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The Lagrangian for a non-Abelian gauge theory with an SUðNcÞ symmetry and a linear covariant gauge
fixing is constructed in eight dimensions. The renormalization group functions are computed at one loop
with the special cases of Nc ¼ 2 and 3 treated separately. By computing the critical exponents derived from
these in the large Nf expansion at the Wilson-Fisher fixed point it is shown that the Lagrangian is in the
same universality class as the two dimensional non-Abelian Thirring model and quantum chromodynamics
(QCD). As the eight dimensional Lagrangian contains new quartic gluon operators not present in four
dimensional QCD, we compute in parallel the mixing matrix of four dimensional dimension 8 operators in
pure Yang-Mills theory.
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I. INTRODUCTION

Non-Abelian gauge theories are established as the core
quantum field theories which govern the particles of nature
through the Standard Model. One sector, which is known as
quantum chromodynamics (QCD), describes the strong
force between fundamental quarks and gluons which leads
to the binding of these quanta into the mesons and hadrons
seen in Nature. QCD has rather distinct properties in
comparison with the electroweak sector. For instance, at
high energy quarks and gluons become effectively free
particles due to the property of asymptotic freedom, [1,2].
While this attribute is essential to developing a field
theoretic formalism which allows us to extract meaningful
information from experimental data, it has an implicit sense
that at lower energies quarks and gluons can never be
treated as distinct particles in the same spirit as a free
electron in quantum electrodynamics (QED) which is an
Abelian gauge theory. The concept of a lack of low energy
freedom is known as colour confinement or infrared slavery
in contradistinction to the virtual freedom at ultraviolet
scales. As it stands QCD has been studied in depth over
many years. One area where there has been significant
progress recently is in the evaluation of the fundamental
renormalization group functions at very high loop order.
For instance, following the one loop discovery of asymp-
totic freedom, [1,2], the two and three loop corrections to
the β-function appeared within a decade [3–5]. Progress to

the four loop term followed in the 1990s, [6,7], before a lull
to the recent five loop explosion of all the renormalization
group functions [8–15]. By this we mean the β-function
was determined for the SUð3Þ color group in [9] before this
was extended to a general Lie group in [10]. The supporting
five loop renormalization group functions were determined
in [8,11–15]. While such multiloop QCD results are
impressive in the extreme, in the overall scheme of things
having independent checks on such calculations is useful.
The recent five loop QCD β-function of [9] is relatively
unique in this respect in that the independent computation
of [10] followed quickly. Ordinarily such a task requires as
much human and computer resources as the initial break-
through which are not always immediately available.
For QCD there is a parallel method of verifying part of

the perturbative series which is via the large Nf expansion
where Nf is the number of massless quarks. For instance,
the QCD β-function was determined at Oð1=NfÞ in [16]
which extended the QED result of [17]. Subsequently the
quark mass anomalous dimension was found atOð1=N2

fÞ in
[18]. The 1=Nf or large Nf expansion provides an alter-
native way of deducing certain coefficients in the pertur-
bative series and the work of [16,18] extended the original
method for spin-0 fields of [19,20] to the spin-1 case.
However, the formalism for the gauge theory context
derives from a novel and elegant observation made in
[21]. In [21] it was shown that the non-Abelian Thirring
model (NATM) in the large Nf expansion is in the same
universality class as QCD at the Wilson-Fisher fixed point
in d-dimensions. While the non-Abelian Thirring model is
a nonrenormalizable quantum field theory above two
dimensions, within the large Nf expansion at its d-dimen-
sional fixed point the d-dimensional critical exponents
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contain information on the perturbative renormalization
group functions of QCD. This has been verified by agree-
ment with the latest set of five loop renormalization group
functions [8–15]. The novel feature is the fact that in the
non-Abelian Thirring model there are no triple and quartic
gluon self-interactions as is well known in QCD. These
vertices effectively emerge at criticality within large Nf

computations via 3- and 4-point quark loops, [21]. More
recently this property of critical equivalence has been
studied in the simpler OðNÞ scalar field theories where a
similar phenomenon of higher dimensional theory vertices
are generated at criticality by triangle and box graphs. In
more modern parlance this is known as ultraviolet com-
pletion. Indeed in the OðNÞ nonlinear σ model and
OðNÞ ϕ4 theory, the Wilson-Fisher fixed point equivalence
in 2 < d < 4 was extended to six dimensional OðNÞ ϕ3

theory in [22,23] and then beyond in [24,25].
In light of this the six dimensional extension of the non-

Abelian Thirringmodel andQCD equivalencewas provided
in [26]. This involved a more intricate Lagrangian but the
connection of the two loop renormalization group functions
with the universal d-dimensional largeNf critical exponents
was verified. Again this reinforced the remarkable connec-
tion with the non-Abelian Thirring model in that the
six dimensional theory has quintic and sextic gluon self-
interactions in addition to cubic and quartic structures which
are the only ones present in four dimensions.While formally
there are cubic and quartic interactions in both these
dimensions, the Feynman rules of the vertices are different
in each dimension. So the fact that the largeNf non-Abelian
Thirring model exponents encode information on the
respective renormalization group functions is remarkable
since it is not a gauge theory as such. Given this background
it is therefore the purpose of this article to continue the tower
of theories to the next link in the chain and construct the eight
dimensional non-Abelian theory in what we will now term
the non-Abelian Thirringmodel universality class. This runs
parallel to the six and eight dimensional extensions of QED
[26,27]. The eight dimensional non-Abelian theory has
significantly more structure in its Lagrangian. For instance,
there are seven independent quartic field strength operators
in general as opposed to two in the QED case [26]. Equally
one has a higher power propagator for the gluon and
Faddeev-Popov ghost fields which means evaluating
Feynman integrals even at one loop becomes a significant
task. Therefore in this article we concentrate on a full one
loop renormalization of the field anomalous dimensions and
all the β-functions. As such one can regard this as proof of
concept to launch a two loop computation from. The eight
dimensional QED evaluation of [26] was able to probe to
two loops partly because of fewer interactions but also as a
consequence of the Ward-Takahashi identity.
A parallel reason for examining six and eight dimensional

gauge theories rests in the connection to operators
in lower dimensions. If one has the viewpoint of an

underlying universal theory residing at a fixed point in d-
dimensions, then the gauge independent operators corre-
sponding to the interactions of the higher dimensional theory
have dimensionless coupling constants in their respective
critical dimensions. Below this dimension the coupling
constant would become massive. Therefore they would
equate to operators in the effective field theory of the lower
dimensional gauge theory. In [26] it was noted that in the six
dimensional extension of QCD the fully massive gluon
propagator in the Landau gauge bore a remarkable qualitative
similarity to the infrared behavior of the propagator as
computed in the same gauge on the lattice but in four
dimensions. While there was an observation in [28,29] that
the ultraviolet behavior of a higher dimensional theory
informs or models the infrared structure of a lower dimen-
sional one, it would seem that an eight dimensional one could
only relate to infrared fixed points in its six dimensional
partner. However, given that dimension 8 operators are of
interest in four dimensional effective field theories of QCD
having renormalization group function data in the eight
dimensional non-Abelian gauge theory for SUðNcÞ, where
Nc is the number of colors, is an additional motivation for
future studies. In four dimensions such dimension 8 operators
were studied in [29] for Yang-Mills theories for the SUð2Þ
and SUð3Þ color groups. Here we extend the set and provide
the one loop mixing matrix of dimension 8 operators in four
dimensional SUðNcÞ Yang-Mills theory. It will turn out that
there are qualitative structural similarities between the matrix
and the β-functions of the eight dimensional theory.
The article is organized as follows. We discuss the

construction of the eight dimensional Lagrangian which
will be in the same universality class as the non-Abelian
Thirring model and QCD in the next section. The tech-
nology used to renormalize the various n-point functions in
this Lagrangian is discussed in Sec. III before presenting
the main results in Sec. IV. The connection with the large
Nf expansion of the critical exponents of the universality
class is checked in Sec. V. In Sec. VI we change tack and
determine the mixing matrix of anomalous dimensions of
dimension 8 operators in four dimensional Yang-Mills
theory. Finally, concluding remarks are given in Sec. VII.

II. BACKGROUND

As the first stage to constructing the eight dimensional
version of QCDwe recall the corresponding Lagrangians of
the lower dimensional cases. The four dimensional
Lagrangian is

Lð4Þ ¼−
1

4
Ga

μνGaμνþ iψ̄ iI=Dψ iI −
1

2α
ð∂μAa

μÞ2− c̄að∂μDμcÞa

ð2:1Þ
where we have included the canonical linear covariant
gauge fixing term with the associated Faddeev-Popov
ghost. In (2.1) and throughout the gluon field will be
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denoted by Aa
μ, the quark field will be ψ iI and ca are the

Faddeev-Popov ghost fields where 1 ≤ i ≤ Nf, 1 ≤ I ≤ NF

and 1 ≤ a ≤ NA. The parameters Nf, NA and NF corre-
spond respectively to the number of (massless) quark
flavors and the dimensions of the adjoint and fundamental
representations of a general color group. We use α as the
linear covariant gauge parameter where α ¼ 0 will corre-
spond to the Landau gauge. To assist with the process of
writing down the Lagrangians which are equivalent to (2.1)
in higher dimensions one can regard (2.1) as being com-
prised of two parts. The first is the set of independent gauge
invariant operators of dimension four built from the gluon
and quark fields which have canonical dimensions of 1 and 3

2

in four dimensions. Then in order to be able to carry out
explicit computations in perturbation theory, for instance,
one has to add in the appropriate gauge fixing term to ensure
that a nonsingular propagator can be constructed for the
gluon. This is the gauge fixing part of (2.1). From an
operator point of view this involves the independent gauge
variant dimension four operators. By independent we mean
those operators which are not related by linear combinations
of total derivative operators. Given this the six dimensional
extension of (2.1) was provided in [24] based on similar
work given in [30]. With the increase in dimension the
canonical dimension of the quark field is now 5

2
whichmeans

that there are no quartic quark interactions. However, there
are two independent gauge invariant gluonic operators
which are apparent in the Lagrangian [24],

Lð6Þ ¼ −
1

4
ðDμGa

νσÞðDμGaνσÞ þ g2
6
fabcGa

μνGbμσGcν
σ

−
1

2α
ð∂μ∂νAa

νÞð∂μ∂σAa
σÞ − c̄a□ð∂μDμcÞa

þ iψ̄ iI=Dψ iI ð2:2Þ
which means that there are two coupling constants.
Demonstrating the independence of the gluonic operators
lies in part with the use of the Bianchi identity

DμGa
νσ þDνGa

σμ þDσGa
μν ¼ 0: ð2:3Þ

The remaining gauge invariant operator is the quark kinetic
term wherein lies the quark-gluon interaction which is the
core interaction in the tower of theories at theWilson-Fisher
fixed point. Throughout we will always denote the usual
gauge coupling constant by g1 when there are one or more
interactions. The remaining part of (2.2) is completed with
the dimension six linear covariant gauge fixing termwhich is
the obvious extension of the four dimensional one.
Equipped with this brief review of the construction of the

dimension four and six non-Abelian gauge theories, the
algorithm is now in place to proceed to eight dimensions. In
[31,32] the renormalization of dimension eight operators in
four dimensional Yang-Mills theory was considered and
those articles serve as the basis for the eight dimensional
Lagrangian. As was discussed in [31] there is only one

independent dimension eight 2-point gauge invariant oper-
ator which therefore serves as the gluon kinetic term.
Equally [31,32] there are two independent dimension eight
3-point gluon operators. The new feature in eight dimen-
sions, which derives from the fact that the gluon canonical
dimension is unity, is that there will be quartic gluon field
strength gauge invariant operators. The same property is
present in eight dimensional QED which was introduced
in [26] where there were several quartic photon self-
interactions. For the non-Abelian case there is the added
complication of having to incorporate the color group
indices. The upshot is that one has to specify a particular
color group as it is not possible to have a finite set of quartic
gluon opertors for a general Lie group [31]. Therefore we
restrict ourselves to the SUðNcÞ Lie group and recall
relevant basic properties of this group needed for the
Lagrangian. If Ta is the Lie group generator then in
SUðNcÞ the product of two generators can be written as
the linear combination

TaTb ¼ 1

2Nc
δab þ 1

2
dabcTc þ i

2
fabcTc ð2:4Þ

where dabc is totally symmetric and the structure constants,
fabc, are totally antisymmetric. Equally when we have to
treat Feynman graphs with quarks, the SUðNcÞ relation

Ta
IJT

a
KL ¼ 1

2

h
δILδKJ −

1

Nc
δIJδKL

i
ð2:5Þ

will be useful. To define gauge independent quartic gluon
operators we introduce the rank 4 color tensors

fabcd4 ≡ fabefcde; dabcd4 ≡ dabedcde ð2:6Þ

and then use the SUðNcÞ relation between them [33],

fabcd4 ¼ 2

Nc
ðδacδbd − δadδbcÞ þ dacbd4 − dadbc4 : ð2:7Þ

This in effect [33] is the generalization of the relation
between the product of Levi-Civita tensors in SUð2Þ to the
color groups SUðNcÞ for Nc ≥ 3. It means that we use the
tensor dabcd4 as the preferred tensor of the gauge invariant
operators. One reason for this is that dabcd4 is separately
symmetric in the first or last pair of indices from the full
symmetry property of dabc. Consequently there are eight
gauge independent quartic gluon operators in the eight
dimensional extension of the QCD Lagrangian leading to
eleven independent coupling constants overall. The full
Lagrangian is
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Lð8Þ ¼ −
1

4
ðDμDνGa

σρÞðDμDνGaσρÞ þ g2
4
fabcGa

μνDμGbσρDνGc
σρ þ iψ̄ iI=Dψ iI þ g3

2
fabcGa

μνDσGbμρDσGcν
ρ

þ g24G
a
μσGaμρGbσνGb

ρν þ g25G
a
μσGbμρGbσνGa

ρν þ g26G
a
μσGa

νρGbσμGbρν þ g27G
a
μσGb

νρGaσμGbρν þ g28d
abcd
4 Ga

μσGbμσGc
νρGdνρ

þ g29d
abcd
4 Ga

μσGcμρGbνσGd
νρ þ g210d

acbd
4 Ga

μσGbμσGc
νρGdνρ þ g211d

adbc
4 Ga

μσGcμρGbνσGd
νρ −

1

2α
ð∂μ∂ν∂σAa

σÞð∂μ∂ν∂ρAa
ρÞ

− ð□c̄aÞð□∂μDμcÞa ð2:8Þ

where like (2.1) and (2.2) the dimension eight linear
covariant gauge fixing term is included. In addition the
quark kinetic term is present and is equivalent to those in
the lower dimensional Lagrangians which therefore pre-
serves the connection with the Wilson-Fisher fixed point
and the underlying universal theory which is accessible
from the large Nf expansion. While (2.8) represents the full
SUðNcÞ Lagrangian those for Nc ¼ 2 and 3 are smaller due
to properties of the color tensors. For instance, for the
SUð2Þ group dabc ¼ 0. So for that group one has g8 ¼
g9 ¼ g10 ¼ g11 ¼ 0. For SUð3Þ dabc ≠ 0 but dabcd4 satisfies

dadbc4 ¼−dabcd4 −dacbd4 þ1

3
½δabδcdþδacδbdþδadδbc�: ð2:9Þ

This means that two of the operators involving dabcd4 are
absent and within our computations we have set g10 ¼
g11 ¼ 0 for SUð3Þ. Finally we note several useful SUðNcÞ
group identities, which we used within our graph evalu-
ations, that are [33]

dabcc4 ¼ 0; dacbc4 ¼ ½N2
c − 4�
Nc

δab;

dapbq4 dcdpq4 ¼ ½N2
c − 12�
2Nc

dabcd4 : ð2:10Þ

From the quadratic part of (2.8) in momentum space we
find that the gluon and ghost propagators are

hAa
μðpÞAb

νð−pÞi ¼ −
δab

ðp2Þ3
h
ημν − ð1 − αÞpμpν

p2

i
;

hcaðpÞc̄bð−pÞi ¼ −
δab

ðp2Þ3 ; ð2:11Þ

which are formally the same as those in lower dimensions
aside from the cubic power of the overall factor. This is a
similar feature to other eight dimensional theories and
means that the evaluation of the Feynman graphs we have
to compute becomes exceedingly tedious.
While we have constructed the most general non-Abelian

gauge theory based on a simple Lie group in (2.8), this is in
the case where there are no masses present. The latter
would not contribute to the renormalization group func-
tions at the Wilson-Fisher fixed point which is the main

reason for not considering them initially. However, one
could view the presence of masses as touching the lower
dimensional operators which are allowed by power count-
ing renormalizability and which would be a staging point
for connecting with the other equivalent Lagrangians for
this universality class. Therefore, budgeting for nonzero
masses (2.8) generalizes to

Lð8Þ
m ¼ Lð8Þ þm1ψ̄

iIψ iI −
1

4
m2

2ðDμGa
νσÞðDμGaνσÞ

−
1

2α
m2

3ð∂μ∂νAa
νÞð∂μ∂σAa

σÞ −m2
3c̄

a
□ð∂μDμcÞa

−
1

4
m4

4G
a
μνGaμν −

1

2α
m4

5ð∂μAa
μÞ2 −m4

5c̄
að∂μDμcÞa

−
1

2
m6

6A
a
μAaμ þm6

6αc̄
aca þ 1

6
m2

7f
abcGa

μνGbμσGcν
σ:

ð2:12Þ

The additional terms fall into two classes which are
operators which are gauge invariant or not. In the latter
case those operators are Becchi-Rouet-Stora-Tyutin
(BRST) invariant. In particular it is evident that the lower
dimensional operators are a reflection of the Lagrangians of
the lower dimensional massless Lagrangians in the same
universality class. In other words in the critical dimension
of the lower dimensional Lagrangians the masses would
correspond to coupling constants and hence be dimension-
less in that spacetime. Implicit in (2.12) is the assumption
of locality. If one ignored this and allowed for nonlocal
operators then it is possible to construct a completely gauge
invariant massive Lagrangian as discussed in [24]. The
gluon and ghost propagators of (2.12) have Stingl forms
[34], since

hAa
μðpÞAb

νð−pÞi ¼ −
δabPμνðpÞ

½ðp2Þ3 þm2
2ðp2Þ2 þm4

4p
2 þm6

6�

−
αδabLμνðpÞ

½ðp2Þ3 þm2
3ðp2Þ2 þm2

5p
2 þ αm6

6�
;

hcaðpÞc̄bð−pÞi ¼ −
δab

½ðp2Þ3 þm2
3ðp2Þ2 þm4

5p
2 þ αm6

6�
;

ð2:13Þ

where
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PμνðpÞ ¼ ημν −
pμpν

p2
; LμνðpÞ ¼

pμpν

p2
ð2:14Þ

are the respective transverse and longitudinal projection
tensors. In this formulation it is apparent that the pole
structure of the Faddeev-Popov ghost propagator matches
that of the longitudinal part of the gluon. This ensures the
cancellation of unphysical degrees of freedom within
computations with the massive Lagrangian.

III. TECHNICAL DETAILS

The task of renormalizing (2.8) requires several technical
tools some of which were applied to the determination of
the two loop renormalization group functions of Lð6Þ.
However, with the presence of gauge independent 4-point
operators built from the field strength, the extraction of the
β-functions of the respective coupling constants required a
technique not employed in [24]. First, we note that we have
constructed an automatic program to renormalize the
various 2-, 3- and 4-point functions. The graphs contrib-
uting to each Green’s function are generated using the
FORTRAN based package QGRAF [35]. With the spinor,
Lorentz and color group indices added to the electronic
representation of the diagrams, each diagram is then passed
to the integration routine specific to that particular n-point
function. Once the divergences with respect to the regu-
larization are known for each graph, the full set is summed
and the renormalization constants determined automati-
cally without the use of the subtraction method but instead
using the algorithm provided in [36]. Briefly this is
achieved by computing each Green’s function as a function
of the bare coupling constants and gauge parameter with
their respective renormalized versions introduced by multi-
plicatively rescaling with the constant of proportionality
being the renormalization constant. Specifically, at each
loop order the renormalization constant associated with
the Green’s function is fixed by ensuring it is finite which
determines the unknown counterterm at that order.
Throughout this article we will consider only the MS
scheme and regularize the theory using dimensional regu-
larization where the spacetime dimension d is set to d ¼
8 − 2ϵ and ϵ is small. It acts as the regularization parameter.
To handle the significant amounts of internal algebra of this
whole process, use is made of the symbolic manipulation
language FORM [37,38]. It is worth noting that the
renormalization of (2.8) involves 12 independent param-
eters as well as color and flavor parameters together with
gluon and ghost propagators each of which have an
exponent of 3. This means there is a significant amount
of integration to be performed, compared to four dimen-
sional QCD, for which FORM is the most efficient and
practical tool for the task.
In order to construct the integration routine for each

type of n-point function, we follow what is now a

well-established procedure which is the application of
the integration by parts algorithm devised by Laporta
[39]. To evaluate a Feynman graph it is first written as a
sum of scalar integrals where scalar products of internal and
external momenta are rewritten as combinations of the
inverse propagators. For cases where there is no such
propagator in an integral, which is termed an irreducible,
the basis of propagators is extended or completed. It
transpires that for each n-point function at a particular
loop order there is a small set of such independent
completions which are called integral families. These
may or may not correspond to an actual Feynman diagram
topology. Irrespective of this it is the mathematical repre-
sentation of the integral family which is at the center of the
Laporta method. One can determine a set of general
algebraic relations between integrals in each family by
integration by parts and Lorentz identities. The power of
the Laporta algorithm is in realizing that these relations can
be solved algebraically in terms of a small set of basic or
master Feynman integrals [39]. Thus if the ϵ expansion of
these master integrals is known then all the Feynman
integrals at that loop order can be determined. In particular
this includes the specific ones which comprise each of the
graphs in the n-point functions of interest. There are various
encodings of the Laporta algorithm available but we chose
to use both versions of REDUZE [40,41]. While this outlines
the general approach we used, there are specific points
which required attention. As we are renormalizing an eight
dimensional Lagrangian we therefore need to have the
master integrals in that dimension. Ordinarily the main
focus in renormalization computations is four dimensions.
However, we have not had to perform the explicit evalu-
ation of master integrals by direct methods which is the
normal way to determine their values. Instead we can
exploit an elegant technique developed by Tarasov in
[42,43]. By considering the graph polynomial representa-
tion of a Feynman graph, it is possible to relate a Feynman
integral in d-dimensions in terms of a linear combination of
the same integrals in (dþ 2)-dimensions. The latter, how-
ever, have several propagators with increased powers which
is clearly necessary on dimensional grounds. This higher
dimensional set of integrals can be reduced to a linear
combination of masters in the higher dimension. One of
these will be the equivalent topology as the d-dimensional
master with the remainder of the combination being
masters with a fewer number of propagators [42,43]. As
is the case in the Laporta algorithm, some of these lower
masters are integrals, such as simple bubble integrals,
which are trivial to evaluate without using the Tarasov
techniques. Therefore one can connect the more difficult to
compute masters in d-dimensions with the unknown ones
in (dþ 2)-dimensions. If the lower dimensional ones are
available then the higher dimensional ones follow immedi-
ately. For our purposes we need to apply this connection
twice since the various masters required are known in four
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dimensions. For instance, the 2-point masters to four loops
have been listed in [44] while the 3-point masters for
completely off-shell external legs were calculated to two
loops in [45,46]. Also the one loop 4-point box integral is
known [47]. Although we will not require the higher loop
masters here, it is worth noting what has been achieved over
several years.
This leads naturally to a brief discussion of the treatment

of each set of n-point functions separately. For the 2-point
functions and hence wave function renormalization con-
stants, we carried out the renormalization to two loops. The
main reason for this is that the double pole in ϵ of the two
loop renormalization constant is already predetermined by
the one loop computation. Therefore this provides a partial
check on the leading order renormalization. For the 2-point
function we used the massless Lagrangian and constructed
the one and two loop masters by direct evaluation as these
are straightforward bubble integrals. By contrast for the
3-point functions, since nullifying an external leg leads to
infrared issues, we had to extend the four dimensional off-
shell massless master 3-point function of [44,46] to eight
dimensions using the Tarasov method [42,43]. For instance,
if we define the one loop triangle integral at the completely
symmetric point by

Iðα; β; γÞ ¼
Z
k

1

ðk2Þαððk − pÞ2Þβððkþ qÞ2Þγ ð3:1Þ

where p and q are the external momenta satisfying

p2 ¼ q2 ¼ −μ2 ð3:2Þ

and
R
k ¼ ddk=ð2πÞd then

Ið1;1;1Þjd¼8−2ϵ ¼−μ2
�
−

1

8ϵ
−

61

144
−
2π2

81
þ 1

27
ψ 0
�
1

3

�

þ
�
1

18
ψ 0
�
1

3

�
−
895

864
−
23π2

864
−
2

3
s3

�
π

6

�

þ 35

5832
π3

ffiffiffi
3

p
þ π

216
ln2ð3Þ

ffiffiffi
3

p �
ϵþOðϵ2Þ

�
ð3:3Þ

where ψðzÞ ¼ d
dz lnΓðzÞ and

snðzÞ ¼
1ffiffiffi
3

p ℑ

�
Lin

�
eizffiffiffi
3

p
��

ð3:4Þ

in terms of the polylogarithm function LinðzÞ. While only
the simple pole in ϵ is relevant for the renormalization of
(2.8), we have included the subsequent terms in the ϵ
expansion for comparison with the analogous lower dimen-
sional masters. The finite part for instance is directly
correlated with the finite four dimensional master. The

simple pole in (3.3) by contrast derives from the one loop
bubble integrals which emerge in the Laporta reduction
after the construction of the (dþ 2)-dimensional integrals
from the d-dimensional master across two iterations.
Equipped with (3.3) the three coupling constants associated
with the three independent 3-point gluonic operators as
well as those of the quark and ghost vertices of (2.8) were
renormalized using this strategy. For the latter vertices the
quark-gluon vertex renormalization, for instance, deter-
mines the renormalization constant for g1 which can be
checked in the ghost-gluon vertex computation. For the
remaining two couplings in this set, g2 and g3, their
renormalization can be determined from the gluon 3-point
vertex which provides a third check on the β-function of g1.
From examining the Feynman rule for the 3-gluon vertex it
can be seen that there are three independent tensor channels
to provide three independent linear relations between the
renormalization constants for these couplings.
For the final part of the renormalization we have to

extract the renormalization constants for the couplings
associated with the purely quartic operators of each eight
dimensional Lagrangian. For this we used the vacuum
bubble expansion of [48,49] as it was more efficient than
constructing a large integration by parts database using
REDUZE. This would be time consuming to construct due to
the high pole propagators for the gluon and ghost. By
contrast, in the vacuum bubble expansion massless propa-
gators are recursively replaced by massive ones in such a
way that the new propagators eventually produce Feynman
integrals which are ultraviolet finite. Hence by Weinberg’s
theorem [50], these do not contribute to the overall
renormalization of the Green’s function and so such terms
can be neglected. Subsequently the expansion terminates
after a finite number of iterations. The expansion is based
on the exact identity [48,49],

1

ðk − pÞ2 ¼
1

½k2 þm2� þ
2kp − p2 þm2

ðk − pÞ2½k2 þm2� : ð3:5Þ

The contribution to the overall degree of divergence of each
of the numerator pieces in the second term is less than that
of the original propagator. In addition, the first term does
not depend on the external momentum. So when all such
terms are collected within a Feynman integral, it becomes a
massive vacuum integral. Of course to produce the con-
tributions which are purely vacuum bubbles and contain the
ultraviolet divergence of the Feynman graph, the identity
has to be repeated sufficient times. Once this has been
achieved a simple Laporta reduction of one loop vacuum
bubbles is constructed to reduce the only one loop master
vacuum bubble which is a simple standard integral in eight
dimensions. Another advantage of this approach is that the
tensor structure arising from the external momenta together
with the scalar products of external momenta derived from
(3.5) emerge relatively quickly. In the summation of all the
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contributions to the gluon 4-point function such terms are
central to disentangling the coupling constant renormaliza-
tion constants for each of the independent quartic operators.
A useful check on the procedure is the absence of the
parameter of the linear covariant gauge fixing in each of the
coupling constant renormalizations in the three separate
color group computations we have to perform.

IV. RESULTS

We turn now to the task of recording the results of our
renormalization. First, we have followed the conventions of

previous analyses [24] and note that the renormalization of
the parameter of the linear covariant gauge fixing is not
independent of the gluon wave function renormalization in
that

γAðgiÞ þ γαðgiÞ ¼ 0: ð4:1Þ

We have checked that this is true for all the SUðNcÞ color
groups. For SUð2Þ the anomalous dimensions of the
fields are

γSUð2Þ
A ðgiÞjα¼0 ¼ ½24Nfg21 þ 871g21 − 4158g1g2 − 1386g1g3 þ 567g22 þ 378g2g3 þ 63g23�

1

1680

þ ½−57594816Nfg41 − 2754788105g41 þ 37417536Nfg31g2 þ 406217016g31g2 þ 18601152Nfg31g3

þ 191078016g31g3 − 4398624Nfg21g
2
2 − 1747949454g21g

2
2 − 3900096Nfg21g2g3 − 2040796188g21g2g3

− 1053216Nfg21g
2
3 − 261984978g21g

2
3 þ 137535552g21g

2
4 − 275071104g21g

2
5 − 1124500608g21g

2
6

þ 2249001216g21g
2
7 þ 425614392g1g32 þ 881618976g1g22g3 þ 500362128g1g2g23 þ 155288448g1g2g24

þ 425614392g1g32 þ 881618976g1g22g3 − 310576896g1g2g25 þ 234033408g1g2g26 þ 425614392g1g32

þ 881618976g1g22g3 − 468066816g1g2g27 þ 84640248g1g33 þ 425614392g1g32 þ 881618976g1g22g3

þ 200785536g1g3g24 − 401571072g1g3g25 þ 425614392g1g32 þ 881618976g1g22g3 − 21337344g1g3g26

þ 42674688g1g3g27 þ 425614392g1g32 þ 881618976g1g22g3 − 26643897g42 − 87736068g32g3

þ 425614392g1g32 þ 881618976g1g22g3 − 89488602g22g
2
3 − 52581312g22g

2
4 þ 425614392g1g32

þ 881618976g1g22g3 þ 105162624g22g
2
5 þ 19813248g22g

2
6 þ 425614392g1g32 þ 881618976g1g22g3

− 39626496g22g
2
7 − 35913276g2g33 þ 425614392g1g32 þ 881618976g1g22g3 − 75696768g2g3g24

þ 151393536g2g3g25 þ 425614392g1g32 þ 881618976g1g22g3 þ 40303872g2g3g26 − 80607744g2g3g27

þ 425614392g1g32 þ 881618976g1g22g3 − 5230701g43 − 19389888g23g
2
4 þ 425614392g1g32

þ 881618976g1g22g3 þ 38779776g23g
2
5 þ 11233152g23g

2
6 þ 425614392g1g32 þ 881618976g1g22g3

− 22466304g23g
2
7�

1

338688000
þOðg6i Þ

γSUð2Þ
c ðgiÞjα¼0 ¼ −

7

24
g21 þ ½12312Nfg21 − 3321487g21 − 628614g1g2 − 241878g1g3 þ 77301g22

þ 192654g2g3 þ 108549g23�
g21

2419200
þOðg6i Þ

γSUð2Þ
ψ ðgiÞjα¼0 ¼

7

16
g21 þ ½−17352Nfg21 þ 3509752g21 þ 1722294g1g2 þ 973938g1g3 − 196371g22

− 272034g2g3 − 121779g23�
g21

1612800
þOðg6i Þ ð4:2Þ

in the Landau gauge which is chosen for presentational
reasons. The full α dependent results are contained in the
Supplemental Material [51]. One of the reasons for
proceeding to two loops for this is as a check on the
computation. The double pole in ϵ at two loops of the
respective renormalization constants is not independent
as it depends on the simple pole at one loop. We have

verified that this is indeed the case in the explicit
renormalization constants for arbitrary α. This checks
the one loop coupling constant renormalization as well as
the application of the Tarasov method [42,43], to raise the
four and six dimension massless two loop 2-point master
integrals to eight dimensions. The one loop β-functions
are
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βSUð2Þ
1 ðgiÞ ¼ ½24Nfg21 − 109g21 − 4158g1g2 − 1386g1g3 þ 567g22 þ 378g2g3 þ 63g23�

g1
3360

þOðg5i Þ

βSUð2Þ
2 ðgiÞ ¼ ½−272Nfg31 þ 32152g31 þ 216Nfg21g2 þ 17919g21g2 − 19908g21g3 − 32634g1g22 − 2646g1g2g3 þ 3528g1g23

þ 5103g32 þ 2898g22g3 − 441g2g23 − 168g33�
1

10080
þOðg5i Þ

βSUð2Þ
3 ðgiÞ ¼ ½−128Nfg31 − 18573g31 þ 14889g21g2 þ 36Nfg21g3 þ 8163g21g3 − 2520g1g22 − 7539g1g2g3 − 777g1g23

þ 5544g1g24 − 11088g1g25 − 3696g1g26 þ 7392g1g27 þ 819g22g3 þ 378g2g23 − 1512g2g24 þ 3024g2g25

þ 1008g2g26 − 2016g2g27 − 21g33 − 504g3g24 þ 1008g3g25 þ 336g3g26 − 672g3g27�
1

1680
þOðg5i Þ

βSUð2Þ
4 ðgiÞ ¼ ½800Nfg41 þ 73999g41 − 82068g31g2 − 48426g31g3 þ 13734g21g

2
2 þ 12852g21g2g3 þ 3360g21g

2
3 þ 1152Nfg21g

2
4

− 89904g21g
2
4 − 32592g21g

2
5 − 113568g21g

2
6 − 193536g21g

2
7 − 42g1g22g3 þ 1008g1g2g23 − 179424g1g2g24

− 15456g1g2g25 − 2688g1g2g26 þ 8064g1g2g27 þ 2058g1g33 − 6720g1g3g24 − 7392g1g3g25 − 43008g1g3g26

− 45696g1g3g27 þ 27216g22g
2
4 þ 18144g2g3g24 − 903g43 − 23184g23g

2
4 − 5712g23g

2
5 − 12768g23g

2
6 − 13440g23g

2
7

− 169344g44 − 188160g24g
2
5 − 177408g24g

2
6 − 139776g24g

2
7 − 124992g45 − 145152g25g

2
6 − 21504g25g

2
7

− 37632g46 − 43008g26g
2
7 − 43008g47�

1

40320
þOðg6i Þ

βSUð2Þ
5 ðgiÞ ¼ ½−1192Nfg41 − 101355g41 þ 84756g31g2 þ 19194g31g3 − 14070g21g

2
2 − 16884g21g2g3 þ 1848g21g

2
3 þ 52416g21g

2
4

þ 1152Nfg21g
2
5 þ 16608g21g

2
5 þ 92064g21g

2
6 þ 193536g21g

2
7 þ 42g1g22g3 þ 336g1g2g23 − 12096g1g2g24

− 181440g1g2g25 þ 8064g1g2g26 − 8064g1g2g27 þ 966g1g33 − 11424g1g3g24 − 43008g1g3g25 þ 75264g1g3g26
þ 45696g1g3g27 þ 27216g22g

2
5 þ 18144g2g3g25 − 21g43 þ 10080g23g

2
4 þ 3360g23g

2
5 þ 2016g23g

2
6 þ 13440g23g

2
7

− 10752g44 − 107520g24g
2
5 − 37632g24g

2
6 − 10752g24g

2
7 − 12096g45 − 26880g25g

2
6

− 129024g25g
2
7 − 26880g46 − 43008g26g

2
7�

1

40320
þOðg6i Þ

βSUð2Þ
6 ðgiÞ ¼ ½272Nfg41 − 248207g41 þ 14742g31g2 þ 134925g31g3 þ 231g21g

2
2 − 7728g21g2g3 − 1323g21g

2
3 − 222432g21g

2
4

− 343392g21g
2
5 þ 2304Nfg21g

2
6 − 1440480g21g

2
6 − 228480g21g

2
7 þ 147g1g22g3 − 4326g1g2g23 þ 26880g1g2g24

þ 48384g1g2g25 − 204288g1g2g26 þ 2688g1g2g27 − 4557g1g33 þ 52416g1g3g24 þ 118272g1g3g25
þ 247296g1g3g26 þ 34944g1g3g27 þ 54432g22g

2
6 þ 36288g2g3g26 − 42g43 þ 3360g23g

2
4 þ 7392g23g

2
5 þ 50400g23g

2
6

− 21504g44 − 80640g24g
2
5 − 451584g24g

2
6 − 21504g24g

2
7 − 77952g45 − 806400g25g

2
6 − 43008g25g

2
7 − 1666560g46

− 301056g26g
2
7�

1

80640
þOðg6i Þ

βSUð2Þ
7 ðgiÞ ¼ ½8Nfg41 − 472989g41 þ 154266g31g2 þ 155883g31g3 − 10647g21g

2
2 − 31584g21g2g3 þ 651g21g

2
3 þ 637056g21g

2
4

þ 480480g21g
2
5 þ 1704192g21g

2
6 þ 2304Nfg21g

2
7 þ 3470496g21g

2
7 − 147g1g22g3 − 1050g1g2g23 − 72576g1g2g24

− 52416g1g2g25 − 202944g1g2g26 − 751296g1g2g27 − 3339g1g33 − 124992g1g3g24 − 81984g1g3g25
− 307776g1g3g26 − 651840g1g3g27 þ 54432g22g

2
7 þ 36288g2g3g27 − 42g43 − 9408g23g

2
4 − 6048g23g

2
5

− 41664g23g
2
6 − 74592g23g

2
7 − 91392g44 − 80640g24g

2
5 − 408576g24g

2
6 − 1580544g24g

2
7 − 5376g45 − 64512g25g

2
6

− 913920g25g
2
7 − 118272g46 − 3440640g26g

2
7 − 4773888g47�

1

80640
þOðg6i Þ: ð4:3Þ

The main perturbative check on these expressions is the absence of the gauge parameter. We computed the various
4-point functions with nonzero α and verified that it canceled in the final Green’s function as it ought since we are using
the MS scheme.
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The results for the case of SUð3Þ are somewhat similar aside from the additional two couplings. We have

γSUð3Þ
A ðgiÞjα¼0 ¼ ½16g21Nf þ 871g21 − 4158g1g2 − 1386g1g3 þ 567g22 þ 378g2g3 þ 63g23�

1

1120

þ ½−110877632g41Nf − 8264364315g41 þ 74835072g31g2Nf þ 1218651048g31g2 þ 37202304g31g3Nf

þ 573234048g31g3 − 8797248g21g
2
2Nf − 5243848362g21g

2
2 − 7800192g21g2g3Nf − 6122388564g21g2g3

− 2106432g21g
2
3Nf − 785954934g21g

2
3 þ 275071104g21g

2
4 − 550142208g21g

2
5 − 2249001216g21g

2
6

þ 4498002432g21g
2
7 þ 3748335360g21g

2
8 þ 229225920g21g

2
9 þ 1276843176g1g32 þ 2644856928g1g22g3

þ 1501086384g1g2g23 þ 310576896g1g2g24 − 621153792g1g2g25 þ 468066816g1g2g26 − 936133632g1g2g27

− 780111360g1g2g28 þ 258814080g1g2g29 þ 253920744g1g33 þ 401571072g1g3g24 − 803142144g1g3g25
− 42674688g1g3g26 þ 85349376g1g3g27 þ 71124480g1g3g28 þ 334642560g1g3g29 − 79931691g42

− 263208204g32g3 − 268465806g22g
2
3 − 105162624g22g

2
4 þ 210325248g22g

2
5 þ 39626496g22g

2
6

− 79252992g22g
2
7 − 66044160g22g

2
8 − 87635520g22g

2
9 − 107739828g2g33 − 151393536g2g3g24

þ 302787072g2g3g25 þ 80607744g2g3g26 − 161215488g2g3g27 − 134346240g2g3g28 − 126161280g2g3g29

− 15692103g43 − 38779776g23g
2
4 þ 77559552g23g

2
5 þ 22466304g23g

2
6 − 44932608g23g

2
7 − 37443840g23g

2
8

− 32316480g23g
2
9�

1

451584000
þOðg6i Þ

γSUð3Þ
c ðgiÞjα¼0 ¼ −

7

16
g21 þ ½8208g21Nf − 3321487g21 − 628614g1g2 − 241878g1g3 þ 77301g22 þ 192654g2g3

þ 108549g23�
g21

1075200
þOðg6i Þ

γSUð3Þ
ψ ðgiÞjα¼0 ¼

7

9
g21 þ ½−3856g21Nf þ 1147459g21 þ 574098g1g2 þ 324646g1g3 − 65457g22

− 90678g2g3 − 40593g23�
g21

201600
þOðg6i Þ

βSUð3Þ
1 ðgiÞ ¼ ½16g21Nf − 109g21 − 4158g1g2 − 1386g1g3 þ 567g22 þ 378g2g3 þ 63g23�

g1
2240

þOðg5i Þ

βSUð3Þ
2 ðgiÞ ¼ ½−544g31Nf þ 96456g31 þ 432g21g2Nf þ 53757g21g2 − 59724g21g3 − 97902g1g22 − 7938g1g2g3

þ 10584g1g23 þ 15309g32 þ 8694g22g3 − 1323g2g23 − 504g33�
1

20160
þOðg5i Þ

βSUð3Þ
3 ðgiÞ ¼ ½−256g31Nf − 55719g31 þ 44667g21g2 þ 72g21g3Nf þ 24489g21g3 − 7560g1g22 − 22617g1g2g3

− 2331g1g23 þ 11088g1g24 − 22176g1g25 − 7392g1g26 þ 14784g1g27 þ 12320g1g28 þ 9240g1g29 þ 2457g22g3

þ 1134g2g23 − 3024g2g24 þ 6048g2g25 þ 2016g2g26 − 4032g2g27 − 3360g2g28 − 2520g2g29 − 63g33

− 1008g3g24 þ 2016g3g25 þ 672g3g26 − 1344g3g27 − 1120g3g28 − 840g3g29�
1

3360
þOðg5i Þ

βSUð3Þ
4 ðgiÞ ¼ ½−784g41Nf − 61551g41 þ 6048g31g2 − 65772g31g3 − 756g21g

2
2 − 9072g21g2g3 þ 11718g21g

2
3 þ 3456g21g

2
4Nf

− 168696g21g
2
4 − 208656g21g

2
5 − 417312g21g

2
6 − 245952g21g

2
8 − 85680g21g

2
9 þ 3024g1g2g23 − 861840g1g2g24

þ 6048g1g2g25 þ 12096g1g2g26 þ 6048g1g2g29 þ 6804g1g33 − 81648g1g3g24 − 30240g1g3g25 − 60480g1g3g26

− 88704g1g3g28 þ 14112g1g3g29 þ 122472g22g
2
4 þ 81648g2g3g24 − 2079g43 − 58968g23g

2
4 − 27216g23g

2
5

− 54432g23g
2
6 − 20160g23g

2
8 − 17136g23g

2
9 − 870912g44 − 806400g24g

2
5 − 1016064g24g

2
6 − 419328g24g

2
7

− 344064g24g
2
8 − 365568g24g

2
9 − 395136g45 − 516096g25g

2
6 − 64512g25g

2
7 − 290304g25g

2
8 − 303744g25g

2
9

− 193536g46 − 129024g26g
2
7 − 150528g26g

2
8 − 252672g26g

2
9 − 129024g47 − 21504g27g

2
9 − 50176g48

− 129024g28g
2
9 − 62720g49�

1

120960
þOðg6i Þ
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βSUð3Þ
5 ðgiÞ ¼ ½−3576g41Nf − 445839g41 þ 380394g31g2 þ 97335g31g3 − 63189g21g

2
2 − 74466g21g2g3 þ 6363g21g

2
3

þ 157248g21g
2
4 þ 3456g21g

2
5Nf þ 95400g21g

2
5 þ 383040g21g

2
6 þ 580608g21g

2
7 þ 360864g21g

2
8 þ 88200g21g

2
9

þ 189g1g22g3 þ 1008g1g2g23 − 36288g1g2g24 − 841680g1g2g25 þ 28224g1g2g26 − 24192g1g2g27 − 20160g1g2g28

− 27216g1g2g29 þ 3213g1g33 − 34272g1g3g24 − 194544g1g3g25 þ 294336g1g3g26 þ 137088g1g3g27

þ 69888g1g3g28 − 21504g1g3g29 þ 122472g22g
2
5 þ 81648g2g3g25 þ 252g43 þ 30240g23g

2
4 þ 15624g23g

2
5

þ 8064g23g
2
6 þ 40320g23g

2
7 þ 23520g23g

2
8 þ 16632g23g

2
9 − 32256g44 − 322560g24g

2
5 − 112896g24g

2
6 − 32256g24g

2
7

− 10752g24g
2
8 − 21504g24g

2
9 − 56448g45 − 161280g25g

2
6 − 387072g25g

2
7 − 172032g25g

2
8 − 118272g25g

2
9 − 161280g46

− 129024g26g
2
7 − 129024g26g

2
8 − 59136g26g

2
9 − 10752g27g

2
9 − 7168g48 þ 25088g28g

2
9 þ 10080g49�

1

120960
þOðg6i Þ

βSUð3Þ
6 ðgiÞ ¼ ½1632g41Nf − 1152069g41 − 120834g31g2 þ 778113g31g3 þ 17703g21g

2
2 − 10584g21g2g3 − 10899g21g

2
3

− 1334592g21g
2
4 − 1846656g21g

2
5 þ 13824g21g

2
6Nf − 8246880g21g

2
6 − 1370880g21g

2
7 − 747264g21g

2
8

− 391440g21g
2
9 þ 1323g1g22g3 − 30870g1g2g23 þ 161280g1g2g24 þ 298368g1g2g25 − 2407104g1g2g26

þ 16128g1g2g27 − 26880g1g2g28 þ 55776g1g2g29 − 29169g1g33 þ 314496g1g3g24 þ 846720g1g3g25
þ 1358784g1g3g26 þ 209664g1g3g27 þ 118272g1g3g28 þ 139104g1g3g29 þ 489888g22g

2
6 þ 326592g2g3g26

− 252g43 þ 20160g23g
2
4 þ 48384g23g

2
5 þ 328608g23g

2
6 þ 7728g23g

2
9 − 129024g44 − 483840g24g

2
5 − 2709504g24g

2
6

− 129024g24g
2
7 − 43008g24g

2
8 − 86016g24g

2
9 − 548352g45 − 5160960g25g

2
6 − 258048g25g

2
7 − 258048g25g

2
8

− 204288g25g
2
9 − 10321920g46 − 1806336g26g

2
7 − 946176g26g

2
8 − 989184g26g

2
9 − 43008g27g

2
9 − 28672g48

− 60928g28g
2
9 − 20160g49�

1

483840
þOðg6i Þ

βSUð3Þ
7 ðgiÞ ¼ ½608g41Nf − 5338695g41 þ 1641906g31g2 þ 1839159g31g3 − 111447g21g

2
2 − 343224g21g2g3 þ 4851g21g

2
3

þ 8797824g21g
2
4 þ 3673152g21g

2
5 þ 11805696g21g

2
6 þ 27648g21g

2
7Nf þ 59727168g21g

2
7 þ 1537536g21g

2
8

þ 1832880g21g
2
9 − 1323g1g22g3 − 17514g1g2g23 − 983808g1g2g24 − 395136g1g2g25 − 1378944g1g2g26

− 13491072g1g2g27 − 53760g1g2g28 − 213024g1g2g29 − 41895g1g33 − 1620864g1g3g24 − 604800g1g3g25
− 2072448g1g3g26 − 11313792g1g3g27 − 231168g1g3g28 − 385056g1g3g29 þ 979776g22g

2
7 þ 653184g2g3g27

− 504g43 − 129024g23g
2
4 − 36288g23g

2
5 − 249984g23g

2
6 − 1342656g23g

2
7 − 25872g23g

2
9 − 2145024g44

− 1128960g24g
2
5 − 5225472g24g

2
6 − 41545728g24g

2
7 − 258048g24g

2
8 − 838656g24g

2
9 − 64512g45 − 774144g25g

2
6

− 14192640g25g
2
7 − 43008g25g

2
8 − 204288g25g

2
9 − 1419264g46 − 47738880g26g

2
7 − 516096g26g

2
8 − 989184g26g

2
9

− 147603456g47 − 4300800g27g
2
8 − 8644608g27g

2
9 − 172032g48 − 60928g28g

2
9 − 82880g49�

1

967680
þOðg6i Þ

βSUð3Þ
8 ðgiÞ ¼ ½−512g41Nf − 2093313g41 þ 881370g31g2 þ 530523g31g3 − 64575g21g

2
2 − 166320g21g2g3 þ 7875g21g

2
3

þ 1334592g21g
2
4 þ 2487744g21g

2
5 þ 9434880g21g

2
6 þ 1370880g21g

2
7 þ 9216g21g

2
8Nf þ 10474176g21g

2
8

þ 1021440g21g
2
9 − 1323g1g22g3 þ 6678g1g2g23 − 161280g1g2g24 − 274176g1g2g25 − 1137024g1g2g26

− 16128g1g2g27 − 3360000g1g2g28 − 110208g1g2g29 − 6363g1g33 − 314496g1g3g24 − 435456g1g3g25
− 1733760g1g3g26 − 209664g1g3g27 − 2037504g1g3g28 − 165312g1g3g29 þ 326592g22g

2
8 þ 217728g2g3g28

− 126g43 − 20160g23g
2
4 − 36288g23g

2
5 − 249984g23g

2
6 − 197568g23g

2
8 − 14784g23g

2
9 − 1720320g24g

2
8 − 75264g24g

2
9

− 2967552g25g
2
8 − 129024g25g

2
9 − 11956224g26g

2
8 − 666624g26g

2
9 − 1204224g27g

2
8 − 43008g27g

2
9 − 9619456g48

− 1627136g28g
2
9 − 47488g49�

1

322560
þOðg6i Þ
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βSUð3Þ
9 ðgiÞ ¼ ½6368g41Nf þ 830127g41 − 754740g31g2 − 260442g31g3 þ 125622g21g

2
2 þ 139860g21g2g3 − 1008g21g

2
3

− 314496g21g
2
4 þ 82656g21g

2
5 − 124992g21g

2
6 − 1161216g21g

2
7 − 262080g21g

2
8 þ 2304g21g

2
9Nf − 101376g21g

2
9

− 378g1g22g3 þ 1008g1g2g23 þ 72576g1g2g24 − 100800g1g2g25 − 32256g1g2g26 þ 48384g1g2g27 þ 48384g1g2g28

− 536256g1g2g29 þ 378g1g33 þ 68544g1g3g24 − 4032g1g3g25 − 177408g1g3g26 − 274176g1g3g27 þ 86016g1g3g28

− 63840g1g3g29 þ 81648g22g
2
9 þ 54432g2g3g29 − 2583g43 − 60480g23g

2
4 þ 2016g23g

2
5 − 4032g23g

2
6 − 80640g23g

2
7

− 22848g23g
2
8 − 30240g23g

2
9 − 107520g24g

2
8 − 172032g24g

2
9 þ 451584g25g

2
8 þ 177408g25g

2
9 þ 43008g26g

2
8

þ 43008g26g
2
9 − 172032g27g

2
8 − 236544g27g

2
9 − 7168g48 þ 28672g28g

2
9 − 32704g49�

1

80640
þOðg6i Þ ð4:4Þ

for the full set or renormalization group functions.
The results for SUðNcÞ are more involved partly because of the increase in the number of independent couplings but also

because of the explicit Nc dependence. First, the Landau gauge field dimensions for SUðNcÞ are

γAðgiÞjα¼0 ¼ ½871Ncg21 þ 48Nfg21 − 4158Ncg1g2 − 1386Ncg1g3 þ 567Ncg22 þ 378Ncg2g3 þ 63Ncg23�
1

3360
þOðg4i Þ

γcðgiÞjα¼0 ¼ −
7

48
g21Nc þ ½−3321487Ncg21 þ 24624Nfg21 − 628614Ncg1g2 − 241878Ncg1g3 þ 77301Ncg22

þ 192654Ncg2g3 þ 108549Ncg23�
g21Nc

9676800
þOðg6i Þ

γψðgiÞjα¼0
¼ 7½N2

c − 1�
24Nc

g21 þ ½3388477N4
cg21 − 34704N3

cNfg21 − 2903377N2
cg21 þ 34704NcNfg21 − 485100g21

þ 1722294N4
cg1g2 − 1722294N2

cg1g2 þ 973938N4
cg1g3 − 973938N2

cg1g3 − 196371N4
cg22 þ 196371N2

cg22

− 272034N4
cg2g3 þ 272034N2

cg2g3 − 121779N4
cg23 þ 121779N2

cg23�
g21

4838400N2
c
þOðg6i Þ ð4:5Þ

where we only present the two loop terms of the ghost and quark for compactness. That for γAðgiÞ is given in the
Supplemental Material together with all the other renormalization group functions. For the β-functions we found

β1ðgiÞ ¼
3

320
Ncg1g23 þ

9

160
Ncg1g2g3 þ

27

320
Ncg1g22 −

33

160
Ncg21g3 −

99

160
Ncg21g2 −

109

6720
Ncg31 þ

1

140
Nfg31 þOðg5i Þ

β2ðgiÞ ¼ −
1

120
Ncg33 −

7

320
Ncg2g23 þ

23

160
Ncg22g3 þ

81

320
Ncg32 þ

7

40
Ncg1g23 −

21

160
Ncg1g2g3 −

259

160
Ncg1g22 −

79

80
Ncg21g3

þ 1991

2240
Ncg21g2 þ

4019

2520
Ncg31 þ

3

140
Nfg21g2 −

17

630
Nfg31 þOðg5i Þ

β3ðgiÞ ¼ −
6

5Nc
g3g211 −

2

5Nc
g3g210 þ

3

5Nc
g3g29 þ

4

5Nc
g3g28 −

18

5Nc
g2g211 −

6

5Nc
g2g210 þ

9

5Nc
g2g29 þ

12

5Nc
g2g28 þ

66

5Nc
g1g211

þ 22

5Nc
g1g210 −

33

5Nc
g1g29 −

44

5Nc
g1g28 −

2

5
g3g27 þ

1

5
g3g26 þ

3

5
g3g25 −

3

10
g3g24 −

6

5
g2g27 þ

3

5
g2g26 þ

9

5
g2g25 −

9

10
g2g24

þ 22

5
g1g27 −

11

5
g1g26 −

33

5
g1g25 þ

33

10
g1g24 þ

3

10
Ncg3g211 þ

1

10
Ncg3g210 −

3

20
Ncg3g29 −

1

5
Ncg3g28 −

1

160
Ncg33

þ 9

10
Ncg2g211 þ

3

10
Ncg2g210 −

9

20
Ncg2g29 −

3

5
Ncg2g28 þ

9

80
Ncg2g23 þ

39

160
Ncg22g3 −

33

10
Ncg1g211 −

11

10
Ncg1g210

þ 33

20
Ncg1g29 þ

11

5
Ncg1g28 −

37

160
Ncg1g23 −

359

160
Ncg1g2g3 −

3

4
Ncg1g22 þ

2721

1120
Ncg21g3 þ

709

160
Ncg21g2 −

6191

1120
Ncg31

þ 3

140
Nfg21g3 −

8

105
Nfg31 þOðg5i Þ
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β4ðgiÞ ¼
92

5N2
c
g411 þ

184

15N2
c
g210g

2
11 þ

8

5N2
c
g410 þ

76

5N2
c
g29g

2
11 þ

24

5N2
c
g29g

2
10 þ

22

3N2
c
g49 þ

208

15N2
c
g28g

2
11 þ

64

15N2
c
g28g

2
10 þ

224

15N2
c
g28g

2
9

þ 32

5N2
c
g48 −

1

30N2
c
g23g

2
11 þ

1

15N2
c
g23g

2
10 þ

1

N2
c
g23g

2
9 þ

4

3N2
c
g23g

2
8 þ

1

15N2
c
g1g3g211 þ

44

15N2
c
g1g3g210 −

17

15N2
c
g1g3g29

þ 68

15N2
c
g1g3g28 þ

5

3N2
c
g1g2g211 þ

8

15N2
c
g1g2g210 −

6

5N2
c
g1g2g29 −

4

5N2
c
g1g2g28 −

41

30N2
c
g21g

2
11 þ

31

15N2
c
g21g

2
10

þ 26

5N2
c
g21g

2
9 þ

96

5N2
c
g21g

2
8 þ

32

5Nc
g26g

2
11 þ

16

15Nc
g26g

2
10 þ

56

15Nc
g26g

2
9 þ

32

15Nc
g26g

2
8 þ

16

5Nc
g25g

2
11 þ

8

15Nc
g25g

2
10

þ 28

15Nc
g25g

2
9 þ

16

15Nc
g25g

2
8 þ

48

5Nc
g24g

2
11 þ

16

5Nc
g24g

2
10 þ

32

5Nc
g24g

2
9 þ

32

5Nc
g24g

2
8 −

2

3Nc
g23g

2
7 −

1

30Nc
g23g

2
6

þ 1

60Nc
g23g

2
5 −

1

2Nc
g23g

2
4 −

34

15Nc
g1g3g27 −

22

15Nc
g1g3g26 −

1

30Nc
g1g3g25 þ

17

30Nc
g1g3g24 þ

2

5Nc
g1g2g27

−
4

15Nc
g1g2g26 −

5

6Nc
g1g2g25 þ

3

5Nc
g1g2g24 −

48

5Nc
g21g

2
7 −

31

30Nc
g21g

2
6 þ

41

60Nc
g21g

2
5 −

13

5Nc
g21g

2
4 −

23

5
g411 −

46

15
g210g

2
11

−
2

5
g410 −

19

5
g29g

2
11 −

6

5
g29g

2
10 −

11

6
g49 −

52

15
g28g

2
11 −

16

15
g28g

2
10 −

56

15
g28g

2
9 −

8

5
g48 −

16

15
g47 −

16

15
g26g

2
7 −

2

5
g46 −

8

15
g25g

2
7

−
46

15
g25g

2
6 −

89

30
g45 −

52

15
g24g

2
7 −

6

5
g24g

2
6 −

46

15
g24g

2
5 −

9

5
g44 þ

1

120
g23g

2
11 −

1

60
g23g

2
10 −

1

4
g23g

2
9 −

1

3
g23g

2
8 −

43

1920
g43

−
1

60
g1g3g211 −

11

15
g1g3g210 þ

17

60
g1g3g29 −

17

15
g1g3g28 þ

49

960
g1g33 −

5

12
g1g2g211 −

2

15
g1g2g210 þ

3

10
g1g2g29 þ

1

5
g1g2g28

þ 1

40
g1g2g23 −

1

960
g1g22g3 þ

41

120
g21g

2
11 −

31

60
g21g

2
10 −

13

10
g21g

2
9 −

24

5
g21g

2
8 þ

1

12
g21g

2
3 þ

51

160
g21g2g3 þ

109

320
g21g

2
2

−
1153

960
g31g3 −

977

480
g31g2 þ

73999

40320
g41 −

8

5
Ncg26g

2
11 −

4

15
Ncg26g

2
10 −

14

15
Ncg26g

2
9 −

8

15
Ncg26g

2
8 −

4

5
Ncg25g

2
11

−
2

15
Ncg25g

2
10 −

7

15
Ncg25g

2
9 −

4

15
Ncg25g

2
8 −

12

5
Ncg24g

2
11 −

4

5
Ncg24g

2
10 −

8

5
Ncg24g

2
9 −

8

5
Ncg24g

2
8 −

3

20
Ncg23g

2
6

−
3

40
Ncg23g

2
5 −

13

80
Ncg23g

2
4 þ

9

40
Ncg2g3g24 þ

27

80
Ncg22g

2
4 −

1

6
Ncg1g3g26 −

1

12
Ncg1g3g25 −

9

40
Ncg1g3g24

þ 1

30
Ncg1g2g26 þ

1

60
Ncg1g2g25 −

19

8
Ncg1g2g24 −

23

20
Ncg21g

2
6 −

23

40
Ncg21g

2
5 −

781

1680
Ncg21g

2
4 −

2

15
N2

cg46 −
2

15
N2

cg25g
2
6

−
1

30
N2

cg45 −
4

5
N2

cg24g
2
6 −

2

5
N2

cg24g
2
5 −

3

5
N2

cg44 þ
5

126Nc
Nfg41 þ

1

35
Nfg21g

2
4 þOðg6i Þ

β5ðgiÞ ¼
4

5N2
c
g411 þ

8

15N2
c
g210g

2
11 þ

8

15N2
c
g410 þ

52

5N2
c
g29g

2
11 þ

56

15N2
c
g29g

2
10 þ

6

5N2
c
g49 þ

176

15N2
c
g28g

2
11 þ

64

15N2
c
g28g

2
10

þ 32

15N2
c
g28g

2
9 þ

32

15N2
c
g48 þ

1

30N2
c
g23g

2
11 −

1

15N2
c
g23g

2
10 −

1

N2
c
g23g

2
9 −

4

3N2
c
g23g

2
8 −

1

15N2
c
g1g3g211 −

44

15N2
c
g1g3g210

þ 17

15N2
c
g1g3g29 −

68

15N2
c
g1g3g28 −

5

3N2
c
g1g2g211 −

8

15N2
c
g1g2g210 þ

6

5N2
c
g1g2g29 þ

4

5N2
c
g1g2g28 þ

41

30N2
c
g21g

2
11

−
31

15N2
c
g21g

2
10 −

26

5N2
c
g21g

2
9 −

96

5N2
c
g21g

2
8 þ

16

15Nc
g26g

2
10 þ

8

15Nc
g26g

2
9 þ

32

15Nc
g26g

2
8 þ

8

15Nc
g25g

2
10 þ

4

15Nc
g25g

2
9

þ 16

15Nc
g25g

2
8 þ

2

3Nc
g23g

2
7 þ

1

30Nc
g23g

2
6 −

1

60Nc
g23g

2
5 þ

1

2Nc
g23g

2
4 þ

34

15Nc
g1g3g27 þ

22

15Nc
g1g3g26 þ

1

30Nc
g1g3g25

−
17

30Nc
g1g3g24 −

2

5Nc
g1g2g27 þ

4

15Nc
g1g2g26 þ

5

6Nc
g1g2g25 −

3

5Nc
g1g2g24 þ

48

5Nc
g21g

2
7 þ

31

30Nc
g21g

2
6 −

41

60Nc
g21g

2
5

þ 13

5Nc
g21g

2
4 −

1

5
g411 −

2

15
g210g

2
11 −

2

15
g410 −

13

5
g29g

2
11 −

14

15
g29g

2
10 −

3

10
g49 −

44

15
g28g

2
11 −

16

15
g28g

2
10 −

8

15
g28g

2
9 −

8

15
g48
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−
16

15
g26g

2
7 −

2

15
g46 −

16

5
g25g

2
7 −

2

15
g25g

2
6 −

1

6
g45 −

4

15
g24g

2
7 −

14

15
g24g

2
6 −

8

3
g24g

2
5 −

4

15
g44 −

1

120
g23g

2
11 þ

1

60
g23g

2
10

þ 1

4
g23g

2
9 þ

1

3
g23g

2
8 −

1

1920
g43 þ

1

60
g1g3g211 þ

11

15
g1g3g210 −

17

60
g1g3g29 þ

17

15
g1g3g28 þ

23

960
g1g33 þ

5

12
g1g2g211

þ 2

15
g1g2g210 −

3

10
g1g2g29 −

1

5
g1g2g28 þ

1

120
g1g2g23 þ

1

960
g1g22g3 −

41

120
g21g

2
11 þ

31

60
g21g

2
10 þ

13

10
g21g

2
9 þ

24

5
g21g

2
8

þ 11

240
g21g

2
3 −

67

160
g21g2g3 −

67

192
g21g

2
2 þ

457

960
g31g3 þ

1009

480
g31g2 −

6757

2688
g41 −

4

15
Ncg26g

2
10 −

2

15
Ncg26g

2
9 −

8

15
Ncg26g

2
8

−
2

15
Ncg25g

2
10 −

1

15
Ncg25g

2
9 −

4

15
Ncg25g

2
8 þ

1

60
Ncg23g

2
6 þ

11

240
Ncg23g

2
5 þ

9

40
Ncg2g3g25 þ

27

80
Ncg22g

2
5 þ

17

30
Ncg1g3g26

−
13

24
Ncg1g3g25 þ

1

30
Ncg1g2g26 −

59

24
Ncg1g2g25 þ

53

60
Ncg21g

2
6 þ

211

560
Ncg21g

2
5 −

2

15
N2

cg46 −
2

15
N2

cg25g
2
6 −

1

30
N2

cg45

−
149

2520Nc
Nfg41 þ

1

35
Nfg21g

2
5 þOðg6i Þ

β6ðgiÞ ¼
52

15N2
c
g411 þ

568

15N2
c
g210g

2
11 þ

1208

15N2
c
g410 þ

56

15N2
c
g29g

2
11 þ

112

5N2
c
g29g

2
10 þ

6

5N2
c
g49 þ

16

15N2
c
g28g

2
11 þ

224

15N2
c
g28g

2
10

þ 32

15N2
c
g28g

2
9 þ

32

15N2
c
g48 −

3

10N2
c
g23g

2
11 −

31

15N2
c
g23g

2
10 −

1

6N2
c
g23g

2
9 −

18

5N2
c
g1g3g211 −

43

3N2
c
g1g3g210 −

13

5N2
c
g1g3g29

−
26

15N2
c
g1g3g28 −

34

15N2
c
g1g2g211 −

47

5N2
c
g1g2g210 −

4

3N2
c
g1g2g29 −

2

15N2
c
g1g2g28 þ

617

30N2
c
g21g

2
11 þ

78

N2
c
g21g

2
10

þ 331

30N2
c
g21g

2
9 þ

34

3N2
c
g21g

2
8 þ

16

15Nc
g26g

2
10 þ

8

15Nc
g26g

2
9 þ

32

15Nc
g26g

2
8 þ

8

15Nc
g25g

2
10 þ

4

15Nc
g25g

2
9 þ

16

15Nc
g25g

2
8

þ 31

30Nc
g23g

2
6 þ

3

20Nc
g23g

2
5 þ

1

12Nc
g23g

2
4 þ

13

15Nc
g1g3g27 þ

43

6Nc
g1g3g26 þ

9

5Nc
g1g3g25

þ 13

10Nc
g1g3g24 þ
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1280
Ncg1g2g23 þ

7

7680
Ncg1g22g3 þ

53

240
Ncg21g

2
11

þ 1879

1680
Ncg21g

2
10 þ

53

480
Ncg21g

2
9 −

3

5
Ncg21g

2
8 −

47

7680
Ncg21g

2
3 þ

71

960
Ncg21g2g3 þ

259

7680
Ncg21g

2
2 −

499

7680
Ncg31g3

−
1661

3840
Ncg31g2 þ

112391

161280
Ncg41 þ

1

35
Nfg21g

2
10 þ

17

5040
Nfg41 þOðg6i Þ

β11ðgiÞ ¼
14

15Nc
g411 þ

28

15Nc
g210g

2
11 þ

8

3Nc
g410 þ

54

5Nc
g29g

2
11 þ

68

15Nc
g29g

2
10 þ

6

5Nc
g49 þ

40

3Nc
g28g

2
11 þ

112

15Nc
g28g

2
10

þ 32

15Nc
g28g

2
9 þ

32

15Nc
g48 þ

1

60Nc
g23g

2
11 −

1

30Nc
g23g

2
10 −

1

2Nc
g23g

2
9 −

2

3Nc
g23g

2
8 −

1

30Nc
g1g3g211 −

22

15Nc
g1g3g210

þ 17

30Nc
g1g3g29 −

34

15Nc
g1g3g28 −

5

6Nc
g1g2g211 −

4

15Nc
g1g2g210 þ

3

5Nc
g1g2g29 þ

2

5Nc
g1g2g28 þ

41

60Nc
g21g

2
11

−
31

30Nc
g21g

2
10 −

13

5Nc
g21g

2
9 −

48

5Nc
g21g

2
8 −

16

5
g27g

2
11 −

16

15
g27g

2
10 −

4

15
g27g

2
9 −

4

15
g26g

2
11 −

4

15
g26g

2
10 −

4

5
g26g

2
9 −

8

15
g26g

2
8

−
2

5
g25g

2
11 −

2

15
g25g

2
10 −

13

5
g25g

2
9 −

44

15
g25g

2
8 −

8

3
g24g

2
11 −

14

15
g24g

2
10 −

8

15
g24g

2
9 −

4

15
g24g

2
8 þ

1

3
g23g

2
7 þ

1

60
g23g

2
6 −

1

120
g23g

2
5

þ 1

4
g23g

2
4 þ

17

15
g1g3g27 þ

11

15
g1g3g26 þ

1

60
g1g3g25 −

17

60
g1g3g24 −

1

5
g1g2g27 þ

2

15
g1g2g26 þ

5

12
g1g2g25 −

3

10
g1g2g24

þ 24

5
g21g

2
7 þ

31

60
g21g

2
6 −

41

120
g21g

2
5 þ

13

10
g21g

2
4 þ

7

15
Ncg411 þ

2

15
Ncg210g

2
11 −

4

15
Ncg410 −

8

15
Ncg29g

2
11 −

4

15
Ncg29g

2
10

þ 7

60
Ncg49 −

4

5
Ncg28g

2
11 −

8

15
Ncg28g

2
10 þ

4

15
Ncg28g

2
9 −

1

16
Ncg23g

2
11 −

1

40
Ncg23g

2
10 þ

13

240
Ncg23g

2
9 þ

1

12
Ncg23g

2
8

þ 1

384
Ncg43 þ

9

40
Ncg2g3g211 þ

27

80
Ncg22g

2
11 −

3

8
Ncg1g3g211 þ

7

15
Ncg1g3g210 −

1

12
Ncg1g3g29 þ

1

5
Ncg1g3g28

þ 1

384
Ncg1g33 −

53

24
Ncg1g2g211 þ

1

12
Ncg1g2g210 −

1

8
Ncg1g2g29 −

1

10
Ncg1g2g28 þ

1

1920
Ncg1g22g3 −

361

1680
Ncg21g

2
11

þ 23

120
Ncg21g

2
10 þ

71

240
Ncg21g

2
9 þ

83

60
Ncg21g

2
8 þ

13

1920
Ncg21g

2
3 −

63

320
Ncg21g2g3 −

111

640
Ncg21g

2
2 þ

631

1920
Ncg31g3

þ 1001

960
Ncg31g2 −

23629

20160
Ncg41 þ

1

35
Nfg21g

2
11 −

149

5040
Nfg41 þOðg6i Þ: ð4:6Þ

Again these renormalization group functions, as well as
those for SUð3Þ, satisfy the same checks we discussed for
the SUð2Þ case.

V. LARGE Nf CHECK

We devote this section to the final independent check we
have on the renormalization group functions in each of the
three cases which is the comparison with the large Nf
critical exponents which have been computed in the non-
Abelian Thirring model universality class. The background
to this is the observation that the renormalization group
functions depend on the parameter Nf and the various

coupling constants for a specific value of Nc. The coef-
ficients of these parameters in each renormalization group
function is conventionally determined by perturbative
methods as was carried out in the previous section.
However one can also determine the coefficients via an
ordering of graphs defined by Nf. This is achieved through
the known d-dependent critical exponents of the underlying
universality class. An alternative view of this is that the
exponents already contain information on the perturbative
coefficients. The method is to compute the renormalization
group functions at the Wilson-Fisher fixed point in
d ¼ 8 − 2ϵ, expand in powers of 1=Nf and then compare
with the ϵ expansion of the corresponding large Nf critical
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exponents. This constitutes our independent check. The
first step in the procedure is to locate the Wilson-Fisher
fixed point explicitly order by order in powers of 1=Nf and
ϵ by finding the solution to

βiðgjÞ ¼ 0 ð5:1Þ

for the d-dimensional β-functions. In four dimensions this
is relatively straightforward since there is only one coupling
constant in QCD. For eight dimensions we have 11
coupling constants for the case of SUðNcÞ. So we follow
the method introduced in [22,23]. As there are 3- and 4-leg
operators in (2.8) we have to be careful in defining the

rescaling which is the initial step in the approach of [22,23].
Therefore at the outset we set

gi ¼
ffiffiffiffiffiffiffi
70ϵ

Nf

s
xi i ¼ 1 to 3

g2i ¼
70ϵ

Nf
xi i ¼ 4 to 11 ð5:2Þ

in (5.1) and expand in powers of ϵ and 1=Nf. First the
leading order term in 1=Nf of the equations is isolated and
then the ϵ expansion of this leading term is found before
repeating the exercise for the subsequent term in the large
Nf expansion. For the SUðNcÞ β-functions the resulting
critical couplings are

x1¼1þ1933Nc

24Nf
þ3736489N2

c

384N2
f

þO

�
ϵ;

1

N3
f

�

x2¼
17

9
þ287279Nc

1944Nf
þ5066611513N2

c

279936N2
f

þO

�
ϵ;

1

N3
f

�

x3¼
16

3
þ143411Nc

324Nf
þ153781987N2

c

2916N2
f

þO

�
ϵ;

1

N3
f

�

x4¼−
25

9Nc
−
�
1615081

46656
þ115591

432N2
c

�
1

Nf
þ
�
4084305085

11664N3
c

−
318375286621

839808Nc
þ894758019623Nc

3359232

�
1

N2
f

þO

�
ϵ;

1

N3
f

�

x5¼
149

36Nc
þ
�
39472453

46656
−

343

432N2
c

�
1

Nf
þ
�
−
768922651

11664N3
c
þ6468807373

839808Nc
þ144625900963Nc

1119744

�
1

N2
f

þO

�
ϵ;

1

N3
f

�

x6¼
149

72
þ
�
18279803Nc

46656
−

343

432Nc

�
1

Nf
þ
�
161927831371N2

c

2239488
−
28392695975

1679616
−
1571677793

46656N2
c

�
1

N2
f

þO

�
ϵ;

1

N3
f

�

x7¼−
17

36Nc
−
�
997943

46656
þ 343

432N2
c

�
1

Nf
þ
�
285596549

2916N3
c

þ155421633577

839808Nc
þ69408246905Nc

1119744

�
1

N2
f

þO

�
ϵ;

1

N3
f

�

x8¼−
1

72Nc
þ
�

343

216N2
c
−
5517727

46656

�
1

Nf
þ
�
37377424567

209952Nc
−
20021939

23328N3
c
−
223918424851Nc

3359232

�
1

N2
f

þO

�
ϵ;

1

N3
f

�

x9¼−
1

144
þ
�

343

216Nc
−
6535889Nc

186624

�
1

Nf
þ
�
388161667565

3359232
−
5239709503

93312N2
c

−
297237914233N2

c

26873856

�
1

N2
f

þO

�
ϵ;

1

N3
f

�

x10¼−
17

72
−
�

343

432Nc
þ2137045Nc

46656

�
1

Nf
−
�
11234911345

104976
þ2318604883

46656N2
c

þ7914271411N2
c

497664

�
1

N2
f

þO
�
ϵ;

1

N3
f

�

x11¼−
25

18
−
�
115591

432Nc
þ8299843Nc

93312

�
1

Nf
þ
�
15724650809

46656N2
c

−
429314818345

1679616
þ261182511995N2

c

6718464

�
1

N2
f

þO

�
ϵ;

1

N3
f

�
ð5:3Þ

where the double order symbol indicates both the two
loop correction and the next order in the large Nf

expansion. These values of xi correspond to the ϵ
expansion of all the critical couplings to the order which
they are known in the previous section. Next the renorm-
alization group functions for the wave function renorm-
alization are evaluated at the Wilson-Fisher critical

point and expanded in powers of both ϵ and 1=Nf.
Subsequently the critical exponents should be in agree-
ment with the coefficients of ϵ in the known large Nf

critical exponents of the non-Abelian Thirring universal-
ity class when they are expanded around d ¼ 8 − 2ϵ.
Substituting the values from (5.3) into (4.5) we find for
SUðNcÞ that
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γAðgcÞjα¼0 ¼ ϵþ 245Nc

12Nf
ϵþ 473585N2

c

144N2
f

ϵþO

�
ϵ2;

1

N3
f

�

γcðgcÞjα¼0 ¼ −
245Nc

24Nf
ϵ −

473585N2
c

288N2
f

ϵþO

�
ϵ2;

1

N3
f

�

γψðgcÞjα¼0
¼

�
245Nc

12
−

245

12Nc

�
ϵ

Nf

þ
�
473585N2

c

144
−
473585

144

�
ϵ

N2
f

þO

�
ϵ2;

1

N3
f

�

ð5:4Þ

where gc denotes the set of critical couplings defined in
(5.2). In order to compare with the large Nf critical
exponents of the universal theory founded on the non-
Abelian Thirring model at the Wilson-Fisher fixed point,
we have to restrict the exponents to the Landau gauge.
This is because in effect the gauge parameter α acts as an
additional coupling constant and the Landau gauge is the
corresponding fixed point in this context. In other words
the gauge dependent large Nf critical exponents of the
gluon, quark and ghost fields can only be compared with
the Landau gauge anomalous dimensions at criticality
which has been noted before in [16,18]. We restrict our
large Nf comparison to these three anomalous dimensions
since they are the only three quantities which are available
for eight dimensional QCD. While the large Nf critical
exponent of the four dimensional QCD β-function is
known at Oð1=NfÞ [16], that exponent would relate to the
renormalization of the operator 1

4
Ga

μνGaμν in (2.12). In
four dimensions the gauge coupling constant in four
dimensional QCD is dimensionless but in the continu-
ation along the thread of the d-dimensional Wilson-Fisher
fixed point the coupling becomes dimensionful and the
correction to scaling exponent in four dimensions tran-
scends into a mass parameter in higher dimensions such as
the eight dimensional Lagrangian (2.12). Therefore, if we
evaluate the leading order d-dimensional large Nf critical
exponents for the gluon, quark and ghost fields of [52]
near eight dimensions by setting d ¼ 8 − 2ϵ we find that
the coefficients of ϵ match precisely with those of (5.4) in
the Landau gauge for SUðNcÞ. Moreover, since the quark
anomalous dimension is also known at Oð1=N2

fÞ in the
Landau gauge [18], it is satisfying to record that the
corresponding term of γψðgcÞjα¼0

is in full agreement.
While we have not given explicit details for the SUð2Þ and
SUð3Þ renormalization group functions, we note that we
have carried out the same check as SUðNcÞ and found that
there is full consistency in these cases too. Consequently
the ultraviolet completion of QCD or the non-Abelian
Thirring model to eight dimensions via (2.8) has been
established at one loop within the large Nf expansion as
expected.

VI. DIMENSION 8 OPERATORS
IN FOUR DIMENSIONS

In this section we turn to a complementary problem
which is the renormalization of dimension 8 operators in
four dimensions. Such operators in the case of Yang-Mills
theory have been considered in [31,32] where, for instance,
the anomalous dimensions for the SUð2Þ and SUð3Þ groups
were computed at one loop in [31]. The reason for this is
that in four dimensions the canonical dimensions of the
gluon and ghost fields are such that there is a complicated
mixing between gluonic and quark operators. In (2.8) by
contrast on dimensional grounds it is not possible to have
any other interactions involving quarks aside from the
quark-gluon interaction. Therefore in this section we
concentrate on the renormalization of four dimensional
dimension 8 operators in SUðNcÞ Yang-Mills theory for
Nc ≥ 4 as this case has not been considered. In addition we
use the same operator basis as was used in (2.8), which
differs from that of [31,32], in order to ease structural
comparisons. First, to set notation the basis for the
dimension 8 operators in four dimensions for the color
group SUðNcÞ we use is

O841 ¼ Ga
μσGaμρGbσνGb

ρν; O842 ¼ Ga
μσGbμρGbσνGa

ρν

O843 ¼ Ga
μσGa

νρGbσμGbρν; O844 ¼ Ga
μσGb

νρGaσμGbρν

O845 ¼ dabcd4 Ga
μσGbμσGc

νρGdνρ;

O846 ¼ dabcd4 Ga
μσGcμρGbνσGd

νρ

O847 ¼ dacbd4 Ga
μσGbμσGc

νρGdνρ;

O848 ¼ dadbc4 Ga
μσGcμρGbνσGd

νρ: ð6:1Þ

The notation is similar to that used in [31]. However, these
operators are not the same since we have specified the basis
with respect to a specific color group unlike [31]. We have
chosen this ordering so that the SUð2Þ basis corresponds to
the first four operators and that for SUð3Þ involves the first
six. Equally the ordering is equivalent to that used in (2.8)
for the quartic gluon interactions with coupling constants g4
to g11 respectively.
To renormalize the operators O84i we use the same

technique as that for the 4-point functions of (2.8)
but in this case we apply it to the Green’s function
hAa

μðp1ÞAb
νðp2ÞAc

σðp3ÞAd
ρðp4ÞO84iðp5Þi where p5 ¼

−
P

4
i¼1 pi. However, as we are considering an operator

renormalization there will be a mixing of theO84i operators
among themselves which will produce a mixing matrix of
anomalous dimensions. This is similar to the β-functions
for the couplings in (2.8). However for operator renorm-
alization there are aspects to address compared with a
Lagrangian renormalization. For instance, for the gauge
invariant dimension 8 operators (6.1) there will be mixing
into gauge variant and equation of motion operators as well
as possibly total derivative operators. The latter can arise
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when an operator is renormalized in a Green’s function
where the insertion is at nonzero momentum insertion.
Moreover this set includes total derivative operators which
are gauge invariant, gauge variant and equation of motion
operators. So the mixing matrix in effect is larger than an
8 × 8 matrix based on (6.1). Not only do the operators of
(6.1) mix with all operators of the enlarged set but the
gauge variant, equation of motion and total derivative
operators can mix with themselves when each is renor-
malized. However, the overall mixing matrix has a par-
ticular structure in that the gauge invariant operators mix
with all classes of operators but the gauge variant ones
only mix within that class. See, for instance, [53–56].
As we are primarily interested in the gauge invariant
operators we restrict the evaluation of the Green’s function
hAa

μðp1ÞAb
νðp2ÞAc

σðp3ÞAd
ρðp4ÞO84iðp5Þi to the case where

the external gluon legs are all on-shell. The condition for a
gluon Aa

μðpÞ to be on-shell is that its polarization vector and
momentum satisfy

pμpμ ¼ 0; pμϵμðpÞ ¼ 0: ð6:2Þ

Therefore we multiply the Green’s function by
ϵμðp1Þϵνðp2Þϵσðp3Þϵρðp4Þ and apply (6.2). The terms
which remain such as ϵμðpiÞpμ

j for i ≠ j or pipj are
resolved by grouping them in terms corresponding to the
Feynman rules of the contributing operators such as (6.1)
and any gauge invariant total derivative or equation of
motion operators. The reason why this list omits gauge
variant operators is that the restriction of (6.2) corresponds
to taking a physical matrix element. As such no gauge
variant operators can be present [53–56].
Necessary to achieve the resolution into this basis of

operators is that the operator has to be inserted at nonzero
momentum. If it was inserted at zero momentum then
certain terms of the Feynman rule of different operators will
be similar and hence the extraction of the renormalization
constants in the mixing matrix cannot be achieved uniquely
and unambiguously. Therefore, formally the set of bare
operators, denoted by the subscript o satisfy

Oio ¼ ZijOj ð6:3Þ

where Zij is the mixing matrix of renormalization constants
from which the mixing matrix of anomalous dimensions,
γijðaÞ, can be deduced. In this section a ¼ g2=ð16π2Þ
denotes the coupling constant of four dimensional QCD
where g is the coupling present in the covariant derivative.
It transpires that for the eight operators (6.1) the matrix
needs to be enlarged since there is mixing into an equation
of motion operator. In [31] the seven independent equation
of motion operators were constructed and are

O82e1 ¼ DμGa
μνDρDσDρGaνσ;

O82e2 ¼ DσDμGa
μνDρDνGa

σρ

O82e3 ¼ DσDμGa
μνDρDσGaνρ;

O82e4 ¼ DσGa
νρDσDρDμGaμν

O82e5 ¼ Ga
νσDσDρDρDμGaμν

O83e1 ¼ fabcGa
σρDνGbσρDμGc

μν;

O83e2 ¼ fabcGaν
σ GbσρDρDμGc

μν ð6:4Þ

where the first two labels indicate the operator dimension
and gluon leg number respectively and note that each
operator is gauge invariant. We recall that in four dimen-
sions the equation of motion of the gluon in Yang-Mills
theory is

DμGμν ¼ 0 ð6:5Þ

which is relatively simple in contrast to that of (2.8). Unlike
(6.1) there is no reduction of the equation of motion set
(6.4) depending on which color group we consider. One
comment is in order with respect to (2.8) which is that the
operators (6.4) are not present in that Lagrangian. The
reason why they are considered part of the basis here arises
from the different nature of the two types of renormaliza-
tions we are carrying out. In (2.8) for the purely gluonic
sector we included the set of independent gauge invariant
operators involving the field strength. The operators which
were dependent, and hence not included, were equivalent to
linear combinations of the ones appearing in (2.8) as well as
operators which were total derivatives. In a Lagrangian
context the latter operators can be integrated out and hence
were not included in (2.8). For the renormalization of the
dimension 8 operators (6.1) in four dimensions one has to
accommodate mixing into the various operator classes
noted earlier. As one of these classes involves equation
of motion operators we have included these in the set of
operators for our mixing. However it is a straightforward
exercise to show that the operatorsO82ei can each be related
to the gluon kinetic operator plus higher leg operators and
those with a total derivative. Equally the operators O83ei in
eight dimensions can be mapped to the operators with
couplings g2 and g3 respectively plus higher leg and total
derivative operators in (2.8).
The final stage of the operator renormalization is the

evaluation of the divergent part of the on-shell Green’s
function. Like the renormalization of the 4-point functions
of (2.8) we apply the vacuum bubble expansion based on
(3.5). The only major difference between its use here and
the previous application is that after the expansion and the
Laporta reduction the master integral is evaluated in four
dimensions. Therefore, extracting the renormalization con-
stants we find the elements of the mixing matrix are
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γ841;841ðaÞ ¼
8

3Nc
aþOða2Þ; γ841;842ðaÞ ¼ −

8

3Nc
aþOða2Þ

γ841;843ðaÞ ¼
22

3Nc
aþOða2Þ; γ841;844ðaÞ ¼ −

1

6Nc
½11N2

c þ 44�aþOða2Þ

γ841;845ðaÞ ¼ −
11

3
aþOða2Þ; γ841;846ðaÞ ¼

4

3
aþOða2Þ

γ841;847ðaÞ ¼
11

3
aþOða2Þ; γ841;848ðaÞ ¼ −

4

3
aþOða2Þ

γ842;841ðaÞ ¼ −
1

3Nc
½14N2

c þ 4�aþOða2Þ; γ842;842ðaÞ ¼ −
1

3Nc
½10N2

c − 4�aþOða2Þ

γ842;843ðaÞ ¼
1

3Nc
½12N2

c þ 22�aþOða2Þ; γ842;844ðaÞ ¼ −
1

6Nc
½−N2

c þ 44�aþOða2Þ

γ842;845ðaÞ ¼ −
11

3
aþOða2Þ; γ842;846ðaÞ ¼ −

2

3
aþOða2Þ

γ842;847ðaÞ ¼
11

3
aþOða2Þ; γ842;848ðaÞ ¼

2

3
aþOða2Þ

γ843;841ðaÞ ¼ −
1

3Nc
½28N2

c þ 68�aþOða2Þ; γ843;842ðaÞ ¼ −
1

3Nc
½−24N2

c − 68�aþOða2Þ

γ843;843ðaÞ ¼
1

3Nc
½2N2

c þ 50�aþOða2Þ; γ843;844ðaÞ ¼ −
1

3Nc
½−N2

c þ 50�aþOða2Þ

γ843;845ðaÞ ¼ −
25

3
aþOða2Þ; γ843;846ðaÞ ¼ −

34

3
aþOða2Þ

γ843;847ðaÞ ¼
25

3
aþOða2Þ; γ843;848ðaÞ ¼

34

3
aþOða2Þ

γ844;841ðaÞ ¼ −
56

Nc
aþOða2Þ; γ844;842ðaÞ ¼

56

Nc
aþOða2Þ

γ844;843ðaÞ ¼ −
4

Nc
aþOða2Þ; γ844;844ðaÞ ¼ −

1

3Nc
½22N2

c − 12�aþOða2Þ

γ844;845ðaÞ ¼ 2aþOða2Þ; γ844;846ðaÞ ¼ −28aþOða2Þ
γ844;847ðaÞ ¼ −2aþOða2Þ; γ844;848ðaÞ ¼ 28aþOða2Þ

γ845;841ðaÞ ¼ −
1

N2
c
½28N2

c − 112�aþOða2Þ; γ845;842ðaÞ ¼
1

N2
c
½28N2

c − 112�aþOða2Þ

γ845;843ðaÞ ¼ −
1

N2
c
½2N2

c − 8�aþOða2Þ; γ845;844ðaÞ ¼ −
1

N2
c
½−2N2

c þ 8�aþOða2Þ

γ845;845ðaÞ ¼ −
1

2Nc
½5N2

c þ 8�aþOða2Þ; γ845;846ðaÞ ¼ −
1

Nc
½6N2

c − 56�aþOða2Þ

γ845;847ðaÞ ¼ −
1

3Nc
½2N2

c − 12�aþOða2Þ; γ845;848ðaÞ ¼ −
1

3Nc
½−16N2

c þ 168�aþOða2Þ

γ846;841ðaÞ ¼ −
1

3N2
c
½−4N2

c þ 16�aþOða2Þ; γ846;842ðaÞ ¼ −
1

3N2
c
½4N2

c − 16�aþOða2Þ

γ846;843ðaÞ ¼ −
1

3N2
c
½−11N2

c þ 44�aþOða2Þ; γ846;844ðaÞ ¼ −
1

3N2
c
½11N2

c − 44�aþOða2Þ

γ846;845ðaÞ ¼ −
1

3Nc
½4N2

c − 22�aþOða2Þ; γ846;846ðaÞ ¼ −
1

3Nc
½3N2

c þ 8�aþOða2Þ
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γ846;847ðaÞ ¼ −
1

3Nc
½−3N2

c þ 22�aþOða2Þ; γ846;848ðaÞ ¼ −
1

3Nc
½3N2

c − 8�aþOða2Þ

γ847;841ðaÞ ¼ −
1

3N2
c
½34N2

c − 136�aþOða2Þ

γ847;842ðaÞ ¼ −
1

3N2
c
½−34N2

c þ 136�aþOða2Þ

γ847;843ðaÞ ¼ −
1

3N2
c
½−25N2

c þ 100�aþOða2Þ

γ847;844ðaÞ ¼ −
1

3N2
c
½25N2

c − 100�aþOða2Þ

γ847;845ðaÞ ¼ −
1

12Nc
½25N2

c − 200�aþOða2Þ; γ847;846ðaÞ ¼ −
1

3Nc
½19N2

c − 68�aþOða2Þ

γ847;847ðaÞ ¼ −
1

3Nc
½−3N2

c þ 50�aþOða2Þ; γ847;848ðaÞ ¼ −
1

3Nc
½−16N2

c þ 68�aþOða2Þ

γ848;841ðaÞ ¼ −
1

3N2
c
½2N2

c − 8�aþOða2Þ; γ848;842ðaÞ ¼ −
1

3N2
c
½−2N2

c þ 8�aþOða2Þ

γ848;843ðaÞ ¼ −
1

3N2
c
½−11N2

c þ 44�aþOða2Þ

γ848;844ðaÞ ¼ −
1

3N2
c
½11N2

c − 44�aþOða2Þ

γ848;845ðaÞ ¼ −
1

6Nc
½5N2

c − 44�aþOða2Þ; γ848;846ðaÞ ¼ −
1

3Nc
½8N2

c − 4�aþOða2Þ

γ848;847ðaÞ ¼ −
1

3Nc
½−6N2

c þ 22�aþOða2Þ

γ848;848ðaÞ ¼ −
1

3Nc
½4N2

c þ 4�aþOða2Þ ð6:6Þ

for SUðNcÞ. For the eight SUðNcÞ dimension 8 core
operators at one loop there is mixing into only one equation
of motion operator which isO83e2. More explicitly we have

γ841;83e2ðaÞ ¼ −2aþOða2Þ; γ842;83e2ðaÞ ¼ 4aþOða2Þ;
γ843;83e2ðaÞ ¼ 4aþOða2Þ γ844;83e2ðaÞ ¼ −8aþOða2Þ;

γ845;83e2ðaÞ ¼ −
4

Nc
½N2

c − 4�aþOða2Þ

γ846;83e2ðaÞ ¼ −
1

Nc
½N2

c − 4�aþOða2Þ;

γ847;83e2ðaÞ ¼
2

Nc
½N2

c − 4�aþOða2Þ

γ848;83e2ðaÞ ¼
2

Nc
½N2

c − 4�aþOða2Þ: ð6:7Þ

The mixing of the main operators into this specific equation
of motion operator is necessary as otherwise divergences
would remain in each of the Green’s functions. In other
words there are not sufficient counterterms and freedom
available from the set of operators in (6.1) alone to obtain a

finite expression. For SUð2Þ and SUð3Þ the respective parts
for this sector of the mixing matrix are contained within
(6.7). For SUð2Þ only the first four operators of (6.1) are
active and for SUð3Þ it is the first six. Then for SUð2Þ the
first four entries in (6.7) correspond to the 4-leg operator
mixing into the equation of motion operators. Clearly
γ845;83e2ðaÞ vanishes for Nc ¼ 2 as a consistency check.
The situation for SUð3Þ is similar except the first six entries
are relevant but Nc ¼ 3 has to be set. Finally, the equation
of motion operators can mix with themselves and we have
determined that sector of the mixing matrix in the sameway
by inserting each operator in the physical matrix element.
The only nonzero entries are

γ83e1;82e4ðaÞ ¼ −
1

3Nc
aþOða2Þ;

γ83e1;82e5ðaÞ ¼
1

2Nc
aþOða2Þ ð6:8Þ

which is valid for all the SUðNcÞ groups. This completes
our dimension 8 operator analysis in four dimensions for
the particular SUðNcÞ color groups. These results together
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with the SUð2Þ and SUð3Þ cases are all included in the
Supplemental Material. While this is a fully separate
computation to the renormalization of (2.8) the structural
parallels of the respective renormalization group functions
are now evident.

VII. DISCUSSION

One of our main goals was to construct the eight
dimensional quantum field theory which was in the same
universality class as the two dimensional non-Abelian
Thirring model and four dimensional QCD at their respec-
tive Wilson-Fisher fixed points. We have managed to
achieve this by following the guiding principles established
for the parallel construction for scalar field theories with an
OðNÞ symmetry. The first of these is to retain the core
interaction between the matter and force fields which in the
present case were a spin-1

2
fermion and spin-1 boson field in

the adjoint representation of the color group. This inter-
action is the only one present in the base theory of the tower
of theories lying in the universality class which is the non-
Abelian Thirring model [21]. The second aspect is renor-
malizability. This means that extra interactions have to be
included in the critical dimension of each of the subsequent
Lagrangians of the tower so that each Lagrangian is
renormalizable. These extra independent operators, which
are purely gluonic for this universality class, will become
irrelevant or relevant away from the critical dimension. So
for example including the canonical gluon kinetic operator
for QCD in the non-Abelian Thirring model would render it
nonrenormalizable in two dimensions. The final main
principle is the requirement of gauge fixing. We chose a
linear covariant gauge fixing in order to make connections
with lower dimensional results and extended the Faddeev-
Popov construction to eight dimensions. This last step is
necessary as the two dimensional non-Abelian Thirring
model has a conserved current, ψ̄γμTaψ , whose 2-point
correlation function is transverse. While there is no gluon
as such in the non-Abelian Thirring model, like the four
dimensional gauge theory case, the field Aa

μ is an auxiliary
in two dimensions and corresponds to this current. In other
words the correlation of Aa

μ in two dimensions is in effect
akin to a Landau gauge propagator. As the gauge param-
eter, α, in QCD is effectively a second coupling constant
then at criticality one has to effect its critical coupling
which corresponds in fact to the Landau gauge. This
accords with the establishment of (2.8) as being in the
same universality class as the non-Abelian Thirring model
and QCD via the large Nf expansion. One can only
compare the d-dimensional large Nf critical exponents
with the exponents derived from gauge dependent renorm-
alization group functions when the ϵ expansion of the latter
have been computed in the Landau gauge. We have
checked this off explicitly here for eight dimensional
QCD from the one loop renormalization group functions.

Put another way the Wilson-Fisher fixed point underlying
this particular universality class preserves the transversality
of the gluon across the dimensions.
There are several future avenues to pursue in light of our

analysis. One is to build the ten dimensional theory of a
spin-1 field coupled to a fundamental fermion which lies in
the non-Abelian Thirring model universality class. The
procedure to do this evidently follows the above outline. It
would have no technical obstacles aside from the calcula-
tional one of requiring a large amount of integration by
parts to determine even just the one loop renormalization
group functions. This will be a tedious exercise rather than
an insurmountable problem. Another obvious extension is
to construct the renormalization group functions of (2.8) at
two loops. Indeed this has already been achieved for QED
[26,27]. However in eight dimensions the computations
were manageable due to there being only four independent
interactions and more crucially no quintic or sextic gauge
interactions. These were obviously present in the non-
Abelian case and also increased the amount of integration
needed in order to evaluate the large number of Feynman
graphs with high exponent gluon propagators [26]. With
the tower of Lagrangians essentially established at the
Wilson-Fisher fixed point for the non-Abelian Thirring
model universality class, the next focus ought to be on the
connection of non-Lagrangian operators in the universal
theory. These operators will have massive couplings in the
noncritical dimensions but are relevant in constructing
effective field Lagrangians in a specific dimension. In
other words there should be a drive to study the operator
anomalous dimensions at criticality.
We have taken the first step in this direction by renorm-

alizing dimension 8 operators in four dimensions. While
laying the foundation to this here by illustrating the
structural parallels of the renormalization group functions,
the next step is to introduce quark contributions. These are
required for the large Nf expansion connection where the
underlying operator critical exponents in the universal
theory would also need to be found in addition to the
mixing matrices in perturbation theory. The perturbative
computations to construct such mixing matrices should not
be regarded as a straightforward task. One reason for this is
due to the canonical dimensions of the quark and gluon
fields being different in d-dimensions. Hence quark and
gluon operators will have different canonical dimensions
except in one particular dimension. Therefore we did not
have to consider what would ordinarily be dimension 8
quark operators in the four dimensional sense in the
construction of the eight dimensional Lagrangian (2.8).
However, in four dimensional QCD there are dimension 8
operators with quark content in addition to the gluon
operators of (6.1). This was one of the reasons why our
focus was on Yang-Mills operators here as an exploratory
exercise in the context of (2.8) and to observe that the
structure of the respective four and eight dimensional
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renormalization group functions were not dissimilar. While
(2.8) has a quark operator, it is the kinetic term and it does not
have the same canonical dimension as, say, the operators of
(6.1) in four dimensions. The first stage in such an inves-
tigation will be to set up the large Nf formalism for
dimension 6 and 8 gauge invariant operators and compute
the mixing matrix of critical exponents at Oð1=NfÞ in d-
dimensions. The former dimension is required for an
analysis of (2.2) and we note that the large Nf exponent
relating to the QCD β-function in four dimensions [16] was
derived from the critical point large Nf renormalization of

the dimension four operatorGa
μνGaμν. That in effect was the

initial step of the proposal to examine the operator content of
the tower of Lagrangians constituting universal non-Abelian
Thirring model universality class.
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