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We discuss the two-dimensional Grassmannian sigma model GN;M on a finite interval L. The different
boundary conditions which allow one to obtain analytical solutions by the saddle-point method in the large
N limit are considered. The nontrivial phase structure of the model on the interval similar to the CPðNÞ
model is found.
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I. INTRODUCTION

Two-dimensional sigma models are of great interest
because of their similarity with the four-dimensional
Yang-Mills theory and serve as a good platform for
studying nonperturbative effects [1,2]. For the first time
they [OðNÞ and CPðNÞ] were solved in [1,3,4] in the large
N limit [5]. The CPðNÞ and Grassmannian sigma models
also emerge as the worldsheet theories on the single and
multiple non-Abelian strings in QCD-like nonsupersym-
metric theories [6,7] (see [8,9] for review). Therefore, the
corresponding models on the interval correspond to the
non-Abelian strings stretched between the boundary branes
representing the domain walls. The CPðNÞ model on the
interval has been considered in [10–12]. It was found that
the solution of the model strongly depends on the boundary
conditions and for the particular choice of the boundary
conditions can undergo the phase transition at some value
of the length of the interval.
In this paper we consider field theory on the complex

Grassmannian manifold [13]

GN;M ¼ SUðNÞ
SUðN −MÞ ×UðMÞ ; M < N:

The fields φðx0; x1Þ are a complex matrix N ×M satisfying
the additional conditions φ†φ ¼ IM (unit matrix M ×M);
hence it is a set of N-dimensional vectors orthogonal to
each other. We will get effective action and will study
the large N solution of the saddle-point equation with
various types of boundary conditions: Dirichlet-Dirichlet
(D-D), Neumann-Neumann (N-N), and mixed Dirichlet-

Neumann (D-N). Similar studies were carried out in [11,12]
for CPðNÞ model ðCPðNÞ ¼ GN;1Þ. In [12] boundary
conditions admitting an analytical solution have been found
and which yields the existence of two phases: Higgs phase
with broken Uð1Þ gauge symmetry and Coulomb phase
with unbroken Uð1Þ symmetry. We will show that the
similar result is true for GN;M as well.

II. EFFECTIVE ACTION

Let us remind the reader of the Lagrangian of the
model. The unique SUðNÞ-invariant metric on the GN;M

is ds2 ¼ TrðdφdφÞ; hence the Lagrangian reads as

L ¼ Tr½N=g2ðDμφÞ†Dμφþ λðIM − φ†φÞ�; ð1Þ

where λ is Lagrange multiplier, g is the coupling constant,
Dμ ¼ ∂μ þ iAμ and x ∈ ½0; L�; t ∈ ð−∞;þ∞Þ.
We consider the partition function in the Euclidean

space:

Z ¼
Z

DADλDφ†Dφ

× exp

�
−
Z

d2xTrðN=g2ðDμφÞ†Dμφþ λðφ†φ− IMÞÞ
�

¼
Z

DADλDφijDφ�
ij

× exp

�
−
Z

d2xðN=g2ð∂μ − iAμÞφ�
ijð∂μ þ iAμÞφij

þ λðφ�
ijφij −MÞÞ

�
: ð2Þ

Integrating by parts and taking into account the relation
φ†φ ¼ IM, we obtain

Z
d2xðDμφijÞ�Dμφij ¼ −

Z
d2xφ�

ijD
2
μφij

*dmitriy.pavshinkin@phystech.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 025001 (2018)

2470-0010=2018=97(2)=025001(4) 025001-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.025001&domain=pdf&date_stamp=2018-01-02
https://doi.org/10.1103/PhysRevD.97.025001
https://doi.org/10.1103/PhysRevD.97.025001
https://doi.org/10.1103/PhysRevD.97.025001
https://doi.org/10.1103/PhysRevD.97.025001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


and

Z ¼
Z

DADλDReφijDImφij

× exp

�
−
Z

d2xðReφijð−N=g2ð∂μ þ iAμÞ2 þ λÞReφij

þ Imφijð−N=g2ð∂μ þ iAμÞ2 þ λÞImφij − λMÞ
�
: ð3Þ

In more detail, the quantity in the exponent is

X
i;j

�
−
Z

d2xReφij

�
−
N
g2

D2
μ þ λ

�
Reφij

�

þ
X
i;j

�
−
Z

d2xImφij

�
−
N
g2

D2
μ þ λ

�
Imφij

�

þ
Z

d2xλM:

This integral is Gaussian, so we can separate φ11 ¼ σ and
easily integrate out the remaining NM − 1 fields. Then we
obtain an action depending only on λ and σ.
Taking into account that

Z
DReφij exp

�X
i;j

�
−
Z

d2xReφij

�
−
N
g2
D2

μþλ

�
Reφij

��

∼ ½detð−N=g2D2
μþ λÞ�−ðNM−1Þ=2

we get

~Z ¼
Z

DADλDσDσ� exp
�
−ðNM − 1ÞTr ln

�
−D2

μ þ
g2

N
λ

�

−
Z

d2x

�
ðDμσÞ2 þ λ

g2

N
σσ� − λM

��
:

In the last equation the fields were rescaled. Redesignating
λ and introducing the value r ¼ MN=g2, we obtain an
expression for the effective action:

Seff ¼ ðNM − 1ÞTr lnð−D2
μ þ λÞ

þ
Z

d2xððDμσÞ2 þ λðjσj2 − rÞÞ: ð4Þ

III. SADDLE-POINT EQUATIONS

We will calculate the path integral by the saddle-point
method in the large N limit. For this we are looking for
saddle points with respect to λ and σ of the action function.
With the chosen boundary conditions, translational sym-
metry with respect to x is broken, but it is conserved with
respect to t. Therefore we consider λ ¼ λðxÞ, σ ¼ σðxÞ. Let
us set the gauge At ¼ 0 and consider the eigenvalues and
eigenfunctions of the operator:

ð−D2
x þ λðxÞÞψnðxÞ ¼ μnψnðxÞ: ð5Þ

For our boundary conditions, ψnðxÞ ∼ sinðEnxþ bnÞ and
μn ¼ E2

n. Thus, using the relation Tr ln ¼ ln det we can
represent effective action in the form:

Seff ¼ ðNM − 1Þ
X
n

En þ
Z

d2xððDμσÞ2 þ λðjσj2 − rÞÞ:

ð6Þ
Let us vary effective action with respect to λ and use the
first-order correction in perturbation theory, then we get the
first saddle-point equation:

NM − 1

g2
X
n

ψ2
nðxÞ
En

þ jσðxÞj2 − r ¼ 0. ð7Þ

The second equation is obtained by varying action with
respect to σ which yields the equation of motion:

D2
xσ

� − λðxÞσ� ¼ 0. ð8Þ
Further assume that Ax ¼ 0 and σ is real. In this case the
saddle-point equation with respect to Ax will be identically
satisfied.

IV. D-N BOUNDARY CONDITIONS

Now we are considering mixed Dirichlet-Neumann
boundary conditions. Let NM ¼ 2Z þ 1, Z ∈ N, and
following [12] suppose that on φ11 the boundary conditions
N-N are imposed:

Dxσð0Þ ¼ DxσðLÞ ¼ 0; ð9Þ

Z fields have N-D:

Dxφijð0Þ ¼ φijðLÞ ¼ 0; ð10Þ

and the remaining Z fields have D-N:

φijð0Þ ¼ DxφijðLÞ ¼ 0. ð11Þ

The eigenfunctions and eigenvalues corresponding to the
boundary conditions: for D-N:

ψnðxÞ¼
ffiffiffiffi
2

L

r
sin

�
πxðn−1=2Þ

L

�
; E2

n¼
�
πðn−1=2Þ

L

�
2

þλ;

n¼ 1;2;…;

for N-D:

ψnðxÞ¼
ffiffiffiffi
2

L

r
cos

�
πxðn−1=2Þ

L

�
; E2

n¼
�
πðn−1=2Þ

L

�
2

þλ;

n¼ 1;2;…
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Substituting them into the Eq. (7), we can see that
dependence on x disappears due to the trigonometric
identity, hence σ ¼ const. Then it follows from (8) that
σλ ¼ 0.
First we set λ not equal to zero, hence σ ¼ 0. In this

solution the vacuum expectation valus hφiji ¼ 0 and the
Uð1Þ symmetry is not broken. Therefore it is called
“Coulomb" phase. Equation (7) takes the following form:

Z
π

X∞
n¼1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn − 1=2Þ2 þ ðλL=πÞ2
p

�
− r ¼ 0. ð12Þ

In order to eliminate the divergence of the sum we
represent it in the form

Z
π

X∞
n¼1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn − 1=2Þ2 þ ðλL=πÞ2
p −

1

n

�
þ Z

π

X∞
n¼1

1

n
− r ¼ 0;

ð13Þ

and use UV cutoff:

Z
π

X∞
n¼1

expð− nπ
LΛuv

Þ
n

¼ − ln

�
1 − exp

�
−

π

LΛuv

��

≈ − lnðπ=LΛuvÞ: ð14Þ

Note that the sigma model has dynamical mass generation
via dimensional transmutation: Λ2 ¼ Λ2

uv expð−4π=g2Þ.
This allows us to express r in terms of dynamical scale
Λ and Λuv: r ¼ Z

π lnðΛuv=ΛÞ. Thus,

X∞
n¼1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn − 1=2Þ2 þ ðλL=πÞ2
p −

1

n

�
¼ ln

�
π

LΛ

�
: ð15Þ

Now let us show that this phase does not exist on the entire
interval. Indeed, the left-hand side in the power series in λL
has the form

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 1=2Þ2 þ ðλL=πÞ2

p ¼ 1

n − 1
2

− 4

�
λL
π

�
1

2n − 1
þ � � � :

ð16Þ

Using the representation of the Riemann zeta function

X∞
n¼1

4

ð2n − 1Þ3 ¼
7

2
ζð3Þ; ð17Þ

we obtain the equation

7

2
ζð3Þ

�
λL
π

�
¼ ln

�
4λL
π

�
: ð18Þ

Therefore, the Coulomb phase exists only for L > π=4Λ.
Now let σ ¼ const, λ ¼ 0. This is corresponds to the

“Higgs” phase, because nonzero σ breaks Uð1Þ symmetry.
In this case, from the first saddle-point equation, we obtain
that

Z
π

X∞
n¼1

�
1

n − 1
2

−
1

n

�
þ σ2 ¼ Z

π
ln

�
π

LΛ

�
; ð19Þ

the second Eq. (8) is satisfied. Again using (18) we get

σ2 ¼ N
π
ln

�
π

4LΛ

�
: ð20Þ

It can be seen that there is a solution only for L ≤ π
4Λ.

V. D-D AND N-N BOUNDARY CONDITIONS

Suppose now that φ11 still has N-N boundary conditions,
Z fields have D-D boundary conditions and other Z field
have N-N boundary conditions. In this case, we have
for D-D:

ψnðxÞ ¼
ffiffiffiffi
2

L

r
sin

�
πxn
L

�
; E2

n ¼
�
πn
L

�
2

þ λ;

n ¼ 1; 2;…;

and for N-N:

ψnðxÞ ¼
ffiffiffiffi
2

L

r
cos

�
πxn
L

�
; E2

n ¼
�
πn
L

�
2

þ λ;

n ¼ 0; 1;…:

There is a zero mode with n ¼ 0 and the first saddle-point
Eq. (7) has singularity at λ ¼ 0. Hence, for given boundary
conditions the solution has only Coulomb phase with
λ ¼ const ≠ 0. Substituting this eigenfunctions and eigen-
values into the Eq. (7) and using the UV cutoff, we have

Z
π

X∞
n¼1

�
1

n2 − λL=π
−
1

n

�
þ Z
λL

¼ Z
π
ln

�
π

ΛL

�
: ð21Þ

It is easy to see that for fixed Λ and L, it is always possible
to find λ that satisfies the equation, since the left-hand side,
as a function of λ, takes a value on the whole R. Thus, the
only Coulomb phase exists for all L.
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VI. CONCLUSION

In this paper we have presented a two-dimensional
Grassmannian sigma model GN;M on a finite interval in
the large N limit. For special boundary conditions we have
found an analytical solution to the saddle-points equation.
Under the D-D and N-N boundary conditions solution has
only one Coulomb phase (σ ¼ 0) for all values of the length
of the interval L; under the mixed Dirichlet-Neumann
boundary conditions solution undergo the phase transition:

there is Coulomb phase for L > π
4Λ and Higgs phase (σ ≠ 0)

for L < π
4Λ. We note that it is also of interest to consider a

phase structure of sigma model on a flag target space.
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