
 

Reducing the two-body problem in scalar-tensor theories to the motion
of a test particle: A scalar-tensor effective-one-body approach

Félix-Louis Julié
APC, Université Paris Diderot, CNRS, CEA, Observatoire de Paris, Sorbonne Paris Cité 10,

rue Alice Domon et Léonie Duquet, F-75205 Paris CEDEX 13, France

(Received 27 September 2017; published 29 January 2018)

Starting from the second post-Keplerian (2PK) Hamiltonian describing the conservative part of the two-
body dynamics in massless scalar-tensor (ST) theories, we build an effective-one-body (EOB) Hamiltonian
which is a ν deformation (where ν ¼ 0 is the test mass limit) of the analytically known ST Hamiltonian of a
test particle. This ST-EOB Hamiltonian leads to a simple (yet canonically equivalent) formulation of the
conservative 2PK two-body problem, but also defines a resummation of the dynamics which is well-suited
to ST regimes that depart strongly from general relativity (GR) and which may provide information on the
strong field dynamics; in particular, the ST innermost stable circular orbit location and associated orbital
frequency. Results will be compared and contrasted with those deduced from the ST-deformation of the
(5PN) GR-EOB Hamiltonian previously obtained in [Phys. Rev. D 95, 124054 (2017)].
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I. INTRODUCTION

Building libraries of accurate gravitational waveform
templates is essential for detecting the coalescence of
compact binary systems. To this aim, the effective-one-body
(EOB) approach has proven to be a very powerful framework
to analytically encompass and combine the post-Newtonian
(PN) and numerical descriptions of the inspiral and merger,
as well as “ring-down” phases of the dynamics of binary
systems of comparable masses in general relativity; see,
e.g., [1].
Matching and comparing gravitational wave templates to

the present and future data from the LIGO-Virgo and
forthcoming interferometers will bring the opportunity to
test general relativity (GR) at high PN order and in the
strong field regime of a merger. A next step to test gravity in
this regime is to match gravitational wave data with
templates predicted in the framework of modified gravities.
In this context, scalar-tensor (ST) theories with a single
massless scalar field have been the most thoroughly
studied. For instance, the corresponding dynamics of
binary systems is known at 2.5PN order [2], or, adopting
the terminology of [3], 2.5 post-Keplerian (PK) order, to
highlight the fact that (strong) self-gravity effects are
encompassed in the body-dependent “Eardley-type” mass
functions mAðφÞ assigned to each compact body A (see,
e.g., Sec. II B). What was hence done in [4–6] is the
computation of ST waveforms at 2PK relative order
(although part of this computation requires information
on the ST 3PK dynamics, which are, for now, unknown).
In that context, the aim of [7] (henceforth Paper 1) was to

go beyond the (as yet poorly known) PK dynamics of
modified gravities by extending the EOB approach to

scalar-tensor theories. More precisely, we started from the
ST two-body 2PK Lagrangian obtained by Mirshekari and
Will [2] (no spins, nor finite-size, “tidal” effects) and deduced
from it the corresponding centre-of-mass frame 2PK
Hamiltonian. That two-body 2PK Hamiltonian was then
mapped to that of geodesic motion in an effective,
“ST-deformed” metric, which has the important property
of reducing to the 1998 Buonanno-Damour EOB metric [8]
in the general relativity limit. When extended to encompass
the currently best available (5PN) GR-EOB results, the
corresponding ST-EOB Hamiltonian of Paper 1 is therefore
well-suited to test scalar-tensor theories when considered as
parametrized corrections to GR. However, the scope of this
GR-centeredEOBHamiltonian is, by construction, restricted
to a regimewhere the scalar field effects areperturbativewith
respect to general relativity.
In their 1998 paper [8], Buonanno and Damour success-

fully reduced the general relativistic two-body problem to
an effective geodesic motion in a static, spherically sym-
metric (SSS) metric. In their approach, they ensured that the
effective-one-body dynamics is centered on a particular
one-body problem in general relativity, namely, the geo-
desic motion of the reduced mass of the system μ ¼
mAmB=M in the Schwarzschild metric produced by a
central body, M ¼ mA þmB, to which it indeed reduces
to in the test-mass limit (i.e., ν ¼ 0 with ν ¼ μ=M).
Consequently, the associated predictions were smoothly
connected to those of the motion of a test mass in the
Schwarzschild metric (which is known exactly), ensuring
an accurate resummation of the two-body dynamics that
could be pushed up to the strong field regime of the last few
orbits before plunge.
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With the same motivation this paper proposes a mapping
where the ST-EOB Hamiltonian reduces, in contrast
with what was done in Paper 1, to the scalar-tensor
one-body Hamiltonian in the test mass limit, which
describes the motion of a test particle in the metric and
scalar field generated by a central SSS body. Although the
conservative dynamics derived from this Hamiltonian and
that proposed in Paper 1 (and from the Mirshekari-Will
Lagrangian) are the same at 2PK order, when taken as being
exact, they define different resummations and hence,
a priori different dynamics in the strong field regime
which is reached near the last stable orbit. In particular,
we shall highlight the fact that our new, ST-centered, EOB
Hamiltonian is well-suited to investigate ST regimes that
depart strongly from general relativity.
This paper is organized as follows: In Sec. II we present

the Hamiltonian describing the motion of a test particle
orbiting in the metric and scalar field generated by a central
body (when written in Just coordinates) in scalar-tensor
theories, henceforth referred to as the real one-body
Hamiltonian. In order for the paper to be self-contained,
in Sec. III we recall the expression of the two-body
Hamiltonian in the centre-of-mass frame obtained in
Paper 1 at 2PK order. In Sec. IV we then reduce the
two-body problem to an EOB ν-deformed version of the ST
one-body problem, by means of a canonical transformation
and imposing the EOB mapping relation between their
Hamiltonians. We finally study the resummed dynamics it
defines; in particular, we compute the innermost stable
circular orbit (ISCO) location and associated orbital fre-
quency in the case of Jordan-Fierz-Brans-Dicke theory.
Corrections to general relativity ISCO predictions are
compared to the results obtained in Paper 1.

II. THE SCALAR-TENSOR REAL
ONE-BODY PROBLEM

A. The metric and scalar field outside a static,
spherically symmetric body

In this paper we limit ourselves to the single, massless
scalar field case. Adopting the conventions of Damour and
Esposito-Farèse (DEF, see, e.g., [3] or [9]), the Einstein-
frame action reads in vacuum, that is, outside the sources
(setting G� ¼ c ¼ 1),

SvacEF ½gμν;φ� ¼
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2gμν∂μφ∂νφÞ; ð2:1Þ

where R is the Ricci scalar and g ¼ det gμν. The vacuum
field equations follow:

Rμν ¼ 2∂μφ∂νφ; ð2:2aÞ
□φ ¼ 0; ð2:2bÞ

where Rμν is the Ricci tensor and □φ ¼ ∂μð ffiffiffiffiffiffi−gp
gμν∂νφÞ.

The vacuum, static and spherically symmetric (SSS)
solutions to the Einstein-frame field equations (2.2),
henceforth, real one-body metric g�μν and scalar field φ�,
have a simple analytical expression in Just coordinates
(see, e.g., [10]) as follows1:

ds2� ¼ −D�dt2 þ
dρ2

D�
þ C�ρ2ðdθ2 þ sin2θdϕ2Þ; ð2:3aÞ

with D�ðρÞ ¼
�
1 −

a�
ρ

�b�
a�
;

C�ðρÞ ¼
�
1 −

a�
ρ

�
1−b�

a�
; ð2:3bÞ

and

φ�ðρÞ ¼ φ0 þ
q�
a�

ln

�
1 −

a�
ρ

�
; ð2:4Þ

where φ0 is a constant scalar background that must not be
considered as an arbitrary integration constant, but rather as
imposed, say, by the cosmological environment [11,12],
while the other integration constants a�, b� and q� have the
dimension of a mass and satisfy the following constraint:

a2� ¼ b2� þ 4q2�: ð2:5Þ
We note that when q� ¼ 0, i.e., a� ¼ b�, the scalar field

is a constant, the metric (2.3) reduces to Schwarzschild’s,
and Droste and Just coordinates coincide. Note also that
pure vacuum (black hole) solutions exhibit singular scalar
field and curvature invariants at ρ ¼ a�. For that reason,
SSS black holes cannot carry massless scalar “hair” (thus
q� ¼ 0) and hence do not differ from Schwarzschild’s; see,
e.g. [3,13].
One easily checks that expanding (2.3)–(2.4) at infinity

and in isotropic coordinates (ρ ¼ ρ̄þ a�
2
þ � � �), the metric

and scalar field behave as

ḡ�μν ¼ ημν þ δμν

�
b�
ρ̄

�
þO

�
1

ρ̄2

�
; ð2:6aÞ

φ� ¼ φ0 −
�
a�
ρ̄

�
þO

�
1

ρ̄2

�
; ð2:6bÞ

where δμν is the Kronecker symbol.
In order to relate the constants of the vacuum solution to

the structure of the body generating the fields, we need the
Einstein-frame action inside the source,

SEF½gμν;φ;Ψ� ¼
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2gμν∂μφ∂νφÞ

þ Sm½Ψ;A2ðφÞgμν�; ð2:7Þ

1In the following, a star (�) shall stand for quantities that refer
to the real one-body problem.
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where AðφÞ characterizes the ST theory and Ψ generically
stands for matter fields that are minimally coupled
to the Jordan metric, ~gμν ≡A2ðφÞgμν. The field equations
read

Rμν ¼ 2∂μφ∂νφþ 8π

�
Tμν −

1

2
gμνT

�
; ð2:8aÞ

□φ ¼ −4παðφÞT; ð2:8bÞ
where Tμν ≡ − 2ffiffiffiffi−gp δSm

δgμν is the Einstein-frame energy-

momentum tensor of the source, T ≡ Tμ
μ and where

αðφÞ≡ d lnAðφÞ
dφ

ð2:9Þ

measures the universal coupling strength between the scalar
field and matter.
The constants b� and q� can then be matched to the

internal structure of the central body through integration of
(2.8a) and (2.8b) as

b� ¼ 2

Z
ρ0

0

d3x
ffiffiffiffiffiffi
−g

p ð−T0
0 þ Ti

iÞ;

q� ¼ −
Z

ρ0

0

d3x
ffiffiffiffiffiffi
−g

p
αðφÞT; ð2:10Þ

where ρ0 denotes the radius of the central body.2 The
numerical values of these integrals generically depend on
the asymptotic value of the scalar field at infinity φ0. Indeed,
one can, for example, model a star as a perfect fluid, together
with its equation of state. Given some central density and
value for the scalar field φc ≡ φðρ ¼ 0Þ, one integrates (2.8)
and thematter equations of motion from the regular center of
the bodyup toρ0where the pressurevanishes. Themetric and
scalar field are then matched to the exterior solution (2.3)–
(2.4), fixing uniquely b�, q�, and φ0 in terms of the central
density and φc. When the equation of state and the baryonic
number of the star are held fixed, the exterior fields (i.e., b�
and q�) are completely known as functions of φc only, or,
equivalently, of the scalar field value at infinity, φ0, see, e.g.,
[14] for an explicit computation.

B. Skeletonizing the source of the gravity field

In order to clarify the analysis to come in the forth-
coming sections, we now “skeletonize” the body creating
the gravity field; that is, we phenomenologically replace Sm

in (2.7) with a point particle action, as was suggested by
Eardley in [15],

Sskelm ½Xμ; gμν;φ� ¼ −
Z

M�ðφÞdS; ð2:11Þ

where dS ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνdXμdXν

p
and where XμðSÞ denotes the

location of the skeletonized body. The Einstein-frame mass
M�ðφÞ depends on the value of the scalar field at XμðSÞ
(subtracting divergent self contributions), on the specific
theory and on the body itself [contrarily to (2.7) where the
coupling to the scalar field was universal], hence encom-
passing the effects of the background scalar field on its
equilibrium configuration.3 For a discussion on the validity
of the skeletonization procedure, see [3,17].
The question addressed now is to relate the function

M�ðφÞ to the parameters describing the exterior solutions,
that is b� and q�, given a scalar field value at infinity φ0.
The field equations are given by

Rμν ¼ 2∂μφ∂νφþ 8π

�
Tμν −

1

2
gμνT

�
;

with Tμν ¼
Z

dSM�ðφÞ
δð4Þðx − XÞffiffiffiffiffiffi−gp dXμ

dS
dXν

dS
; ð2:12aÞ

and □φ ¼ 4π

Z
dSM�ðφÞA�ðφÞ

δð4Þðx − XÞffiffiffiffiffiffi−gp ; ð2:12bÞ

where we introduced the body-dependent function (“capital
alpha”)

A�ðφÞ≡ d lnM�ðφÞ
dφ

; ð2:13Þ

which measures the coupling between the skeletonized
body and the scalar field. Note that because of the body-
dependent function M�ðφÞ, the effective scalar field equa-
tion is different from (2.8b) with Tμν given in (2.12a),
because (2.8b) was derived from the universally coupled
action (2.7). Note also that since black holes cannot carry
scalar hair, A� must vanish in that case, i.e., M� must then
reduce to a constant, and one recovers general relativity.
We now solve these equations in the rest-frame of the

skeletonized body, setting X⃗ ¼ 0⃗. Outside it, the metric and
scalar field are of the form (2.3) and (2.4). Moreover,
solving the field equations (2.12) perturbatively around the
metric and scalar field backgrounds, i.e., ḡ�μν ¼ ημν þ hμν,
φ� ¼ φ0 þ δφ, in harmonic coordinates ∂μð

ffiffiffiffiffiffi
−ḡ

p
ḡμνÞ ¼ 0,

easily yields, at linear order

2For example, one rewrites (2.8b) as ð ffiffiffiffiffiffi−gp
gρρφ0Þ0 ¼

−4π ffiffiffiffiffiffi−gp
αðφÞT (where a0 ≡ da=dρ) and integrates both sides

between the center of the star, where the fields are supposed to be
regular, and its radius ρ0. The left-hand side hence readsR ρ0
0 ð ffiffiffiffiffiffi−gp

gρρφ0Þ0dρ ¼ ffiffiffiffiffiffi−gp
gρρφ0jρ¼ρ0

¼ q� sin θ, using the vac-
uum expressions (2.3)–(2.4), by continuity at ρ ¼ ρ0. Hence, one
has q� ¼ −ð4π=sin θÞ R ρ0

0 dρ
ffiffiffiffiffiffi−gp

αT ¼ −
R ρ0
0 dρdθdϕ

ffiffiffiffiffiffi−gp
αT,

i.e., (2.10). One similarly obtains b� through integration of the
t − t component of Einstein’s equation (2.8a), see [10] for the
details.

3Note that Eardley-type actions do not depend on the local
gradients of gμν and φ and hence cannot account for finite-size,
“tidal” effects, nor out-of-equilibrium effects, see, e.g., [16], that
will hence be neglected in the present paper.
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ḡ�μν ¼ ημν þ δμν

�
2M�ðφ0Þ

ρ̄

�
þO

�
1

ρ̄2

�
; ð2:14aÞ

φ� ¼ φ0 −
M�ðφ0ÞA�ðφ0Þ

ρ̄
þO

�
1

ρ̄2

�
; ð2:14bÞ

where the φ0 dependence of the fields recalls the fact that
the skeletonized body is “sensitive” to the background
value of the scalar field in which it is immersed, that is, φ0,
as already discussed below (2.10).4

Moreover, by comparing (2.14) to (2.6), one obtains the
following relations (knowing that the harmonic and iso-
tropic coordinates identify at linear order):

b� ¼ 2M0�; q� ¼ M0�A0�; a� ¼ 2M0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðA0�Þ2

q
;

ð2:15Þ

see (2.5), where and from now on, a zero index denotes a
quantity evaluated for φ ¼ φ0. Hence, by means of the
matching conditions (2.15), we have traded the integration
constants of the vacuum solution b� and q�, which are
related to the source stress-energy tensor by (2.10), for their
“skeleton” counterparts,M0� and A0�, which are the values of
the functionM�ðφÞ and its logarithmic derivative evaluated
at the background φ0.

C. The real one-body problem: The motion
of a test particle in the fields of a skeletonized

body in ST theories

We now turn to the motion of a self-gravitating test
particle m�ðφÞ, coupled to the fields obtained above, i.e.,
generated by the central body only. The dynamics is
described again by an Eardley-type action,

S�½xμ� ¼ −
Z

m�ðφ�Þds�; ð2:16Þ

where ds� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g�μνdxμdxν

p
and where φ� and g�μν are the

real one-body metric and scalar field, given explicitly in
Just coordinates in (2.3), (2.4) together with (2.15). Note
that the functionm�ðφ�Þ characterizing the particle can also
be related to the properties of an extended test body
following the steps presented above, but where the scalar
environment is not φ0 anymore, and is replaced by the value
of the scalar field generated by the central body φ�, at the
location of the test particle, φ�ðxμðs�ÞÞ.
To simplify notations it is convenient to replace m�ðφ�Þ

with the rescaled function

V�ðφ�Þ≡
�
m�ðφ�Þ
m0�

�
2

;

such that S�½xμ� ¼ −m0�

Z ffiffiffiffiffiffi
V�

p
ds�; ð2:17Þ

where we recall that m0� ¼ m�ðφ0Þ is the value of m�ðφ�Þ
when the test particle is infinitely far away from the central
body. Therefore, the scalar-tensor Lagrangian for our test
particle, defined as S� ≡

R
dtL�, reads (restricting the

motion to the equatorial plane, θ ¼ π=2)

L� ¼ −m0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðV�g�μνÞ

dxμ

dt
dxν

dt

r

¼ −m0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V�

�
D� −

_ρ2

D�
− C�ρ2 _ϕ

2

�s
;

_ρ≡ dρ
dt

; _ϕ≡ dϕ
dt

; ð2:18Þ

with

D�ðρÞ ¼
�
1 −

a�
ρ̂

�b�
a�
;

C�ðρÞ ¼
�
1 −

a�
ρ̂

�
1−b�

a�
; ð2:19Þ

where we have introduced the dimensionless radial coor-
dinate

ρ̂≡ ρ=M0�; ð2:20Þ

and where the rescaled constants b� and a� follow from
(2.15),

b� ¼ 2; a� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðA0�Þ2

q
: ð2:21Þ

In contrast, the expression of V�ðφ�ðρÞÞ (or, equiva-
lently, m�) as an explicit function of ρ depends on the
specific ST theory and on the internal structure of the test
particle. At 2PK order, to which we restrict ourselves in this
paper, it will prove sufficient to replace it with its Taylor
expansion around φ0. To do so, let us introduce the three
quantities

α�ðφÞ≡ d lnm�
dφ

; β�ðφÞ≡ dα�
dφ

; β0�ðφÞ≡ dβ�
dφ

;

ð2:22Þ

such that, expandingm�ðφÞ around φ0 (where we recall that
φ0 is the value at infinity of the scalar field imposed by
cosmology) yields

4Meanwhile, as in GR, the asymptotic (constant) metric at
infinity can always be “gauged away” to Minkowski by means of
an appropriate coordinate change.
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m�ðφÞ¼m0�

�
1þα0�ðφ−φ0Þþ

1

2
ðα0�2þβ0�Þðφ−φ0Þ2

þ1

6
ð3β0�α0� þα0�3þβ00�Þðφ−φ0Þ3þ�� �

�
: ð2:23Þ

Now, the scalar field generated by the central body is given
in (2.4) together with (2.15). Hence, V� reads, at 2PK order,

V�ðρ̂Þ ¼
�
m�ðφ�ðρ̂ÞÞ

m0�

�
2

¼ 1þ v�1
ρ̂
þ v�2

ρ̂2
þ v�3
ρ̂3

þO

�
1

ρ̂4

�
;

ð2:24Þ

where the dimensionless constants v�1, v
�
2, and v

�
3 depend on

the functions M�ðφÞ and m�ðφÞ characterizing the central
body and the test particle and are given by

v�1 ¼ −2α0�A0�; ð2:25aÞ

v�2 ¼ ð2ðα0�Þ2 þ β0�ÞðA0�Þ2 − 2α0�A0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðA0�Þ2

q
; ð2:25bÞ

v�3 ¼ −
�
4

3
ðα0�Þ3 þ

1

3
β00� þ 2α0�β0�

�
ðA0�Þ3

þ ð4ðα0�Þ2 þ 2β0�ÞðA0�Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðA0�Þ2

q
−
8

3
α0�A0�ð1þ ðA0�Þ2Þ: ð2:25cÞ

To summarize, we have obtained in this section the
Lagrangian that describes the dynamics of a test particle
orbiting around a central (skeletonized) body in scalar-
tensor theories of gravity. At 2PK order, it is entirely
described by five coefficients, a�, b�, v�1, v

�
2, and v�3, which

are in turn expressed in terms of the five fundamental
parameters:M0�, A0� describing the central body, and α0�, β0�,
β00�, describing the orbiting particle.5

III. THE REAL TWO-BODY DYNAMICS
AT 2PK ORDER, A REMINDER

In this section, we recall the results from Paper 1 [7] that
will be needed in the forthcoming sections.

A. The two-body 2PK Hamiltonians
in scalar-tensor theories

The two-body dynamics is conveniently described in the
Einstein-frame (following DEF), by means of an Eardley-
type action

SEF½xμA; gμν;φ� ¼
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2gμν∂μφ∂νφÞ

−
X
A

Z
dsAmAðφÞ; ð3:1Þ

where dsA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνdx

μ
Adx

ν
A

q
, and where xμAðsAÞ denotes

the position of body A. The masses mAðφÞ depend
on the (regularized) local value of the scalar field and
are related to their Jordan-frame counterparts through
mAðφÞ≡AðφÞ ~mAðφÞ. In the negligible self-gravity limit,
the “Jordan masses” reduce to constants, ~mAðφÞ ¼ cst, so
that the motion is a geodesic of the Jordan metric
~gμν ¼ A2gμν. In contrast, general relativity is recovered
when the “Einstein masses” are constants, mAðφÞ ¼ cst.
We now define a set of body-dependent quantities,

consistently with (2.13) and (2.22),

αAðφÞ≡ d lnmA

dφ

�
¼ d lnA

dφ
þ d ln ~mA

dφ

�
; ð3:2aÞ

βAðφÞ≡ dαA
dφ

; ð3:2bÞ

β0AðφÞ≡ dβA
dφ

; ð3:2cÞ

that appear in the 2PK two-body Lagrangian. In the
negligible self-gravity limit, ~mA ¼ cst, and hence

αA → α≡ d lnA
dφ

; βA → β≡ dα
dφ

; β0A → β0 ≡ dβ
dφ

;

ð3:3Þ

become universal, while in the general relativity limit,
mA ¼ cst, implying αA ¼ βA ¼ β0A ¼ 0.
The conservative part of the scalar-tensor two-body

problem has been studied at 1PK order by Damour and
Esposito-Farèse (DEF) in [3] and at 2PK order by DEF in
[9] and Mirshekari and Will (MW) in [2], performing a
small orbital velocities, weak field expansion (V2 ∼m=R)
around ημν and a constant cosmological background φ0.
Because of the harmonic coordinates in which it has been
computed, the two-body Lagrangian depends linearly on
the accelerations of the bodies at 2PK level.
In Paper 1, we started from this MW Lagrangian,

LðZ⃗A=B;
_⃗ZA=B;

̈Z⃗A=BÞ. Once translated in terms of the
DEF conventions presented above (see also Paper 1,
Appendix A), we eliminated the dependence in the accel-

erations ̈Z⃗A=B by means of suitable contact transformations
of the form

Z⃗0
AðtÞ ¼ Z⃗AðtÞ þ δZ⃗AðZ⃗A=B;

_⃗ZA=BÞ; ð3:4Þ
5Note that b� ¼ b�=M0� (with b� ¼ 2M0�) is a parameter since

M0� has been factorized out in the definition of ρ̂ ¼ ρ=M0�.
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that is, four-dimensional 2PK coordinate changes. We found
a whole class of coordinate systems, labeled by fourteen
parametersfi, inwhich theLagrangian is ordinary (see Paper
1 Appendix B and below). By means of a further Legendre
transformation, we obtained the associated Hamitonians
HðQ;PÞ in the center-of-mass frame, the conjugate variables
being Z⃗ ¼ Z⃗A − Z⃗B and P⃗ ¼ P⃗A ¼ −P⃗B, and in polar
coordinates: ðQ;PÞ≡ ðR;Φ; PR; PΦÞ where PR ¼ N⃗ · P⃗
and PΦ ¼ RðN⃗ × P⃗Þz. The resulting isotropic, translation-
invariant, ordinary Hamiltonians are given at 2PK order in
Paper 1, Sec. III C,

Ĥ ≡H
μ
¼ M

μ
þ
�
P̂2

2
−
GAB

R̂

�
þ Ĥ1PK þ Ĥ2PK þ � � � ;

ð3:5Þ
where we have introduced the rescaled quantities

P̂2 ≡ P̂2
R þ P̂2

Φ

R̂2
with P̂R ≡ PR

μ
;

P̂Φ ≡ PΦ

μM
; R̂≡ R

M
; ð3:6Þ

and the reduced mass, total mass, and symmetric mass ratio

μ≡m0
Am

0
B

M
; M≡m0

A þm0
B; ν≡ μ

M
; ð3:7Þ

wherem0
A andm0

B are the values of the functionsmAðφÞ and
mBðφÞ at φ ¼ φ0.
At 2PK order, the two-body Hamiltonians depend on

seventeen coefficients ðhn PKi Þ (which are very lengthy and
are given explicitly in Appendix C of Paper 1), which in
turn depend on the fourteen fi parameters and on the eleven
following combinations of the eight fundamental mass
parameters (3.2) [m0

A, α
0
A, β

0
A, and β00A and B counterparts,

characterizing at 2PK order the functions mA=BðφÞ]:

m0
A; GAB ≡ 1þ α0Aα

0
B; ð3:8aÞ

γ̄AB ≡ −
2α0Aα

0
B

1þ α0Aα
0
B
; β̄A ≡ 1

2

β0Aðα0BÞ2
ð1þ α0Aα

0
BÞ2

; ð3:8bÞ

δA≡ ðα0AÞ2
ð1þα0Aα

0
BÞ2

; ϵA≡ ðβ0Aα3BÞ0
ð1þα0Aα

0
BÞ3

; ζ≡ β0Aα
0
Aβ

0
Bα

0
B

ð1þα0Aα
0
BÞ3

;

ð3:8cÞ

and (A ↔ B) counterparts, where we recall that a zero
index indicates a quantity evaluated at infinity, φ ¼ φ0. In
the general relativity limit, mA ¼ cst, the Hamiltonian
considerably simplifies since these combinations are
reduced to

GAB ¼ 1; and γ̄AB ¼ β̄A ¼ δA ¼ ϵA ¼ ζ ¼ 0: ð3:9Þ

B. The canonical transformation

The EOB mapping consists in imposing a functional
relation between the two-body Hamiltonian HðQ;PÞ, and
an effective Hamiltonian He (that we shall build in the next
section), by means of a canonical transformation,

ðQ;PÞ → ðq; pÞ; ð3:10Þ

where ðq; pÞ≡ ðρ;ϕ; pρ; pϕÞ. The canonical transforma-
tion is generated by the (time-independent and isotropic)
generic function GðQ;pÞ introduced in [7], Sec. III D,
which depends on nine parameters at 2PK order,

GðQ;pÞ
μM

¼ R̂p̂ρ

��
α1P2 þ β1p̂2

ρ þ
γ1
R̂

�

þ
�
α2P4 þ β2P2p̂2

ρ þ γ2p̂4
ρ þ δ2

P2

R̂

þ ϵ2
p̂2
ρ

R̂
þ η2
R̂2

�
þ � � �

�
; ð3:11Þ

where we introduced the reduced quantities

P2≡ p̂2
ρþ

p̂2
ϕ

R̂2
; R̂≡ R

M
; p̂ρ≡pρ

μ
; p̂ϕ≡ pϕ

μM
: ð3:12Þ

The associated canonical transformation reads

ρðQ;pÞ ¼ Rþ ∂G
∂pρ

;

ϕðQ;pÞ ¼ Φþ ∂G
∂pϕ

;

PRðQ;pÞ ¼ pρ þ
∂G
∂R ;

PΦðQ;pÞ ¼ pϕ þ
∂G
∂Φ ; ð3:13Þ

and leads to 1PK and higher order coordinate changes.
Note that the Φ independence of GðQ;pÞ yields PΦ ¼ pϕ.
Moreover, for circular orbits, pρ ¼ 0 ⇔ PR ¼ 0, we
note that ϕ ¼ Φ and hence only the radial coordinates
differ ρ ≠ R.
The two-body Hamiltonian (3.5) is thus rewritten

in the intermediate coordinate system H0ðQ;pÞ ¼
HðQ;PðQ;pÞÞ using the last two equations in (3.13) which
yield (dropping the prime)

Ĥ ¼ M
μ
þ
�
P2

2
−
GAB

R̂

�
þ Ĥ1PK þ Ĥ2PK þ � � � ; ð3:14Þ

where the explicit expressions for Ĥ1PK and Ĥ2PK are given
in Appendix D of Paper 1. It depends on the eight
fundamental parameters (3.2), on the fourteen parameters
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fi characterizing the coordinate system in which the two-
body Hamiltonian HðQ;PÞ was written, and on the nine
parameters of the canonical transformation (3.11).

IV. THE SCALAR-TENSOR EOB HAMILTONIAN

In this section we relate the canonically transformed,
two-body Hamiltonians HðQ;pÞ to the Hamiltonian He
of an effective test-particle in the fields of an effective
central body.
To this aim, we shall propose a ST-centered Hamiltonian

He that contrasts with what was done in Paper 1, where He
was centered on the GR limit.

A. The effective Hamiltonian

In view of reducing the two-body dynamics to that of an
effective test particle coupled to the generic SSS fields of an
effective single body, and taking inspiration from (2.16), let
us consider the action (setting again θ ¼ π=2)

Se½xμ� ¼ −
Z

meðφeÞdse ð4:1Þ

where dse ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−geμνdxμdxν

p
and where xμ½se� is the world

line of the effective particle characterized by the function
meðφeÞ. As in (2.18), we write the effective metric in Just
coordinates,

ds2e ¼ −Dedt2 þ
dρ2

De
þ Ceρ

2dϕ2; ð4:2Þ

where De and Ce are effective functions to be determined
later.
We now replace, for notational convenience, meðφeÞ

with the function

Ve ≡
�
meðφeÞ

μ

�
2

; such that Se½xμ� ¼ −μ
Z ffiffiffiffiffiffi

Ve

p
dse;

ð4:3Þ

which is the third effective function to be determined, and
where μ is identified to the real two-body reduced mass,
defined in (3.7). The associated Lagrangian, defined as
Se ≡

R
dtLe, therefore reads

Le ¼ −μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðVegeμνÞ

dxμ

dt
dxν

dt

r

¼ −μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ve

�
De −

_ρ2

De
− Ceρ

2 _ϕ2

�s
;

where _ρ≡ dρ=dt; _ϕ≡ dϕ=dt: ð4:4Þ

Note that Le identifies to the Lagrangian of a geodesic in
the body-dependent conformal metric, ðVegeμνÞ.

One easily deduces the effective momenta and
Hamiltonian,

pρ ≡ ∂Le

∂ _ρ ; pϕ ≡ ∂Le

∂ _ϕ ; He ≡ pρ _ρþ pϕ
_ϕ − Le;

that is

Ĥe ≡He

μ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VeDe þD2

ep̂2
ρ þ

De

Ce

p̂2
ϕ

ρ̂2

s
; ð4:5Þ

where we used the reduced (dimensionless) variables

ρ̂≡ ρ

M
; p̂ρ ≡ pρ

μ
; p̂ϕ ≡ pϕ

μM
; p̂2 ≡ p̂2

ρ þ
p̂2
ϕ

ρ̂2
;

ð4:6Þ

M being identified to the real total mass; see (3.7).
In order to relate the effective Hamiltonian He to the

two-body (perturbative) HamiltonianH, we now restrictHe
to 2PK order also. To this end, one could in principle
expand Ve, De, and Ce in the form of 1=ρ̂ series. However,
our aim being to build an effective dynamics as close as
possible to the scalar-tensor test-body problem, we shall
rather introduce the nonperturbative, “resummed” ansatz
for the metric functions De and Ce,

DeðρÞ≡
�
1 −

a
ρ̂

�b
a

; CeðρÞ≡
�
1 −

a
ρ̂

�
1−b

a

; ð4:7Þ

as suggested by (2.19), and where a and b are two effective
parameters that we shall determine in the following. As
already remarked below Eq. (4.4), the effective dynamics is
equivalent to the geodesic motion in the conformal metric
ðVegeμνÞ. The ansatz (4.7) that we shall use rather than a
simple 1=ρ̂ expansion of De and Ce is hence crucial, since
the latter would be equivalent, to within a mere coordinate
change (r2 ¼ CeVeρ

2), to the GR-centered approach of
Paper 1.
In contrast, a specific ansatz for the function Ve can be

proposed in the framework of a specific ST theory and
when the internal structure of the two real bodies is known;
see discussion below (2.21). (For an example, see
Subsection IV D.) For the moment, we hence expand Ve
a 2PK order, similarly to what was done in (2.24),

VeðρÞ ¼ 1þ v1
ρ̂
þ v2

ρ̂2
þ v3
ρ̂3

þ � � � ; ð4:8Þ

where v1, v2, and v3 are three further effective parameters
to determine later.
Expanding the effective Hamiltonian (4.5) and (4.7)–(4.8)

hence reads
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Ĥe ¼ 1þ ĤK
e þ Ĥ1PK

e þ Ĥ2PK
e þ � � � ð4:9Þ

with, at 1PK,

ĤK
e ¼ p̂2

2
þ v1 − b

2ρ̂
;

H1PK
e ¼ −

p̂4

8
þ 1

4ρ̂
½p̂2ð2a − 3b − v1Þ − 2ap̂2

ρ�

þ 1

8ρ̂2
½−2abþ b2 − 2bv1 − v21 þ 4v2�; ð4:10Þ

and, at 2PK,

H2PK
e ¼ p̂6

16
þ 1

16ρ̂
½p̂4ð5bþ 3v1 − 4aÞ þ 4ap̂2p̂2

ρ�

þ 1

16ρ̂2
½4ap̂2

ρð−2aþ 3bþ v1Þ

þ ð8a2 þ 9b2 þ 6bv1 þ 3v21

− 2að9bþ 2v1Þ − 4v2Þp̂2�

þ 1

48ρ̂3
½−8a2b − b3 þ 6abðb − v1Þ

þ 3b2v1 þ 3bðv21 − 4v2Þ
þ 3ðv31 − 4v1v2 þ 8v3Þ�: ð4:11Þ

In order to relate the two-body Hamiltonians of the
previous Sec. III B and the present effective Hamiltonian
Heðq; pÞ, we finally express the latter in the same coor-
dinate system H0

eðQ;pÞ ¼ HeðqðQ;pÞ; pÞ using the first
two relations in (3.13). The resulting effective Hamiltonian
reads (dropping again the prime)

Ĥe ¼ 1þ
�
P2

2
þ v1 − b

2R̂

�
þ Ĥ1PK

e þ Ĥ2PK
e þ � � � ð4:12Þ

where we recall that P2 ≡ p̂2
ρ þ p̂2

ϕ=R̂
2 and where H1PK

e

and H2PK
e are explicitly given in Appendix A of this paper.

B. The EOB mapping

By means of the generic canonical transformation (3.13)
to (3.11), the real and (a priori independent) effective
HamiltoniansHðQ;pÞ andHeðQ;pÞ have been written in a
common coordinate system, ðQ;pÞ; see (3.14) and (4.12).
Now, as discussed in, e.g., [8,18,19], and as proven to be
indeed necessary at all orders in GR as well as in ST
theories in [20], both Hamiltonians shall be related by
means of the quadratic functional relation (we recall that
ν ¼ μ=M):

HeðQ;pÞ
μ

−1¼
�
HðQ;pÞ−M

μ

��
1þ ν

2

�
HðQ;pÞ−M

μ

��
:

ð4:13Þ

The identification (4.13) proceeds order by order and term
by term to yield a unique solution for He, that is for the
functions introduced in the previous subsection,

DeðρÞ≡
�
1 −

a
ρ̂

�b
a

;

CeðρÞ≡
�
1 −

a
ρ̂

�
1−b

a

;

VeðρÞ ¼ 1þ v1
ρ̂
þ v2

ρ̂2
þ v3
ρ̂3

þ � � � ; ð4:14Þ

whose effective parameters now depend on the combina-
tions (3.8) and are the main technical result of this paper,

b ¼ 2; v1 ¼ −2α0Aα0B; ð4:15aÞ

a ¼ 2R; v2 ¼ 2 − 4GAB þ 2ð1þ hβ̄iÞG2
AB − 2α0Aα

0
BR;

ð4:15bÞ

v3
4
¼ 1 −

5

3
GAB þ

�
1þ hβ̄i þ 2

3
hδi

�
G2

AB

−
1

3

�
1þ 3hβ̄i þ 1

4
hϵi þ 2hδi

�
G3

AB

þ ð1 − 2GAB þ ð1þ hβ̄iÞG2
ABÞR

þ ν

�
17

3
GAB −

1

3
ð19þ 4hβ̄i þ 6ζÞG2

AB

þ
�
2

3
−
3

4
ðβ̄A þ β̄BÞ þ

1

12
ðϵA þ ϵBÞ

þ 1

6
ðδA þ δBÞ þ

3

2
hβ̄i

�
G3

AB

�
; ð4:15cÞ

where we have introduced

R≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hδiG2

AB þ ν½8GAB − 2ð1þ hβ̄iÞG2
AB�

q
; ð4:16Þ

and the “mean” quantities

hβ̄i≡m0
Aβ̄B þm0

Bβ̄A
M

;

hδi≡m0
AδA þm0

BδB
M

;

hϵi≡m0
AϵB þm0

BϵA
M

: ð4:17Þ

We note that as they should, these parameters (4.15) can
alternatively be deduced from the effective metric found in
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Paper 1, using the 2PK-expanded coordinate change
r2 ¼ CeVeρ

2, where r is the Schwarschild-Droste coor-
dinate used there.6

As a first consistency check, we note that the effective
coefficients (4.15) do not depend on the fi parameters

introduced in Sec. III A, i.e., on the coordinate system
ðR;ΦÞ in which the two-body Hamiltonian has been
initially written, as expected by covariance of the theory.
Indeed, the fi parameters are absorbed in the 2PK part of
the canonical transformation (3.11), whose parameters read

α1 ¼ −
ν

2
; β1 ¼ 0; γ1 ¼ GAB

�
1

2
νþ

�
1þ 1

2
γ̄AB

�
R
�
;

α2 ¼
1

8
ð1 − νÞν; β2 ¼ 0; γ2 ¼

ν2

2
;

δ2 ¼ GAB

�
f6

m0
A

M
þ f1

m0
B

M
− ν

�
f1 þ f6 þ ð−f3 þ f5 þ f6Þ

m0
A

M
þ ðf1 þ f2 − f4Þ

m0
B

M
−
3

2
− γ̄AB þ ν

8

��
;

ϵ2 ¼ GAB

�
−
ν2

8
þ f10

m0
A

M
þ f7

m0
B

M
− ν

�
f7 þ f10 þ ðf9 þ f10Þ

m0
A

M
þ ðf7 þ f8Þ

m0
B

M

��
;

η2 ¼ G2
AB

�
f13

m0
A

M
þ f12

m0
B

M
þ νðf11 − f12 − f13 þ f14Þ þ ν

�
−
7

4
− γ̄AB − hβ̄i þ β̄A þ β̄B

2
þ ν

4

��
: ð4:18Þ

The real two-body Hamiltonian (3.5), whose full
expression is relegated to Sec. III C and Appendix C
of Paper 1, has hence been reduced to a compact
effective Hamiltonian, where most of the two-body
Hamiltonian complexity is hidden in the canonical trans-
formation (3.11), (4.18) (e.g., information regarding
the initial coordinate system) and in the mapping relation
(4.13).

1. The ν= 0 limit

Setting formally ν ¼ 0 in (4.15)–(4.16), the parameters
reduce to, when written in terms of the fundamental
quantities (3.2),

b ¼ 2;

v1 ¼ −2α0Aα0B; ð4:19aÞ

a ¼ 2R;

v2 ¼ 2ðα0Aα0BÞ2 þ
ðmAα

2
AÞ0β0B þ ðmBα

2
BÞ0β0A

M
− 2α0Aα

0
BR;

ð4:19bÞ

v3¼−
4

3
ðα0Aα0BÞ3−

1

3

ðmAα
3
AÞ0β00BþðmBα

3
BÞ0β00A

M

−2α0Aα
0
B
ðmAα

2
AÞ0β0BþðmBα

2
BÞ0β0A

M

−
8

3

�
1þðmAα

2
AÞ0þðmBα

2
BÞ0

M

�
α0Aα

0
B

þ
�
4ðα2Aα2BÞ0þ2

ðmAα
2
AÞ0β0BþðmBα

2
BÞ0β00A

M

�
R;

with R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðmAα

2
AÞ0þðmBα

2
BÞ0

M

r
: ð4:19cÞ

Identifying now (4.19) to the parameters (2.21) and (2.25)
of the real one-body problem presented in Sec. II C does
yield a unique solution,

ðA0�Þ2 ¼
m0

Aðα0AÞ2 þm0
Bðα0BÞ2

m0
A þm0

B
; ð4:20aÞ

α0� ¼
α0Aα

0
B

A0�
; ð4:20bÞ

β0� ¼
ðmAα

2
AÞ0β0B þ ðmBα

2
BÞ0β0A

ðmAα
2
AÞ0 þ ðmBα

2
BÞ0

; ð4:20cÞ

β00� ¼
ðmAα

3
AÞ0β00B þ ðmBα

3
BÞ0β00A

ðm0
A þm0

BÞðA0�Þ3
; ð4:20dÞ

together with m0� ¼ μ, M0� ¼ M.
We hence conclude that the dynamics described byHe is

a ν deformation of a scalar-tensor test-body problem,
describing an effective test particle characterized by

6Note also that the present results (4.15)–(4.17) have been
simplified using the relation γ̄AB ¼ −2þ 2=GAB, relating γ̄AB to
the dimensionless combination GAB; see (3.8). The reader
wishing to establish G� (i.e., Newton’s constant) again should
note that it only appears through ρ̂≡ ρ=ðG�MÞ.
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lnm�ðφÞ ¼ lnm0� þ α0�ðφ − φ0Þ þ
1

2
β0�ðφ − φ0Þ2

þ 1

6
β00�ðφ − φ0Þ3 þ � � � ; ð4:21Þ

orbiting around an effective central body characterized by

lnM�ðφÞ ¼ lnM0� þ A0�ðφ − φ0Þ þ � � � ; ð4:22Þ

whose fundamental parameters [M0�, A0�, m0�, α0�, β0�, and
β00�] are related to the real, two-body ones through (4.20).
Since ν → 0 means, say, m0

B ≫ m0
A, one retrieves consis-

tently

M0� → m0
B; A0� → α0B; m0� → m0

A;

α0� → α0A; β0� → β0A; β00� → β00B;

that is, A becomes a test body orbiting around the central
body B.
We note also that ν deformations do not enter the

coefficients b and v1 in the generic ν ≠ 0 case, see
(4.15a), which are hence particularly simple; we hence
recover a feature of the linearized effective dynamics which
is common with that of the general relativity case (see
Buonanno and Damour in [8]), and which is related to the
very specific formof thequadratic functional relation (4.13).7

2. General relativity

Finally, in the general relativity limit (3.9), (4.21), and
(4.22) become the well-known reduced and total masses
m�ðφÞ ¼ μ and M�ðφÞ ¼ M, and the effective coefficients
(4.15) reduce to

a ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6ν

p
; b ¼ 2; ð4:23aÞ

v1 ¼ v2 ¼ v3 ¼ 0: ð4:23bÞ

In other words, Ve ¼ 1, i.e., the effective scalar field effects
disappear. The (nonperturbative) metric sector is now
written in Just coordinates and differs from the results of
Buonanno and Damour [8], who worked out their analysis
in Schwarzschild-Droste coordinates. In the present paper,
we hence have on hand a resummation of the 2PN general
relativity dynamics that differs from the one explored in [8].

The comparison and consistency of the two shall be
commented upon in Subsection IV D. When, moreover,
ν ¼ 0, a ¼ b and the metric consistently reduces to
Schwarzschild’s, see the comment below (2.5).

C. ST-EOB dynamics

Inverting the EOB mapping relation (4.13) yields the
“EOB Hamiltonian,”

HEOB ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
He

μ
− 1

�s
;

where
He

μ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DeVe þD2

ep̂2
ρ þ

De

Ce

�
p̂ϕ

ρ̂

�
2

s
; ð4:24Þ

[whereDe,Ce, and Ve are given in (4.14) and (4.15)] which
defines a resummation of the two-body 2PK Hamiltonian,
H. In the following we focus on some features of the
resultant resummed dynamics, in the strong field regime.
Henceforth, the 2PK-truncated function Ve is to be con-
sidered as exact, along with De and Ce.

1. Effective dynamics

As we shall see, the ST-EOB dynamics will follow
straightforwardly from that derived from the effective
Hamiltonian He. This can be obtained from Hamilton’s
equations ( _q ¼ ∂He=∂p, _p ¼ −∂He=∂q), or, as already
remarked below (4.4), can be equivalently interpreted as a
geodesic of the conformal metric ~gμν ¼ Vegeμν,

d~s2e ≡ −DeVedt2 þ
Ve

De
dρ2 þ CeVeρ

2dϕ2: ð4:25Þ

The staticity and spherical symmetry of this metric imply
the conservation of the energy and angular momentum of
the orbit (per unit mass μ),

ut ¼−DeVe
dt
dλ

≡−E; uϕ ¼CeVeρ
2
dϕ
dλ

≡L; ð4:26Þ

λ being an affine parameter along the trajectory. When,
moreover, the 4-velocity is normalized as uμuμ ¼ −ϵ
(where ϵ ¼ 1 for μ ≠ 0, ϵ ¼ 0 for null geodesics), the
radial motion is driven by an effective potential Fϵ,

�
dρ
dλ

�
2

¼ 1

V2
e
FϵðuÞ; ð4:27Þ

7We also recall that the gravitational coupling GAB ¼
1þ α0Aα

0
B, appearing in the two-body Hamiltonian [see (3.5)],

Subsection III A, and Paper 1 Sec. III C), encompasses the linear
addition of the metric and scalar interations at linear level [9]. The
present mapping has consistently split it again, between the
effective metric and scalar sectors, i.e., b and v1, see (4.15a),
contrarily to the GR-centered, fully metric mapping of Paper 1,
where GAB appeared at each post-Keplerian order in the form
ðGABMÞ=r, r being the Schwarzschild-Droste coordinate used
there.
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where

FϵðuÞ≡ E2 −DeVe

�
ϵþ j2u2

CeVe

�
;

j≡ L
M

; u≡ 1

ρ̂
¼ M

ρ
;

and DeðuÞ ¼ ð1 − auÞb=a; CeðuÞ ¼ ð1 − auÞ1−b=a;
VeðuÞ ¼ 1þ v1uþ v2u2 þ v3u3: ð4:28Þ

2. ISCO location

We now focus on circular orbits when ϵ ¼ 1, i.e.,
Fϵ¼1ðuÞ ¼ F0

ϵ¼1ðuÞ ¼ 0; j2 and E are therefore related
to u through

j2ðuÞ ¼ −
ðDeVeÞ0

ðu2De=CeÞ0
;

EðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DeVe

�
1þ j2ðuÞu2

CeVe

�s
: ð4:29Þ

A characteristic feature of the strong field regime is the
innermost stable circular orbit, which is reached when the
third (inflection point) condition is satisfied F00

ϵ¼1ðuÞ ¼ 0,
i.e., when uISCO is the root, if any, of the equation,

F0
ϵ¼1ðuISCOÞ ¼ F00

ϵ¼1ðuISCOÞ ¼ 0

⇒
ðDeVeÞ00
ðDeVeÞ0

¼ ðu2De=CeÞ00
ðu2De=CeÞ0

: ð4:30Þ

3. Light-ring location

When ϵ ¼ 0, Fϵ¼0ðuÞ ¼ E2 − j2u2 De
Ce

and one can define
a light-ring (LR), i.e., the radius of null circular orbits,
through F0

ϵ¼0ðuLRÞ ¼ 0,

uLR ¼ 1

bþ a
2

⇔ ρLR ¼ Mð2þRÞ; ð4:31Þ

where R is given in (4.15). In particular, one retrieves
R ¼ 1, i.e., ρLR ¼ 3M (Schwarzschild’s LR location) in
the test-mass (ν → 0), general relativity limit (3.9).

4. ST-EOB orbital frequency

We now turn to the resummed two-body dynamics
defined by the EOB Hamiltonian (4.24). Since HEOB
and He are conservative, we have�∂HEOB

∂He

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2νðE − 1Þp ð4:32Þ

since He ¼ μE is a constant on shell. Therefore, the
resummed equations of motion

dρ
dt

¼ ∂HEOB

∂pρ
;

dϕ
dt

¼ ∂HEOB

∂pϕ
;

dpρ

dt
¼ −

∂HEOB

∂ρ ;
dpϕ

dt
¼ −

∂HEOB

∂ϕ ¼ 0; ð4:33Þ

are identical to the effective ones, i.e., derived from the
effective Hamiltonian, Heðq; pÞ, to within the (constant)
time rescaling t → t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðE − 1Þp

. In particular, for
circular orbits, the orbital frequency reads

ΩðuÞ≡ dϕ
dt

¼ ∂HEOB

∂He

∂He

∂pϕ
¼ De

Ce

ju2

ME
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðE − 1Þp ;

ð4:34Þ

where EðuÞ and jðuÞ are given for circular orbits in (4.29).
Its ISCO value is reached when u ¼ uISCO, as defined
in (4.30).
Note that the orbital frequency has been derived in the

Just coordinate system, ðq; pÞ, which is related to the real
one, ðQ;PÞ, through the canonical transformation pre-
sented in Subsection III B. Moreover, for circular orbits
(pρ ¼ PR ¼ 0), Φ ¼ ϕ, and hence (4.34) is the observed
orbital frequency. See also Subsections III B and IV D.

D. An example: The Jordan-Fierz-Brans-Dicke theory

1. A simple one-parameter model

We now illustrate the previous results through the
example of the Jordan-Fierz-Brans-Dicke theory [21,22],
which depends on a unique parameter α, such that8

SJFBD½gμν;φ;Ψ� ¼
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2gμν∂μφ∂νφÞ

þ Sm½Ψ;A2ðφÞgμν�;
where AðφÞ ¼ eαφ;

α ¼ d lnA
dφ

¼ cst; ð4:35Þ

while general relativity is retrieved when α ¼ 0.
The two-body dynamics is then described by replacing

Sm with its “skeleton” version,

Sskelm ½xμA; gμν;φ� ¼ −
X
A

Z
mAðφÞdsA; ð4:36Þ

where, for the sake of simplicity, we shall neglect self-
gravity effects, i.e., mAðφÞ ¼ AðφÞ ~mA, where ~mA are
constants; see the discussion above (3.2). In that case,
since AðφÞ is known and the Jordan masses ~mA are

8For a comparison with the Jordan-frame parameter ω, such
that 3þ 2ω ¼ α−2, see [7] Appendix A.
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constants, there is no need to expand mAðφÞ as in (2.23)
since it is entirely determined as

mAðφÞ ¼ m0
Ae

αðφ−φ0Þ; m0
A ¼ cst: ð4:37Þ

Therefore, the fundamental parameters (3.2) become
universal (3.3) and reduce to

αA ¼ d lnmA

dφ
¼ α; βA ¼ 0; β0A ¼ 0; ð4:38Þ

and the post-Keplerian (two-body) parameters (3.8) greatly
simplify as well to

GAB ¼ 1þα2; γ̄AB ¼−
2α2

1þα2
; δA¼ δB ¼

α2

ð1þα2Þ2 ;

β̄A ¼ β̄B¼ 0; ϵA ¼ ϵB¼ 0; ζ¼ 0: ð4:39Þ

Hence, the coefficients (4.15) of the functions

De ¼
�
1 −

a
ρ̂

�b
a

;

Ce ¼
�
1 −

a
ρ̂

�
1−b

a

;

Ve ¼ 1þ v1
ρ̂
þ v2
ρ̂2

þ v3
ρ̂3

þ � � � ; ð4:40Þ

depend only on α and ν ¼ μ=M and reduce to

b ¼ 2; v1 ¼ −2α2; ð4:41aÞ

a ¼ 2R; v2 ¼ 2α4 − 2α2R; ð4:41bÞ

v3 ¼
4

3
α2ð3α2R − ð2þ 2α2 þ α4Þ

− νð14þ 12α2 − 2α4ÞÞ;
with RðνÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ α2Þð1þ 2ð3 − α2ÞνÞ

q
: ð4:41cÞ

2. An improved Ve function

As discussed in Subsection IV B, the effective
dynamics is a ν deformation of a ST test-body problem,
which, in the present case, describes a test particle
m�ðφÞ ¼ μeαðφ−φ0Þ orbiting around a central body
M�ðφÞ ¼ Meαðφ−φ0Þ, where μ ¼ m0

Am
0
B=M and M ¼

m0
A þm0

B; see (4.20) and below.
Therefore, in keeping with our approach consisting of

centering as much as possible the effective dynamics on the
test-body problem, we can “improve” Ve by factorizing out
its exact, ν ¼ 0 expression,

Ve ¼ Vν¼0
exactPðνÞ;

PðνÞ ¼ 1þ p1

ρ̂
þ p2

ρ̂2
þ p3

ρ̂3
þ � � � ; ð4:42Þ

where, by definition [see (2.17)],

Vν¼0
exact≡

�
m�ðφeÞ
m0�

�
2

¼ e2αðφe−φ0Þ; ð4:43Þ

and where φe is the scalar field generated by the central
body [see (2.21)],

φe ¼φ0þ
α

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þα2

p ln

�
1−

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þα2

p

ρ̂

�
; ρ̂¼ ρ=M:

ð4:44Þ

The 2PK identification of (4.42)–(4.44) with
(4.40)–(4.41) then gives

Ve ¼
�
1 −

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

ρ̂

� α2ffiffiffiffiffiffi
1þα2

p
PðνÞ;

PðνÞ ¼ 1þ p1

ρ̂
þ p2

ρ̂2
þ p3

ρ̂3
;

with p1 ¼ 0;

p2 ¼ 2α2½Rð0Þ −RðνÞ�;

p3 ¼ −
8

3
α2ð7þ 6α2 − α4Þν; ð4:45Þ

where Pðν ¼ 0Þ ¼ 1. In doing so, in the test-mass limit,De
andCe, as well as Ve, reduce to their exact, nonperturbative
expressions, to which they are smoothly connected.

3. The ST-EOB orbital frequency at the ISCO

We now have on hand all the necessary material to study
the ISCO location, uISCO ≡M=ρISCO, and associated
orbital frequency, MΩISCO, as defined in the previous
subsection, using (4.29), (4.30), and (4.34). The results
are even in α, as expected from (4.41) and (4.45), and are
gathered in Fig. 1 for 0 < α2 < 1.
The limit α ¼ 0 reduces to general relativity. When,

moreover, ν ¼ 0, one recovers the well-known
Schwarzschild values uISCO ¼ 1=6, MΩISCO ¼ 0.06804
[since then the Just and Droste-Schwarzschild coordinates
coincide, see the comment below (4.23)]. Note that when
α ¼ 0 but ν ≠ 0, uISCO is less than 1=6. This does not
contradict the general relativity results of Buonanno and
Damour [8], who worked in Droste coordinates rather than
Just’s; rather, this illustrates the fact that the effective radii
are physically irrelevant, contrary to the orbital frequency
MΩISCO which is an observable: for α ¼ 0 and for all ν ≠ 0,
the ISCO frequency turns out to be always larger than the
Schwarzschild one (see right panel of Fig. 1), as in [8]. For
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instance, when ν ¼ 1=4, we find MΩISCO ¼ 0.07919, i.e.,
slightly higher than the value 0.07340 quoted in [8]. The
∼7% difference in the numerical values is reasonable
considering that the two resummations [see (4.23)] are
different and built on 2PK information only.
Now, when α ≠ 0, i.e., when the scalar field is switched

on, the ISCO frequency increases roughly linearly in α2, as
can be seen from the right panel of Fig. 1, with a slope

dðMΩISCOÞ
dðα2Þ

����
ν¼1=4

≃ 0.13 and
dðMΩISCOÞ

dðα2Þ
����
ν¼0

≃ 0.063:

ð4:46Þ

Interestingly, when restricted to a perturbative regime
α ≪ 1, these results are qualitatively consistent with the
ones obtained from the distinct GR-centered resummation
of [7], where ST effects were considered as perturbations of
general relativity. There, we started from the best available
EOB-NR metric, known in GR at 5PN order; see [23–25].
We then perturbed this effective metric by scalar-tensor
2PK corrections and studied their impact on the strong field
dynamics. The ISCO frequency was also found there to
increase linearly with the “PPN,” Eddington parameter

ϵ1PK ≡ hβ̄i − γ̄AB ð4:47Þ

[which reduces to ϵ1PK ∼ 2α2 in the present case, see (3.8b),
(4.17), and (4.39)], the slope being numerically of the same
order of magnitude, hence illustrating the robustness of the
EOB description of the strong field regime.9

More importantly, we have developed, throughout this
paper, a ST-centered EOB Hamiltonian that reduces to the
exact test-body Hamiltonian in the test-mass limit.
Consequently, the ISCO predictions are well-defined even
when jαj ∼ 1, that is, can be pushed to a regime that
strongly departs from general relativity: there, the estimated
ISCO location and frequency significantly deviate from the
GR ones and remain smoothly connected to the test-mass
(ν ¼ 0) limit (see Fig. 1), which we know exactly even in
the strong field regime.10

We hence have illustrated, in the simple case of the
Jordan-Fierz-Brans-Dicke theory, the complementarity of
two EOB resummations of the scalar-tensor dynamics:

(i) The first one, introduced in Paper 1, which is built on
rich (5PN) general relativity information, is oriented
towards regimes where ST effects are considered as
perturbationsofGR[while thedynamics is ill-defined in
nonperturbative regimes; this necessitates, e.g., the use
of appropriate Padé resummations of the ST perturba-
tions as soon as ϵ1PK ≳ 10−1, see [7] for details].

(ii) The second, ST-centered one that we have developed
throughout this paper, which has been shown to be
well-suited to describe regimes that may depart
strongly from general relativity; the price to pay
being that it is based on 2PK information only.

An exhaustive study of generic ST theories [that depend
on five parameters (4.4)] is left to future work.

V. CONCLUDING REMARKS

The reduction to a simple, effective-one-body motion
has been a key element in the treatment of the two-body

FIG. 1. ISCO location (left panel) in Just coordinates and ISCO frequency (right panel) versus the (squared) Jordan-Fierz-Brans-Dicke
parameter α2, when ν ¼ 0 (dashed lines) and ν ¼ 0.25 (solid lines).

9In particular, we found dðGABMΩÞ=dϵ1PK ≃ 0.13 in the
equal-mass case. In the present paper we will not proceed to
any detailed, quantitative comparison of the two resummations
since the present ST-centered approach is limited in this section to
the JFBD case and since Paper 1 included some extra 5PN GR
information.

10It must be noted that when α > αcrit ≃ 1.6, the exact test-
body problem (which is reached when ν ¼ 0) does not feature
any ISCO anymore, since then (4.30) has no root. This phe-
nomenon is encompassed by our mapping; when ν is nonzero and
increases, the value of αcrit smoothly decreases to reach
αcritðν ¼ 1=4Þ≃ 1.03.
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problem in general relativity. In the pioneering 1998 paper
[8] of Buonanno and Damour, the 2PN effective dynamics
was found to be a ν deformation of the test-body problem in
GR, namely, the geodesic motion of a test particle μ in
the Schwarzschild metric generated by a central body M.
Remarkably, the fruitfulness of the EOB approach
spreads beyond the scope of general relativity: indeed,
by means of a canonical transformation and the same
EOB quadratic relation (4.13), we reduced the 2PK two-
body dynamics in scalar-tensor theories to a ν-deformed
version of the ST test-body problem; namely, the motion
of a test particle [μ, α0�, β0�, β00�] orbiting in the fields of a
central body [M, A0�].
The present mapping has led, just like that of Paper 1 [7],

to a much simpler and compact description of the two-
body dynamics in the 2PK regime, “gauging away” the
irrelevant information in a canonical transformation. The
(conservative) dynamics derived from the two ST-EOB
Hamiltonians presented in [7] and in the present paper are,
by construction, canonically equivalent at 2PK order but,
when taken as being exact, they define two distinct
resummations of the dynamics in the strong field regime.
The fact that both lead to consistent ISCO predictions (in
their overlapping ST regimes) is a hint that they may have
captured accurately some of the strong field features of
binary coalescence in ST theories.
To summarize, we have on hands two complementary

EOB dynamics: (i) the geodesic motion in an effective
metric in Schwarschild-Droste coordinates, encompassing
the most accurate (5PN) GR information, which is par-
ticularly well-suited to test scalar-tensor theories when
considered as parametrized corrections to general relativity
[7]; and (ii) a ST effective test-body problem, in Just
coordinates, that allows the investigation of regimes that
depart strongly from GR. For example, the coupling α0A
between the scalar field and stars that are subject to
spontaneous scalarization can reach the order of unity
[14]; binary systems involving such stars are hence
encompassed in the present work.
Note that one cannot perform the 2PK Droste-Just

coordinate change r2 ¼ CeVeρ
2 without spoiling either

the resummation towards the ST test-body problem of
(ii) or the 5PN accurate GR information of (i).
Now, Solar System and binary pulsar experiments have

already put stringent constraints on ST theories, namely,
ðα0AÞ2 < 4 × 10−6 for any body A, and α2 < 2 × 10−5 in
(non–self-gravitating) JFBD theory (see, e.g., [26,27]).
Since the parameters (4.19) contain terms that are all
driven by at least ðα0A=BÞi, i ≥ 2, these constraints seem
to imply that scalar-tensor effects are negligible. However,
gravitational wave astronomy allows the observation
of new regimes of gravity that might escape these
constraints.
For example, from the cosmological point of view, GR is

indeed an attractor of ST theories [11,12], and hence, the

gravitational wave detectors LIGO-Virgo (and forthcoming
LISA), which are designed to observe highly redshifted
sources, can probe epochs when ST effects may have been
stronger.
Also, stars that are subject to dynamical scalarization

[28,29] can develop nonperturbative αA couplings to the
scalar field during the last few orbits before plunge. It must
be noted that although the present paper aims at exploring
the strong field regime near merger, it is based on PK
information only, and hence, cannot cover dynamical
scalarization phenomena as it is. Their implementation
within the present ST-EOB framework is left to future
work; note that analytical approaches to dynamical scala-
rization can be found in, e.g., [30,31].
Hence, the tools developed in the present paper, which

goes beyond the scope of [7], could turn out to become
useful in practice.
As for now, we restricted ourselves to the conservative

part of the ST two-body problem. The incorporation of the
EOB radiation reaction force will be the topic of further
work. In particular, the comparison of the resulting gravi-
tational waveforms to their numerical relativity counter-
parts, as investigated in [28] (at least at prescalarization
stages), will allow us to estimate the accuracy of our ST-
EOB approach to comparable mass (ν≃ 1=4) binary
systems. Other information such as, e.g., the binding
energy of a binary system predicted in [32], could also
serve as a reference.
Finally, we recall that static, spherically symmetric black

holes cannot carry scalar hair in the class of ST theories we
are considering here (provided that the no hair theorems
hold in the highly dynamical regime of a merger), see, e.g.,
the comments below Eq. (2.5) and references quoted there.
An interesting alternative would be to induce hair by means
of a massless gauge vector field, as for, e.g., Einstein-
Maxwell-dilaton theories [33,34], which will be the subject
of future works.
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APPENDIX: CANONICALLY TRANSFORMED
EFFECTIVE HAMILTONIANS

Performing the canonical transformation (3.13)–(3.11),
the effective 2PK Hamiltonian (4.9) is rewritten in the
intermediate coordinate system ðq; pÞ → ðQ;pÞ as
follows:

Ĥe ¼ 1þ
�
P2

2
þ v1 − b

2R̂

�
þ Ĥ1PK

e þ Ĥ2PK
e þ � � � ðA1Þ

where
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Ĥ1PK
e ¼ p̂4

rð2α1 þ 3β1Þ − p̂2
rP2ðα1 þ 3β1Þ þ P4

�
−α1 −

1

8

�

þ 1

4R̂
½P2ð2aþ 2α1b − 3b − 4γ1 − ð2α1 þ 1Þv1Þ − 2p̂2

rða − 2α1ðb − v1Þ − 3β1ðb − v1Þ − 2γ1Þ�

þ 1

8R̂2
½bð−2aþ bþ 4γ1Þ − 2v1ðbþ 2γ1Þ − v21 þ 4v2�;

Ĥ2PK
e ¼ −

1

2
p̂6
rð36α1β1 þ 12α21 þ 27β21 − 4β2 − 10γ2Þ þ

1

2
p̂4
rP2ð2α1ð9β1 − 1Þ þ 8α2 þ 27β21 − 3β1 þ 2β2 − 10γ2Þ

þ 1

2
p̂2
rP4ðα1ð18β1 þ 1Þ þ 9α21 − 6α2 þ 3β1 − 6β2Þ þ

1

16
ð24α21 þ 8α1 − 16α2 þ 1ÞP6

þ 1

16R̂
½8p̂4

rð2α1ð3ða − 2bβ1 − b − 2γ1Þ þ ð6β1 − 1Þv1Þ þ 3β1ð3a − 3b − 6γ1 − v1Þ þ 2bβ2 þ 5bγ2 − 4α21ðb − v1Þ
− 9β21ðb − v1Þ þ 4δ2 − 2β2v1 − 5γ2v1 þ 6ϵ2Þ
− 4p̂2

rP2ð−2α1ð−3a − 6bβ1 þ 6bþ 6γ1 þ ð6β1 þ 2Þv1Þ þ 18aβ1 − a − 27bβ1 − 6bβ2 − 36β1γ1

þ 8α21ðb − v1Þ − 8α2ðb − v1Þ þ 2γ1 þ 4δ2 − 9β1v1 þ 6β2v1 þ 12ϵ2Þ
þ P4ðα1ð−24aþ 36bþ 48γ1Þ − 4a − 8α21bþ 8α2bþ 5bþ 8γ1 − 16δ2 þ ð8α21 þ 12α1 − 8α2 þ 3Þv1Þ�

þ 1

16R̂2
½P2ð8a2 þ 8α1abþ v1ð−4aþ 8α1ðbþ 2γ1Þ þ 6bþ 12γ1 − 8δ2Þ − 18ab − 24aγ1 − 4α1b2 þ 9b2

− 16α1bγ1 þ 36bγ1 þ 8bδ2 þ 24γ21 − 16η2 − 4ð4α1 þ 1Þv2 þ ð4α1 þ 3Þv21Þ
− 4p̂2

rð2a2 − 6abβ1 − v1ðaþ 4α1ðbþ 2γ1Þ þ 6β1ðbþ 2γ1Þ − 2γ1 − 4δ2 − 6ϵ2Þ þ α1ð2bð−2aþ bþ 4γ1Þ þ 8v2Þ
− 3ab − 6aγ1 þ 3b2β1 þ 12bβ1γ1 þ 6bγ1 − 4bδ2 − 6bϵ2 þ 6γ21 − 4η2 − v21ð2α1 þ 3β1Þ þ 12β1v2Þ�

þ 1

48R̂3
½−3v1ð2ab − b2 − 8γ1ðbþ γ1Þ þ 8η2 þ 4v2Þ − 12ðbγ1ð−2aþ bþ 2γ1Þ − 2bη2 þ v2ðbþ 4γ1ÞÞ

− bðb − 4aÞðb − 2aÞ þ 3v21ðbþ 4γ1Þ þ 3v31 þ 24v3�:
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