partly teleological)

that the collapse operator which governs the collapses at a
particular Cauchy surface apparently depends on the values
of the quantum field in some spacetime region, i.e., the
union of the supports of the smearing functions involved in
its definition, which includes parts of both the future and
the past of that surface. However, one can, of course, take
the point of view that the observables are localized on the
Cauchy surface. For example, using the terminology of
[57], the “covariantly smeared” fieldΦðfÞ for some smooth
compactly supported test function, f, is equal to the
“symplectically smeared” field σðΦ;ϕcÞ where ϕc is the

10An obvious issue that arises here is that we need to define
what we mean by the “same” fxi around two different spacetime
collapse centers, xi. We wish to simply remark here that there are
various ways in which this can be done and do not enter into
details. For an example, see [50].
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classical solution Ef. In other words, it is φðpÞ − πðfÞ
where ðφ; πÞ are the Cauchy data of the quantum field, Φ,
and ðf; pÞ the Cauchy data of the classical solution ϕc ¼
Ef on the Cauchy surface.
A word of caution is due: Even when two spacetime

collapse centers, x1, x2 are spacelike separated, we would
expect there to be points in the support of fx1 and points in
the support of fx2 which are not spacelike separated. Thus
microcausality of our Klein-Gordon field algebra is not
sufficient for commutativity of Lx1 and Lx2 . So, in view of
Eq. (2.7) or, equivalently, Eq. (2.8), and the discussion
around these equations, we have no guarantee that the
dynamical evolution will be independent of the global time
function.
In our opinion, there are three ways out of this problem.

The first solution has been provided by Bedingham [45]
and introduces additional nondynamical fields. As for the
other two, we refrain from providing a rigorous formulation
of these alternatives, but rather explain the lines of thought
in general terms.
The first alternative consists of dealing with smooth

functions with diamondlike support for the field smearings
and providing a unique prescription for the ordering of the
collapse generators, whereby if suppðfxiÞ and suppðfxjÞ are
not spacelike separated and suppðfxiÞ∩JþðsuppðfxjÞÞ ¼ ∅,
then the collapse operators are ordered as TcðLxiLxjÞ ¼
LxjLxi , where byTcwemean collapse time ordering; i.e., the
collapse operatorLxi acts before Lxj . The second alternative
can be loosely stated as requiring that the supports of the
functions fxi be sufficiently small and that the collapse
events be sufficiently scarce, such that ordering problems do
not occur.11 This could be achieved by modifying the
Poisson distribution yielding the spacetime collapse centers
xi, but for the moment we refrain from being more precise
than this, as this is not the purpose of this paper.

III. THE HADAMARD CONDITION AND THE
ENERGY-MOMENTUM RENORMALIZATION

In this section, we review the Hadamard condition on the
two-point function of states of the Klein-Gordon field, as
was first formulated by one of us and Wald in [57] in a
rigorous fashion.12 This serves several purposes: First, it
allows for this work to be as self-contained as possible.
Second, it introduces the distributional language of quan-
tum field theory. Third, it allows one to prove the smooth-
ness of certain quantities that will appear in our main result
(see Appendix A). We then review how the renormalized

energy-momentum tensor is defined by a point splitting
prescription and how its expectation value in any Hadamard
state satisfies Wald’s axioms [61].

A. The Hadamard condition

The Hadamard condition is a property of a state of a
given linear theory which allows one to obtain certain
renormalized nonlinear observables, such as the energy-
momentum tensor, which do not belong to the minimal
algebra (cf. Chap. 3 in [57]) of (essentially) sums of
products of smeared fields. In this subsection, we return
to our discussion of the Klein-Gordon theory, and we shall
state precisely what the Hadamard condition is for a state
on this theory.
Two-point functions such as defined in Eq. (2.1), typ-

ically arise from unsmeared two-point functions using the
standard iϵ “integrate then take the limit” prescription,

ω2ðΦðfÞΦðgÞÞ

¼ lim
ϵ→0þ

Z
M×M

dvolðxÞdvolðyÞfðxÞgðyÞWϵ
2ðx; yÞ; ð3:1Þ

where Wϵ
2ðx; yÞ is a two-point function with a suitable

small imaginary part. For example, in the familiar case of a
massless scalar field in four-dimensional Minkowski space-
time in the Minkowski ground state, Wϵ

2ðx; yÞ is13

WM
ϵ ððt;xÞ; ðt0;x0ÞÞ

¼ 1=ð4πÞ
−ðt − t0Þ2 þ jx − x0j2 þ iϵðt − t0Þ þ ϵ2

: ð3:2Þ

The integrand on the right-hand side of Eq. (3.1) is
integrable for each ϵ > 0, so the left-hand side exists if
the limit exists. Moreover, the antisymmetric part of the
two-point distribution is fixed by the CCR, ω2ðf; gÞ−
ω2ðg; fÞ ¼ −iEðf; gÞ, while the symmetric part is fully
determined by the state. It is the ultraviolet behavior of the
symmetric part of the two-point distribution that provides
the criterion as to whether a state is Hadamard. In order to
provide the definition for a Hadamard state, we first state
two useful geometric definitions:
Definition 2. A convex normal neighborhood U ⊂ M is

an open set such that for any pair of points x; y ∈ U, there
exists a unique geodesic from x to y fully contained in U.
In convex normal neighborhoods, one can define unam-

biguously the squared geodesic distance between two
points in ðx; yÞ ∈ U ×U, which, following [57], we denote
by σðx; yÞ.
Definition 3. Let C ⊂ M be a Cauchy surface ofM. We

say that the open N ⊂ M is a causal normal neighborhood
11This would mean heuristically that support of fx is so small

that state reductions occur almost “at a single point.”
12We remind the reader that ðM; gÞ is assumed to be globally

hyperbolic, and in this paper we deal only with this case. For a
definition of a Hadamard state in anti-de Sitter spacetimes, see the
recent paper [85].

13More generally, the iϵðt − t0Þ term can be replaced by any
iϵðTðxÞ − Tðx0ÞÞ, where T is an arbitrary future increasing time
function in the spacetime.
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of C if C ⊂ N and for any pair of points x; y ∈ N such that
x ∈ JþðyÞ, there exists a convex normal neighborhood
containing J−ðxÞ∩JþðyÞ.
Also, following [57], we note that for any Cauchy

surface C ⊂ M it is always possible to find a causal normal
neighborhood N such that C ⊂ N.
We are now ready to state the definition [57] of a

Hadamard state.
Definition 4 (Hadamard state). Let ðM; gÞ be a space-

time and let T be a global time function, increasing to the
future, whose constant time surfaces are Cauchy surfaces.
Let N be a causal normal neighborhood of some such
Cauchy surface, C, and let O be an open neighborhood of
N × N. Further, let O0 ⊂ N × N be an open neighborhood
whose closure is contained in O. Now, let χ ∈ C∞ðN × NÞ
be an interpolating function, such that χðx; yÞ ¼ 1 if
ðx; yÞ ∈ O0 and χðx; yÞ ¼ 0 if ðx; yÞ∉O. We say that the
state ω∶ A → C is aHadamard state if, for each n ∈ N and
ϵ > 0, there exists a bifunctionWn ∈ CnðM ×MÞ such that

ω2ðf; gÞ ¼ lim
ϵ→0þ

Z
M×M

dvolðxÞdvolðyÞfðxÞgðyÞ

× ½χðx; yÞHT;n
ϵ ðx; yÞ þWnðx; yÞ�; ð3:3Þ

with HT;n
ϵ ∶ N × N → C defined as

HT;n
ϵ ðx; yÞ ¼ 1

ð2πÞ2
�
Δ1=2ðx; yÞ
σϵðx; yÞ

þ VðnÞðx; yÞ ln½σϵðx; yÞ�
�
:

ð3:4Þ

Here, the logarithm branch cut is taken along the negative
real axis, σϵðx; yÞ ¼ σðx; yÞ þ 2iϵ½TðxÞ − TðyÞ� þ ϵ2, Δ is
the van Vleck-Morette determinant [86], and each VðnÞ ¼P

n
k¼0 vkσ

k is a smooth bifunction with smooth bifunction
coefficients vk determined by the Hadamard recursion
relations (see [86,87]; see also [59]) up to order n, which
guarantees that HT;n

ϵ is a Green function of the Klein-
Gordon equation to order n.
Several comments are in place: First, because Wn is Cn

for each n, with n as large as desired, this contribution can
be taken to be smooth [57]. Second, the definition is
independent of the time function, T, the chosen Cauchy
surface, C, the interpolating function χ, and the chosen
causal normal neighborhood of C, N. See [57, Sec. 3.3].
In light of Eq. (3.1), the Hadamard condition can be

formally stated as

ωϵðΦðxÞΦðyÞÞ ¼ ωϵ
2ðx; yÞ ¼ χðx; yÞHT;n

ϵ ðx; yÞ þWnðx; yÞ
ð3:5Þ

for each n, but we would like to stress that Definition 4
takes into account all the distributional and geometric
subtleties that give sense to the formal equation (3.5).

B. The renormalization of the energy-momentum tensor

That the energy-momentum tensor is not in the Klein-
Gordon field algebra can be seen immediately already
because it involves the product of fields at the same point
before smearing. The construction of such observables out
of free fields requires a renormalization prescription.
A covariant renormalization axiomatic prescription for

the energy-momentum tensor has been given by Wald in
what is now known as the Wald axioms [61, Sec. 4.6] and
[58]: (i) If ω1ðΦðxÞΦðyÞÞ − ω2ðΦðxÞΦðyÞÞ is a smooth
function, then ω1ðTren

ab ðxÞÞ − ω2ðTren
ab ðxÞÞ is smooth by a

splitting prescription; (ii) Tren
ab is local with respect to the

state of the field and invariant under globally hyperbolic
isometric embeddings; (iii) for all states, ∇aωðTren

ab ÞÞ ¼ 0;
and (iv) ωMðTren

ab Þ ¼ 0 in the Minkowski vacuum.
A renormalization point-splitting scheme that satisfies

Wald’s axioms consists of constructing the Hadamard
parametrix14 from the Hadamard recursion relations,

Hðx;yÞ¼HT;∞
0 ðx;yÞ¼ lim

ϵ→0

1

ð2πÞ2
�
Δ1=2ðx;yÞ
σϵðx;yÞ

þ
X∞
k¼0

vkðx;yÞσkðx;yÞ ln½σϵðx;yÞ�
�
;

ð3:6Þ

and obtaining the renormalized energy-momentum tensor
by a point-splitting restriction with respect to the Hadamard
parametrix as follows. Let ω be a Hadamard state. Then

ωðTren
ab ðxÞÞ ¼ lim

x0→x

��
∇a∇b0 −

1

2
gabðxÞð∇c∇c0

þm2 þ ξRðxÞÞ
�
Gðx; x0Þ þ PabðxÞ

�
; ð3:7Þ

where

Gðx; x0Þ ¼ ωðΦðxÞΦðyÞÞ −Hðx; yÞ: ð3:8Þ

Here, Pab is a certain local, symmetric tensor correction
term [ð1=32π2Þ½v1�cgab in the notation of [58]] introduced
in [58] (see also [63]) needed in order for the covariant
conservation equation∇aωðTren

ab Þ to hold and giving rise, in
the approach of [58], to the trace anomaly (see [58,60]) in
the case of conformal coupling.
As explained in [58,60] and in the sense explained in

those references, Tren
ab ðxÞ is understood to be ambiguous up

to the addition of arbitrary linear combinations of “local
geometrical terms,” gab, Gab, 1Hab, and 2Hab, which come
from adding arbitrary linear combinations of

ffiffiffi
g

p
,

ffiffiffi
g

p
R, and

14Whenever the spacetime is not analytic, convergence of the
asymptotic series can be ensured with the aid of a set of cutoff
functions. See [88] and references therein.
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two further terms involving higher derivatives of the metric
to the Lagrangian. By construction, Tren satisfies Wald’s
axioms: The Hadamard parametrix guarantees that (i) and
(ii) hold, while, as we discussed above, the correction term
Pab ensures (iii). Item (iv) can always be ensured by taking
advantage of the just mentioned freedom to add multiples
of gab.
The defining equations (3.7) provide a prescription for

making sense of the semiclassical Einstein field equations,

Gab ¼ 8πGNωðTren
ab Þ; ð3:9Þ

for computing backreaction effects. To be precise, one
needs to consider higher order derivative terms in the metric
at this stage [60].

IV. THE MAIN RESULTS

In Sec. II we argued that any collapse operator of the
dynamical reduction model must be constructed cova-
riantly. We proposed that this preferred operator be gen-
erated by a polynomial in the field smeared against a
geometric and covariant polynomial constructed out of the
metric and its derivatives acting on the test function fx. We
referred to this class of collapse generators as covariant
polynomial. (See Definition 1 in Sec. II B 2 for the precise
definition.)
The purpose of this section is to state and prove the main

results of this paper, which show that the states resulting
from the collapse of a large class of Hadamard states are
themselves Hadamard states, when the collapse generator is
such a covariant polynomial.
More precisely, in the first part of this section, in IVA,

we show that given a covariantly smeared monomial
collapse generator, i.e., a collapse generator that is linear
in the field, and given an initial Hadamard state vector in
our Hilbert space,15 which belongs to a certain dense
domain (the definition of which, in turn, depends on a
fixed but arbitrary choice of another quasifree Hadamard
state vector which we call Ω below) the postreduction state
vector will also be Hadamard. We further show that the
postreduction state vector remains Hadamard on a certain
enlarged domain which is an invariant domain for the
collapse operator, and therefore any number of successive
collapses will also result in Hadamard states. The collection
of these observations is our first main result, Theorem 5.
In the second part of this section, Sec. IV B, we weaken

the linearity assumption and prove with, however, a slightly
lower standard of rigor that a perturbative version of the
Hadamard condition holds for any general covariant

polynomial operators of finite order. This is our second
main result, Theorem 7.
We conclude this section with an example that connects

our results with the discussion of Sec. III on the renorma-
lizability of the energy-momentum tensor. This is the
content of Sec. IV C.

A. A result for linear covariant polynomial
collapse generators

Theorem 5. Let ðπ;D ⊂ H;ΩÞ be the GNS triple of the
Klein-Gordon theory with respect to a quasifree algebraic
Hadamard state ω∶ A → C on the real Klein-Gordon field
algebra for our spacetime as defined in Sec. II A, and letD
be the set of vectors, ψ which arise as finite sums of form

ψ ¼
XN
n¼1

cneiΦ̂ðgnÞc ð4:1Þ

for arbitrary N and arbitrary functions gi, i ¼ 1 � � �N in
C∞
0 ðMÞ16 where (here and throughout) we take Φ̂ðgÞ for

any g ∈ C∞
0 ðMÞ to denote πðΦðgÞÞ on the domain D and

Φ̂ðgnÞc to denote its closure. The latter will be self-adjoint
by the fact that—see, e.g., Sec. 5.2.4 in [63]—for all
g ∈ C∞

0 ðMÞ, Φ̂ðgÞ is essentially self-adjoint on the domain
D. Let f be a particular choice of the C∞

0 test function onM
and take L̂z∶ D → H to be the self-adjoint, bounded
(“collapse”) operator, defined by

L̂z ¼ exp ½−αðΦ̂ðFÞc − Z1̂Þ2� ð4:2Þ

with α > 0, Z ∈ R. We have that
(1) Any normalized ψ ∈ D is a Hadamard state vector.

It follows that the vector ψ z ¼ L̂zψ=hL̂zψ jL̂zψi1=2 is
a Hadamard state vector.

(2) Let G be the dense subset of H consisting of finite
linear combinations of vectors of the form ψn ¼Q

n
k¼0 L̂zkψ where we adopt the convention (here and

throughout) that the right-hand side means
L̂z0L̂z1 � � � L̂znψ , where ψ ∈ D, and let

L̂zk ¼ exp ½−αðΦ̂ðFkÞc − Zk1̂Þ2� ð4:3Þ

be collapse operators labeled by the non-
negative integer k; then, if any normalized ψ ∈ G
is a Hadamard state vector, ψ z ¼ L̂zψ=hL̂zψ jL̂zψi1=2
will also be a Hadamard state vector.

15See Sec. II B 1 for the definition of the term “Hadamard state
vector” and recall that, as explained there, we will be able to work
in a fixed Hilbert space representation in which all pure quasifree
Hadamard states arise from vector states thanks to our assumption
that our spacetime has a compact spatial section.

16In other words, D consists of finite linear combinations of
Weyl operators acting on the “vacuum” vector, Ω, or, in yet other
words, to finite linear combinations of coherent states built on Ω.
In view of well-known properties of Weyl operators—equiva-
lently in this context of coherent states—D is, therefore, itself a
dense domain.
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We remark that in the application to the relativistic
collapse scheme of Sec. II B 2, the test function F will arise
in the form Pgfz and the test functions, fk of item 2 above,
will arise in the form Pk

gfzk . Note also, regarding item 2 that
D ⊂ G ⊂ H, where Pg and Pk

g are operators covariantly
constructed out of the metric, its inverse, and their
derivatives, such that the collapse generator is covariantly
smeared in fz and fkz, respectively.
Item 1 in the above theorem means that a single collapse

of a Hadamard state, which belongs to the dense domain,D
of theHilbert space of the theory, produces aHadamard state
vector. Item 2 guarantees that successive collapses also yield
a Hadamard state vector. We now prove Theorem 5.
We remark that the domains, D and G, each depend on

the choice of quasifree Hadamard algebraic state ω and
therefore given that we can and do (see footnote 15) regard
each of their cyclic state vectors, Ω, as belonging to the
Hilbert space of our chosen representation, we have many
domains, say,D andG for each such Ω, each of which (see
footnote 16) is dense by itself; our theorem therefore
guarantees that any initial Hadamard state vector in the
union of all the D or, indeed, in the, larger, union of all the
G will be mapped by any of our collapse operators, L̂z for
any z, into a Hadamard state vector (where, moreover, we
know that when ψ belongs toG for a particularΩ, then L̂zψ
will belong to G for the same Ω). However, it remains an
open question whether every state vector in our Hilbert
space is mapped into a Hadamard state by each or any L̂z.
Proof.—We recall from Sec. II A that π will act so that

πðΦðfÞÞð¼ Φ̂ðfÞÞ ¼ ðiâðKEfÞ − iâ�ðKEfÞÞ. We denote
the positive polarization of the field in this representation
by Φ̂þðfÞ ¼ −iâ�ðKEfÞ and the negative polarization by
Φ̂−ðfÞ ¼ iâðKEfÞ. We remark here that, while all these
operators are originally only defined on D, they also have
an obvious meaning as operators on D.
That the operator L̂z∶ D → H defined by Eq. (4.2) is

self-adjoint follows from the self-adjointness of Φ̂ðFÞc.

That it is bounded follows from the fact that ∥L̂zψ∥ ¼
hL̂zψ jL̂zψi1=2 ≤ ∥ψ∥.
Proof of item 1. First, we show that ψ ∈ D given by

jψi ¼
P

N
n¼0 cnjeiΦ̂ðfnÞΩi

ðPN
i¼0

P
N
j¼0 ci cjhe−iΦ̂fiΩjeiΦ̂ðfjÞΩiÞ1=2

ð4:4Þ

is a Hadamard state, i.e., that ωψðx; yÞ ¼ hψ jΦ̂ðxÞΦ̂ðyÞψi
has Hadamard form. To this end, we write

ωψðx; yÞ ¼ hψ jð∶Φ̂ðxÞΦ̂ðyÞ∶þ ½Φ̂−ðxÞ; Φ̂þðyÞ�Þψi; ð4:5Þ

where ∶ · ∶ denotes normal ordering with respect to jΩi.
Because ½Φ̂−ðxÞ; Φ̂þðyÞ� is a c bidistribution times the
identity operator, we have that

ωψðx;yÞ¼hψ j∶Φ̂ðxÞΦ̂ðyÞ∶ψiþhΩj½Φ̂−ðxÞ;Φ̂þðyÞ�Ωi
¼hψ j∶Φ̂ðxÞΦ̂ðyÞ∶ψiþhΩjΦ̂ðxÞΦ̂ðyÞΩi; ð4:6Þ

and the second term on the right-hand side of Eq. (4.6) is of
Hadamard form because the algebraic state, ω, is
Hadamard. We are left to show that the first term on the
right-hand side of Eq. (4.6), given by

hψ j∶Φ̂ðxÞΦ̂ðyÞ∶ψi ¼ hψ jðΦ̂þðxÞΦ̂þðyÞ þ Φ̂þðxÞΦ̂−ðyÞ
þΦ̂þðyÞΦ̂−ðxÞ þ Φ̂−ðxÞΦ̂−ðyÞÞψi;

ð4:7Þ

is smooth. This can be shown using the commutator
relation ½Φ̂�ðxÞ; eiΦ̂ðfÞ� ¼ i½Φ̂�ðxÞ; Φ̂∓ðfÞ�eiΦ̂ðfÞc , and
noticing, using Lemma 8 in Appendix A 1, that this
commutator is of the form of a smooth function multiplying
the Weyl operator, eiΦ̂ðfÞc . We demonstrate how to handle
the second term in (4.7). The rest of the terms can be
handled similarly.

hψ jΦ̂þðxÞΦ̂−ðyÞψi ¼
P

N
n¼0

P
N
m¼0 cn cmhΦ̂−ðxÞeiΦ̂ðfnÞΩjΦ̂−ðyÞeiΦ̂ðfmÞΩiP
N
i¼0

P
N
j¼0 ci cjheiΦ̂ðfiÞΩjeiΦ̂ðfjÞΩi

¼
P

N
n¼0

P
N
m¼0 cn cmhΩj½e−iΦ̂ðfnÞ; Φ̂þðxÞ�½Φ̂−ðyÞ; eiΦ̂ðfmÞ�ΩiP

N
i¼0

P
N
j¼0 ci cjheiΦ̂ðfiÞΩjeiΦ̂ðfjÞΩi : ð4:8Þ

We now show that L̂zψ is also a Hadamard state vector.
This result follows from a lemma that we now state
and prove.
Lemma 6. Let π;D ⊂ H;Ω be as previously defined.

Let L̂∶ D → H be a self-adjoint operator on the Hilbert
space, such that for any f; g ∈ C∞

0 ðMÞ,

(i) the commutator

½L̂; Φ̂�ðfÞ� ¼
Z
M
dvolðxÞfðxÞ½L̂; Φ̂�ðxÞ� ð4:9Þ

defines an operator on the Hilbert space times a
C∞ðMÞ function (namely, ½L̂; Φ̂�ðxÞ�), and
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(ii) the double commutator

½½L̂; Φ̂�ðfÞ�; Φ̂�ðgÞ�

¼
Z
M×M

dvolðxÞdvolðyÞfðxÞgðyÞ

× ½½L̂; Φ̂�ðxÞ�; Φ̂�ðyÞ� ð4:10Þ

defines an operator on the Hilbert space times a
C∞ðM ×MÞ bifunction, ½½L̂; Φ̂�ðxÞ�; Φ̂�ðyÞ�.

Then, if ψ ∈ D is a Hadamard state vector, it follows that
ψc ¼ L̂ψ=hL̂ψL̂ψi1=2 is a Hadamard state vector.
Proof of lemma.—We denote the two-point distribution

in the state ψc by ωc
2ðf; gÞ ¼ hψcjΦ̂ðfÞΦ̂ðgÞψci. To verify

whether this expression has Hadamard form, it suffices to
replace the product Φ̂ðfÞΦ̂ðgÞ by its normal ordered
counterpart with respect to the initial state ψ and seek to
verify that the expression

hψcj∶Φ̂ðxÞΦ̂ðyÞ∶ψci ∈ C∞ðM ×MÞ: ð4:11Þ
If (4.11) holds, then the state vector ψc is Hadamard.

This follows from the normal ordering prescription
Φ̂ðxÞΦ̂ðyÞ ¼ ∶Φ̂ðxÞΦ̂ðyÞ∶þ ½Φ̂−ðxÞ; Φ̂þðyÞ� and the rela-
tion

½Φ̂−ðxÞ; Φ̂þðyÞ� ¼ hψ j½Φ̂−ðxÞ; Φ̂þðyÞ�ψi1̂
¼ hΩjΦ̂ðxÞΦ̂ðyÞΩi1̂ ð4:12Þ

that holds because ½Φ̂−ðxÞ; Φ̂þðyÞ� is a c bidistribution
times the identity and the fact that the right-hand side of
Eq. (4.12) is itself Hadamard. [See the proof of Lemma 8,
and cf. Eq. (A2).]
Writing the initial state ψ ∈ D as in (4.1), we have that

the operator L̂ acts as

L̂∶ ψ ¼
X
k

ckeiΦ̂ðfkÞcΩ

↦ L̂ψ ¼
X
k

ckL̂eiΦ̂ðfkÞcΩ: ð4:13Þ

Thus, we need only verify that expressions of the form17

hL̂eiΦ̂ðgÞcΩj∶Φ̂ðxÞΦ̂ðyÞ∶L̂eiΦ̂ðhÞcΩi=hL̂ψ jL̂ψi ð4:14Þ

are smooth, which can be done by showing that each of the
expressions

ωþþ
2 ðx;yÞ¼hL̂eiΦ̂ðgÞcΩjΦ̂þðxÞΦ̂þðyÞL̂eiΦ̂ðhÞcΩi

hL̂ψ jL̂ψi ; ð4:15aÞ

ωþ−
2 ðx;yÞ¼hL̂eiΦ̂ðgÞcΩjΦ̂þðxÞΦ̂−ðyÞL̂eiΦ̂ðhÞcΩi

hL̂ψ jL̂ψi ; ð4:15bÞ

ω−−
2 ðx;yÞ¼hL̂eiΦ̂ðgÞcΩjΦ̂−ðxÞΦ̂−ðyÞL̂eiΦ̂ðhÞcΩi

hL̂ψ jL̂ψi ð4:15cÞ

is smooth. We shall show explicitly that ωþ−
2 ðx; yÞ ∈

C∞ðM ×MÞ. The rest of the calculations are similar. By
the same techniques as before,

ωþ−
2 ðx; yÞ ¼ hΩj½e−iΦ̂ðgÞL̂; Φ̂þðxÞ�½Φ̂−ðyÞ; L̂eiΦ̂ðhÞ�Ωi

hL̂ψ jL̂ψi ;

ð4:16Þ

and, using the commutator relation ½Φ̂�ðxÞ; eiΦ̂ðfÞc � ¼
i½Φ̂�ðxÞ; Φ̂∓ðfÞ�eiΦ̂ðfÞc , we have that

ωþ−
2 ðx;yÞ¼ðhLψ jL̂ψiÞ−1

×hΩje−iΦ̂ðgÞcði½Φ̂þðxÞ;Φ̂−ðgÞ�L̂þ½L̂;Φ̂þðxÞ�Þ
×ð−½L̂;Φ̂−ðyÞ�þ i½Φ̂−ðyÞ;Φ̂þðhÞ�L̂ÞeiΦ̂ðhÞcΩi:

ð4:17Þ

By Lemma 8 in Appendix A 1, ½Φ̂þðxÞ; Φ̂−ðgÞ� and
½Φ̂−ðyÞ; Φ̂þðhÞ� define smooth functions, and from con-
dition (i) we conclude that ωþ−

2 ∈ C∞ðM ×MÞ. A similar
argument for ωþþ

2 and ω−−
2 using conditions (i) and (ii)

completes the proof. □

The next step in the proof is that our collapse operator Lz
defined by Eq. (4.2) satisfies the hypotheses of Lemma 6.
Indeed, conditions (i) and (ii) hold by the product rule of
the commutator. For condition (i), we have that

½L̂z; Φ̂�ðfÞ� ¼
Z
M
dvolðxÞfðxÞ½Φ̂∓ðFÞ; Φ̂�ðxÞ�

× ð−2αðΦ̂ðFÞ − Z1̂ÞÞL̂z; ð4:18aÞ

which is a smooth function times an operator by Lemma 8
in Appendix A 1.
For condition (ii) of Lemma 6, we have

½½L̂z; Φ̂�ðfÞ�; Φ̂�ðgÞ� ¼
Z
M×M

dvolðxÞdvolðyÞfðxÞgðyÞ

× ½Φ̂∓ðFÞ; Φ̂�ðxÞ�½Φ̂∓ðFÞ; Φ̂�ðyÞ�
× f−2αþ ½−2αðΦ̂ðFÞ − Z1̂Þ�2gL̂z;

ð4:19Þ

17Actually it would suffice to verify this for g ¼ h since, by the
methods of the proof of Proposition 6.1 in [89] (see also [90,91]
for related works) one may prove that, if ψ1 and ψ2 are Hadamard
state vectors, which are quasifree in the sense which allows also
for a nonvanishing one-point function, then any linear combi-
nation is a Hadamard state vector. (We thank Christopher Fewster
for pointing this out to us.)
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which is a smooth bifunction times an operator by
Lemma 8 in Appendix A 1. This concludes the proof of
the first item of our theorem.
Proof of item 2. We now show item 2 of our theorem.

Namely, D ⊂ G ⊂ H, where G contains vectors of the
form

ψ ¼
XN
n¼1

ψn ¼
XN
n¼1

Yn
k¼0

L̂zkψ ; ð4:20Þ

where ψ ∈ D.
To see that D ⊂ G, it suffices to notice that L̂z with

Z ¼ 0 and Φ̂ðfÞ ¼ 0 [e.g., by demanding that the field is
smeared against the zero function itself, or vanishes weakly
as Φ̂ðð□ −m2 − ξRÞgÞ ¼ 0] is equal to the identity on the
Hilbert space. Hence, all the vectors ψ ∈ D also belong to
G. This, in turn, guarantees that G is dense in H.
We now show that ψ ∈ G defined by

ψ ¼
XN
n¼1

αnψn ¼
XN
n¼1

αn
Yn
k¼0

L̂zkψ ð4:21Þ

for ψ ∈ D and αn ∈ C, such that hψ jψi ¼ 1, is a Hadamard
state vector. Once more, the strategy is to show that

hψ j∶ΦðxÞΦðyÞ∶ψi

¼
XN
n¼1

XN
m¼1

αn αm

	Yn
i¼0

L̂ziψ





∶Φ̂ðxÞΦ̂ðyÞ∶
Ym
j¼0

L̂zjψ

�

ð4:22Þ
contributes smoothly to the two-point function. It suffices
to show that each of the terms in	Yn

i¼0

L̂ziψ





ðΦ̂þðxÞΦ̂þðyÞ þ Φ̂þðxÞΦ̂−ðyÞ

þ Φ̂þðyÞΦ̂−ðxÞ þ Φ̂−ðxÞΦ̂−ðyÞÞ
Ym
j¼0

L̂zjψ

�
ð4:23Þ

is a smooth bifunction.
We show this for the second term in (4.23). The rest of

the calculations are similar. Let

ωþ−
nm ðx; yÞ ¼

	Yn
i¼0

L̂ziψ





Φ̂þðxÞΦ̂−ðyÞ
Ym
j¼0

L̂zjψ

�
: ð4:24Þ

We expand ωþ−
nm ðx;yÞ as the sum of four terms,

ωþ−
nm ðx; yÞ ¼ ωþ−ð1Þ

nm ðx; yÞ þ ωþ−ð2Þ
nm ðx; yÞ þ ωþ−ð3Þ

nm ðx; yÞþ
ωþ−ð4Þ
nm ðx; yÞ, where

ωþ−ð1Þ
nm ðx; yÞ ¼

	Yn
i¼0

L̂ziΦ̂
−ðxÞψ





 Y
m

j¼0

L̂zjΦ̂
−ðyÞψ

�
;

ð4:25aÞ

ωþ−ð2Þ
nm ðx; yÞ ¼

	Yn
i¼0

L̂ziΦ̂
−ðxÞψ






�
Φ̂−ðyÞ;

Ym
j¼0

L̂zj

�
ψ

�
;

ð4:25bÞ

ωþ−ð3Þ
nm ðx; yÞ ¼

	�
Φ̂−ðxÞ;

Yn
i¼0

L̂zi

�
ψ





Y
m

j¼0

L̂zjΦ̂
−ðyÞψ

�
;

ð4:25cÞ

ωþ−ð4Þ
nm ðx; yÞ ¼

	�
Φ̂−ðxÞ;

Yn
i¼0

L̂zi

�
ψ






�
Φ̂−ðyÞ;

Ym
j¼0

L̂zj

�
ψ

�
;

ð4:25dÞ
and each of the commutators expand as

�
Φ̂−ðxÞ;

Yn
i ¼0

L̂zi

�

¼ ½Φ̂−ðxÞ; L̂z0 �
Yn
i¼1

L̂zi þ
Xn−1
i¼1

Yi−1
j¼0

L̂zj ½Φ̂−ðxÞ; L̂zi �
Yn

k¼iþ1

L̂zk

þ
Yn−1
i¼0

L̂zi ½Φ̂−ðxÞ; L̂zn �: ð4:26Þ

At this stage, we know that each of the ½Φ̂−ðxÞ; L̂zi �
is a smooth function times an operator, and following
a strategy analogous to the proof of Lemma 6, we
conclude that each of the terms defined by Eqs. (4.25) is
smooth. From here, it follows that ωþ−

nm ∈ C∞ðM ×MÞ. A
similar strategy shows that each of the terms on the right-
hand side of Eq. (4.23) contributes smoothly, and hence
hψ j∶Φ̂ðxÞΦ̂ðyÞ∶ψi ∈ C∞ðM ×MÞ. Thus, we conclude that
ψ is a Hadamard state vector.
To complete the proof, we notice that for ψ ∈ G, ψ z ¼

L̂zψ=hL̂zψ jL̂zψi1=2 is a normalized state in G, and, hence,
it is also Hadamard. □

B. A perturbative result for higher order
collapse generators

In the previous subsection, our results dealt only with
collapse operators with linear collapse generators. In this
subsection, we show how to deal with collapse operators
whose collapse generators are higher order polynomials in
a perturbative way. No claims will be made about the
convergence of the perturbative expressions. The style of
this subsection will be less rigorous; through a series of
formal manipulations, we shall show that the postcollapse
state has the Hadamard property order by order in a
perturbative way. Thus, for the truncated perturbation
series, the Hadamard condition is then recovered exactly.
This is our second main result, which is summarized in
Theorem 7.
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Let us suppose that we have a collapse generator
given by a polynomial of degree N, Q½Φ; fz� ¼P

N
i¼1

Q
i
j¼1ΦðPij

g fzÞ, where the Pij
g fz are covariant expres-

sions as before. For example, for N ¼ 3,

Q½Φ; fz� ¼ ΦðP11
g fzÞ þΦðP21

g fzÞΦðP22
g fzÞ

þΦðP31
g fzÞΦðP32

g fzÞΦðP33
g fzÞ: ð4:27Þ

It would be desirable to have a result such as the one
stated in Theorem 5. The hypotheses of Lemma 6, however,
need not hold due to convergence issues. Namely, the
commutators in (i) and (ii) can be written only as formal
series. But formal expressions are available for the com-
mutators that produce two-point functions with the
Hadamard ultraviolet behavior, as we verify in this sub-
section. We make use of the following nested commutator
notation:

adnXY ¼ ½X; ½X; � � � ½X; Y� � � ���|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n commutators

; ð4:28Þ

with the convention that ad0XY ¼ Y.
As before, we denote the GNS field representation of the

Klein-Gordon field with respect to some Hadamard state by
Φ̂ðfÞ ¼ πðΦðfÞÞ ¼ ðiâðKEFÞ − iâ�ðKEfÞÞ, as a linear
operator acting on the (dense subset of the) Hilbert space
H. Once more, we denote the positive polarization of the
field in this representation by Φ̂þðfÞ ¼ −iâ�ðKEfÞ and the
negative polarization by Φ̂−ðfÞ ¼ iâðKEfÞ.
Let the collapse operator of the theory be L̂N

z ¼
exp ½−αðQ̂½Φ̂; fz� − Z1̂Þ2�. Then the commutators with
the positive and negative polarizations of the field repre-
sentation, Φ̂þðfÞ and Φ̂−ðfÞ, respectively, are

½L̂N
z ; Φ̂�ðfÞ� ¼

Z
M
dvolðxÞfðxÞ

�X∞
n¼1

adn½−αðQ̂½Φ̂;fz�−Z1̂Þ2�Φ̂
�ðxÞ

�
L̂N
z ; ð4:29aÞ

½½L̂N
z ; Φ̂�ðfÞ�; Φ̂�ðgÞ� ¼

Z
M
dvolðxÞfðxÞgðyÞ

�X∞
n¼1

½adn½−αðQ̂½Φ̂;fz�−Z1̂Þ2�Φ̂
�ðxÞ; Φ̂�ðyÞ�

þ
X∞
n¼1

X∞
m¼1

ðadn½−αðQ̂½Φ̂;fz�−Z1̂Þ2�Φ̂
�ðxÞÞðadm½−αðQ̂½Φ̂;fz�−Z1̂Þ2�Φ̂

�ðyÞÞ
�
L̂N
z : ð4:29bÞ

Equation (4.29a) follows from the “adjoint-to-commutators” formal relation eXYe−X ¼ P∞
n¼0 ad

n
XY, and hence the

integrands appearing on the right-hand side of Eq. (4.29) should be understood as formal expressions. Still, we can show
that these formal expressions contribute as smooth functions in the integrand on the right-hand side of (4.29). First, notice
that, for each n ∈ N, x ↦ adn½−αðQ̂½Φ̂;fz�−Z1̂Þ2�Φ̂

�ðxÞ is an operator valued smooth function. This follows from the (formal)

commutator

½−αðQ̂½Φ̂; fz� − Z1̂Þ2; Φ̂�ðxÞ� ¼ −α
XN
i¼1

Xi

j¼1

½Φ̂∓ðPij
g fzÞ; Φ̂�ðxÞ�

×

�
ðQ̂½Φ̂; fz� − Z1̂Þ

Yi
k¼1;k≠j

Φ̂ ðPik
g fzÞ þ

Yi
k¼1;k≠j

Φ̂ ðPik
g fzÞðQ̂½Φ̂; fz� − Z1̂Þ

�
ð4:30Þ

and Lemma 8, which establishes that ½Φ̂∓ðPij
g fzÞ; Φ̂�ðxÞ� is a smooth function times the identity operator. By the same

argument, the second term on the right-hand side of Eq. (4.29b) contributes smoothly, and we need only verify the
smoothness of the first term. To this end, we can use Lemma 9 in Appendix A to write

½½L̂N
z ; Φ̂�ðfÞ�; Φ̂�ðgÞ� ¼ −

Z
M
dvolðxÞfðxÞgðyÞ

X∞
n¼0

×

�Xn−1
m¼0

adm½−αðQ̂½Φ̂;fz�−Z1̂Þ2�½½Φ̂
�ðyÞ;−αðQ̂½Φ̂; fz� − Z1̂Þ2�; adn−m−1

½−αðQ̂½Φ̂;fz�−Z1̂Þ2�Φ̂
�ðxÞ�

−
X∞
m¼0

ðadn½−αðQ̂½Φ̂;fz�−Z1̂Þ2�Φ̂
�ðxÞÞðadm½−αðQ̂½Φ̂;fz�−Z1̂Þ2�Φ̂

�ðyÞÞ
�
L̂N
z : ð4:31Þ

All the expressions on the right-hand side of Eq. (4.31) can be expanded [cf. (4.30)] into contributions that are smooth by
Lemma 8 in Appendix A. In particular, by our previous arguments, we see that the form of the commutators (4.29) is
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½L̂N
z ; Φ̂�ðfÞ� ¼

Z
M
dvolðxÞfðxÞ

XN
i¼1

Xi

j¼1

½Φ̂∓ðPij
g fzÞ; Φ̂�ðxÞ�

�X∞
n¼1

Rij
αnðΦ; fzÞL̂N

z

�
; ð4:32aÞ

½½L̂N
z ; Φ̂�ðfÞ�; Φ̂�ðgÞ� ¼

Z
M
dvolðxÞfðxÞgðyÞ

XN
i¼1

XN
k¼1

Xi

j¼1

Xk
l¼1

½Φ̂∓ðPij
g fzÞ; Φ̂�ðxÞ�

× ½Φ̂∓ðPkl
g fzÞ; Φ̂�ðyÞ�

�X∞
n¼1

~Rijkl
αn ðΦ; fzÞL̂N

z

�
: ð4:32bÞ

Here, each one of the Rij
αnðΦ; fzÞ and ~Rijkl

αn ðΦ; fzÞ can be
calculated perturbatively by an expansion in the parameter
α. Thus, truncating the series at an arbitrary power of α, one
sees that the singular behavior of

ωf
2ðx; yÞ ¼

hψ jL̂N
z Φ̂ðxÞΦ̂ðyÞL̂N

z ψ ii
hψ ijL̂N

z L̂
N
z ψi

ð4:33Þ

is Hadamard to the prescribed power of α if jψi is an initial
Hadamard state. We collect these observations in our
second main theorem.
Theorem 7. Let ðπ;D ⊂ H;ΩÞ be the GNS triple of

the Klein-Gordon field theory with respect to an
algebraic quasifree Hadamard state, ω, and let the domain
D be defined as in Theorem 5. Let L̂N

z ∈ LðHÞ be a
self-adjoint operator on the Hilbert space, defined
as L̂N

z ¼ exp ½−αðQ̂½Φ̂; fz� − Z1̂Þ2� with Q½Φ; fz� ¼P
N
i¼1

Q
i
j¼1ΦðPij

g fzÞ, for fixed N ∈ N, α > 0, Z ∈ R

and with Φ̂ðPij
g fzÞ the representation of ΦðPij

g fzÞ (a
covariantly smeared polynomial collapse generator in fz

in collapse model applications). Then, if ψ ∈ DomðL̂N
z Þ

is a Hadamard state, it follows that, for ψN
z ¼ L̂N

z ψ=
hL̂N

z ψ jL̂N
z ψi1=2,

hψN
z jΦ̂ðxÞΦ̂ðyÞψN

z i − hψ jΦ̂ðxÞΦ̂ðyÞψi

¼
XM
n¼0

αMGMðx; yÞ þOðαMþ1Þ ð4:34Þ

for all M ∈ N and GMðx; yÞ ∈ C∞ðM ×MÞ. □

C. An example of the postcollapse renormalized
energy-momentum tensor

As an application of our results, we work out the renor-
malized energy-momentum tensor in the postcollapse state
ψf ¼ L̂zψ i=hL̂zψ ijL̂zψ ii1=2, when the initial Hadamard state
is a vacuum state of the theory jψ ii ¼ jΩi and in the simple
case that L̂z ¼ exp ð−αðΦ̂ðfzÞ − Z1̂Þ2Þ. The two-point
function is

ωf
2ðx; yÞ ¼ ωi

2ðx; yÞ þ ωþþ
f ðx; yÞ þ ωþ−

f ðx; yÞ þ ωþ−
f ðy; xÞ þ ω−−

f ðx; yÞ; ð4:35Þ

with ωi
2ðx; yÞ ¼ hΩj½Φ̂−ðxÞ; Φ̂þðyÞ�Ωi and

ωfþ−
2 ðx; yÞ ¼ hΩj½L̂z; Φ̂þðxÞ�½Φ̂−ðyÞ; L̂z�Ωi=hΩjL̂2

zΩi
¼ ½Φ̂−ðfzÞ; Φ̂þðxÞ�½Φ̂þðfzÞ; Φ̂−ðyÞ�hψfj½−2αðΦ̂ðfzÞ − Z1̂Þ�2ψfi; ð4:36aÞ

ωfþþ
2 ðx; yÞ ¼ hΩj½½L̂z; Φ̂þðxÞ�; Φ̂þðyÞ�L̂zΩi=hΩjL̂2

zΩi
¼ ½Φ̂−ðfzÞ; Φ̂þðxÞ�½Φ̂−ðfzÞ; Φ̂þðyÞ�hψfjf−2αþ ½−2αðΦ̂ðfzÞ − Z1̂Þ�2gψfi; ð4:36bÞ

ωf−−
2 ðx; yÞ ¼ hΩjL̂z½½L̂z; Φ̂−ðyÞ�; Φ̂−ðxÞ�Ωi=hΩjL̂2

zΩi
¼ ½Φ̂þðfzÞ; Φ̂−ðyÞ�½Φ̂þðfzÞ; Φ̂−ðxÞ�hψfjf−2αþ ½−2αðΦ̂ðfzÞ − Z1̂Þ�2gψfi; ð4:36cÞ

and collecting the terms we have that
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ωf
2ðx; yÞ ¼ hΩj½Φ̂−ðxÞ; Φ̂þðyÞ�Ωi þ hψfj½−2αðΦ̂ðfzÞ − Z1̂Þ�2ψfi

× ð½Φ̂−ðfzÞ; Φ̂þðxÞ�½Φ̂−ðfzÞ; Φ̂þðyÞ� þ ½Φ̂−ðfzÞ; Φ̂þðxÞ�½Φ̂þðfzÞ; Φ̂−ðyÞ�
þ ½Φ̂−ðfzÞ; Φ̂þðyÞ�½Φ̂þðfzÞ; Φ̂−ðxÞ� þ ½Φ̂þðfzÞ; Φ̂−ðyÞ�½Φ̂þðfzÞ; Φ̂−ðxÞ�Þ
− 2αð½Φ̂−ðfzÞ; Φ̂þðxÞ�½Φ̂−ðfzÞ; Φ̂þðyÞ� þ ½Φ̂þðfzÞ; Φ̂−ðyÞ�½Φ̂þðfzÞ; Φ̂−ðxÞ�Þ: ð4:37Þ

Let G� ∈ C∞ðMÞ be the smooth function defined by G�ðxÞ1̂ ¼ ½Φ̂∓ðfzÞ; Φ̂�ðxÞ�. Gþ and G− can be defined by
integrating the Wightman function, Wðx; yÞ ¼ hΩjΦ̂ðyÞΦ̂ðxÞΩi, as follows:

GþðxÞ ¼ hΩjΦ̂−ðfzÞΦ̂þðxÞΩi ¼
Z
M
dvolðyÞfzðyÞWðy; xÞ; ð4:38aÞ

G−ðxÞ ¼ −hΩjΦ̂−ðxÞΦ̂þðfzÞΩi ¼ −
Z
M
dvolðyÞfzðyÞWðx; yÞ: ð4:38bÞ

The postcollapse renormalized energy-momentum tensor is

hψfjTren
abψfi ¼ hΩjTren

abΩi − 2α

�
∇aGþ∇bGþ þ∇aG−∇bG− −

1

2
gabð∇cGþ∇cGþ þ∇cG−∇cG−Þ

−
1

2
gabðm2 þ ξRÞððGþÞ2 þ ðG−Þ2Þ

�
þ 4α2hψfjðΦ̂ðfzÞ − Z1̂Þ2ψfi

�
∇aGþ∇bGþ

þ∇ðaGþ∇bÞG− þ∇aG−∇bG− −
1

2
gabð∇cGþ∇cGþ þ 2∇cGþ∇cG− þ∇cG−∇cG−Þ

−
1

2
gabðm2 þ ξRÞððGþÞ2 þ 2GþG− þ ðG−Þ2Þ

�
: ð4:39Þ

Importantly, in this example it is explicit that dif-
ference hψfjTren

abψfi − hΩjTren
abΩi ¼ OðαÞ, so for α ≪ 1,

the change in the renormalized energy-momentum tensor is
small. In fact, this feature is general and from this stand-
point one can begin to calculate backreaction effects in
semiclassical gravity, perturbatively in α as necessary.

V. DISCUSSION AND CONCLUDING REMARKS

Summarizing our present work, we have presented a
class of operators that can be used as the operators driving
the spontaneous collapse dynamics in the various generally
covariant dynamical reduction models that generalize the
GRW model. Further, we have proven that, for a wide class
of Hadamard states for our model Klein-Gordon theory,
they preserve the Hadamard property. In addition, we have
worked out a simple example in which the violations of
energy momentum are calculated and found to be small
when the parameter α is small.
We have left out three important issues, which should be

treated in future work: First, in our first main theorem 5, we
have shown that Hadamard vector states belonging to
certain dense subsets of the Hilbert space of the Klein-
Gordon theory are mapped to Hadamard vector states by
the effect of state reduction. As we have mentioned before,
it remains an open question whether every state vector in
our Hilbert space is mapped into a Hadamard state by each
or any L̂z. Second is the inclusion of local polynomials in

the admissible collapse generators, such as Φ2ðPgfzÞ,
which entails dealing with the renormalization of the
collapse generator itself. Third is the treatment of generally
covariant generalizations of the more sophisticated CSL
model, which has a much more “canonical” flavor, but for
which a notion of Hadamard on a slicewill need to first be
developed.
Finally, the technology developed in this paper leaves us

readily at the stage at which, given a suitable formulation of
(an extended form of) semiclassical gravity that accounts
for state reduction processes, one can compute backreac-
tion effects due to the state reduction on the spacetime.
A version of this work with further remarks (and also an

introduction to nonrelativistic dynamical reduction models)
is available in [92].
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APPENDIX: AUXILIARY RESULTS

1. A smoothness lemma

Lemma 8. Let A be the Klein-Gordon field algebra,
ω∶ A → C be an algebraic Hadamard state, and ðπ;D ⊂
H;ΩÞ be the GNS triple of the theory with respect to ω. Let
πðΦðfÞÞ¼ Φ̂þðfÞþΦ̂−ðfÞ, with Φ̂þðfÞ ¼ −iâ�ðKEfÞ and
Φ̂−ðfÞ ¼ ðiâðKEfÞ. Then, x ↦ ½Φ̂�ðxÞ; Φ̂∓ðfÞ� is equal to
the identity operator times a smooth function on M.

Proof.—We shall complete the proof for ½Φ̂þðxÞ;Φ̂−ðfÞ�.
The other case is analogous. That ½Φ̂þðxÞ; Φ̂−ðfÞ� is a c
function times the identity is immediate because
½Φ̂þðgÞ; Φ̂−ðfÞ� ¼ −hKEf;KEgiH1̂, where h; iH denotes
the one-particle Hilbert space inner product. (See,
e.g., [61, Appendix A] for details.) Thus, ½Φ̂þðgÞ;
Φ̂−ðfÞ� ¼ hΩj½Φ̂þðgÞ; Φ̂−ðfÞ�Ωi1̂, and we have the normal
ordering prescription

Φ̂ðfÞΦ̂ðgÞ ¼ ∶Φ̂ðfÞΦ̂ðgÞ∶ − hΩj½Φ̂þðgÞ; Φ̂−ðfÞ�Ωi1̂
ðA1Þ

from where it follows that

½Φ̂þðgÞ; Φ̂−ðfÞ� ¼ −
�
lim
ϵ→0þ

Z
M×M

dvolðxÞdvolðyÞgðxÞfðyÞ × ½χðx; yÞHT;n
ϵ ðx; yÞ þWnðx; yÞ�

�
1̂; ðA2Þ

where the right-hand side is as in Definition 4; cf. Eq. (3.3). As discussed in Sec. III, below Definition 4, theWn can be seen
to yield a smooth contribution, and, hence, the proof is completed because

SðxÞ ¼ 1

ð2πÞ2 lim
ϵ→0þ

Z
M
dvolðxÞdvolðyÞfðyÞχðx; yÞ

�
Δ1=2ðx; yÞ
σϵðx; yÞ

þ VðnÞ ln½σϵðx; yÞ�
�
; ðA3Þ

with the logarithm branch cut along the negative real axis,
and it defines a smooth function on M, as has been shown
in [57, Appendix B]. □

2. A lemma for nested commutators

Lemma. Let ðL; ½; �Þ be a Lie algebra. For X; Y; Z ∈ L
and the adjoint notation adnXY defined as in Eq. (4.28), the
following identity holds for all n ∈ N:

½Y; adnXZ� ¼
Xn−1
m¼0

admX ð½½Y; X�; adn−m−1
X Z�Þ þ adnXð½Y; Z�Þ:

ðA4Þ

Proof.—We proceed by induction:
(i) For n ¼ 1, the formula holds by Jacobi’s identity.
(ii) We assume that (A4) holds for fixed n. For

nþ 1,

½Y; adnþ1
X Z� ¼ ½Y; ½X; adnXZ��

¼ ½½Y; X�; adnXZ� þ ½X; ½Y; adnXZ��;
ðA5Þ

where in the second equality we used Jacobi’s
identity and by our hypothesis

½Y; adnþ1
X Z� ¼ ½½Y; X�; adnXZ� þ

�
X;

�Xn−1
m¼0

admX ð½½Y; X�; adn−m−1
X Z�Þ þ adnXð½Y; Z�Þ

��

¼ ½½Y; X�; adnXZ� þ
Xn−1
m¼0

admþ1
X ð½½Y; X�; adn−m−1

X Z�Þ þ adnþ1
X ð½Y; Z�Þ

¼ ½½Y; X�; adnXZ� þ
Xðnþ1Þ−1

k¼1

adkXð½½Y; X�; adðnþ1Þ−k−1
X Z�Þ þ adnþ1

X ð½Y; Z�Þ

¼
Xðnþ1Þ−1

k¼0

adkXð½½Y; X�; adðnþ1Þ−k−1
X Z�Þ þ adnþ1

X ð½Y; Z�Þ; ðA6Þ

which completes the inductive step. □
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1675 (2012).

[67] C. J. Fewster and R. Verch, Classical Quantum Gravity 30,
235027 (2013).

[68] N. Afshordi, S. Aslanbeigi, and R. D. Sorkin, J. High
Energy Phys. 08 (2012) 137.

[69] S. Hollands and R. M. Wald, Commun. Math. Phys. 223,
289 (2001).

[70] S. Hollands and R. M. Wald, Commun. Math. Phys. 231,
309 (2002).

[71] J. Louko and A. Satz, Classical Quantum Gravity 25,
055012 (2008).

[72] B. A. Juárez-Aubry and J. Louko, Classical Quantum
Gravity 31, 245007 (2014).

[73] L. Hodgkinson and J. Louko, J. Math. Phys. (N.Y.) 53,
082301 (2012).

[74] A. Perez, H. Sahlmann, and D. Sudarsky, Classical Quan-
tum Gravity 23, 2317 (2006).

[75] G. R. Bengochea, P. Cañate, and D. Sudarsky, Phys. Lett. B
743, 484 (2015).

[76] G. León and D. Sudarsky, J. Cosmol. Astropart. Phys. 06
(2015) 020.

[77] S. J. Landau, C. G. Scoccola, and D. Sudarsky, Phys. Rev. D
85, 123001 (2012).

[78] T. Josset, A. Perez, and D. Sudarsky, Phys. Rev. Lett. 118,
021102 (2017).

[79] E. Okon and D. Sudarsky, Found. Phys. 45, 461 (2015).
[80] S. W. Hawking, Phys. Rev. D 14, 2460 (1976).
[81] A. N. Bernal and M. Sanchez, Commun. Math. Phys. 243,

461 (2003).
[82] A. N. Bernal and M. Sanchez, Commun. Math. Phys. 257,

43 (2005).
[83] R. Verch, Commun. Math. Phys. 160, 507 (1994).
[84] C. Lüders and J. E. Roberts, Commun. Math. Phys. 134, 29

(1990).
[85] C. Dappiaggi and H. R. C. Ferreira, arXiv:1701.07215.
[86] B. S. DeWitt and R.W. Brehme, Ann. Phys. (N.Y.) 9, 220

(1960).
[87] P. R. Garabedian, Partial Differential Equations (Wiley,

New York, 1965).
[88] T.-P. Hack and V. Moretti, J. Phys. A 45, 374019 (2012).
[89] A. Strohmaier, R. Verch, and M. Wollenberg, J. Math. Phys.

(N.Y.) 43, 5514 (2002).
[90] C. J. Fewster and R. Verch, Commun. Math. Phys. 240, 329

(2003).
[91] K. Sanders, Commun. Math. Phys. 295, 485 (2010).
[92] B. A. Juárez-Aubry, B. S. Kay, and D. Sudarsky, arXiv:

1708.09371v1.

GENERALLY COVARIANT DYNAMICAL REDUCTION … PHYS. REV. D 97, 025010 (2018)

025010-19

https://doi.org/10.1007/s00023-012-0166-z
https://doi.org/10.1007/s00023-012-0166-z
https://doi.org/10.1007/s00023-012-0166-z
https://doi.org/10.1088/0264-9381/30/23/235027
https://doi.org/10.1088/0264-9381/30/23/235027
https://doi.org/10.1007/JHEP08(2012)137
https://doi.org/10.1007/JHEP08(2012)137
https://doi.org/10.1007/s002200100540
https://doi.org/10.1007/s002200100540
https://doi.org/10.1007/s00220-002-0719-y
https://doi.org/10.1007/s00220-002-0719-y
https://doi.org/10.1088/0264-9381/25/5/055012
https://doi.org/10.1088/0264-9381/25/5/055012
https://doi.org/10.1088/0264-9381/31/24/245007
https://doi.org/10.1088/0264-9381/31/24/245007
https://doi.org/10.1063/1.4739453
https://doi.org/10.1063/1.4739453
https://doi.org/10.1088/0264-9381/23/7/008
https://doi.org/10.1088/0264-9381/23/7/008
https://doi.org/10.1016/j.physletb.2015.03.016
https://doi.org/10.1016/j.physletb.2015.03.016
https://doi.org/10.1088/1475-7516/2015/06/020
https://doi.org/10.1088/1475-7516/2015/06/020
https://doi.org/10.1103/PhysRevD.85.123001
https://doi.org/10.1103/PhysRevD.85.123001
https://doi.org/10.1103/PhysRevLett.118.021102
https://doi.org/10.1103/PhysRevLett.118.021102
https://doi.org/10.1007/s10701-015-9877-6
https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/10.1007/s00220-003-0982-6
https://doi.org/10.1007/s00220-003-0982-6
https://doi.org/10.1007/s00220-005-1346-1
https://doi.org/10.1007/s00220-005-1346-1
https://doi.org/10.1007/BF02173427
https://doi.org/10.1007/BF02102088
https://doi.org/10.1007/BF02102088
http://arXiv.org/abs/1701.07215
https://doi.org/10.1016/0003-4916(60)90030-0
https://doi.org/10.1016/0003-4916(60)90030-0
https://doi.org/10.1088/1751-8113/45/37/374019
https://doi.org/10.1063/1.1506381
https://doi.org/10.1063/1.1506381
https://doi.org/10.1007/s00220-003-0884-7
https://doi.org/10.1007/s00220-003-0884-7
https://doi.org/10.1007/s00220-009-0900-7
http://arXiv.org/abs/1708.09371v1
http://arXiv.org/abs/1708.09371v1

