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The electrons in graphene for energies close to the Dirac point have been found to form strongly
interacting fluid. Taking this fact into account we have extended previous work on the transport properties
of graphene by taking into account possible interactions between the currents and adding the external
magnetic field directed perpendicularly to the graphene sheet. The perpendicular magnetic field B severely
modifies the transport parameters. In the present approach the quantization of the spectrum and formation
of Landau levels is ignored. Gauge/gravity duality has been used in the probe limit. The dependence on the
charge density of the Seebeck coefficient and thermoelectric parameters αij nicely agree with recent
experimental data for graphene. The holographic model allows for the interpretation of one of the fields
representing the currents as resulting from the dark matter sector. For the studied geometry with electric
field perpendicular to the thermal gradient the effect of the dark sector has been found to modify the
transport parameters but mostly in a quantitative way only. This makes difficult the detection of this elusive
component of the Universe by studying transport properties of graphene.
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I. INTRODUCTION

The crossroads between gravity theory and condensed
matter physics have recently become an intense field of
research with at least a twofold goal. On one side, the
expectation of the condensed matter community is that the
approach providing strong coupling analysis of problems
will shed some light on those aspects that are difficult to
access by other means [1,2]. On the other hand, such studies
can shed the light on the question whether the holographic
approach is able to describe real phenomena observed in
experiments.
The exploiting of the gauge/gravity correspondence [3–5]

in studying strongly correlated systems resulted, among
other things, in establishing the lower bound ℏ=4π on the
ratio of the shear viscosity ηs to entropy density s in
holographic fluid [6]. This interesting result has contributed
to the deeper understanding of the state of strongly interact-
ing quark-gluon plasma obtained at the RHIC [7–9]. Related
studies based on the gauge/gravity duality [10,11] have also
triggered the shear viscosity measurements in the ultracold
Fermi gases [12], and more recently in the condensed matter
systems such as graphene [13,14] and strongly correlated
oxide [15]. The comprehensive discussion of this novel set of
experiments is given in [16].
Recently, a great resurgence of interest in holographic

lattice studies of the thermoelectric DC transport has been

observed. Breaking of the translation invariance provides
the mechanism of momentum dissipation in the underlying
field theory and disposes the finite values of holographic
DC kinetic coefficients including thermoelectric matrix
elements.
A number of results have already been obtained by this

technique for a similar model of dissipation and valid, in
principle, for an arbitrary value of temperature and the
strength of momentum dissipation. Namely, the massive
gravity electrical conductivity was analyzed in [17,18] and
the consecutive generalization to the lattice models
appeared [19–21]. The linear axions disturbing the trans-
lation invariance were elaborated in [22], while the thermal
conductivities were calculated in [23–25].
On the other hand, it was shown that for Einstein-Maxwell

scalar field gravity, the thermoelectricDCconductivity of the
dual field theory can be achieved by considering a linearized
Navier-Stokes equations on the black hole event horizon
[26–28]. The studies in question were generalized to higher
derivative gravity, which emerged due to the perturbative
effective expansion of the string action [29]. The exact
solution for Gauss-Bonnet-Maxwell scalar field theory for
holographic DC thermoelectric conductivities with momen-
tum relaxation was given in [30].
The important ingredient in studying transport properties

is a magnetic field, which is essential in such phenomena
like quantum Hall, the Nerst, and other effects. The
research in this direction was conducted in [31–35].
Recently, the very important holographic generalization
of the hydrodynamic approach [36] appeared [37], where
the holographic model of strongly coupled plasma with two
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distinct conserved Uð1Þ-gauge currents was presented, in
order to describe the nature of graphene. The very good
agreement with the existing experimental data was
achieved.
In our paper we study some generalization of the

aforementioned model [37]. Namely, we elaborate on the
transport properties of 2þ 1-dimensional strongly coupled
quantum fluid in a graphene under the influence of weak
(i.e., nonquantizing) perpendicular magnetic field and in
the presence of the second Uð1Þ-gauge field. Our model
assumes the interaction between both fields responsible for
the adequate currents. The main objective of our work is to
find the influence of the α-coupling constant of the fields in
question on the transport properties of the holographic
model of graphene.
It has to be recalled that the geometry of the system is

crucial and has to be carefully analyzed when comparing
the results with experimental data on graphene.
The paper is organized as follows. In Sec. II we present

the holographic model and discuss the adequate perturba-
tions needed to find the currents in the system. One should
also pay attention to the generalization of the Sachdev
model of holographic Dirac fluid with two interacting
currents. In Sec. III we find the transport coefficients for the
underlying holographic model with the influence of mag-
netic field. Sections IV and V tackle the four-dimensional
dyonic black hole with two Uð1Þ-gauge fields and the
transport and kinetic coefficients for the spacetime of the
black hole in question. In Sec. VI we discuss our results in
the light of the recent experiments on graphene and
elaborate the dependence of the α-coupling constant on
Hall angle. Section VII is devoted to the conclusions, as
well as the discussion of the other possible interpretation of
the model, as a model of dark matter sector.

II. HOLOGRAPHIC MODEL

In this section we tackle the problem of the holographic
setup. It has been argued that the hydrodynamical models
as suggested in [10,11] lead to better agreements with the
observations but still there exists room for improvements.
In [37] the holographic model of the two conserved Uð1Þ-
gauge currents with momentum dissipation envisaging the
weak pointlike disorder was introduced to describe Dirac
fluid. The main idea standing behind introducing a new
current was that it could enhance the transport of the heat
relative to its charge.
In the present paper we propose some generalization of

the aforementioned model, considering two interacting
Uð1Þ-gauge fields. The main objective in our research is
to find the influence of the field coupling constant on the
transport properties of the system in question.
The gravitational background for the holographic model

in (3þ 1) dimensions with the two interacting Uð1Þ-gauge
fields is taken in the form

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
Rþ 6

L2
−
1

2
∇μϕi∇μϕi −

1

4
FμνFμν

−
1

4
BμνBμν −

α

4
FμνBμν

�
; ð1Þ

where Fμν ¼ 2∇½μAν� stands for the ordinary Maxwell field
strength tensor, while the second Uð1Þ-gauge field Bμν is
given by Bμν ¼ 2∇½μBν�. α is a coupling constant between
two gauge fields.
The justifications of such kinds of models can be

acquitted from the top-down perspective [38], starting
from the string/M theory. This fact is important in the
holographic attitude, since the theory in question is a fully
consistent quantum theory and guarantees that any phe-
nomenon described by the top-down theory is physical. In
the action (1) the second gauge field is bounded with some
hidden sector [38]. The term that depicts interaction of
visible (Maxwell field) sector and the hidden Uð1Þ-gauge
field is called the kinetic mixing term. For the first time it
was used in [39], in order to describe the existence and
subsequent integrating out of heavy bifundamental fields
charged under the Uð1Þ-gauge groups. In general, such
kinds of terms arise in the theories that have in addition to
some visible gauge group an additional one, in the hidden
sector. The compactified string or M-theory solutions
generically possess hidden sectors (containing at a mini-
mum, the gauge fields and gauginos, due to the various
group factors included in the gauge group symmetry of the
hidden sector). The hidden sector contains states in the low-
energy effective theory that are uncharged under the
standard model gauge symmetry groups. They are charged
under their own groups. Hidden sectors interact with the
visible ones via gravitational interaction. In principle, one
can also think of other portals to our visible sector. This
interesting problem was discussed in [40,41].
One can also notice that many extensions of the standard

model also contain hidden sectors that have no renorma-
lizable interactions with a particle of the model in question.
The realistic embeddings of the standard model in E8 × E8
string theory, as well as in type-I, IIA, or IIB open string
theory with branes, require the existence of the hidden
sectors for the consistency and supersymmetry breaking
[42]. The most generic portal emerging from the string
theory is the aforementioned kinetic mixing one.
The kinetic mixing term can contribute significantly and

dominantly to the supersymmetry breaking mediation
[43,44], ensuing in the contributions to the scalar mass
squared terms proportional to their hypercharges. The
mediation of supersymmetry breaking, in models involving
stacks of D brane and anti-D brane, producing a kinetic
mixing term of UðNÞ groups, was presented in [43].
Generally, in string phenomenology [42] the dimension-

less kinetic mixing term parameter α can be produced at an
arbitrary high energy scale and it does not deteriorate from
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any kind of mass suppression from the messenger intro-
ducing it. This fact is of a great importance from the
experimental point of view, due to the fact that its
measurement can provide some interesting features of high
energy physics beyond the range of the contemporary
colliders.
The mixing term of two gauge sectors is typical for states

for open string theories, where both Uð1Þ-gauge groups are
advocated by D branes that are separated in extra dimen-
sions. It happens in supersymmetric type-I, type-IIA, and
type-IIB models. It results in the existence of massive open
strings that stretch between two D branes in question. It
accomplishes the scenario of the connection of different
gauge sectors. It can be realized by M2 branes wrapped on
surfaces that intersect two distinct codimension-four orbi-
folds singularities [they correspond (at low energy) to
massive particles that are charged under both gauge
groups]. Some generalizations of this statement to M, F
theory and heterotic string theory are also known.
On the other hand, the model with two coupled vector

fields was also implemented in a generalization of p-wave
superconductivity, for the holographic model of ferromag-
netic superconductivity [45] and, without coupling α, for the
description of the thermal conductivity in graphene [37].
The equations of motion obtained from the variation of

the action S with respect to the metric, the scalar, and gauge
fields imply

Gμν −
3gμν
L2

¼ TμνðϕiÞ þ TμνðFÞ þ TμνðBÞ þ αTμνðF;BÞ;
ð2Þ

∇μFμν þ α

2
∇μBμν ¼ 0; ð3Þ

∇μBμν þ α

2
∇μFμν ¼ 0; ð4Þ

∇μ∇μϕi ¼ 0; ð5Þ

where the energy momentum tensors for the adequate fields
are provided by

TμνðϕiÞ ¼
1

2
∇μϕi∇νϕi −

1

4
gμν∇δϕi∇δϕi; ð6Þ

TμνðFÞ ¼
1

2
FμδFν

δ −
1

8
gμνFαβFαβ; ð7Þ

TμνðBÞ ¼
1

2
BμδBν

δ −
1

8
gμνBαβBαβ; ð8Þ

TμνðF;BÞ ¼
1

2
FμδBν

δ −
1

8
gμνFαβBαβ: ð9Þ

One supposes that the scalar fields depend on the three
spatial coordinates, i.e., ϕiðxαÞ ¼ βiμxμ ¼ aixþ biy. The

dependence is of the same form for all the coordinates,
which means that ai ¼ bi ¼ β.
In the considered holographic model, we propose the

Ansätze for the gauge fields given by

AμðrÞdxμ ¼ aðrÞdtþ B
2
ðxdy − ydxÞ; ð10Þ

BμðrÞdxμ ¼ bðrÞdt; ð11Þ

where B is a background magnetic field.
The general spacetime that is consistent with the above

choice implies

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdx2 þ dy2Þ: ð12Þ

In order to find the thermoelectric and DC conductivities
one should find the radially independent quantities in the
bulk that can be identified with the adequate boundary
currents [20,21,23,35].
First let us suppose that kα ¼ ð∂=∂tÞα is a timelike

Killing vector field. Because of the fact that we are
considering the static spacetime the spacelike hypersurfa-
ces are orthogonal to the orbits of the isometry generated by
the Killing vector field in question. The general properties
of the Killing vector field and gauge fields in visible and
hidden sectors enable us to define the two form that implies

~Gνρ ¼ ∇νkρ þ 1

2
ðk½νFρ�αAαÞ þ

1

4
½ðψ − 2θðFÞÞFνρ�

þ 1

2
ðk½νBρ�αBαÞ þ

1

4
½ðχ − 2θðBÞÞBνρ�

þ α

4
½ðk½νBρ�αAαÞ þ ðk½νFρ�αBαÞ�

þ α

8
½ðψ − 2θðFÞÞBνρ� þ α

8
½ðχ − 2θðBÞÞFνρ�; ð13Þ

where we have set ψ , χ, θðFÞ, θðBÞ the following relations:

ψ ¼ Eαxα; θðFÞ ¼ −Eαxα − aðrÞ; ð14Þ

χ ¼ Bβxβ; θðBÞ ¼ −Bβxβ − bðrÞ; ð15Þ

where α; β ¼ x, y. In the above equationsEa is the Maxwell
electric field while Ba is the electric field bounded with the
hidden sector gauge field. As it can be deduced from
the definition, the ~Gαβ tensor is antisymmetric and fulfils
the following:

∂ρð2
ffiffiffiffiffiffi
−g

p ~GνρÞ ¼ −2
Λ ffiffiffiffiffiffi−gp

kν

d − 2
; ð16Þ

where d stands for the dimensionality of the spacetime,
while Λ is the cosmological constant. A close inspection of
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(16) reveals that the right-hand side is equal to 0 if one
considers the Killing vector kν with the index different from
that connected with the time coordinate. In our consid-
erations we use the two form given by 2 ~Gνρ, i.e., the heat

current is defined as Qi ¼ 2
ffiffiffiffiffiffi−gp ~Gri.

On the other hand, having in mind equations of motion
for gauge fields, one finds the adequate conserved charges
in the r direction

~QðFÞ ¼
ffiffiffiffiffiffi
−g

p �
Frt þ α

2
Brt

�
¼ QðFÞ þ

α

2
QðBÞ; ð17Þ

~QðBÞ ¼
ffiffiffiffiffiffi
−g

p �
Brt þ α

2
Frt

�
¼ QðBÞ þ

α

2
QðFÞ; ð18Þ

where we set QðFÞ ¼ r2a0ðrÞ, QðBÞ ¼ r2b0ðrÞ.
In order to find the conductivities for the background in

question, one takes into account small perturbations around
the background solution obtained from Einstein equations
of motion. The perturbations imply

δAi ¼ tð−Ei þ ξiaðrÞÞ þ δaiðrÞ; ð19Þ

δBi ¼ tð−Bi þ ξibðrÞÞ þ δbiðrÞ; ð20Þ

δGti ¼ tð−ξifðrÞÞ þ δgtiðrÞ; ð21Þ

δGri ¼ r2δgriðrÞ; ð22Þ

δϕi ¼ δϕiðrÞ; ð23Þ

where t is the time coordinate. We put i ¼ x, y, and denote
the temperature gradient by ξi ¼ −∇iT=T.
However, the presence of magnetization causes one to

take into account the nontrivial fluxes connected with the
nonzero components B. The linearized equations descri-
bing can be written in the form as

0 ¼ ∂M

� ffiffiffiffiffiffi
−g

p �
FiM þ α

2
BiM

��
¼ ∂r

� ffiffiffiffiffiffi
−g

p �
Fir þ α

2
Bir

��

þ ∂t

� ffiffiffiffiffiffi
−g

p �
Fit þ α

2
Bit

��
; ð24Þ

and for the other gauge field equation of motion

0 ¼ ∂M

� ffiffiffiffiffiffi
−g

p �
BiM þ α

2
FiM

��
¼ ∂r

� ffiffiffiffiffiffi
−g

p �
Bir þ α

2
Fir

��

þ ∂t

� ffiffiffiffiffiffi
−g

p �
Bit þ α

2
Fit

��
: ð25Þ

Because of the fact that electric currents are r indepen-
dent, we evaluate them on the black object event horizon.
Integrating the above relations we arrive at the currents at
the boundary of AdS4,

JiðFÞð∞Þ ¼ JiðFÞðrhÞ þ
B
2
ϵijξjΣð1Þ; ð26Þ

JiðBÞð∞Þ ¼ JiðBÞðrhÞ þ
α

2

B
2
ξiΣð1Þ; ð27Þ

where Σð1Þ ¼
R∞
rh
dr0 1

r02 and ϵij is a two-dimensional anti-
symmetric tensor, ϵij ¼ −ϵji. The symbol ϵij is uniquely
determined by its symmetry properties up to a constant; we
choose that ϵyx ¼ −ϵxy ¼ 1.
The heat current at the linearized order implies

QiðrÞ ¼ 2
ffiffiffiffiffiffi
−g

p ∇rki − aðrÞJiðFÞðrÞ − bðrÞJiðBÞðrÞ: ð28Þ

The heat current is subject to the relation ∂μ½2 ffiffiffiffiffiffi−gp ~Gμν� ¼ 0,
in the absence of a thermal gradient. But the existence of
magnetization currents enforces that we have the following
equations:

∂r½2
ffiffiffiffiffiffi
−g

p ~Grx� ¼ −∂t½2
ffiffiffiffiffiffi
−g

p ~Gtx� − ∂y½2
ffiffiffiffiffiffi
−g

p ~Gyx�
− aðrÞJxðFÞð∞Þ − bðrÞJxðBÞð∞Þ; ð29Þ

∂r½2
ffiffiffiffiffiffi
−g

p ~Gry� ¼ −∂t½2
ffiffiffiffiffiffi
−g

p ~Gty� − ∂y½2
ffiffiffiffiffiffi
−g

p ~Gxy�
− aðrÞJyðFÞð∞Þ − bðrÞJyðBÞð∞Þ: ð30Þ

In order to achieve the radially independent form of the
current, one ought to add additional terms to get rid of the
aforementioned fluxes. The considered quantity should obey
∂i

~Qi ¼ 0; then one has to have

~Qið∞Þ ¼ QiðrhÞ þ
B
2
ϵijEjΣð1Þ − BϵijξjΣðaÞ

−
α

2
BϵijBjΣðbÞ þ

α

4
BϵijBjΣð1Þ; ð31Þ

where we have denoted ΣðaÞ ¼
R
∞
rh
dr0 aðr

0Þ
r02 , ΣðbÞ ¼R

∞
rh

dr0 bðr
0Þ

r02 . We have obtained three boundary currents

JiðFÞð∞Þ, JiðBÞð∞Þ, and ~Qið∞Þ, which can be simplified by

imposing the regularity conditions at the black brane horizon.
Namely, they imply the following:

δaiðrÞ ∼ −
Ei

4πT
lnðr − rhÞ þ � � � ; ð32Þ

δbiðrÞ ∼ −
Bi

4πT
lnðr − rhÞ þ � � � ; ð33Þ

δgriðrÞ ∼
1

r2h

δgðhÞti

fðrhÞ
þ � � � ; ð34Þ

δgtiðrÞ ∼ δgðhÞti þOðr − rhÞ þ � � � ; ð35Þ
δϕiðrÞ ∼ ϕiðrhÞ þOðr − rhÞ þ � � � ; ð36Þ

where T ¼ 1=4π∂rfðrÞjr¼rh is the Hawking temperature of
the black brane in question.
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A. Generalization of the Sachdev model
of the Dirac fluid

In this subsection we assume that one has no magnetic
field in order to confront predictions of our model with the
one described in [37]. To begin with, let us define thermo-
electric forces for the visible and hidden sector fields as

Ei ¼ E −∇i

�
μF
T

�
; ð37Þ

Bj ¼ ~B −∇j

�
μB
T

�
: ð38Þ

The total electric current constitutes that of the currents for
the visible sector gauge field JðFÞ and for the hidden sector
one JðBÞ,

J ¼ JðFÞ þ JðBÞ
¼ σFjEj þ σFaBa þ σBjEj þ σBaBa: ð39Þ

On the other hand, electric conductivity is given by the
relation

σ ¼ ∂J
∂Eþ ∂J

∂ ~B ¼ σFF þ σFB þ σBF þ σBB: ð40Þ

Let us restrict our considerations to the x direction; then one
receives the boundary currents in terms of the external
sources like E, ~B, ~QðFÞ, ~QðBÞ, provided by

JðFÞð∞Þ ¼ E

�
1þ

~Q2
ðFÞ
β2

�
þ ~B

�
α

2
þ

~QðFÞ ~QðBÞ
β2

�

þ 4πTr2h
β2

~QðFÞξ; ð41Þ

JðBÞð∞Þ ¼ ~B

�
1þ

~Q2
ðBÞ
β2

�
þ E

�
α

2
þ

~QðBÞ ~QðFÞ
β2

�

þ 4πTr2h
β2

~QðBÞξ; ð42Þ

~Qð∞Þ ¼ 4πTr2h
β2

~QðFÞEþ 4πTr2h
β2

~QðBÞ ~Bþ 16π2T2r4h
β2

ξ:

ð43Þ
The above relations can be rewritten in amore compact form.
Namely, in the matrix form they are given by

0
B@

σFF σFB αFT

σBF σBB αBT

αFT αBT ~κT

1
CA
0
B@

E
~B

ξ

1
CA ¼

0
B@

JðFÞ
JðBÞ
~Q

1
CA: ð44Þ

FromEqs. (42) and (43) it can be easily seen that the transport
coefficients are real and symmetric, and theOnsager relations
are fulfilled.
Assuming that the Uð1Þ-gauge charges are bounded by

the relation

QðBÞ ¼ gQðFÞ; ð45Þ
we arrive at the following equation for the electric con-
ductivity,

σ ¼ σ0

�
1þ 1

2β2
ð1þ gÞ2

�
1þ α

2

�
Q2

ðFÞ

�
; ð46Þ

where we have denoted σ0 ¼ 2þ α. Moreover the
assumption (45) enables us to write

~QðFÞ ¼
�
1þ α

2
g

�
QðFÞ; ~QðBÞ ¼

�
gþ α

2

�
QðFÞ: ð47Þ

If we denote by Q ¼ QðFÞ þQðBÞ, then QðFÞ ¼ Q=ð1þ gÞ.
It just leads to the conclusion that in Eq. (46), we have no
dependence on g andQ has been earlier [37] identified with
the charge density n in graphene.
Let us find the ratio of the electric conductivity

responsible for the two-current interaction and electric
conductivity without mutual influence. The relation is
provided by

σðαÞ
σð0Þ ¼

�
1þ α

2

��
1þ αQ2

4β2ð1þ Q2

2β2
Þ

�
: ð48Þ

Then, let us define heat conductivity κ in the standard way,
i.e., as the system response to the applied temperature
gradient, under the condition that the remaining currents
are equal to 0. It leads to the conclusion that κ is of the form
as follows:

κ ¼ ~κ þ αFTðαBσFB − αFσBBÞ
σFFσBB − σ2FB

þ αBTðαFσBF − αBσFFÞ
σFFσBB − σ2FB

;

ð49Þ

and after some algebra, it reduces to

κ ¼ ~κ

1þ Q2

β2ð1−α2

4
Þð1þgÞ2 ½ð1þ

α
2
gÞ2 þ ðgþ α

2
Þ2 − αð1þ α

2
gÞðgþ α

2
Þ�
: ð50Þ
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III. THERMOELECTRIC TRANSPORT COEFFICIENTS WITH MAGNETIC FIELD

In the next step we calculate the DC conductivities of the two-dimensional system with perpendicular magnetic field, by
taking the adequate derivatives from the boundary currents. They are provided as follows:

σijðFFÞ ¼ δij
�
1þ

8 ~Q2
ðFÞðB2

r2h
þ 8β2Þ þ 32B2 ~Q2

ðFÞ þ B2ðB2

r2h
þ 8β2Þ

ðB2

r2h
þ 8β2Þ2 þ 16B2 ~Q2

ðFÞ

�
− ϵij

�8B ~QðFÞðB2

r2h
þ 8β2Þ þ 32 ~Q3

ðFÞBþ 8B3 ~QðFÞ

ðB2

r2h
þ 8β2Þ2 þ 16B2 ~Q2

ðFÞ

�
; ð51Þ

σijðFBÞ ¼ σijðBFÞ ¼ δij
�
α

2
þ
8 ~QðFÞ ~QðBÞðB2

r2h
þ 8β2Þ þ 16B2 ~QðFÞ ~QðBÞ

ðB2

r2h
þ 8β2Þ2 þ 16B2 ~Q2

ðFÞ

�
− ϵij

�4 ~QðBÞBðB2

r2h
þ 8β2Þ þ 32B ~Q2

ðFÞ ~QðBÞ

ðB2

r2h
þ 8β2Þ2 þ 16B2 ~Q2

ðFÞ

�
; ð52Þ

σijðBBÞ ¼ δij
�
1þ

8 ~Q2
ðBÞðB2

r2h
þ 8β2Þ

ðB2

r2h
þ 8β2Þ2 þ 16B2 ~Q2

ðFÞ

�
− ϵij

32B ~Q2
ðBÞ ~QðFÞ

ðB2

r2h
þ 8β2Þ2 þ 16B2 ~Q2

ðFÞ
: ð53Þ

Next, the thermoelectric conductivities yield

αijðFÞ ¼ 16πr2hδ
ij
2 ~QðFÞðB2

r2h
þ 8β2Þ þ 4B2 ~QðFÞ

ðB2

r2h
þ 8β2Þ2 þ 16B2 ~Q2

ðFÞ
− 16πr2hϵ

ij
8B ~Q2

ðFÞ þ BðB2

r2h
þ 8β2Þ

ðB2

r2h
þ 8β2Þ2 þ 16B2 ~Q2

ðFÞ
þ B
2T

ϵijΣð1Þ; ð54Þ

αijðBÞ ¼ 32πr2hδ
ij

~QðBÞðB2

r2h
þ 8β2Þ

ðB2

r2h
þ 8β2Þ2 þ 16B2 ~Q2

ðFÞ
− 16πr2hϵ

ij
8B ~QðFÞ ~QðBÞ

ðB2

r2h
þ 8β2Þ2 þ 16B2 ~Q2

ðFÞ
−
αB
4T

ϵijΣð1Þ: ð55Þ

The thermal conductivity is of the form

κij ¼ 64π2r4hT

�
δij

2ðB2

r2h
þ 8β2Þ

ðB2

r2h
þ 8β2Þ2 þ 16B2 ~Q2

ðFÞ
− ϵij

8B ~QðFÞ
ðB2

r2h
þ 8β2Þ2 þ 16B2 ~Q2

ðFÞ

�
−
B
T
ϵijΣðaÞ: ð56Þ

In [10,35] it was revealed that the terms proportional to
ΣðmÞB=T, where m ¼ 1; a, emerged from the contributions
of magnetization currents that stemmed from the two
considered Uð1Þ-gauge fields. In order to find the DC
conductivities, one ought to subtract them from the
expressions in question. It implies

σijðabÞ ¼ σijðabÞ; ð57Þ

αijðFÞ ¼ αijðFÞ −
B
2T

ϵijΣð1Þ; ð58Þ

αijðBÞ ¼ αijðBÞ −
αB
4T

ϵijΣð1Þ; ð59Þ

κij ¼ κij þ ϵijB
T

ΣðaÞ; ð60Þ

where a; b ¼ F, B. All of the above quantities are given by
the black brane event horizon data.

IV. DYONIC BLACK HOLE WITH MOMENTUM
RELAXATION IN THE HIDDEN SECTOR

To discuss the problem more explicitly, we take into
account theAnsätz for the static four-dimensional topological

black brane with planar symmetry of the form as given by
(12). The gauge fields are given by At ¼ ~μð1 − rh

r Þ and
Ay ¼ qmrhx, Ax ¼ −qmrhy for the Maxwell field, while
for the other gauge sector we provide the Ansätz
Bt ¼ ~μaddð1 − rh

r Þ. The Rxx term of Einstein-gauge scalar
field gravity reveals that

fðrÞ¼ r2

L2
−
β2

2
−
m
r
þð ~μ2þ ~μ2addþα~μ ~μaddþq2mÞr2h

4r2
; ð61Þ

where m is constant. One can remark that we get the
additional term that mixes the ordinary and the additional
charge parameters. It can be easily found that the Arnowitt-
Deser-Misner mass of the black object in question also
contains the mixing term of the adequate gauge field
parameters

m ¼ r3h
L2

−
β2

2
rh þ

ð ~μ2 þ ~μ2add þ α~μ~μadd þ q2mÞrh
4

; ð62Þ

and the Hawking temperature is provided by

T ¼ 1

4π

�
3rh
L2

−
β2

2rh
−
ð ~μ2 þ ~μ2add þ α~μ ~μadd þ q2mÞ

4rh

�
: ð63Þ
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V. KINETIC AND TRANSPORT COEFFICIENTS FOR THE SPACETIME OF THE DYONIC BLACK HOLE
WITH TWO INTERACTING GAUGE FIELDS

If we denote by μ2 ¼ 1=8β2r2h, then the adequate kinetic and transport coefficients can be written as follows:

σijðFFÞ ¼ δij
�
1þ 8ðμ ~QðFÞrhÞ2ðB2μ2 þ 1Þ þ 32ðμ ~QðFÞrhÞ2ðμBrhÞ2 þ ðμBrhÞ2ðB2μ2 þ 1Þ

ðB2μ2 þ 1Þ2 þ 16ðμBrhÞ2ð ~QðFÞμrhÞ2
�

− ϵij
�
8ðμBrhÞðμ ~QðFÞrhÞðB2μ2 þ 1Þ þ 32ðμ ~QðFÞrhÞ3ðμBrhÞ þ 8ðμBrhÞ3ðμ ~QðFÞrhÞ

ðB2μ2 þ 1Þ2 þ 16ðμBrhÞ2ð ~QðFÞμrhÞ2
�
; ð64Þ

σijðFBÞ ¼ σijðBFÞ ¼ δij
�
α

2
þ 8ðμ ~QðFÞrhÞðμ ~QðBÞrhÞðB2μ2 þ 1Þ þ 16ðμBrhÞ2ðμ ~QðFÞrhÞðμ ~QðBÞrhÞ

ðB2μ2 þ 1Þ2 þ 16ðμBrhÞ2ð ~QðFÞμrhÞ2
�

− ϵij
�
4ðμ ~QðBÞrhÞðμBrhÞðB2μ2 þ 1Þ þ 32ðμBrhÞðμ ~QðFÞrhÞ2ðμ ~QðBÞrhÞ

ðB2μ2 þ 1Þ2 þ 16ðμBrhÞ2ð ~QðFÞμrhÞ2
�
; ð65Þ

σijðFFÞ ¼ δij
�
1þ 8ðμ ~QðBÞrhÞ2ðB2μ2 þ 1Þ

ðB2μ2 þ 1Þ2 þ 16ðμBrhÞ2ð ~QðFÞμrhÞ2
�
− ϵij

32Bðμ ~QðBÞrhÞ2ðμ ~QðFÞrhÞ
ðB2μ2 þ 1Þ2 þ 16ðμBrhÞ2ð ~QðFÞμrhÞ2

; ð66Þ

αijðFÞ ¼ 16πr2hδ
ij
2μrh½ðμ ~QðFÞrhÞðB2μ2þ1Þþ4ðμBrhÞ2ðμ ~QðFÞrhÞ�

ðB2μ2þ1Þ2þ16ðμBrhÞ2ð ~QðFÞμrhÞ2
−16πr2hϵ

ij
μrh½8ðμBrhÞð ~QðFÞμrhÞ2þðμBrhÞðB2μ2þ1Þ�

ðB2μ2þ1Þ2þ16ðμBrhÞ2ð ~QðFÞμrhÞ2
;

ð67Þ

αijðBÞ ¼ 32πr2hδ
ij

μrhðμ ~QðBÞrhÞðB2μ2 þ 1Þ
ðB2μ2 þ 1Þ2 þ 16ðμBrhÞ2ð ~QðFÞμrhÞ2

− 16πr2hϵ
ij

8μ2r2hBð ~QðFÞμrhÞð ~QðBÞμrhÞ
ðB2μ2 þ 1Þ2 þ 16ðμBrhÞ2ð ~QðFÞμrhÞ2

; ð68Þ

κij ¼ 64π2r4hT

�
δij

2μ2r2hðB2μ2 þ 1Þ
ðB2μ2 þ 1Þ2 þ 16ðμBrhÞ2ð ~QðFÞμrhÞ2

− ϵij
8μ2r2hðμBrhÞð ~QðFÞμrhÞ

ðB2μ2 þ 1Þ2 þ 16ðμBrhÞ2ð ~QðFÞμrhÞ2
�
; ð69Þ

where in the context of the previous section one has that

~QðFÞ ¼
�
~μþ α

2
~μadd

�
rh; ~QðBÞ ¼

�
~μadd þ

α

2
~μ

�
rh; B ¼ qmrh: ð70Þ

It has to be noted again that the parameter μ plays a role of
the mobility in real materials. This interpretation is sup-
ported not only by its place in the above formulas, but also
the interpretation of β leading to the momentum relaxation
on a gravity side.
One can envisage that the effect of momentum relaxation

β, mobility μ, magnetic field B, and α-coupling constant is
not easily observed due to the fact that rh is a rather
complicated function of ~μ, ~μadd, qm and depends moreover
on the coupling constant between both sectors. However,
the knowledge of the above kinetic coefficients allows us to
calculate the respective transport parameters, the resistivity
tensor ρij that components are given by the inverse of the
conductivity matrix σ, and the Nernst and Seebeck param-
eters. The latter coefficient S≡ Sxx is defined as a

longitudinal voltage (in the direction of temperature gra-
dient) induced by the unit temperature gradient under the
condition that no charge current flows. The Seebeck and
Nernst transport coefficients are given by the adequate
elements of the matrix

Sij ¼ ðσ−1Þilαjl : ð71Þ

VI. CONFRONTATION WITH EXPERIMENTS

Transport coefficients of graphene have been experi-
mentally measured and theoretically analyzed in a number
of works (for a review see, e.g., [46,47]). Also there exist a
number of papers using holographic approach [10,14]. In
the recent paper [37] thermal conductivity has been
measured and analyzed by means of the holographic
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approach within the two-current model. Two currents can
be envisaged as that of electrons and holes present in the
system with the Fermi energy tuned to coincide with the
Dirac point. The model [37] neglects possible excitonic
interactions between the charges and corresponds to α ¼ 0.
In the action (1) we have considered two fields leading to
the two interacting currents.
We thus start to analyze the effect of the coupling α

between the currents on the charge dependence of κxx in a
model withoutmagnetic field. It is illustrated in Fig. 1, where
we show the dependence of κxx on charge concentration n
(Q ¼ en) for three values of α and for g ¼ 2 in the left panel
and g ¼ 0 in the right panel. Both figures refer to the sample
with modest mobility μ ¼ 0.5. The effect is rather small, but
the increase of α leads to a slight increase of the width of the
normalized thermal conductivity for the model with g ¼ 2,
while the decrease of the width is observed for g ¼ 0. This
shows that the very precise agreement of the calculations
with experimental data may require the use of the coupling
between these two currents. In all calculations we assume
that rh ¼ 1 and T ¼ 1.
As a next step of our analysis of the effect of α on transport

properties of graphene we show in Fig. 2 the dependence of
the Wiedemann-Franz ratio (WFR) defined as

WFR ¼ Wxx ¼ κxx=ðσxxTÞ; ð72Þ

where σxx ¼ PF;B
a;b σxxab. The effect is related to the change of

thewidth of curves, aswell as their heights. Again the precise
analysis of the dependence of WFR on n can be achieved by
the appropriate use of both parameters referring to the
currents, namely g and α. Generally, WFR diminishes with
an increase of α for all values of the charge density. This
change can be attributed to the increase of conductivity or the
decrease of resistivity. The latter quantity is shown in the
right panel of Fig. 2.
In the left panel of Fig. 3 we show the dependence of the

Seebeck coefficient Sxx on the charge concentration n for
three systems characterized by different mobilities μ ¼ 0.5,
1, and 3. With the increase of mobility Sxx gets a larger
value and its maximum shifts towards smaller carrier
concentration. The Seebeck coefficient has been measured
in [48] as a function of gate voltage applied to the graphene
sheet. To see the relevance of our calculations it has to be
recalled that the charge concentration in graphene can be
changed by the external gate voltage. The detailed relation
between n and the gate voltage is unknown but is typically
of linear character. The dependence of S on the gate voltage
measured for different temperatures [48] and shown in
Fig. 3 of that paper nicely agrees with our calculations as
presented in Fig. 3 (left panel). In the figure we plot the
Seebeck coefficient for a few values of the mobility
parameter μ. The authors of the experiment suggest that
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FIG. 1. (Left panel) Charge carrier dependence of the thermal conductivity κxx, normalized to its α ¼ 0 value at n ¼ 0, obtained for the
magnetic field B ¼ 0, mobility μ ¼ 0.5, g ¼ 2 and a few values of α. (Right panel) The same dependence, except that g ¼ 0. Note the g
dependent change of the width of curves for various values of α parameters.
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the interaction with the optical phonons is responsible for
the observed changes of S with temperature. As visible
in the discussed figure we observe completely analogous
changes with the mobility of the sample in question. This is
sensible as in the ultrapure graphene studied in [48] the
increased interaction with phonons reduces the mobility of
the system at higher temperatures. The very good agree-
ment between the experimentally measured data and our
calculations can be interpreted in favor of the holographic
approach being able to describe real systems studied in
the lab.
Similarly, very good agreement with the experimentally

determined dependence of the coefficients αxx and αxy on the
carrier concentration is observed between our data, shown in
the right panel of Fig. 3, and the dependence plotted in Fig. 4
of the paper [49]. However, to get the agreement with the
experimental dependence of αxy we have to shift it vertically
by the constant value 50. This is probably related to the fact
that experiment has been performed at high magnetic fields
(B ¼ 7T and 14T). At such values of the field the spectrum
becomes quantized and the occupied Landau level appears at
the Dirac point [46,47]. We have not taken into account this
effect in our holographic approach [50,51] and the above
shift corrects for it.
Finally we comment on the α effect on the diagonal

resistivity and the Wiedemann-Franz ratio. The charge

dependence of these two transport parameters is displayed
in Fig. 4. An increase of α leads to decrease of both ρxx and
WFR ¼ Wxx. Again the effect is not very big but well
visible and amounts to change of the maximum value of
Wxx by 20% if the coupling α changes from 0 to 0.5.
It has to be recalled that all transport coefficients of

graphene become two by two matrices if the magnetic field
B perpendicular to the layer is applied. The important
parameter entering all transport coefficients together with B
is the effective mobility μ related to the holographic
parameter β responsible for the dissipation of momentum.
It is important to notice that the diagonal transport
coefficients take on finite values even at zero charge
concentration. However, to have nonzero also the off-
diagonal elements one has to assume finite values of the
charge density. Here we assume n ¼ 0.1. With this value of
charge density we are close enough to the particle-hole
symmetry point and may analyze the whole matrix of
kinetic and transport coefficients. We start with Seebeck Sxx

and Nernst Sxy effects.
Figure 5 illustrates the magnetic field dependence of the

Seebeck and Nernst coefficients for a moderate value of the
mobility μ ¼ 1 and for the current mixing parameter g ¼ 2
(this is close to the value used to describe charge depend-
ence of thermal conductivity in graphene [37]). Again we
pay special attention to the effect of α on the studied
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obtained for magnetic field B ¼ 1 and a few values of μ. The coefficient αxy has been shifted upwards by the constant value 50.
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dependencies. It is especially large on the SxxðBÞ with
spectacular change of shape: from the curve with two
minima and a maximum for B ¼ 0 observed for α ¼ 0 to
the curve with a minimum at B ¼ 0 and two small maxima
for larger absolute value of the magnetic field. The Nernst
coefficient Sxy is an antisymmetric function of B while Sxx

is symmetric in B.
Typically one measures the Wiedemann-Franz ratio for a

system at zero or constant magnetic field varying the charge
density. Here we propose the generalization of this param-
eter in two directions. First, we define both diagonal and
off-diagonal parts and second we study it as a function of
magnetic field. WhileWxx is defined in Eq. (72), we define
Wxy in the simplest possible way as

Wxy ¼ κxy

Tσxy
: ð73Þ

We are not aware of any experimental work on graphene
studying systematically these parameters as functions of the
magnetic field for constant charge density and propose their
measurements as a possible check of our theory and
holographic analysis of transport in graphene. Such mea-
surements would provide an important hint towards holo-
graphic modeling of transport in strongly interacting
systems. Our predictions of the magnetic field dependence
of Wxx and Wxy are shown in Fig. 6.

A. The Hall angle

In this subsection we elaborate the influence of the α-
coupling constant of the two sectors in question on the Hall
angle. To commence, let us define the Hall angle, by the
ratio of the electric conductivities, in the form provided by

tan θ ¼ σxx

jσxyj ¼
E
F
; ð74Þ

where we have denoted

σxx ¼ σxxðFFÞ þ 2σxxðFBÞ þ σxxðBBÞ; ð75Þ

σxy ¼ σxyðFFÞ þ 2σxyðFBÞ þ σxyðBBÞ: ð76Þ

The exact forms of σijðabÞ lead to the following expressions

for E and F:

E ¼ ð2þ αÞ½ðB2 þ 8β2r2hÞ þ 16B2 ~μ2r6h�

þ 8~μr4hðB2 þ 8β2r2hÞ
�
1þ α

2

�
2

ð1þ gÞ2

þ 32B2 ~μ2r6h

�
1þ α

2

�
ð1þ gÞ

þ B2r2hðB2 þ 8β2r2hÞ; ð77Þ
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and

F ¼ 32B ~μ3r7h

�
1þ α

2
g

��
1þ α

2

�
2

ð1þ gÞ2

þ 8B2 ~μr5h

�
1þ α

2
g

�

þ 8b~μr3h

�
1þ α

2

�
ð1þ gÞðB2 þ 8β2r2hÞ: ð78Þ

The explicit value of the charge connected with the
Maxwell field is given by QðFÞ ¼ ~μrh. On the other hand,
for the radius of black brane one obtains the relation

rhð1;2Þ ¼
16πT�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð16πTÞ2þ48ð2β2þ ~μ2allþq2mÞ

q
24

; ð79Þ

where ~μall ¼ ~μ2 þ ~μ2add þ α~μ~μadd. Thus rh is roughly pro-
portional to the Hawking temperature. From the above
expression, it can be seen that in the limit of high
temperature, when β tends to 0, one gets that tan θ increases
when B and β increase. Moreover for the limit in question
we obtain the proportionality of the Hall angle to the
inverse of the adequate power of the temperature

tan θ ¼ c0 þ
c1
T
þ c2
T3

þOð1=T7Þ; ð80Þ

where the coefficients are provided by

c1 ¼
Bð2þ αÞ

2~μð1þ α
2
gÞð1þ α

2
Þ2ð1þ gÞ2 ;

c2 ¼
B

4~μð1þ α
2
gÞ : ð81Þ

The close inspection of the above coefficients reveals that
for a constant value of magnetic and electric field ~μ, α > 0
and for g ¼ 0.3 the dominant role plays the term propor-
tional to 1=T3. The bigger value of the α-coupling constant
(and/or g) one considers, the greater c2 is, in comparison
to c1.

VII. SUMMARY AND CONCLUSIONS

We have studied thermoelectric transport properties of
graphene assuming that close to the Dirac point the carriers
are strongly interacting and thus the gauge-gravity duality
is applicable. We consider Hall effect geometry with the
magnetic field perpendicular to the graphene plane and
with the electric field and temperature gradients in the plane
but perpendicular to each other. The calculation of the
DC-transport coefficients is facilitated by the introduction
of the axionic field β, which on the condensed matter side
provides a momentum relaxation mechanism and, as our
calculations show, is related to the mobility of the material.

The second sector of Uð1Þ-gauge field taken into account
in the action affects the kinetic and transport coefficients
via the parameters g and α.
Having in mind Ref. [37], our model predicts that the

increase of α-coupling constant value leads to the increase
of the width of normalized thermal conductivity with
g ¼ 2. On the contrary, when g ¼ 0, the effect is quite
opposite, i.e., one obtains the decrease of the width. The
dependence of α-coupling constant on the WFR is related
to the changes of the width of curves and their heights. The
general tendency envisaged in the fact that WFR dimin-
ishes as the α-coupling constant increases. The aforemen-
tioned dependence is valid for all charge densities.
Based on the model in question we plot the dependence

of the Seebeck coefficient on the charge concentration, for
the different values of mobilities μ. The mobility increase
causes Sxx to reach larger values and its maximum is shifted
towards the values of small carrier concentrations. One
receives a very good agreement with the experimental data.
The same is true for αxx and αxy coefficients.
As far as the charge dependence of the diagonal

resistivity and the Wiedemann-Franz ratio on the
α-coupling constant, we reveal that the increase of the
coupling constant of two gauge fields causes the decrease
of both ρxx and Wxx. We also examine the influence of
magnetic field on the Seebeck and Nerst coefficients,
paying special attention to the α-coupling constant effects
on the aforementioned phenomena. One finds that the
influence is large for Sxx, changing the shape of the curve,
from the curve with two minima and a maximum (for
B ¼ 0, α ¼ 0) to the curve with a minimum at B ¼ 0 and
two small maxima for larger absolute values of magnetic
field. To our knowledge, this is a new effect, which has not
been observed yet. Perhaps future experiments may verify
our theoretical predictions.
It also turns out that α influences the Hall angle,

causing its increase when magnetic field and β increase.
In the high temperature regime we observe that tan θ ¼
c0 þ c1=T þ c2=T3 þOð1=T7Þ.
However, due to the fact that α modifies the prefactors

only its experimental detection in such measurements is
very hard, if possible at all. The possible exception is
provided by the magnetic field dependence of the Seebeck
coefficient Sxx and the diagonal Wiedemann-Franz ratio
Wxx. The situation might change in the geometry with the
in-plane magnetic field. It has to be stressed that our results
on the density dependence of the thermoelectric coeffi-
cients αxx and αxy and the Seebeck coefficient Sxx nicely
agree with the experimental data [48,49].

A. Dark matter interpretation

On the other side, the hope is that experimental studies of
various condensed systems allow for checks of the
approach and eventually contribute to better understanding
of gravity itself. In particular, the long-standing problem on
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the gravity side is the direct observation of the dark matter.
This elusive component of the Universe is expected to be
responsible for more than five times the mass in the
Universe as visible one. The problem is thus serious and
worth studying in view of the latest astronomical obser-
vations, proposed future investigations, and negative or
nonconclusive results of the present direct experiments
[52–70] aiming at its detection. There has been some effort
to look again into the old astrophysical observations like
supernova 1987A data and to try to reinterpret them taking
into account the existence of dark radiation (the dark
photon) [71], as well as to find the strong constraints on
emission of dark photons from stars [72] and on the
coupling of dark matter coming from light particle pro-
duction in hot star cores and their effects on star cooling
[73]. The aforementioned studies are also important in the
context of the new rival precession of cosmic microwave
background measurements, delivered by Dark Energy
Survey (equipped with 570-megapixel camera, able to
capture the digital imagines of galaxies at 8 billion light
year distances), which supports the view that dark matter
and dark energy make up most of our Universe.
One of the directions we have followed [74–81] was to

analyze the effect of dark matter on the superconducting
properties of materials in order to uncover possible effects
that could be related to the dark sector. The sharpness of the
superconducting transition should be helpful to detect even
small changes of, e.g., transition temperature due to the
presence of the dark matter. Generally it is argued that the
dark sector affects various properties of the systems
[82,83]. Studying these changes may contribute to uncov-
ering more than gravity effects of the dark matter sector.
As noted earlier one can interpret the second field in

action (1) as the dark sector coupled to the visible one.

Having in mind that the coupling to the dark sector changes
only the prefactors of QðFÞ, we conclude that in the studied
geometry with magnetic field perpendicular to the plane of
graphene it will be very difficult, if possible at all, to detect
the effect of dark matter experimentally (more details
below). The situation might change for the geometry with
in-plane magnetic field, as the recent experimental detec-
tion of the mixed gauge-gravitational anomaly suggests
[84]. This issue is the subject of the ongoing studies.
The observed dependence of transport on g and α can be,

in principle, at least utilized in future experiments aiming at
the detection of the dark sector. One possible approach
could be the long-time observations of the properties of
well-characterized graphene sample. If the dark matter
exists, as required by the astrophysical observations, it may
be spotted during the annual motion of the Earth ([63,64]
and [85,86]). The possible effect of the dark matter on
graphene can, in principle, be detected by the precise and
cleverly designed experiments looking at the annual
changes of their transport properties. We rely here on
the arguments presented in the aforementioned works,
where the authors analyze the annual modulations of the
dark matter. Our additional assumption is that dark matter is
nonhomogeneously distributed in the neighborhood of the
Sun [87,88] and these inhomogeneities can be vital for its
detection [89]. The theoretically expected small value of α-
coupling constant is an important factor making the experi-
ments very difficult, but maybe not impossible.
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