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The Lagrangian for a non-Abelian gauge theory with an SU(N.) symmetry and a linear covariant gauge
fixing is constructed in eight dimensions. The renormalization group functions are computed at one loop
with the special cases of N, = 2 and 3 treated separately. By computing the critical exponents derived from
these in the large N expansion at the Wilson-Fisher fixed point it is shown that the Lagrangian is in the

same universality class as the two dimensional non-Abelian Thirring model and quantum chromodynamics
(QCD). As the eight dimensional Lagrangian contains new quartic gluon operators not present in four
dimensional QCD, we compute in parallel the mixing matrix of four dimensional dimension 8§ operators in

pure Yang-Mills theory.
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I. INTRODUCTION

Non-Abelian gauge theories are established as the core
quantum field theories which govern the particles of nature
through the Standard Model. One sector, which is known as
quantum chromodynamics (QCD), describes the strong
force between fundamental quarks and gluons which leads
to the binding of these quanta into the mesons and hadrons
seen in Nature. QCD has rather distinct properties in
comparison with the electroweak sector. For instance, at
high energy quarks and gluons become effectively free
particles due to the property of asymptotic freedom, [1,2].
While this attribute is essential to developing a field
theoretic formalism which allows us to extract meaningful
information from experimental data, it has an implicit sense
that at lower energies quarks and gluons can never be
treated as distinct particles in the same spirit as a free
electron in quantum electrodynamics (QED) which is an
Abelian gauge theory. The concept of a lack of low energy
freedom is known as colour confinement or infrared slavery
in contradistinction to the virtual freedom at ultraviolet
scales. As it stands QCD has been studied in depth over
many years. One area where there has been significant
progress recently is in the evaluation of the fundamental
renormalization group functions at very high loop order.
For instance, following the one loop discovery of asymp-
totic freedom, [1,2], the two and three loop corrections to
the f-function appeared within a decade [3-5]. Progress to
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the four loop term followed in the 1990s, [6,7], before a Iull
to the recent five loop explosion of all the renormalization
group functions [8—15]. By this we mean the S-function
was determined for the SU(3) color group in [9] before this
was extended to a general Lie group in [10]. The supporting
five loop renormalization group functions were determined
in [8,11-15]. While such multiloop QCD results are
impressive in the extreme, in the overall scheme of things
having independent checks on such calculations is useful.
The recent five loop QCD p-function of [9] is relatively
unique in this respect in that the independent computation
of [10] followed quickly. Ordinarily such a task requires as
much human and computer resources as the initial break-
through which are not always immediately available.

For QCD there is a parallel method of verifying part of
the perturbative series which is via the large N, expansion
where N is the number of massless quarks. For instance,
the QCD p-function was determined at O(1/Ny) in [16]
which extended the QED result of [17]. Subsequently the
quark mass anomalous dimension was found at O(1/N %) in
[18]. The 1/Ny or large N expansion provides an alter-
native way of deducing certain coefficients in the pertur-
bative series and the work of [16,18] extended the original
method for spin-0 fields of [19,20] to the spin-1 case.
However, the formalism for the gauge theory context
derives from a novel and elegant observation made in
[21]. In [21] it was shown that the non-Abelian Thirring
model (NATM) in the large N, expansion is in the same
universality class as QCD at the Wilson-Fisher fixed point
in d-dimensions. While the non-Abelian Thirring model is
a nonrenormalizable quantum field theory above two
dimensions, within the large N, expansion at its d-dimen-
sional fixed point the d-dimensional critical exponents
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contain information on the perturbative renormalization
group functions of QCD. This has been verified by agree-
ment with the latest set of five loop renormalization group
functions [8—15]. The novel feature is the fact that in the
non-Abelian Thirring model there are no triple and quartic
gluon self-interactions as is well known in QCD. These
vertices effectively emerge at criticality within large N
computations via 3- and 4-point quark loops, [21]. More
recently this property of critical equivalence has been
studied in the simpler O(N) scalar field theories where a
similar phenomenon of higher dimensional theory vertices
are generated at criticality by triangle and box graphs. In
more modern parlance this is known as ultraviolet com-
pletion. Indeed in the O(N) nonlinear ¢ model and
O(N) ¢* theory, the Wilson-Fisher fixed point equivalence
in 2 < d < 4 was extended to six dimensional O(N) ¢°
theory in [22,23] and then beyond in [24,25].

In light of this the six dimensional extension of the non-
Abelian Thirring model and QCD equivalence was provided
in [26]. This involved a more intricate Lagrangian but the
connection of the two loop renormalization group functions
with the universal d-dimensional large N critical exponents
was verified. Again this reinforced the remarkable connec-
tion with the non-Abelian Thirring model in that the
six dimensional theory has quintic and sextic gluon self-
interactions in addition to cubic and quartic structures which
are the only ones present in four dimensions. While formally
there are cubic and quartic interactions in both these
dimensions, the Feynman rules of the vertices are different
in each dimension. So the fact that the large N s non-Abelian
Thirring model exponents encode information on the
respective renormalization group functions is remarkable
since it is not a gauge theory as such. Given this background
itis therefore the purpose of this article to continue the tower
of theories to the next link in the chain and construct the eight
dimensional non-Abelian theory in what we will now term
the non-Abelian Thirring model universality class. This runs
parallel to the six and eight dimensional extensions of QED
[26,27]. The eight dimensional non-Abelian theory has
significantly more structure in its Lagrangian. For instance,
there are seven independent quartic field strength operators
in general as opposed to two in the QED case [26]. Equally
one has a higher power propagator for the gluon and
Faddeev-Popov ghost fields which means evaluating
Feynman integrals even at one loop becomes a significant
task. Therefore in this article we concentrate on a full one
loop renormalization of the field anomalous dimensions and
all the p-functions. As such one can regard this as proof of
concept to launch a two loop computation from. The eight
dimensional QED evaluation of [26] was able to probe to
two loops partly because of fewer interactions but also as a
consequence of the Ward-Takahashi identity.

A parallel reason for examining six and eight dimensional
gauge theories rests in the connection to operators
in lower dimensions. If one has the viewpoint of an

underlying universal theory residing at a fixed point in d-
dimensions, then the gauge independent operators corre-
sponding to the interactions of the higher dimensional theory
have dimensionless coupling constants in their respective
critical dimensions. Below this dimension the coupling
constant would become massive. Therefore they would
equate to operators in the effective field theory of the lower
dimensional gauge theory. In [26] it was noted that in the six
dimensional extension of QCD the fully massive gluon
propagator in the Landau gauge bore a remarkable qualitative
similarity to the infrared behavior of the propagator as
computed in the same gauge on the lattice but in four
dimensions. While there was an observation in [28,29] that
the ultraviolet behavior of a higher dimensional theory
informs or models the infrared structure of a lower dimen-
sional one, it would seem that an eight dimensional one could
only relate to infrared fixed points in its six dimensional
partner. However, given that dimension 8 operators are of
interest in four dimensional effective field theories of QCD
having renormalization group function data in the eight
dimensional non-Abelian gauge theory for SU(N,), where
N, is the number of colors, is an additional motivation for
future studies. In four dimensions such dimension § operators
were studied in [29] for Yang-Mills theories for the SU(2)
and SU(3) color groups. Here we extend the set and provide
the one loop mixing matrix of dimension 8 operators in four
dimensional SU(N,) Yang-Mills theory. It will turn out that
there are qualitative structural similarities between the matrix
and the f-functions of the eight dimensional theory.

The article is organized as follows. We discuss the
construction of the eight dimensional Lagrangian which
will be in the same universality class as the non-Abelian
Thirring model and QCD in the next section. The tech-
nology used to renormalize the various n-point functions in
this Lagrangian is discussed in Sec. III before presenting
the main results in Sec. IV. The connection with the large
N expansion of the critical exponents of the universality
class is checked in Sec. V. In Sec. VI we change tack and
determine the mixing matrix of anomalous dimensions of
dimension 8 operators in four dimensional Yang-Mills
theory. Finally, concluding remarks are given in Sec. VII.

II. BACKGROUND

As the first stage to constructing the eight dimensional
version of QCD we recall the corresponding Lagrangians of
the lower dimensional cases. The four dimensional
Lagrangian is

1 2= 1 i a ~a a
LW = _ZGZVG(W + iy Pyl — —(0+A%L)? — ¢4 (0*D,c)

1
20

(2.1)
where we have included the canonical linear covariant

gauge fixing term with the associated Faddeev-Popov
ghost. In (2.1) and throughout the gluon field will be
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denoted by Ay, the quark field will be w'l and c“ are the
Faddeev-Popov ghost fields where 1 <i < N;, 1 <I < Ny
and 1 <a < N,. The parameters N, N4 and Ny corre-
spond respectively to the number of (massless) quark
flavors and the dimensions of the adjoint and fundamental
representations of a general color group. We use « as the
linear covariant gauge parameter where a = 0 will corre-
spond to the Landau gauge. To assist with the process of
writing down the Lagrangians which are equivalent to (2.1)
in higher dimensions one can regard (2.1) as being com-
prised of two parts. The first is the set of independent gauge
invariant operators of dimension four built from the gluon
and quark fields which have canonical dimensions of 1 and%
in four dimensions. Then in order to be able to carry out
explicit computations in perturbation theory, for instance,
one has to add in the appropriate gauge fixing term to ensure
that a nonsingular propagator can be constructed for the
gluon. This is the gauge fixing part of (2.1). From an
operator point of view this involves the independent gauge
variant dimension four operators. By independent we mean
those operators which are not related by linear combinations
of total derivative operators. Given this the six dimensional
extension of (2.1) was provided in [24] based on similar
work given in [30]. With the increase in dimension the
canonical dimension of the quark field is now % which means
that there are no quartic quark interactions. However, there
are two independent gauge invariant gluonic operators
which are apparent in the Lagrangian [24],

1
L(6) — _ Z (DM G;zo_) (Dﬂ Gaya) + %fabc GZDGb/chv”
1
2a
+ il/_/ilpl//il

which means that there are two coupling constants.
Demonstrating the independence of the gluonic operators
lies in part with the use of the Bianchi identity

(8,0°A2) (907 A2) — 290N (0" D )
(2.2)

D,Gj, + D,Gg, + D,Gy, = 0. (2.3)

The remaining gauge invariant operator is the quark kinetic
term wherein lies the quark-gluon interaction which is the
core interaction in the tower of theories at the Wilson-Fisher
fixed point. Throughout we will always denote the usual
gauge coupling constant by g; when there are one or more
interactions. The remaining part of (2.2) is completed with
the dimension six linear covariant gauge fixing term which is
the obvious extension of the four dimensional one.
Equipped with this brief review of the construction of the
dimension four and six non-Abelian gauge theories, the
algorithm is now in place to proceed to eight dimensions. In
[31,32] the renormalization of dimension eight operators in
four dimensional Yang-Mills theory was considered and
those articles serve as the basis for the eight dimensional
Lagrangian. As was discussed in [31] there is only one

independent dimension eight 2-point gauge invariant oper-
ator which therefore serves as the gluon kinetic term.
Equally [31,32] there are two independent dimension eight
3-point gluon operators. The new feature in eight dimen-
sions, which derives from the fact that the gluon canonical
dimension is unity, is that there will be quartic gluon field
strength gauge invariant operators. The same property is
present in eight dimensional QED which was introduced
in [26] where there were several quartic photon self-
interactions. For the non-Abelian case there is the added
complication of having to incorporate the color group
indices. The upshot is that one has to specify a particular
color group as it is not possible to have a finite set of quartic
gluon opertors for a general Lie group [31]. Therefore we
restrict ourselves to the SU(N.) Lie group and recall
relevant basic properties of this group needed for the
Lagrangian. If 7¢ is the Lie group generator then in
SU(N,) the product of two generators can be written as
the linear combination

1 1 '
TeTh = W(Sab + 5dathc + %fabcTc (24)

where d** is totally symmetric and the structure constants,
¢, are totally antisymmetric. Equally when we have to
treat Feynman graphs with quarks, the SU(N,) relation

1 1
TiTke =5 [51L51<J - N_51J5KLj| (2.5)

will be useful. To define gauge independent quartic gluon
operators we introduce the rank 4 color tensors

beCd = fabefcde’

deCd = dabedcde (26)

and then use the SU(N,.) relation between them [33],

fabed Ni (8950 — §udghe) 4 dyebd — dgdve,(2.7)

c

This in effect [33] is the generalization of the relation
between the product of Levi-Civita tensors in SU(2) to the
color groups SU(N,.) for N, > 3. It means that we use the
tensor d4%¢ as the preferred tensor of the gauge invariant
operators. One reason for this is that djfb”d is separately
symmetric in the first or last pair of indices from the full
symmetry property of d?*¢. Consequently there are eight
gauge independent quartic gluon operators in the eight
dimensional extension of the QCD Lagrangian leading to
eleven independent coupling constants overall. The full
Lagrangian is
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1
L® = =7 (DuD,Gg,) (DD Ge?)

+ &futhaDDﬂ Gho’pr G;., + il/_/ilpl//il + @fahc GuDDO_Ghﬂ/}Do’ch[)

+g4Ga GaMpro'be +g§Ga Gbﬂpro'uGa +gﬁGa Ga szmepu +g7Ga Gb Gao‘ﬂGpr +g§dzbchZO_Gbﬂo'GlC/devp

4 ggdffb"dG“ GCﬂprIJUGZl/ip
— (0e*) (00D, ¢)

where like (2.1) and (2.2) the dimension eight linear
covariant gauge fixing term is included. In addition the
quark kinetic term is present and is equivalent to those in
the lower dimensional Lagrangians which therefore pre-
serves the connection with the Wilson-Fisher fixed point
and the underlying universal theory which is accessible
from the large Ny expansion. While (2.8) represents the full
SU(N,) Lagrangian those for N. = 2 and 3 are smaller due
to properties of the color tensors. For instance, for the
SU(2) group d** = 0. So for that group one has gg =
99 = g10 = g11 = 0. For SU(3) d?¢ # 0 but d4>°? satisfies

dadbc_ dabcd dachd_|_3[5ab5cd+5ac5bd+5ad(3bc] (29)

This means that two of the operators involving d4%¢¢ are
absent and within our computations we have set g;op =
g11 = 0 for SU(3). Finally we note several useful SU(N,.)
group identities, which we used within our graph evalu-
ations, that are [33]

N2 —4]
dabcc — O, dacbc — [ c 5’”’,
4 4 Nc
apbq ;cd [N%_lz] abe
d4p qd4 pa - Td4b d. (210)

From the quadratic part of (2.8) in momentum space we
find that the gluon and ghost propagators are

éab

APIAL=P)) = = s [ = (1= @) P22,
B ~ _ 51117
(c(p)e’(-p)) = TS (2.11)

which are formally the same as those in lower dimensions
aside from the cubic power of the overall factor. This is a
similar feature to other eight dimensional theories and
means that the evaluation of the Feynman graphs we have
to compute becomes exceedingly tedious.

While we have constructed the most general non-Abelian
gauge theory based on a simple Lie group in (2.8), this is in
the case where there are no masses present. The latter
would not contribute to the renormalization group func-
tions at the Wilson-Fisher fixed point which is the main

+ glodacbdGa Gb;ch Gdup + 9%1 dzdbCGZchﬂthngp _

% (8,0,0°A8) (0" 0* 0 A%)
(2.8)

reason for not considering them initially. However, one
could view the presence of masses as touching the lower
dimensional operators which are allowed by power count-
ing renormalizability and which would be a staging point
for connecting with the other equivalent Lagrangians for
this universality class. Therefore, budgeting for nonzero
masses (2.8) generalizes to

|
ng) = L(S) + mllplll/]” - Zm%(DﬂGga) (D”Gaya)

1

— 5 M3 (0, AL (D' AL) — mITD(D,0)"

1
_ 4 a auw
myG, G

1
: gwmmm>

— miee(0#D )

_ a0 Aapau 6-aa_2abca buo cv
2m6AﬂA + mgactc +6m7f G, G GY,.

(2.12)

The additional terms fall into two classes which are
operators which are gauge invariant or not. In the latter
case those operators are Becchi-Rouet-Stora-Tyutin
(BRST) invariant. In particular it is evident that the lower
dimensional operators are a reflection of the Lagrangians of
the lower dimensional massless Lagrangians in the same
universality class. In other words in the critical dimension
of the lower dimensional Lagrangians the masses would
correspond to coupling constants and hence be dimension-
less in that spacetime. Implicit in (2.12) is the assumption
of locality. If one ignored this and allowed for nonlocal
operators then it is possible to construct a completely gauge
invariant massive Lagrangian as discussed in [24]. The
gluon and ghost propagators of (2.12) have Stingl forms
[34], since

5P, (p)

AP = = Gy 4
B aé“”L J(p)
[(p?)* + m3(p?)* + m3p* + amf]’
. B . 5ab
<C (P)cb(_p)> - [<p2)3 +m ( ) +m4p T am ]
(2.13)

where
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PuP
P/w(p) = My — ;21/,

PuP
L/w(p) = ;2D

(2.14)

are the respective transverse and longitudinal projection
tensors. In this formulation it is apparent that the pole
structure of the Faddeev-Popov ghost propagator matches
that of the longitudinal part of the gluon. This ensures the
cancellation of unphysical degrees of freedom within
computations with the massive Lagrangian.

ITII. TECHNICAL DETAILS

The task of renormalizing (2.8) requires several technical
tools some of which were applied to the determination of
the two loop renormalization group functions of L(©).
However, with the presence of gauge independent 4-point
operators built from the field strength, the extraction of the
p-functions of the respective coupling constants required a
technique not employed in [24]. First, we note that we have
constructed an automatic program to renormalize the
various 2-, 3- and 4-point functions. The graphs contrib-
uting to each Green’s function are generated using the
FORTRAN based package QGRAF [35]. With the spinor,
Lorentz and color group indices added to the electronic
representation of the diagrams, each diagram is then passed
to the integration routine specific to that particular n-point
function. Once the divergences with respect to the regu-
larization are known for each graph, the full set is summed
and the renormalization constants determined automati-
cally without the use of the subtraction method but instead
using the algorithm provided in [36]. Briefly this is
achieved by computing each Green’s function as a function
of the bare coupling constants and gauge parameter with
their respective renormalized versions introduced by multi-
plicatively rescaling with the constant of proportionality
being the renormalization constant. Specifically, at each
loop order the renormalization constant associated with
the Green’s function is fixed by ensuring it is finite which
determines the unknown counterterm at that order.
Throughout this article we will consider only the MS
scheme and regularize the theory using dimensional regu-
larization where the spacetime dimension d is set to d =
8 — 2¢ and € is small. It acts as the regularization parameter.
To handle the significant amounts of internal algebra of this
whole process, use is made of the symbolic manipulation
language Form [37,38]. It is worth noting that the
renormalization of (2.8) involves 12 independent param-
eters as well as color and flavor parameters together with
gluon and ghost propagators each of which have an
exponent of 3. This means there is a significant amount
of integration to be performed, compared to four dimen-
sional QCD, for which FOrRM is the most efficient and
practical tool for the task.

In order to construct the integration routine for each
type of n-point function, we follow what is now a

well-established procedure which is the application of
the integration by parts algorithm devised by Laporta
[39]. To evaluate a Feynman graph it is first written as a
sum of scalar integrals where scalar products of internal and
external momenta are rewritten as combinations of the
inverse propagators. For cases where there is no such
propagator in an integral, which is termed an irreducible,
the basis of propagators is extended or completed. It
transpires that for each n-point function at a particular
loop order there is a small set of such independent
completions which are called integral families. These
may or may not correspond to an actual Feynman diagram
topology. Irrespective of this it is the mathematical repre-
sentation of the integral family which is at the center of the
Laporta method. One can determine a set of general
algebraic relations between integrals in each family by
integration by parts and Lorentz identities. The power of
the Laporta algorithm is in realizing that these relations can
be solved algebraically in terms of a small set of basic or
master Feynman integrals [39]. Thus if the e expansion of
these master integrals is known then all the Feynman
integrals at that loop order can be determined. In particular
this includes the specific ones which comprise each of the
graphs in the n-point functions of interest. There are various
encodings of the Laporta algorithm available but we chose
to use both versions of REDUZE [40,41]. While this outlines
the general approach we used, there are specific points
which required attention. As we are renormalizing an eight
dimensional Lagrangian we therefore need to have the
master integrals in that dimension. Ordinarily the main
focus in renormalization computations is four dimensions.
However, we have not had to perform the explicit evalu-
ation of master integrals by direct methods which is the
normal way to determine their values. Instead we can
exploit an elegant technique developed by Tarasov in
[42,43]. By considering the graph polynomial representa-
tion of a Feynman graph, it is possible to relate a Feynman
integral in d-dimensions in terms of a linear combination of
the same integrals in (d + 2)-dimensions. The latter, how-
ever, have several propagators with increased powers which
is clearly necessary on dimensional grounds. This higher
dimensional set of integrals can be reduced to a linear
combination of masters in the higher dimension. One of
these will be the equivalent topology as the d-dimensional
master with the remainder of the combination being
masters with a fewer number of propagators [42,43]. As
is the case in the Laporta algorithm, some of these lower
masters are integrals, such as simple bubble integrals,
which are trivial to evaluate without using the Tarasov
techniques. Therefore one can connect the more difficult to
compute masters in d-dimensions with the unknown ones
in (d + 2)-dimensions. If the lower dimensional ones are
available then the higher dimensional ones follow immedi-
ately. For our purposes we need to apply this connection
twice since the various masters required are known in four
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dimensions. For instance, the 2-point masters to four loops
have been listed in [44] while the 3-point masters for
completely off-shell external legs were calculated to two
loops in [45,46]. Also the one loop 4-point box integral is
known [47]. Although we will not require the higher loop
masters here, it is worth noting what has been achieved over
several years.

This leads naturally to a brief discussion of the treatment
of each set of n-point functions separately. For the 2-point
functions and hence wave function renormalization con-
stants, we carried out the renormalization to two loops. The
main reason for this is that the double pole in € of the two
loop renormalization constant is already predetermined by
the one loop computation. Therefore this provides a partial
check on the leading order renormalization. For the 2-point
function we used the massless Lagrangian and constructed
the one and two loop masters by direct evaluation as these
are straightforward bubble integrals. By contrast for the
3-point functions, since nullifying an external leg leads to
infrared issues, we had to extend the four dimensional off-
shell massless master 3-point function of [44,46] to eight
dimensions using the Tarasov method [42,43]. For instance,
if we define the one loop triangle integral at the completely
symmetric point by

1

I(a.B.7) —/ - (3.1)
k (R2)*((k=p)*)((k+q)*)
where p and g are the external momenta satisfying
pP=q’ = (3:2)

and [, = d’k/(2x)? then

161 222 1 /1
I 1 1 1 _ e 2 =S T T a4 a4 =v'| 5
(L1, 1)]gg e =—# { 8¢ 144 81 +27W (3>

L (L) 895 2327 2 (=
18V \3) 864 864 3°%\6

+35,,3\/§+”1n2(3)f3} e+ 0(62)}

5832 216
(3.3)
where y/(z) = £InT'(z) and
L[ [e®
su(2) = 7§J [Lln (ﬁ)] (3.4)

in terms of the polylogarithm function Li,(z). While only
the simple pole in € is relevant for the renormalization of
(2.8), we have included the subsequent terms in the ¢
expansion for comparison with the analogous lower dimen-
sional masters. The finite part for instance is directly
correlated with the finite four dimensional master. The

simple pole in (3.3) by contrast derives from the one loop
bubble integrals which emerge in the Laporta reduction
after the construction of the (d + 2)-dimensional integrals
from the d-dimensional master across two iterations.
Equipped with (3.3) the three coupling constants associated
with the three independent 3-point gluonic operators as
well as those of the quark and ghost vertices of (2.8) were
renormalized using this strategy. For the latter vertices the
quark-gluon vertex renormalization, for instance, deter-
mines the renormalization constant for g; which can be
checked in the ghost-gluon vertex computation. For the
remaining two couplings in this set, g, and g3, their
renormalization can be determined from the gluon 3-point
vertex which provides a third check on the f-function of g;.
From examining the Feynman rule for the 3-gluon vertex it
can be seen that there are three independent tensor channels
to provide three independent linear relations between the
renormalization constants for these couplings.

For the final part of the renormalization we have to
extract the renormalization constants for the couplings
associated with the purely quartic operators of each eight
dimensional Lagrangian. For this we used the vacuum
bubble expansion of [48,49] as it was more efficient than
constructing a large integration by parts database using
REDUZE. This would be time consuming to construct due to
the high pole propagators for the gluon and ghost. By
contrast, in the vacuum bubble expansion massless propa-
gators are recursively replaced by massive ones in such a
way that the new propagators eventually produce Feynman
integrals which are ultraviolet finite. Hence by Weinberg’s
theorem [50], these do not contribute to the overall
renormalization of the Green’s function and so such terms
can be neglected. Subsequently the expansion terminates
after a finite number of iterations. The expansion is based
on the exact identity [48,49],

1 1 2kp — p? 2
=P e

[ +m?] (k= p)[k* +m]
The contribution to the overall degree of divergence of each
of the numerator pieces in the second term is less than that
of the original propagator. In addition, the first term does
not depend on the external momentum. So when all such
terms are collected within a Feynman integral, it becomes a
massive vacuum integral. Of course to produce the con-
tributions which are purely vacuum bubbles and contain the
ultraviolet divergence of the Feynman graph, the identity
has to be repeated sufficient times. Once this has been
achieved a simple Laporta reduction of one loop vacuum
bubbles is constructed to reduce the only one loop master
vacuum bubble which is a simple standard integral in eight
dimensions. Another advantage of this approach is that the
tensor structure arising from the external momenta together
with the scalar products of external momenta derived from
(3.5) emerge relatively quickly. In the summation of all the
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contributions to the gluon 4-point function such terms are
central to disentangling the coupling constant renormaliza-
tion constants for each of the independent quartic operators.
A useful check on the procedure is the absence of the
parameter of the linear covariant gauge fixing in each of the
coupling constant renormalizations in the three separate
color group computations we have to perform.

IV. RESULTS

We turn now to the task of recording the results of our
renormalization. First, we have followed the conventions of
|

73 ()0 = 24N G + 87162 — 41589, 9, — 13869, 95 + 56763 + 378¢295 + 632

previous analyses [24] and note that the renormalization of
the parameter of the linear covariant gauge fixing is not
independent of the gluon wave function renormalization in
that

7a(9:) +valg:) = 0. (4.1)

We have checked that this is true for all the SU(N,.) color
groups. For SU(2) the anomalous dimensions of the
fields are

1
1680

+ [—57594816Nfg‘1L — 27547881054} + 37417536Nfg%g2 + 4062170164, g, + 18601 152Nfg?g3

+ 1910780164 g5 — 4398624N ;g7 g3 — 174794945441 g3 — 3900096N £g% g2 g5 — 20407961887 9,95
— 1053216N ;g3 g% — 26198497847 g3 + 137535552g1 g3 — 27507110441 g2 — 112450060847 g7

+ 224900121693 g% + 4256143929, g3 + 8816189764, 9393 + 500362128¢, 9,95 + 155288448, 9,93
+ 425614392g, g5 + 8816189769, 9593 — 3105768969, g, g% + 2340334089, 9,92 + 4256143929, g3
+ 8816189769, g5g3 — 4680668169, 9,95 + 84640248, g3 + 4256143929, g5 + 8816189769, 9593
+ 2007855369, 9397 — 4015710729, 9392 4+ 4256143929, g5 + 8816189764, 9393 — 213373449, 9392
+ 426746889, 9395 + 425614392g, 3 + 8816189764, g3g3 — 2664389743 — 8773606873 g5

+ 4256143929, 93 + 8816189764, g3g5 — 894886024393 — 525813124395 + 4256143929, g3

+ 881618976¢, 9395 + 105162624 ¢392 + 198132484592 + 4256143929, g3 + 8816189767, g3 95

— 396264969395 — 359132769, 93 + 425614392g, g3 + 8816189769, 9393 — 7569676899393

+ 1513935369,939% + 4256143929, g3 + 8816189769, 9395 + 403038729, 9597 — 806077444,93 3
+ 4256143929, g3 + 8816189769, 9393 — 523070143 — 193898884343 + 4256143929, 53

+ 8816189764, 6395 + 387797764392 + 11233152¢3 g2 + 4256143929, g5 + 8816189764, g3 95

— 2246630493 93] + 0(¢®)
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SU(2
Ve ( )(gi)‘(lzo = _ﬁgl

g

192654 1 4943 —2L
+ 192654¢9,9; + 10854943 5419300

SU((2
14% U(
g

— 272034995 — 12177943 1612800

in the Landau gauge which is chosen for presentational
reasons. The full @ dependent results are contained in the
Supplemental Material [51]. One of the reasons for
proceeding to two loops for this is as a check on the
computation. The double pole in € at two loops of the
respective renormalization constants is not independent
as it depends on the simple pole at one loop. We have

+ O(gf)

+ O0(gf)

1+ [12312N g7 — 332148747 — 6286149, 9, — 241878g,9; + 77301 g3

7
99l = 7g % + [F17352N g} + 350975247 + 17222949,g, + 9739385,95 — 1963714}

(4.2)

[
verified that this is indeed the case in the explicit
renormalization constants for arbitrary a. This checks
the one loop coupling constant renormalization as well as
the application of the Tarasov method [42,43], to raise the
four and six dimension massless two loop 2-point master
integrals to eight dimensions. The one loop S-functions
are
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91
3360

@) (9:) = [-272N g} + 3215247 + 216N ;939> + 17919979, — 1990847 g5 — 326349, g5 — 26464, 9,93 + 35289, 43

BV (g,) = 24N ;g3 — 10962 — 4158g,9, — 1386195 + 56763 + 378093 + 6362 =~ + O(g7)

SU
I3

1
+ 510393 + 2898¢39; — 441g,9% — 16843 10080 + 0(q})

B (g,) = [~128N ¢ — 185733 + 14889¢2g, + 36N ;g3 g5 + 81636295 — 25209163 — 7539919295 — 1779163
+ 55449, 95 — 11088¢,92 — 36964, g2 + 73929, 65 + 8199393 + 3789293 — 15129, 95 + 3024992

@ +0(g})

B3P (g:) = [800N ;g + 73999g" — 8206843 g, — 4842647 g5 + 137345 G2 + 1285229593 + 33608263 + 1152N ;G262
— 899049%9% — 32592g%g§ — 1135689%g§ - 1935369%9% - 42glg§g3 + 100891929% - 179424glgzgﬁ
— 154569, 9,95 — 2688419298 + 80649, 9,97 + 2058, 93 — 67209, 9395 — 7392919395 — 430089, 93¢

— 456969, 9395 + 272166397 + 18144 9,395 — 90345 — 23184395 — 5712¢3 9% — 1276839z — 134404363
— 1693444} — 1881609392 — 177408g392 — 1397769595 — 12499242 — 145152¢2gZ — 215049247

o5+ O)

B2 (g:) = [~1192N g% — 101355¢* + 84756439 + 1919447 g5 — 140705263 — 1688453195 + 18484363 + 52416622
+ 1152Nfg%g§ + 16608g%g§ + 920649%92 + 1935369%9% + 42919%93 + 336glgzg§ — 12096glgzg§
— 1814409, 9,92 + 80649, 9,92 — 80644, 9,95 + 9669, 93 — 114244, 9597 — 430089, 9392 + 752644, 9397

+ 456969, 932 + 272169392 + 181449,939% — 2193 + 100809393 + 3360422 + 2016¢36% + 13440433

— 1075294 — 1075209392 — 37632g3 % — 10752g36% — 120964 — 268809242

At

BV (g)) = 272N gt — 2482074 + 1474263, + 13492563 g5 + 231623 — 7728439295 — 13232 — 22243282
—343392¢7 g2 + 2304N ;g7 g2 — 1440480¢7 g% — 22848047 g2 + 1479, 6395 — 432691993 + 268809, 9>93
+ 483849, 9,92 — 2042889, 9, 9% + 26889, 9>9% — 45579193 + 524169, 9395 + 1182729, 9392

+ 2472964, 9362 + 349449, 9397 + 54432032 + 36288029392 — 4244 + 33609397 + 7392¢362 + 5040043 g2
— 215044} — 80640g2g2 — 4515843 g% — 21504 g3 6% — 779529 — 8064009292 — 430089293 — 16665604

socio - Olh)

BV (g)) = 8N ;g — 472989g% + 15426643 g, + 1558834395 — 1064763 % — 31584639195 + 6516263 + 637056263
+ 4804809793 + 1704192g7 g + 2304N g1 g5 + 347049691 g5 — 147919395 — 10509, 9295 — 72576919293
— 524169, 9,93 — 2029444, 9,7 — 7512969, 9,63 — 33399193 — 1249929, 9393 — 819849, 956

— 30777699362 — 651840, 932 + 544326362 + 3628899363 — 4294 — 9408262 — 604822
— 416645362 — T45922 % — 913924 — 806402 g% — 4085766202 — 15805446352 — 53764% — 64512522

+ 1008¢,9% — 2016g,63 — 2193 — 5044593 + 1008g39% + 3369392 — 6729347]

— 37632g% — 4300822 — 430084?]

—129024¢2¢% — 26880g; — 4300892 43]

—-30105642¢7]

1
~ 913920023 — 1182729, — 34406400253 — 477388845] oo + O(gf). (4.3)

The main perturbative check on these expressions is the absence of the gauge parameter. We computed the various
4-point functions with nonzero a and verified that it canceled in the final Green’s function as it ought since we are using
the MS scheme.
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The results for the case of SU(3) are somewhat similar aside from the additional two couplings. We have

75 (9o = 168N, + 8712 — 41589, 9, — 13869, 95 + 56763 + 378¢295 + 633

SU
Ve

SU
Yy

1120
+ [~110877632¢* N ; — 8264364315g" + 7483507263 g, N + 121865104843, + 3720230447 g3 N

+ 5732340483 g; — 87972482 3N s — 5243848362393 — 780019242 g,9:N ; — 612238856442 9,95
—2106432g7 3N ; — 78595493447 3 + 27507110491 g7 — 550142208471 g2 — 224900121697 g2

+ 44980024323 g2 + 374833536047 g2 + 22922592097 g3 + 12768431769, g3 + 26448569289, 4395

+ 15010863849, 9,63 + 3105768964, 9,97 — 621153792, g, g% + 4680668164, g, 9% — 9361336329, g,
— 7801113609, 9,93 + 258814080¢, 9,93 + 2539207444, g3 + 401571072¢, g3 g% — 8031421444, g3 g

— 426746889, 9392 + 853493764, 9363 + 711244809, 9392 + 3346425609, 9393 — 7993169143

— 2632082043 g5 — 2684658069393 — 1051626246397 + 2103252483 g% + 3962649643 g

— 7925299243 9% — 66044160392 — 87635520433 — 1077398287,93 — 1513935369,9393

+ 3027870729392 + 806077449,9:9% — 1612154889, 9392 — 1343462409,953 — 1261612809, 9393
—15692103g% — 38779776439% + 7755955242 g% + 2246630493 g2 — 4493260843 g% — 374438404363

— 3231648093 93] + 0(¢)

451584000

7
91)|amo = — -G} + [8208¢3N; — 332148747 — 6286144, g, — 241878¢, 95 + 773013 + 1926549, 95

16
g
1075200

+ 108549¢7] +0(g)

7
99)lamo = 5 91 + [~3856GIN - + 11474594} + 574098g,, + 324646915 ~ 654574

2
1o

— 90678459 - 40593¢3] 51+ O(gf)

AV (g) = [1682N; — 10962 — 4158g,g, — 1386, g5 + 56762 + 378g295 + 63¢2) =2+ O(g?)

2240

BV (g) = [-544g3N ; + 9645647 + 432629, + 537573, — 597244395 — 979029, 63 — 7938919293

1
+10584g,63 + 1530993 + 86949395 — 13230203 ~ 50493] 55725 + O(a7)

B0 (g,) = [<256¢3N ; — 55719g° + 4466762, + 12795 N 1 + 244898295 — 75609, 2 — 226174, 995

—2331g,63 + 11088¢,97 — 221769, 92 — 73924, g2 + 14784g,¢5 + 123209, g3 + 92409, 95 + 24579593
+ 1134gzg§ - 30249,0% + 6048929§ + 2016929% —4032g,4% - 336ngg§ - 25209293 - 63g§

1
— 10089397 + 20169392 + 672g3gz — 1344933 — 11209393 — 84093 93] 3360 +0(q?)

B0 (g)) = [-784g¢ N, — 61551 + 604843 g, — 6577203 g3 — 75662 % — 907230295 + 117182 % + 345642 2N

— 1686962 % — 208656252 — 4173123 g2 — 24595252 2 — 856802 2 + 3024, 9,52 — 8618404, 9>
+ 60489, 9,93 + 120969, 9,95 + 60487, 9,95 + 68044, g3 — 816489, 9395 — 302409, 9395 — 604809, 93¢
- 887O4glg3g§ + 14112glg3g§ + 1224726395 + 816489,9395 — 20799‘3‘ - 589689%93 — 272169%9%

— 544320262 — 20160262 — 17136622 — 87091244 — 806400¢2g2 — 10160645252 — 419328252

— 344064522 — 3655680263 — 395136g% — 516096622 — 64512522 — 2903045262 — 3037440253

— 1935364 — 12902422 — 150528 2% — 252672622 — 129024¢* — 215046252 — 50176}

— 12902442 g3 — 62720g3]

1 6
120060 ~ Ol97)

025009-9



J.A. GRACEY PHYS. REV. D 97, 025009 (2018)

B0 (g,) = (357644 N, — 445839¢" + 38039447 g, + 9733547 g5 — 631892 G2 — 74466539295 + 6363532
+ 157248¢3 g3 + 34567 2N ¢ + 9540097 g% + 38304047 g2 + 58060847 g% + 36086447 g% + 8820097 g3
+ 189919595 + 1008, 9295 — 362887, 9,95 — 8416809, 9,95 + 282244, g2g¢ — 241929, 9,97 — 201609, 925
—272164,9,93 + 32139, 93 — 3427299395 — 1945444, 9392 + 2943369, 936> + 1370889, 939>
+ 698889, 9393 — 215049, 9393 + 1224729392 + 816489, 9392 + 25245 + 30240¢3 95 + 156249392
+ 80644292 + 40320202 + 235200363 + 166326202 — 322564 — 3225605%5% — 1128964252 — 3225642 5%
— 107526363 — 215044262 — 5644844 — 161280262 — 3870726262 — 1720326262 — 1182726202 — 1612804}

— 129024263 — 129024263 — 591369263 — 10752g393 — 716843 + 250884393 + 10080g3] ; 2019 =+ 0(¢0)
AV (i) = [1632¢* N, — 1152069 — 12083443 g, + 77811335 + 177036263 — 105844295 — 108996253
— 13345923 g% — 184665647 g2 + 13824¢3g2N ; — 824688092 g2 — 137088092 g2 — 74726442 g3
— 391440393 + 13239, 6593 — 308709, 9,93 + 1612809, 9,92 + 2983689, 9292 — 24071049, g, 2
+16128¢9,9,9% — 2688091929§ + 55776glg2g§ - 29169glgg + 3144969, 395 + 846720glg3g§
+ 13587844, 9362 + 2096649, 9395 + 1182729, 9363 + 1391049, 9393 + 4898889592 + 3265929,73 92
—252g% +20160g3 g7 + 483844392 + 32860843 g2 + 772833 — 1290244} — 4838409392 — 270950447 g2
— 1290244363 — 430089393 — 8601647 g3 — 5483524% — 516096092 g2 — 258048425 — 258048423

— 2042884263 — 10321920} — 18063365253 — 946176622 — 9891845253 — 4300822 — 286724¢

1
~ 60928363 — 2016065] e+ O(gf)

B9 (g,) = [608g¢N ; — 53386954 + 164190643, + 183915935 — 11144763 2 — 34322442 g g5 + 485162
+ 879782447 g3 + 367315291 g2 + 1180569647 g7 + 27648¢1 95N s + 597271684193 + 153753643 g3
+ 1832880{]%95 —1323g,639; — 175144,9,93 — 9838089, 9,93 — 395136glgzg§ — 137894491929%
— 134910729, 9,93 — 537609, 9,93 — 213024919293 — 418959193 — 16208649, 9397 — 6048009193g§
—2072448¢, 939 — 11313792g, 9595 — 231168, 9393 — 3850569, 9395 + 9797764367 + 6531849,9393
— 50445 — 129024 ¢35 95 — 362889392 — 249984 ¢3gz — 1342656395 — 258724395 — 21450244}
— 11289609392 — 5225472939z — 415457289395 — 2580484793 — 8386564395 — 6451298 — 7741444247

— 141926404263 — 4300822 — 204288263 — 14192644} — 47738880263 — 516096522 — 989184253
1
967680

B9 (g:) = [-512¢*N; — 2093313¢* + 881370¢%g, + 530523395 — 645756263 — 16632062059 + 7875253
+ 1334592¢7 g3 + 248774491 g3 + 943488097 gz + 137088097 g% + 921641 g3 N ¢ + 1047417643 g
+ 102144093 g5 — 13239, 9593 + 667871 9,95 — 1612809, 995 — 2741769, 9>g2 — 11370249, g, %
- 1612891929% - 336000091929% - 110208919293 - 6363919% - 31449691939421 - 43545691939%
— 17337609, 932 — 2096644, g3 2 — 20375049, g3 g2 — 1653129, 9302 + 3265926352 + 217728029362
— 12644 — 201600202 — 3628822 — 249984202 — 19756822 — 14784522 — 1720320422 — 7526462 6%
— 29675522 % — 129024622 — 11956224252 — 666624522 — 120422462 % — 430086252 — 96194564

— 1476034564 — 43008009262 — 8644608522 — 1720324 — 6092822 — 828804]

+ O0(g0)

— 16271364263 — 474884}]

4§}
322560 + O
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B3 (g,) = (63684 N, + 8301274 — 7547403 g, — 2604423 g5 + 125622263 + 13986052955 — 1008363
— 31449641 g5 + 82656497 g2 — 124992g1 g2 — 116121647 g3 — 26208097 g3 + 230447 g3N ; — 10137647 g3
- 378g19593 + 10089192g3 + 725769, 9,95 — 100800919295 - 32256919296 +483849,0,9% + 48384glgzg§
—5362569,9:93 + 3789193 + 685444, 9395 — 40329, 9362 — 1774084, 936> — 2741769, 939> + 860169, 9392
— 638409, 9395 + 816489562 + 544329, 9395 — 258344 — 60480433 + 20166362 — 4032362 — 806404363
— 22848393 — 302409393 — 1075204393 — 1720329499 + 4515849598 + 1774089599 + 430089698

1
+ 430084395 — 1720324363 — 2365444563 — 71683 + 286726303 — 32704g8] oo+ O(of) (4.4)

for the full set or renormalization group functions.
The results for SU(N,.) are more involved partly because of the increase in the number of independent couplings but also
because of the explicit N. dependence. First, the Landau gauge field dimensions for SU(N,.) are

74(9)laco = [87TIN g7 + 48N ;g7 — 4158N .g,9, — 1386N g1 g5 + 567N g5 + 378N 9,95 + 63N .g3] % + 0(g7)

7
Ye(9i)] o = —4—89%]\76 + [-3321487N g7 + 24624Nfg% — 628614N,.g,g, — 241878N g, 93 + T71301N .¢5

giN.,

+ 192654N .25 + 108549N 3] 5 2z + O(of)

7NZ-1] ,
(9o = 54— 91

+ 1722294N%g,g> — 1722294N2g, g, + 973938N*g, g5 — 973938N2g, g5 — 19637IN* 2 + 196371N2g2

+ [3388477N*g? — 34T04N3N ;g7 — 290337TN2 g + 34T04N N ;g7 — 485100g7

91
— 272034N* 272034N? — 121779N* 121779N — 2L 4 040 4.5
9293 + <9293 e+ 2] 48384002 + 0(g7) (4.5)

where we only present the two loop terms of the ghost and quark for compactness. That for y,(g;) is given in the
Supplemental Material together with all the other renormalization group functions. For the f-functions we found

33
160

9 . 109 1

3 9 27
—N,.g1¢> +—N.. N, - N. ——_N, -——N N o(
320 V99 + g5 Ned19205 + 355 NG A9 o NVe9i9% — 555 L91+140 g1+ 0(g7)

1 7 23 81 7 21 259 79
) == NeGh = 2o Neta @3+~ N33 + 2o NeGh + = Neg1 3 ——=N ~ NG5 — 5= NG}
Pa9i) = =155 Nes = 355 NVe9205 + 15 Ne293 + 555 Nes + 5 Ne195 = 15N 919293 = 15 Neti 92 = g N i 93

1991 o 4019, L 3

pilg:) =

+2240Nc 192 +2520Nc91 +meg%gz 6130Nf91 +0(q)
6 3, 4, 18 12 66
ﬂ3(9i)=—mg3gn 5N gzgm+5—NCgsgg+5—NCg3gg SN, 901 — 929%0 9299 SN, 9298+5—NC91911
2, 33 44 2212323262329292
+5—NC91910 SN, 9195 — SN, = 9198 — 59397 +§9396 +59395 —E9394 — 59297 +§ng6 +§9295 ~ 109294
+25—291g%—%919§—35—3919§+%g1g§+l3—oNcgagﬁ+1i0Ncgsg%o 30 N .g395 — ;Ncgsgé 1éo 9
+ 19—0N 92911 + 130 Neg2gi0 = 290 N 923 — %N 90 + 89—0N 903 + %Ncg%gs = %Ncglg%l - %Ncglg?o
+33Ng]g2+11Nglg 37Ng N ONad+ N g+ DN g 61911\/ ;
20 ¢ <998~ Te0 c193 160 919293 4 9193 1120 9193 160 c9192 — 1120
3 8
+140Nf9193 105Nf91+0(91)
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92 , . 184 8 76 24 2, 208 ,, 64 ,, 224

Pa(g:) = S—N%g“ + Wg%og%l +W94110 + Wﬁ%gﬁ + 5—]\,2959%0 + 3—]\/%99 + TN%QSQII + TN%Q&%O + TN%g%gg

+53—]539§ 30729 — Bt 15N2 93970 + Nz 9392 + i]z BIR %N%gwsgﬁ +%glg3g?o 151;2 919395

1;%]2 919395 + 3;2 919297, + 1523\,2 9192970 — 516\,2 919295 — ;]2 919295 — 33;]2 gign + 15N2 9197
+%g%g%+wsﬁ9§ 969?1 15N el + 1;6\, 9695 + 121%7 ; 2+51]5 93911 + 5N ———G%9%

15N 9292 +—— 15 N 9298 929?1 94910 + 53]5 9i% 53]36 A9 — 312\’c B - 3011\,C 939

60N ——— 303 — 9392 919397 152]%,6919392 30;/ 99393 +3él7vcglgsgi+szz\,cglgzg%
—%Ncglgzgé 615\, 919295 + 513\, 919295 — ;;5 9195 — 33;] 9198 + 63Nc 193 —51—]\19%93 —25—39‘1‘1 —%g%ogﬁ
—%g‘l‘o —15—9939?1 =BG — 9‘9‘ igggu iggsgm ?ggggg §9§ —1—29‘7‘ 129697 zg‘é ~ 15991

41‘2 29%—% 5 ??9497——9396 159495—294+ﬁ939%1 —%g%g%o S 95B% — 9398 13309‘3‘

1 11 17 17

2 2 2 49 5 5 2 2 2 3 , 1 2
~ 60193911 —Eglgﬂm +@919399 15919%98 96—09193 ~ 15 9192911 ~ 759192910 +E919299 +§glgzgg

1 ’ 41 31 13 24 1 51 109 2 2
+Eglgzg3 960919292 + 12091911 6091910 109199 _?9198 129193 160919293 + 3209192

1S3, 977 +73999 8
960 9193 ~ 4809192 40320 5

12 8
—BNcgég%o N R - N GR——=N.gigh — Ncgig?o --N.g3g} — c9492 N el

4 14 8
N.Gtg} — ENcgég?o - ENcgégé 5 —N_.g2g% — 6959?1

5 5
3 13 27 1 1
- EMQ%Q% - @Ncgﬁgi + 4—0N692939§ + @Ncgﬁgi - chglgagé - ENcglgagé - 4—0N691939§
1 1 19 23 781 2 2
+ %Ncgngzgé +e5Ned) Dgi — ;Ncglgzgi - %Ncg%g% N g1g% — 1630 N G195 — BNC% G —N?%gige
1 4 2 3 5 1
- %Ncgs - §N29496 - §N29495 - 5N394 + WNfgl v 35 Nf9194 + O(gf)
4 8 8 52 56 6 176 64
Ps(g:) = ng‘ﬁ + TN%Q%OQ% +TN§g‘1‘° + nggﬂ + FN%Q&Q%O 4‘539‘91 + ?Ngggg%l + 15N2 %910
32 32 1 1 1., 4 1 44
TSN + 15z % 3Nz 9 T 15z B9 ~ N2 ~ 3 939 T ez N9 T 15z 19390
C

+17 ) 68 ) 5 ) 8 2—1—6 2—1—4 92+41 ) 5
15N%919399 15N%919398 3N39192911 15N%9192910 5N2919299 5N291928 30N291911

3] 96 16
g“—Wg%gé—nggﬁ—lSN 95910+—15N999+15N 92+15N 93970 + 15N %

_W 1910
15N 22 2 + 3y B9+ 305\, R — 60;,0 9395 +%9394 +%glggg% + %glgagé + ﬁglgggﬁ
—%17\]0919393 5]2\, 9192974‘%919296 6]5\, 919293 — 5; 919295 + 9192+30N 919 — 60N 9163
SN —%9‘1‘1 7591091 ~ 2 5910~ 15—3959%1 Egggm 1309‘9‘ ngsgn 1298910 lgsgﬁgé—%g‘é
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16 2 16 2 1 4 14 8 4 1

1
—39697—396— s 9597—39596—595—39497—59496—59495 5% ~ 1509391 + g5 %900
1 11 17 23 5
+ 19393 + 59%9% - @9‘3‘ + @91939%1 + Bglg3g%o 60919399 + 159193g§ + %glgi + Eglgzgﬁ
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Again these renormalization group functions, as well as
those for SU(3), satisfy the same checks we discussed for
the SU(2) case.

V. LARGE Ny CHECK

We devote this section to the final independent check we
have on the renormalization group functions in each of the
three cases which is the comparison with the large Ny
critical exponents which have been computed in the non-
Abelian Thirring model universality class. The background
to this is the observation that the renormalization group
functions depend on the parameter N, and the various
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(4.6)

coupling constants for a specific value of N,.. The coef-
ficients of these parameters in each renormalization group
function is conventionally determined by perturbative
methods as was carried out in the previous section.
However one can also determine the coefficients via an
ordering of graphs defined by N . This is achieved through
the known d-dependent critical exponents of the underlying
universality class. An alternative view of this is that the
exponents already contain information on the perturbative
coefficients. The method is to compute the renormalization
group functions at the Wilson-Fisher fixed point in
d = 8 — 2¢, expand in powers of 1/N and then compare
with the e expansion of the corresponding large N critical
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exponents. This constitutes our independent check. The
first step in the procedure is to locate the Wilson-Fisher
fixed point explicitly order by order in powers of 1/N ; and
€ by finding the solution to

Pi(g;) =0 (5.1)

for the d-dimensional f-functions. In four dimensions this
is relatively straightforward since there is only one coupling
constant in QCD. For eight dimensions we have 11
coupling constants for the case of SU(N,.). So we follow
the method introduced in [22,23]. As there are 3- and 4-leg
operators in (2.8) we have to be careful in defining the

rescaling which is the initial step in the approach of [22,23].
Therefore at the outset we set

70
gi = —exi i=1to3
Ny
70
P :N_;x, i=4to1l (5.2)

in (5.1) and expand in powers of € and 1/Ny. First the
leading order term in 1/N of the equations is isolated and
then the e expansion of this leading term is found before
repeating the exercise for the subsequent term in the large
N expansion. For the SU(N,.) p-functions the resulting
critical couplings are

1+1933Nc 3736489N? ( 1)
X1 = ) 6;—3
24N/ 384N7 N3
17 287279N,. 5066611513N2 1
Xp)=—+ 5 Ol e—
9 1944N; 279936N? N3
16 143411N. 153781987N? 1
X3:_+ ) 6;_3
3 324Ng 2916N? N3
25 1615081+115591 ]+ 4084305085 318375286621 894758019623N, 1+0 1
Xy=——"— — - — €,—x
*TUON. | 46656 432N% N, 11664N? 839808N, 3359232 N3 N3}
149  [39472453 343 ] 1 768922651 6468807373  144625900963N, ) 1 [ 1
X5 = - —+ |- — €,—
> 36N, 46656  432NZ|N; 11664N2 ~ 839808N, 1119744 N3 N}
149 [18279803N, 343 ] 1 [161927831371N2 28392695975 1571677793 L 1
X6 =—~ - — - - — €—x
D) 46656  432N.|N; 2239488 1679616 46656N? | N3 N}
N 997943+ 343 11 [285596549 155421633577  69408246905N,] 1 ‘ L
77 36N, | 46656 ' 432N2| N, ' | 2916N? 839808N, 1119744 | N3
I S 343 5517727] 1 | [37377424567 20021939 223918424851N, L
TN, T 216N 46656 209952N.  23328N? 3359232 Nf }
B 343 6535889N.] 1  [388161667565 5239709503 297237914233N;
=Tt 216N, 186624 | N, 3359232 93312N? 26873856 N2
17 [ 343 2137045N.] 1 [11234911345 2318604883 7914271411N2] 1
X = —_— R '_
077727 432N, 46656 [N, | 104976 46656N? 497664 | N2 ;
25 115591+8299843NC 1+ 15724650809 429314818345 261182511995N? 1+0 1
X|1=—75— — - — €,—x
UTUU8 432N, 0 93312 | N, 46656N> 1679616 6718464 N2 N3

where the double order symbol indicates both the two
loop correction and the next order in the large Nj
expansion. These values of x; correspond to the ¢
expansion of all the critical couplings to the order which
they are known in the previous section. Next the renorm-
alization group functions for the wave function renorm-
alization are evaluated at the Wilson-Fisher critical

point and expanded in powers of both e and 1/Ny.
Subsequently the critical exponents should be in agree-
ment with the coefficients of € in the known large N,
critical exponents of the non-Abelian Thirring universal-
ity class when they are expanded around d = 8 — 2e.
Substituting the values from (5.3) into (4.5) we find for
SU(N,) that
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245N,  473585N? , 1 VI. DIMENSION 8 OPERATORS

7a(9e)leo = €+ 5 e wn: <O\ IN FOUR DIMENSIONS
245N 473585N2 1 In this section we turn to a complementary problem
Ye(9e)lamo = — AN C € - 288N2 “e+0 <€2;N3> which is the renormalization of dimension 8 operators in
f 4 f four dimensions. Such operators in the case of Yang-Mills
(). = 245N, 245 | € theory have been considered in [31,32] where, for instance,
Twi9e)la=o = |73 12N, N; the anomalous dimensions for the SU(2) and SU(3) groups

| [473585N2 473585) € | (o 1
144 144 N

NG
(5.4)

where g. denotes the set of critical couplings defined in
(5.2). In order to compare with the large N, critical
exponents of the universal theory founded on the non-
Abelian Thirring model at the Wilson-Fisher fixed point,
we have to restrict the exponents to the Landau gauge.
This is because in effect the gauge parameter a acts as an
additional coupling constant and the Landau gauge is the
corresponding fixed point in this context. In other words
the gauge dependent large N critical exponents of the
gluon, quark and ghost fields can only be compared with
the Landau gauge anomalous dimensions at criticality
which has been noted before in [16,18]. We restrict our
large N ; comparison to these three anomalous dimensions
since they are the only three quantities which are available
for eight dimensional QCD. While the large N critical
exponent of the four dimensional QCD p-function is
known at O(1/N ;) [16], that exponent would relate to the
renormalization of the operator %GﬁDG“/‘” in (2.12). In
four dimensions the gauge coupling constant in four
dimensional QCD is dimensionless but in the continu-
ation along the thread of the d-dimensional Wilson-Fisher
fixed point the coupling becomes dimensionful and the
correction to scaling exponent in four dimensions tran-
scends into a mass parameter in higher dimensions such as
the eight dimensional Lagrangian (2.12). Therefore, if we
evaluate the leading order d-dimensional large N critical
exponents for the gluon, quark and ghost fields of [52]
near eight dimensions by setting d = 8 — 2e we find that
the coefficients of € match precisely with those of (5.4) in
the Landau gauge for SU(N.). Moreover, since the quark
anomalous dimension is also known at O(1 /N%) in the
Landau gauge [18], it is satisfying to record that the
corresponding term of y,(g.)|,_, is in full agreement.
While we have not given explicit details for the SU(2) and
SU(3) renormalization group functions, we note that we
have carried out the same check as SU(N,.) and found that
there is full consistency in these cases too. Consequently
the ultraviolet completion of QCD or the non-Abelian
Thirring model to eight dimensions via (2.8) has been
established at one loop within the large N, expansion as
expected.

were computed at one loop in [31]. The reason for this is
that in four dimensions the canonical dimensions of the
gluon and ghost fields are such that there is a complicated
mixing between gluonic and quark operators. In (2.8) by
contrast on dimensional grounds it is not possible to have
any other interactions involving quarks aside from the
quark-gluon interaction. Therefore in this section we
concentrate on the renormalization of four dimensional
dimension 8 operators in SU(N,) Yang-Mills theory for
N, > 4 as this case has not been considered. In addition we
use the same operator basis as was used in (2.8), which
differs from that of [31,32], in order to ease structural
comparisons. First, to set notation the basis for the
dimension 8 operators in four dimensions for the color
group SU(N.) we use is

Oga1 = G4,G“ GG},
Og43 = G4,G4,GP+ G,
0845 — deCdGﬁo-GbﬂaGngdyp,
0846 — deCdGzaGCW’ GbuaGgp
0847 — dZdeGzo-Gb”GGf,dew,

Ogag = di7°G2,GM G GL,.

— (a b bov (ra
Osur = G;,G™" GG,
— (a b (raou bpy
Osus = G;,G,G* G

(6.1)

The notation is similar to that used in [31]. However, these
operators are not the same since we have specified the basis
with respect to a specific color group unlike [31]. We have
chosen this ordering so that the SU(2) basis corresponds to
the first four operators and that for SU(3) involves the first
six. Equally the ordering is equivalent to that used in (2.8)
for the quartic gluon interactions with coupling constants g,
to g;; respectively.

To renormalize the operators Og,; we use the same
technique as that for the 4-point functions of (2.8)
but in this case we apply it to the Green’s function
<Aﬁ(P1)Af (Pz)Afr(P3)Ag(P4)084i<P5)> where  ps =
— >4, pi- However, as we are considering an operator
renormalization there will be a mixing of the Ogy; operators
among themselves which will produce a mixing matrix of
anomalous dimensions. This is similar to the f-functions
for the couplings in (2.8). However for operator renorm-
alization there are aspects to address compared with a
Lagrangian renormalization. For instance, for the gauge
invariant dimension 8 operators (6.1) there will be mixing
into gauge variant and equation of motion operators as well
as possibly total derivative operators. The latter can arise
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when an operator is renormalized in a Green’s function
where the insertion is at nonzero momentum insertion.
Moreover this set includes total derivative operators which
are gauge invariant, gauge variant and equation of motion
operators. So the mixing matrix in effect is larger than an
8 x 8 matrix based on (6.1). Not only do the operators of
(6.1) mix with all operators of the enlarged set but the
gauge variant, equation of motion and total derivative
operators can mix with themselves when each is renor-
malized. However, the overall mixing matrix has a par-
ticular structure in that the gauge invariant operators mix
with all classes of operators but the gauge variant ones
only mix within that class. See, for instance, [53-56].
As we are primarily interested in the gauge invariant
operators we restrict the evaluation of the Green’s function
(Ai(P1)AL(P2)A5(P3)AS (P4)Os4i(ps)) to the case where
the external gluon legs are all on-shell. The condition for a
gluon Afj(p) to be on-shell is that its polarization vector and
momentum satisfy

pup" =0, pte,(p) = 0. (6.2)

Therefore we multiply the Green’s function by
€' (p1)e”(p2)e’(p3)e’(ps) and apply (6.2). The terms
which remain such as eﬂ(pi)p? for i# j or p;p; are
resolved by grouping them in terms corresponding to the
Feynman rules of the contributing operators such as (6.1)
and any gauge invariant total derivative or equation of
motion operators. The reason why this list omits gauge
variant operators is that the restriction of (6.2) corresponds
to taking a physical matrix element. As such no gauge
variant operators can be present [53—-56].

Necessary to achieve the resolution into this basis of
operators is that the operator has to be inserted at nonzero
momentum. If it was inserted at zero momentum then
certain terms of the Feynman rule of different operators will
be similar and hence the extraction of the renormalization
constants in the mixing matrix cannot be achieved uniquely
and unambiguously. Therefore, formally the set of bare
operators, denoted by the subscript o satisfy

Oi = Z;;0

ij~

(6.3)

where Z;; is the mixing matrix of renormalization constants
from which the mixing matrix of anomalous dimensions,
vij(a), can be deduced. In this section a = ¢*/(16x%)
denotes the coupling constant of four dimensional QCD
where g is the coupling present in the covariant derivative.
It transpires that for the eight operators (6.1) the matrix
needs to be enlarged since there is mixing into an equation
of motion operator. In [31] the seven independent equation
of motion operators were constructed and are

Ogper = D*G%,D’D,D,G"*,
Ogper = D°DFGE,DPD¥GY,
Ospe3 = D°DFG4,D,D, G,
Ospes = D,G%,D°D? D, G4
Ogpes = G4, DD’ D, D, G
Ogser = [ G4, D*G* DG,

Ogsea = [ GG D, DG, (6.4)

where the first two labels indicate the operator dimension
and gluon leg number respectively and note that each
operator is gauge invariant. We recall that in four dimen-
sions the equation of motion of the gluon in Yang-Mills
theory is

D*G,, =0 (6.5)

which is relatively simple in contrast to that of (2.8). Unlike
(6.1) there is no reduction of the equation of motion set
(6.4) depending on which color group we consider. One
comment is in order with respect to (2.8) which is that the
operators (6.4) are not present in that Lagrangian. The
reason why they are considered part of the basis here arises
from the different nature of the two types of renormaliza-
tions we are carrying out. In (2.8) for the purely gluonic
sector we included the set of independent gauge invariant
operators involving the field strength. The operators which
were dependent, and hence not included, were equivalent to
linear combinations of the ones appearing in (2.8) as well as
operators which were total derivatives. In a Lagrangian
context the latter operators can be integrated out and hence
were not included in (2.8). For the renormalization of the
dimension 8 operators (6.1) in four dimensions one has to
accommodate mixing into the various operator classes
noted earlier. As one of these classes involves equation
of motion operators we have included these in the set of
operators for our mixing. However it is a straightforward
exercise to show that the operators Og,,; can each be related
to the gluon kinetic operator plus higher leg operators and
those with a total derivative. Equally the operators Ogs,; in
eight dimensions can be mapped to the operators with
couplings ¢, and g5 respectively plus higher leg and total
derivative operators in (2.8).

The final stage of the operator renormalization is the
evaluation of the divergent part of the on-shell Green’s
function. Like the renormalization of the 4-point functions
of (2.8) we apply the vacuum bubble expansion based on
(3.5). The only major difference between its use here and
the previous application is that after the expansion and the
Laporta reduction the master integral is evaluated in four
dimensions. Therefore, extracting the renormalization con-
stants we find the elements of the mixing matrix are
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2 __ 8 + 0(a?)
Ysarga1(a) = 3N, a+ 0(a”), Ysarsan(a) = — 3N, a
22 ) 5
Yaa1843(a) = 3—Nca + 0(a?), Ysa1sa4(a) = _6NC (11N + 44]a + O(a?)
11 5 4 5
Ysa18a5(a) = -3¢ + 0(a*), Ysa1,846(a) = 34 + 0(a”)
11

Yeara7(a) =
Yeargar(a) =
Yearsaz(a) =
Ysazgas(a) =
Ysargar(a) =
Ysazgar(a) =
Ysazgaz(a) =
Ysazgas(a) =
Ysasgar(a) =
Ysaagar(a) =

}’844,843(a) =

Ysaagas(a) =

Ysaagar(a@) =
Ysasgar(a) =
Yaassaz(a) =
Yaassas(a) =
Ysasgar(a) =
Ysass41(a) =

Ysae843(a) =

Ysaesa5(a) =

4
—a+ 0(a?), Ysarsas(a) = —~a+ O(a?)

3 3
1 2
- 3N, (14N + 4]a + O(a?), Ysarsan(a) = _3Nc [10NZ — 4]a + O(a?)
1
3N, [12N7 4 22]a + O(a?), Vg2 aa(@) = 6N, [-N2 + 44]a + 0(a?)
11

2
—3¢ + 0(a?), Ysa2,846(a) = 34 + 0(a?)

%a + 0(a?), Ysarsas(a) = %a +0(a%)

3N [28N2 + 68]a + O(a?), Yaasgan(a@) = — 3]1\,0 [~24N¢ — 68a + O(a?)
ﬁ N2 +50)a + 0(@).  puasula) = = 3-[N + 50Ja + O(@?)
—?a +0(a), Ys43.846(a) = —33_4a +0(a?)

23—551 + 0(a?), a4z sas(a) = 33—4a +0(a?)

—15\,—6Ca + 0(a?), Ysaagar(@) = 15\7_600 +0(a?)

4 1 5
N 4T 0(a?), Ysaagaa(a) = 3N 22N — 12]a + O(a?)

2a + 0(a?), Vsas846(a) = =28a + O(a?)
~2a + 0(a*), Ysassas(@) = 28a + O(a?)
1
—$ 28N — 112]a + O(a?), Ysas.s42(a) = V2 28N7 — 112]a + O(a?)

c

1 1
N2 2N7 = 8]a + O(a?), Ysas.84a(a) = N2 [-2N? + 8Ja + O(a?)

1 1
TN, [5N? + 8la + O(a?), Y84s.sa6(a) = TN, [6N7 — 56]a + O(a?)

[-16N2 + 168]a + O(a?)

1
[2N? - 12]a + O(a?). Ygas.848(@) = 3N

Cc c

1
2 - 2_ 0 2
T3N2 [-4N2 + 16]a + O(a?), Vg46,842(@) N2 [4N: — 16]a + O(a®)
1 2
T3N2 [—1IN? + 44]a + O(a?), Y846.844(@) = — N2 [11N? — 44]a + O(a?)
1
T3N, [AN7 - 22]a + O(a?). Ys46.846(a) = T3N. [BNZ + 8Ja + O(a?)
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1
Y346847(a) = 3N [=3NZ +22]a + O(d?),

1
Ysarsa1(a) = — N2 [34NZ — 136]a + O(a?)

1
Yaarsan(a) = — IN2 [=34N? 4 136]a + O(a?)

1
Yaarsa3(a) = — IN2 [~25N? 4 100]a + O(a?)

1
rsnsua(a) = =505 25N = 100]a + O(a?)

c

_ 1 2 2
Ysaras(a) = 12N, [25N7 - 200]a + O(a?),
Yaar8a7(a) = — 3 [-3N?% 4 50]a + O(a?),

= ! 2N? -8 0(a?
Ygassa1(a) = _3N% [2N7 = 8]a + O(a?),

1
Ysassa3(a) = 32 [—11NZ + 44]a 4 O(a?)

1
Ysassaa(a) = ~3N2 [11N? —44]a + O(a?)

1

Ygagsas(a) = — 6 [SNZ - 44]a + O(a?),

c

Ygassa7(a) = — IN [—6N? +22]a + O(a?)

1
3N,

Ygassas(a) = — [AN? + 4]a + O(a?)

for SU(N,). For the eight SU(N,) dimension 8 core
operators at one loop there is mixing into only one equation
of motion operator which is Ogs,,. More explicitly we have

Ysars3e2(a) =4a+ 0(a?),
Vsaas3e2(a) = —8a+ O(a?),

Ysa18302(a) = —2a+ O(a?),

V3438302 (a) = 4a+ O(a?)
4
Y84s.83e2(a) = N [NZ—4la+ O0(a?)

1
V2 =4+ 0(@),

C

7846,83e2(a) =

2
Y847.8302(a) = N [Nz —4la+ O(a?)

2
V8438302 (a) = N [NZ —4la+ O(a?).

(6.7)
The mixing of the main operators into this specific equation
of motion operator is necessary as otherwise divergences
would remain in each of the Green’s functions. In other
words there are not sufficient counterterms and freedom
available from the set of operators in (6.1) alone to obtain a

Yg468a8(a) = — 3N

7847,848(“)

7848,842(61) =

V848 846 (@)

1

BN2 = 8]a + 0(a?)

C

1

Y847.806(a) = [19NZ — 68]a + O(a?)

c

[=16N2 + 68]a + O(a?)

c

[-2N2 + 8la + O(a?)

3N

B 1

[8N2 —d]a + O(a?)

c

(6.6)

finite expression. For SU(2) and SU(3) the respective parts
for this sector of the mixing matrix are contained within
(6.7). For SU(2) only the first four operators of (6.1) are
active and for SU(3) it is the first six. Then for SU(2) the
first four entries in (6.7) correspond to the 4-leg operator
mixing into the equation of motion operators. Clearly
Ys4s.83¢2(@) vanishes for N. =2 as a consistency check.
The situation for SU(3) is similar except the first six entries
are relevant but N, = 3 has to be set. Finally, the equation
of motion operators can mix with themselves and we have
determined that sector of the mixing matrix in the same way
by inserting each operator in the physical matrix element.
The only nonzero entries are

1
Y83e1,8204(a) = — 3N, a+ 0(a?),
1
V83e182¢5 (@) = TNca + 0(a?) (6.8)

which is valid for all the SU(N,) groups. This completes
our dimension 8 operator analysis in four dimensions for
the particular SU(N.) color groups. These results together
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with the SU(2) and SU(3) cases are all included in the
Supplemental Material. While this is a fully separate
computation to the renormalization of (2.8) the structural
parallels of the respective renormalization group functions
are now evident.

VII. DISCUSSION

One of our main goals was to construct the eight
dimensional quantum field theory which was in the same
universality class as the two dimensional non-Abelian
Thirring model and four dimensional QCD at their respec-
tive Wilson-Fisher fixed points. We have managed to
achieve this by following the guiding principles established
for the parallel construction for scalar field theories with an
O(N) symmetry. The first of these is to retain the core
interaction between the matter and force fields which in the
present case were a spin—% fermion and spin-1 boson field in
the adjoint representation of the color group. This inter-
action is the only one present in the base theory of the tower
of theories lying in the universality class which is the non-
Abelian Thirring model [21]. The second aspect is renor-
malizability. This means that extra interactions have to be
included in the critical dimension of each of the subsequent
Lagrangians of the tower so that each Lagrangian is
renormalizable. These extra independent operators, which
are purely gluonic for this universality class, will become
irrelevant or relevant away from the critical dimension. So
for example including the canonical gluon kinetic operator
for QCD in the non-Abelian Thirring model would render it
nonrenormalizable in two dimensions. The final main
principle is the requirement of gauge fixing. We chose a
linear covariant gauge fixing in order to make connections
with lower dimensional results and extended the Faddeev-
Popov construction to eight dimensions. This last step is
necessary as the two dimensional non-Abelian Thirring
model has a conserved current, wy*T%y, whose 2-point
correlation function is transverse. While there is no gluon
as such in the non-Abelian Thirring model, like the four
dimensional gauge theory case, the field Ay is an auxiliary
in two dimensions and corresponds to this current. In other
words the correlation of Ay in two dimensions is in effect
akin to a Landau gauge propagator. As the gauge param-
eter, a, in QCD is effectively a second coupling constant
then at criticality one has to effect its critical coupling
which corresponds in fact to the Landau gauge. This
accords with the establishment of (2.8) as being in the
same universality class as the non-Abelian Thirring model
and QCD via the large N, expansion. One can only
compare the d-dimensional large N, critical exponents
with the exponents derived from gauge dependent renorm-
alization group functions when the € expansion of the latter
have been computed in the Landau gauge. We have
checked this off explicitly here for eight dimensional
QCD from the one loop renormalization group functions.

Put another way the Wilson-Fisher fixed point underlying
this particular universality class preserves the transversality
of the gluon across the dimensions.

There are several future avenues to pursue in light of our
analysis. One is to build the ten dimensional theory of a
spin-1 field coupled to a fundamental fermion which lies in
the non-Abelian Thirring model universality class. The
procedure to do this evidently follows the above outline. It
would have no technical obstacles aside from the calcula-
tional one of requiring a large amount of integration by
parts to determine even just the one loop renormalization
group functions. This will be a tedious exercise rather than
an insurmountable problem. Another obvious extension is
to construct the renormalization group functions of (2.8) at
two loops. Indeed this has already been achieved for QED
[26,27]. However in eight dimensions the computations
were manageable due to there being only four independent
interactions and more crucially no quintic or sextic gauge
interactions. These were obviously present in the non-
Abelian case and also increased the amount of integration
needed in order to evaluate the large number of Feynman
graphs with high exponent gluon propagators [26]. With
the tower of Lagrangians essentially established at the
Wilson-Fisher fixed point for the non-Abelian Thirring
model universality class, the next focus ought to be on the
connection of non-Lagrangian operators in the universal
theory. These operators will have massive couplings in the
noncritical dimensions but are relevant in constructing
effective field Lagrangians in a specific dimension. In
other words there should be a drive to study the operator
anomalous dimensions at criticality.

We have taken the first step in this direction by renorm-
alizing dimension 8 operators in four dimensions. While
laying the foundation to this here by illustrating the
structural parallels of the renormalization group functions,
the next step is to introduce quark contributions. These are
required for the large N, expansion connection where the
underlying operator critical exponents in the universal
theory would also need to be found in addition to the
mixing matrices in perturbation theory. The perturbative
computations to construct such mixing matrices should not
be regarded as a straightforward task. One reason for this is
due to the canonical dimensions of the quark and gluon
fields being different in d-dimensions. Hence quark and
gluon operators will have different canonical dimensions
except in one particular dimension. Therefore we did not
have to consider what would ordinarily be dimension 8
quark operators in the four dimensional sense in the
construction of the eight dimensional Lagrangian (2.8).
However, in four dimensional QCD there are dimension 8
operators with quark content in addition to the gluon
operators of (6.1). This was one of the reasons why our
focus was on Yang-Mills operators here as an exploratory
exercise in the context of (2.8) and to observe that the
structure of the respective four and eight dimensional
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renormalization group functions were not dissimilar. While
(2.8) has a quark operator, it is the kinetic term and it does not
have the same canonical dimension as, say, the operators of
(6.1) in four dimensions. The first stage in such an inves-
tigation will be to set up the large N, formalism for
dimension 6 and 8 gauge invariant operators and compute
the mixing matrix of critical exponents at O(1/Ny) in d-
dimensions. The former dimension is required for an
analysis of (2.2) and we note that the large N, exponent
relating to the QCD S-function in four dimensions [16] was
derived from the critical point large N renormalization of

the dimension four operator Gy, G**. That in effect was the
initial step of the proposal to examine the operator content of
the tower of Lagrangians constituting universal non-Abelian
Thirring model universality class.
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